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Abstract – Modelling transport of microplastic particles in 

aquatic environments is challenging owing to the heterogeneity 

of the particles. Conventional Lagrangian and Eulerian 

modelling approaches come with the restriction of defining 

singular particle properties. Drawing inspiration from other 

scientific disciplines, particle heterogeneity is addressed in this 

work using population balance equations (PBE) with the 

method of moments solution. As a first step, a wide size range 

of microplastics is considered as internal coordinate of the 

number density function (NDF). The moment transport 

equation includes source and sink terms of erosion and 

deposition respectively. The method is implemented in the 

TELEMAC-2D and WAQTEL environments. The test case of a 

channel with steady state flow and erosion and deposition zones 

is implemented. The results of the model show physically 

meaningful NDFs after episodes of erosion and deposition. 

Further model development is planned to include the integral 

source and sink terms such as aggregation and breakage of 

flocs of microplastic and sediment particles.  

Keywords: microplastics, deposition, erosion, method of 

moments, number density function, Telemac2D. 

I. INTRODUCTION 

Drastic increase in the use of plastics without proper 
disposal mechanisms has resulted in large quantities of 
plastic litter ending up in the open environment [1]. Often 
rivers play a crucial role in transporting plastic litter from 
inland to the marine environment [2]. Once disposed in the 
open environment, plastic litter undergoes a slow but 
continuous change in its size, shape and strength [3][4]. This 
results eventually in the apparition and multiplication of 
microplastic. Microplastic are generally described in the 
literature as plastic litters of size 5 mm or less [5]–[7]. Plastic 
litter of a few nanometres are also detected in many parts of 
the world, including on top of the glaciers [8]. This makes 
microplastics very challenging to track.  

Modelling tools are often employed to simulate plastic 
litter transport pathways in the fluvial, marine and estuarian 
systems. Coupled hydrodynamic and Lagrangian particle 
tracking models can reveal the transport trajectories of plastic 
litter. This approach has led to claims of floating garbage 
patches in several parts of the world oceans [9]. However, 
Lagrangian models track the individual particles which 
requires large computational resources in order to track 
realistic plastic concentrations [8][9]. Moreover, the 

Lagrangian approach is not ideal to model the processes of 
plastic transport such as – deposition, erosion, aggregation, 
breakdown, etc. On the contrary, the Eulerian approach deals 
with particle mass or volumetric concentrations; therefore, 
modelling realistic plastic concentrations is convenient with 
the Eulerian approach. A major weakness of both the 
Lagrangian and Eulerian approach is the need for multiple 
classes (few tens) to address heterogeneity of plastic litter in 
the aquatic environment, in other word, the variety of the 
size, shape and density [9]. In the Eulerian approach, for each 
different property of the plastic, a different particle class 
must be defined. In order to model a wide size range – from 
few nanometres to few millimetres – several size classes 
must be defined. This requires high computational resources. 
A sophisticated approach exists to address this issue. 
Population Balance Equations (PBE) with the Method of 
Moments (MoM) are often used in the chemical, biochemical 
and industrial engineering to model the bubble size 
distribution in chemical applications, flocs size distribution in 
wastewater treatment processes, particle size distribution in 
the grinding process, etc [12]. In the next section the PBE 
approach and the mathematical model of the PBE applied to 
microplastic transport in aquatic environment is explained.  

II. POPULATION BALANCE EQUATION 

The PBE approach describes the spatial and temporal 
evolution of the number density function (NDF) associated 
with a particle population. While NDF evolves continuously 
due to phenomena of advection and diffusion, it can also 
evolve discontinuously due to aggregation, breakage, etc. 
[13]. In the PBE approach, a particle population is either a 
discrete or a continuous entity which interacts with their 
environment which is a continuous phase. The particle 
populations are defined by an array which contains both 
internal and external coordinates. An internal coordinate 
describes the properties of the particle population in the state 
space and an external coordinate is used to describe the 
particle location in the physical space [12]. The internal 
coordinates may include the particle’s size, volume, mass or 
the chemical composition [14]. The mathematical expression 
of PBE applied to a system with a particle population in a 
carrier fluid consists of the Navier-Stokes equations (or other 
shallow water simplification) for the carrier fluid and a 
spatial transport equation (e.g. advection and diffusion), 
source terms (e.g. dissolution, deposition), integral terms 
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(e.g. aggregation and breakage) for the particle population 
[14]. In this paper, the transport of the microplastics in the 
liquid media is studied with a focus on the erosion and 
deposition as sink and source terms. Further, the size of the 
microplastics alone is defined as the internal coordinate of 
the NDF. The tested model is a 2D hydrodynamic model 
coupled with a PBE-based particle transport model.  

