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Abstract – The changes in the runoff and alluvial outflow lead 

to changes in the slope, the depth, meandering, the width of the 

riverbed and the vegetation. Being able to predict the changed 

of the river dynamics is of crucial importance for the 

sustainable monitoring, maintenance and operation of rivers. 

We adopt deep learning architectures pipeline consisting of 

GAN, CNN and LSTM to actually generate forecasts for river 

discharge, water level and sediment deposition by using 

historic satellite data of the meteorological features listed 

above, and in-situ measurements for water level, discharge and 

turbidity. To leverage the applicability of the forecasts on the 

river morphology in integrated models, we calibrate 

hydrodynamic models using TELEMAC-2D, and we 

demonstrate how the fusion of a complex EO4AI method and 

geometry mapping produces a solution for a real user need of 

being aware of upcoming changes in the navigable channel of 

the downstream of the Danube. The satellite data are provided 

by ADAM via the NoR service of ESA. 

We provide comparison between the generated 

hydrodynamic models with real and with forecasted river data, 

and analyse them. Finally, we demonstrate a visualisation of 

the forecasted pathway on a GIS component using 

OpenLayers.  

Keywords: hydrodynamic modelling, TELEMAC, deep learning, 
earth observation, AI, forecast, GIS visualisation, navigable 
channel. 

I. INTRODUCTION 

The changes in the runoff and alluvial outflow lead to 
changes in the slope, the depth, meandering, the width of the 
riverbed and the vegetation. The bed load and the suspended 
load can change the morphology of the riverbed as a result of 
high runoff. This has a direct impact on the determination of 
the channel in navigable rivers. That is why it is of great 
importance for assisting the maintenance of the navigable 
rivers to provide with instruments to predict the 
modifications in the river morphology that will potentially 
impact the channel. To address this problem, it is necessary 
to forecast the sediment deposition amounts and the river 
runoff and to determine how they will change the river 
morphology. Predicting sediment deposition potential 
depends on a variety of meteorological and environmental 
factors like turbidity, surface reflectance, precipitations, 
snow cover, soil moisture, vegetation index. Satellite data 
offer rich variety of datasets, supplying this information. 

We adopt deep learning architectures pipeline consisting 
of Generative adversarial networks (GAN), Convolutional 
Neural Networks (CNN) and Long Short Term memory 
(LSTM), further described below, to generate forecasts for 
river discharge, water level and sediment deposition by using 
historic satellite data of the meteorological features listed 
above, and in-situ measurements for water level, discharge 
and turbidity. To leverage the applicability of the forecasts on 
the river morphology in integrated models, we calibrate 
hydrodynamic models using TELEMAC-2D, and we 
demonstrate how the fusion of a complex EO4AI method, a 
method that makes use of earth observation data to train AI 
models, conversely to the usually employed in earth 
observation methods using AI models in order to better 
detect objects or phenomena on earth through earth 
observation – AI4EO10 -  and geometry mapping produces a 
solution for a real user need, such as being alerted of 
upcoming changes in the navigable channel of the 
downstream of the Danube. The structure of the paper is as 
follows: first we present the adopted method, then we 
describe the data that have been used for the experiments to 
demonstrate the method, third we outline the experiments 
and the experiment results, including GIS (Geographical 
Information System) visualization of the forecasted navigable 
channel, finally we discuss related work and conclude. 

II. METHOD 

We address the problem of river dynamics prediction by 
forecasting the river discharge and the sediment deposition 
amounts and then proceed to hydrodynamic modelling with 
TELEMAC-2D by using the forecast data, the river 
bathymetry including sediment sizes. (see Figure 1) 

 

10 Satellite data provide a very rich source of information about the 

earth. However, they are not perfect. That is why a big segment of 

the research dedicated to earth observation is concerned with 

developing AI methods that will improve and maximize the Earth 

observation using satellite data. This field of research is referred to 

with AI4EO. In our approach we are using satellite data of 

meteorological features to train AI methods and obtain predictions 

for their behavior. This field of research is referred to with EO4AI, 

and is in its early stages of development. 

mailto:mariana.damova@mozajka.co
mailto:stanko.stankov@mozajka.co
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Figure 1. Figure 13 Forecast of river dynamics 

For the forecasts we adopt a pipeline of deep learning 
architectures consisting of GAN, CNN and LSTM by using 
historic satellite data of meteorological features, that have 
impact on the river dynamics, such as precipitations and soil 
moisture, and in-situ measurements for the hydraulic input 
feature to be forecasted e.g. water level, discharge and 
turbidity (see Figure 2).  

 

 

Figure 2. Figure 14 Forecast pipeline of NN 

A. Generative adversarial network (GAN) 

A generative adversarial network (GAN) [1] is a type of 
construct in neural network technology that offers a lot of 
potential in the world of artificial intelligence. It is composed 
of two neural networks: a generative network and a 
discriminative network (see Figure 2). The discriminator 
function compares real data with generated sample data 
optimizing the model towards reaching a state of no 
discrepancy. Thus, the one network generates data, e.g. 
models a transform function that takes a variable and 
produces another variable following the target distribution 
and the other network is a discrepancy evaluator that models 
a discrepancy function that returns the probability of a 
generated data to be true. The benefits of adopting GANs are 
that they generate data that looks similar to original data. If a 
GAN is given an image, then it will generate a new version 
of the image which looks similar to the original image. 
Similarly, it can generate different versions of the text, video, 
audio. However, they are much harder to train since it is 
needed to provide different types of data continuously to 
check if it works accurately or not. 

 

Figure 3. Figure 15 Generative adversarial network architecture 

We use GAN to address one specificity of satellite data to 
be inconsistent, e.g. they do not produce harmonized 
timeseries, for example daily data, as no data as being 
provided for some days. But to run neural network 
architecture to generate forecasts using satellite data, we need 
consistent timeseries. So, GAN is the first step of our 
pipeline. It harmonizes the timeseries of the satellite data by 
generating the missing values in the timeseries. 

B. Convolutional neural networks (CNN) 

CNN [2] is a type of artificial neural network used for 
descriptive and generative tasks very often adopted in 
computer vision. The term “convolutional” means 
mathematical function derived by integration from two 
distinct functions. It includes rolling different elements 
together into a coherent whole by multiplying them. CNNs 
are made from neurons with trainable weights where each 
neuron receives input data and takes a weighted sum over 
them and passes it through an activation function returning 
the output (see Figure 4. 

The convolution applies a kernel [19] over the input data, 
performing elementwise multiplication with the part of the 
input that is currently on, after that it sums up the result into a 
single value (see Figure 4). 

 

Figure 4. Figure 16: Convolution 

After the convolutional layer in CNNs a pooling layer is 
applied [4]. This layer is responsible for reducing the size of 
the convoluted feature. It is used to decrease the computation 
power. There are two types of pooling layers – max pooling 
and average pooling. They are used to extract the average 
values or the max values from a kernel (see Figure 5). 
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Figure 5. Figure 17: Pooling layer 

CNN architectures are used for generating forecasts (see 
Figure 6) 

 

Figure 6. Figure 18: Convolutional neural network used for forecasting 

The benefits of adopting CNNs are mainly the high 
accuracy in tasks that require image recognition and the 
weight sharing. The disadvantages of adopting CNNs are the 
need of large datasets to obtain good performance, and long 
training time, that typically requires a specialized hardware 
(GPU) to speed up the training process. 

CNNs are used as a first step in order to optimally 
consume the geopositioned input data, as they are effective 
with geospatial data.  

C. Long Short Term Memory (LSTM) 

LSTM [5] is a type of Recurrent Neural Networks (RNN) 
model [6] to remember each information throughout time, 
which is very helpful in any time series predictor. Recurrent 
Neural Networks (RNN) are designed to recognize sequence 
patterns and stock markets [7] (see Figure 7). 

 

Figure 7. Figure 19: RNN architecture 

Instead of neurons, LSTM networks have memory blocks 
that are connected through layers (see Figure 7). A block has 
components that make it smarter than a classical neuron and 
a memory for recent sequences. A block contains gates that 
manage the block’s state and output. A block operates upon 

an input sequence and each gate within a block uses the 
sigmoid activation units to control whether they are triggered 
or not, making the change of state and addition of 
information flowing through the block conditional. There are 
three types of gates within a unit: 1) Forget Gate: 
conditionally decides what information to throw away from 
the block. 2) Input Gate: conditionally decides which values 
from the input to update the memory state. 3) Output Gate: 
conditionally decides what to output based on input and the 
memory of the block. 