The evolution of the NDF of a discrete phase of particles 
in a continuous medium is expressed in the following form 
[15]: 𝜕ℎ𝑛𝜕𝑡 + 𝜕𝜕𝑥 (hU 𝑛) + 𝜕𝜕𝑦 (hV 𝑛) −𝜕𝜕𝑥 (ℎ𝐷𝑥 𝜕𝑛𝜕𝑥) − 𝜕𝜕𝑦 (ℎ𝐷𝑦 𝜕𝑛𝜕𝑦) =𝑆𝑜 − 𝑆𝑖

 () 

where: 

• 𝑛(𝜉; 𝑥, 𝑦, 𝑡)  = number density function [𝑛𝑢𝑚𝑏𝑒𝑟/𝑚3]  
or [1/𝑚3]; 

• 𝜉 = internal coordinate of NDF e.g. particle size; 

• 𝑥, 𝑦 = spatial coordinate; 

• 𝑈, 𝑉 = depth-averaged velocities in 𝑥 & 𝑦 directions;  

• 𝐷𝑥 , 𝐷𝑦 = turbulent dispersion coefficients in 𝑥 & 𝑦  
directions; 

• 𝑆𝑜 , 𝑆𝑖  = sink term and source term respectively e.g., 

aggregation, breakage, erosion, deposition, etc.  

Several methods of solving PBE can be found in the 
literature. The class or sectional method works by 
discretizing the internal coordinate space into intervals 
(classes or sections), transforming the PBE into a set of 
macroscopic balance equations in the physical domain [16]. 
However, a large number of scalars (i.e., classes) are required 
to maintain reasonable accuracy [17].  

In the Monte Carlo method, a finite sample of the 
population is used to track its evolution under the influence 
of growth and disintegration mechanisms with probabilities 
proportional to the corresponding rates [18]. However, 
because of the large number of scalars required, 
incorporating these methods into CFD codes is also 
computationally challenging.  

An effective and more elegant solution is found through 
the Method of Moments (MoM). A discrete set of moment 
values carry the NDF information. The low order moment 
values are related to the mean, variance, skewness and 
flatness of the statistical distributions described by the NDFs 
[19]. In contrast to the method of classes and the Monte 
Carlo method, MoM is appropriate for use with CFD codes 
because the internal coordinates are integrated, requiring only 
a small number of scalars (i.e., lower order moments) at each 
grid point [17]. 

A. Method of Moments 

In the case of a multivariate NDF i.e., a NDF with several 
internal coordinates (ξ), the 𝑘 th order moment (𝑀𝑘 ) of the 
NDF is expressed as: 

𝑀𝑘(𝑥, 𝑦, 𝑡) = ∫Ω𝜉 𝑛(𝜉; 𝑥,𝑦, 𝑡) 𝜉1𝑘1𝜉2𝑘2 . . . 𝜉𝑀𝑘𝑀  𝑑𝜉 (2) 

where Ω𝜉  represents the internal coordinate space of all the 

possible sizes 𝜉. The array 𝑘 = (𝑘1, 𝑘2, … 𝑘𝑀)  represents the 
order of the moment values with respect to all the internal 
coordinate values (𝜉) taken into account [20]. In the case of 
single internal coordinate 𝜉  which assumes only ℝ+  (non-
negative real numbers), the above moment expression 
reduces to: 𝑀𝑘(𝑥, 𝑦, 𝑡) = ∫+∞

0 𝑛(𝜉; 𝑥,𝑦, 𝑡) 𝜉𝑘  𝑑𝜉 (3) 

The NDF transport equation (1) can be modified into a 

moment transport equation by multiplying it with the 𝜉𝑘 and 
integrating over [0, +∞) [13].  𝜕𝑀𝑘𝜕𝑡 + 𝜕𝜕𝑥 (𝑈 𝑀𝑘) + 𝜕𝜕𝑦 (V 𝑀𝑘) −𝜕𝜕𝑥 (𝐷𝑥 𝜕𝑀𝑘𝜕𝑥 ) − 𝜕𝜕𝑦 (𝐷𝑦 𝜕𝑀𝑘𝜕𝑦 ) =∫+∞