The advantages of using LSTMs can be summarized in 
the following points: 

• They can remember each information throughout time, 
which is very useful for time series predictions 

• Native Support for Sequences. LSTMs are a type of 
recurrent network, and as such are designed to take 
sequence data as input, unlike other models where lag 
observations must be presented as input features. 

• Multivariate Inputs. LSTMs directly support multiple 
parallel input sequences for multivariate inputs, unlike 
other models where multivariate inputs are presented in a 
flat structure. 

• Vector Output. Like other neural networks, LSTMs are 
able to map input data directly to an output vector that 
may represent multiple output time steps. 

D. ConvLSTM 

In the adopted architecture, the forecast model of our 
solution includes both CNNs and LSTMs [8]. Firstly, 
convolutional layers are used for feature extraction on the 
input data and are combined with a LSTM layer allowing the 
architecture to support sequence prediction (see Figure 7). 

 

Figure 8. Figure 20: ConvLSTM architecture 

ConvLSTMs are used when the input is 2D structure such 
as image, or 1D as word, sentence or some other sequential 
input data with the task for classification or forecast. The 
advantages of using ConvLSTM architectures are that they 
achieve high accuracy, they operate with input data in 1D, 
2D or 3D and since they contain both CNN and LSTM layers 
they can look back and forward on 1D.  

E. The open TELEMAC system 

TELEMAC-2D is a well-known and established 
hydrodynamic model solving the shallow water equations. It 
is used to simulate free-surface flows in two dimensions of 
horizontal space. At each point of the mesh, the program 
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calculates the depth of water and the two velocity 
components. It can perform simulations in transient and 
permanent conditions. The algorithms used by TELEMAC-
2D are extremely efficient and are constantly being improved 
in order to incorporate the latest developments made in the 
field of numerical computations. TELEMAC-2D meet the 
specific requirements of each model: specification of initial 
conditions or complex boundary conditions, links up with 
other modelling systems, allow the introduction of new 
functions.  

As shown on Figure 9 we combine the physical model of 
the river bathymetry and sediments with the forecasted water 
data for river discharge and water level, employing the 
Composite Modelling (CM) method that is defined as the 
integrated and balanced use of physical and numerical 
models [9]. It is important to emphasize the novelty of our 
approach to make use of forecast hydraulic input data instead 
of using hydrological formulas in TELEMAC to obtain the 
river dynamics prediction. 

 

Figure 9. Figure 21 Model integration leading to an integrated model11 

III. DATA 

Predicting discharge, water level and sediment deposition 
depends on a variety of meteorological and environmental 
factors such as precipitations, snow cover, soil moisture, 
vegetation index, turbidity, surface reflectance. Satellite data 
offer rich variety of datasets, supplying this information. That 
is why we make use of satellite data to feed our forecast 
models with this kind of information. In addition, we make 
use of in-situ measurements for discharge, water level and 
turbidity for the forecast models, as well as gain size and 
bathymetry for the hydrodynamic modelling.  

The data used for the experiments and the forecasting 
prototype as presented below. 

A. Satellite data 

The satellite data are provided by ADAM 
(http://adamplatform.eu). ADAM allows accessing a large 
variety of multi-year global geospatial collections enabling 
data discovery, visualisation, combination, processing and 
download. It permits to exploit data from global to local 
scale. Table I shows the satellite datasets that are provided 

 

11 Gerritsen, H., Sutherland, J., Deigaard, R., Sumer, B.M., Fortes, 

J, Sierra, J-P and Prepernau, U, (2009). Guidelines for Composite 

Modelling of the Interactions Between Beaches and Structures. 
Final Report, September, 66 pages, (HYDRALAB-III Deliverable 

JRA1.4). 

and made use of in our experiments. The data collections 
have been selected in order to guarantee:  

• - full coverage of the project spatial domain  

• - the best available spatial resolution per time  

• - data availability for at least 10 years.  

Table I Satellite data collections 

Meteorological 

Feature 
Satellite Data Collection 

Temperature MODIS land surface temperature day 

Soil Moisture 
SMOS  

CCI Soil Moisture 

precipitation 

imerg liquid precipitation daily 

imerg liquid precipitation 30 min 

imerg solid precipitation daily 

imerg solid precipitation 30 min 

Snow cover MODIS Snow cover 

Solar irradiance 
MSG Downwelling Shortwave Surface 

Flux 

vegetation index 
MODIS NDVI 

Sentinel 2 NDVI 

Copernicus water 

turbidity  

MSI based 300m (CLMS) 

OLCI based 300m (CLMS) 

MODIS surface 

reflectance 
MODIS based 250m 

 

The core of ADAM is a Data Access System (DAS), a 
software module that manages a large variety of geospatial 
information that feature different data format, geographic / 
geometric and time resolution. It allows accessing, 
visualising, sub-setting, combining, processing, downloading 
all data sources simultaneously. The DAS exposes OGC 
Open Search (CSW-compliant) and Web Coverage Service 
(WCS 2.x) interfaces that allow discovering available 
collections and subset them in any dimension with a single 
query. 

B. In-situ measurements  

As the experimental setting of our work was the 
Danube River, the in-situ measurements were taken from 
measurement points on the Bulgarian segment of the 
Danube. They are outlined below. 

Historic daily measurements for water discharge in 
cm3/s, water levels in m and water temperature in oC are 
provided for the period 2015-2020 by the National 
Agency for Exploration and Maintenance of the Danube 
River from the hydrometric stations Lom (km 743,300), 
Svistov (km 554,300), and Silistra (km 375,500). The 
current daily measurements from 2021 of the same 
categories are being collected from the site of the Agency 
on a daily basis.  
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The turbidity and grain size historic data daily 
sampling from the same hydrometric stations are 
provided for the period 2015-2020 inclusively by The 
National Institute for Meteorology and Hydrology. The 
turbidity [g/l] is being determined via laboratory analysis 
in The National Institute for Meteorology and Hydrology.  

For the purposes of the geometry modelling of the 
Danube River, to address the use case for predicting of the 
navigable channel on the Danube River, the bathymetry 
of the Bulgarian segment of Danube River has been 
provided by the National Agency for Exploration and 
Maintenance of the Danube river.  

 

IV. EXPERIMENTS AND RESULTS 

Experiments have been carried out with different 
ConvLSTM architectures. The best performing one turned 
out to be the one using two convolutional layers. We show 
the results of the generation of missing data with GAN, and 
the ConvLSTM architecture with two convolutional layers. 
Subsequently, we show the results of the river dynamics 
prediction with the adopted method using TELEMAC 2D. 

A. Missing data generation with GAN 

The missing data generation with GAN was carried out 
with daily satellite data timeseries from 2014-2019 and the 
tests were the daily timeseries from 2020. The results are 
shown on Table II. It is evident that the precision of the 
generated missing data is very satisfactory with MinMae 
score close to 0. It is important to point out that the spatial 
resolution for the satellite data in the reported experiments 
was 1.1 km. 

Table II Missing data generation results 

Meteolologial 

feature 
Satellite dataset name MinMae  

Soil moisture 
ESACCI-SOILMOISTURE-L3S-SSMV-

COMBINED_4326_025 
0 

Liquid 

precipitations 
IMERG_DAY_LIQUID_SCALED_4326_01 0,92 

Snow cover MODIS_SNOW_4326_001 0,73 

NDVI MOD13_NDVI_4326_005 0,05 

Solid 

precipitations 
IMERG_DAY_ICE_SCALED_4326_01 0,07 

Reflectance MODIS based ISMoSeDe_reflectance 0,04 

 

B. Forecast with ConvLSTM 

The forecasting experiments were carried out with the 
harmonized satellite data, as described in the previous 
subsection, and with in-situ measurements for discharge, 
water level and turbidity as per the description in section III. 
Table III below shows the annual average deviation in the 
results for discharge, water level and turbidity for the three 
hydrometric posts on the Danube with a model calibrated to 

generate forecast for 7 days ahead. The experiments are 
carried out with daily historic data from 2014-2019 and the 
test is performed on year 2020. 

Table III Forecast performance 

Feature  Deviation 

  Lom Svishtov Silistra 

Turbidity (NTU) 0,01 0,02 0,04 

Discharge 

(cm3/sec) 
224,70 181,70 86,90 

Water level (cm) 26,74 20,40 18,83 

 

Figure 10 shows the performance of the discharge 
forecast compared to real measurements for 30 days ahead 
for the three hydrometric stations on the Danube. 

 

Figure 10. Figure 10 Forecast performance for 30 days ahead 

Here we also notice that the performance is satisfactory. 