0 𝑆𝑜 𝜉𝑘 𝑑𝜉 − ∫+∞
0 𝑆𝑖  𝜉𝑘 𝑑𝜉

 (4) 

The solution of (4) is advantageous as the moment values 
hold quantities with physical meaning and therefore are 
measurable. M0, M1 and M2 represent the total number of 
particles, total length and total area respectively [21]. This 
overcomes difficulty of validation through the NDF, as the 
NDF itself is not measured in most cases but its integral 
quantities are measured such as total mass, total volume, etc. 
However, the challenge is to express the sink and source 
terms in moment values, which leads to closure problem. 

This is addressed by means of quadrature approximation. 
In the Quadrature Method of Moments (QMOM), N-node 
Gaussian quadrature is employed to approximate the 
integrals in the moment transport equations for the solution 
of a univariate PBE. The algorithm calculates the N abscissas 
and N weights of the quadrature from the 2N transported 
moments [16]. The NDF is approximated with the discrete 
weighted sum of Dirac 𝛿 functions, uniquely found by means 
of moment inversion algorithms [13]: 

𝑛(𝜉; 𝑥,𝑦, 𝑡) ≈∑𝑁𝑖=1 𝑤𝑖(𝑥, 𝑦, 𝑡) 𝛿[𝜉 − 𝜉𝑖(𝑥, 𝑦, 𝑡)] (5) 

which implies the moment approximation as: 

𝑀𝑘(𝑥, 𝑦, 𝑡) ≈∑𝑁𝑖=1 𝑤𝑖(𝑥, 𝑦, 𝑡) 𝜉𝑖𝑘(𝑥, 𝑦, 𝑡) (6) 

The abscissas 𝜉𝑖(𝑥, y, 𝑡)  and the weights 𝑤𝑖(𝑥, 𝑦, 𝑡)  are 
derived from the lower order moments. For a NDF 
approximation of order 𝑁 , only the first 2𝑁  moments are 
essential [22]. In the next section, an alternative MoM- 
Extended Quadrature Method of Moments (EQMOM) is 
explained, which is the focus of the current work.  
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B. EQMOM procedure  

In the QMOM procedure, the approximation of the NDF 
at certain values of the internal coordinate ( 𝜉 ) can be 
problematic in cases where a population is diminishing 
continuously (for example, pure settling). An alternative 
MoM for such case is EQMOM which utilises continuous 
kernel density functions (KDF) in the place of Dirac 𝛿 
functions. Several existing works have used different KDFs 
as applicable to the physical processes involved. Most widely 
reported are the Gaussian distribution with infinite support (−∞,∞), gamma and log-normal distributions with semi-
infinite positive support [0,∞)  and beta distribution with 
finite support [0,1]  [16]. The mathematical expressions of 
the EQMOM approximation of the NDF is: 

𝑛(𝜉; 𝑥,𝑦, 𝑡) ≈ 𝑝𝑁(𝜉; 𝑥, 𝑦, 𝑡) =∑𝑁𝑖=1 𝑤𝑖  𝛿𝜎(𝜉, 𝜉𝑖) (7) 

where 𝑤𝑖  and 𝜉𝑖  are the weights and abscissae of the non-
negative KDF. 𝑁 is the number of KDFs used to approximate 
the NDF. 

In the case where 𝜎  tends to zero, in other words the 
population is diminishing to few particle sizes, the KDF 𝛿𝜎(𝜉, 𝜉𝑖) tends to a Dirac 𝛿 function, 𝑤𝑖  are the non-negative 
weights and 𝜉𝑖  are the respective quadrature abscissae [13]. 
The first step in the numerical procedure of solving EQMOM 
is the selection of an appropriate KDF. This choice has to be 
made based on the distribution of the NDF in question. From 
the knowledge of the size distribution of the plastic particles 
found in nature [7], we select the log-normal KDF. Therefore 
the 𝛿 function can be defined as [23]: 𝛿𝜎(𝜉, 𝜇) = 1𝜉𝜎√2𝜋  exp (− (ln𝜉 − 𝜇)22𝜎2 ) ; 𝜉, 𝜎 ∈ ℝ+, 𝜇 ∈ ℝ (8) 

where 𝜇  and 𝜎  are the mean and standard deviation of the 
natural logarithm of the log-normally distributed variable 𝜉. 
The integer moments of order 𝑘  of the log-normal 
distribution is given by the Mellin transform [23]: 𝑀𝑘(𝑥,𝑦, 𝑡) = 𝑒𝑥𝑝 (𝑘𝜇 + 𝑘2𝜎22 ) 