C. River dynamics prediction with TELEMAC D 

TELEMAC simulation is performed for the critical areas 
around the hydrometric points Lom, Svishtov and Silistra. 
We have used the bathymetry of the critical areas to draw the 
mesh, in-situ measurements for substrate and the forecasted 
data for discharge and water level, as turbidity was not 
relevant for the type of river segments of interest.  

For  the simulation  a time step value of 10 and Nikuradse 

for the law of bottom friction.  The liquid boundary is 

represented with three parameters – time, free surface and 

discharge measured in s, m and m3/s. The temporal 

resolution of the simulation is one day, represented in 

seconds (0-86400 seconds). We introduce the forecasted 

value for discharge and calculate the free surface from the 

forecasted water levels using the following formula: 

Fs = wl /100 + K 
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where wl is the forecasted water level and K is the station 

elevation.  

The created output file is shown on Figure 11  

 

Figure 11. Figure 11 Liquid boundary file with forecasted data 

The generated 6 features: riverbed, velocity U, velocity 
V, friction velocity, surface elevation, and water depth are 
produced. Figure 12 shows the predicted riverbed for the 
critical area around Svishtov, and Figure 13 shows the 
comparison between the real and predicted depth for January 
2020 for the critical area around Svishtov for 1, 10, 20 and 30 
days ahead. 

The precision in the prediction of the depths is evident 
from the similarity of the images. It is important to point out 
that we do not observe deterioration of the performance 
results as the prediction period increases to 30 days. 

 

Figure 12. Figure 12  Predicted riverbed of a critical area around Svishtov 

 

Figure 13. Figure 13 Comparison of real vs predicted depth of a critical 

area around Svishtov 

Based on the forecasted data as TELEMAC output we 
proceeded to the generation of the forecasted navigable 

channel by identifying the middle path on the XY axis as 
shown on Figure 14.  

 

Figure 14. Figure 14 Visualization of the forecasted fairway on the critical 

area of Svishtov 

 

V. RELATED WORK 

Hydrodynamic modelling [9] forms the basis for many 
modelling studies, whether sediment transport, morphology, 
waves, water quality and / or ecological changes are being 
investigated. Research is being carried out to improve the 
representation of tides, waves, currents, and surge in coastal 
waters. A variety of coastal models are available, and the 
modelling techniques have become sufficiently mature [10]. 
Composite Modelling (CM) is defined as the integrated and 
balanced use of physical and numerical models [11]. Our 
approach blends the CM method and demonstrates how it can 
be applied to hydrodynamic modelling. 

      River dynamics has been observed and forecasted with 

various mathematical models. They are gaining popularity 

for solving a wide range of natural fluid mechanical 

problems. When it comes to free-flow currents and sediment 

transport processes in open channels, single-dimensional 

(1D) and two-dimensional (2D) digital models are 

widespread. To the best of our knowledge our approach is 

the first to attempt to forecast river dynamics by inserting 

forecasts of hydraulic input into TELEMAC. Moreover, the 

forecasts of the hydraulic input are produced by means of 

using historic satellite data of meteorological features and 

in-situ measurements from given hydrometric stations. This 

constitutes a cutting-edge novel method in the field of 

hydrodynamic modelling. 

 

VI. CONCLUSION AND FUTURE WORK 

We presented a method for predicting river dynamics 
using TELEMAC, AI and Earth observation. It consists of 
producing TELEMAC simulation by using forecasted 
measurements for discharge and water level. For the forecast 
we adopt neural networks pipelines and historic satellite data 
with meteorological information and in-situ measurements. 

The satellite data input to the neural network is 
harmonized in a first processing step also using neural 
networks - GAN. We succeed to obtain very good 
forecasting results that are consequently blended in the 
TELEMAC simulations, based on which we are capable to 
derive hands-on determination and visualization of forecasted 
fairway. We have demonstrated how the fusion of a complex 
EO4AI method and geometry mapping produces a solution 

http://www.coastalwiki.org/wiki/Waves
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for a real user need of being aware of upcoming changes in 
the river fairway of the downstream of the Danube. To the 
best of our knowledge our approach is the first to make use 
of forecast hydraulic input data to produce a hydrodynamic 
simulation with TELEMAC. Our results demonstrate the 
viability and robustness of our method. Our plans are to 
integrate the method in our e-Infrastructure for monitoring 
dams and rivers for sustainable development – ISME-
HYDRO (http://isme-hydro.com). 
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