(9) 

One-node case – One-node case uses one subordinate KDF to 
represent the whole distribution. To take bimodal (or higher) 
behaviour of NDF into account, using two-node (or more) is 
required. The one node (N=1) approximation of the NDF is 
the simplest case of EQMOM, which needs only the first 2𝑁 + 1 = 3  moments to be solved [16]. In this case the 
approximated NDF is given as [23]:  𝑛(𝜉; 𝑥, 𝑦, 𝑡) ≈ 𝑃1(𝜉; 𝑥, 𝑦, 𝑡) = 𝑤1𝛿𝜎(𝜉, 𝜉1)= 𝑤1𝜉𝜎√2𝜋 𝑒𝑥𝑝 (− (ln𝜉 − 𝜉1)22𝜎2 ) 

(10) 

The first three moments can be defined with (10) as follows:  

{𝑀0 = 𝑤1𝑀1 = 𝑤1 𝑒(𝜉1+𝜎2/2)𝑀2 = 𝑤1 𝑒(2𝜉1+2𝜎2) (11) 

Equation (12) can be analytically solved to find the values of 𝑤1, ξ1 and σ:  

{   
   𝑤1 = 𝑀0𝜉1 = ln ( 𝑀12𝑀0√𝑀0𝑀2)𝜎 = √2ln (√𝑀0𝑀2𝑀1 )  (12) 

C. Erosion and deposition terms in the MoM framework  

The fully unsteady and non-equilibrium 2D sediment 
transport equation is written in terms of the sediment 
concentration C as:  𝜕ℎ𝐶𝜕𝑡 + 𝜕𝜕𝑥 (hU 𝐶) + 𝜕𝜕𝑦 (hV 𝐶) −𝜕𝜕𝑥 (ℎ𝐷𝑥 𝜕𝐶𝜕𝑥) − 𝜕𝜕𝑦 (ℎ𝐷𝑦 𝜕𝐶𝜕𝑦) =E − D  () 

where D = deposition rate and E = resuspension rate, both 
with units [𝑘𝑔/𝑚2𝑠].  

The existing sediment transport models define the erosion 
and deposition rates in two categories, i.e., cohesive and non-
cohesive cases. A choice must be made regarding which 
category to be applied to the microplastic case. In order to 
avoid investigating through tens of empirical formulations of 
erosion rates under the non-cohesive category and to be able 
to express these rates in terms of moments of NDF, the 
formulation under the cohesive sediment category is adapted. 

The erosion rate and deposition rate for cohesive 
sediments are specified as: 

𝐸 = {e 𝐶𝑏𝑒𝑑 (𝜏𝑏𝜏𝑅 − 1) 0  

if      𝜏𝑏 > 𝜏𝑅 

(14) 
if       𝜏𝑏 ≤ 𝜏𝑅 

𝐷 = {𝑤𝑠  𝐶𝑠𝑢𝑠 (1− 𝜏𝑏𝜏𝑆   ) 0  

if       𝜏𝑏 < 𝜏𝑆 

if       𝜏𝑏 ≥ 𝜏𝑆 

where: 

• 𝐶𝑠𝑢𝑠 = sediment concetration in suspension [𝑘𝑔/𝑚3]; 
• 𝐶𝑏𝑒𝑑 = sediment concetration in the bed layer [𝑘𝑔/𝑚3]; 
• 𝑤𝑠  = sediment settling velocity [𝑚/𝑠]; 
• e = erosion rate [m/𝑠]; 
• 𝜏𝑏 = bed shear stress [N/𝑚2]; 
• 𝜏𝑅 = critical shear stress of resuspension [N/𝑚2]; 
• 𝜏𝑆 = critical shear stress of sedimentation [N/𝑚2]; 

The above formulation expressed in terms of sediment 
concentration needs to be adapted for the moment transport 
problem. The same formulation can be rewritten in terms of 
moment values. The moment erosion rate (𝐸𝑘) and depsoition 
rate (𝐷𝑘) are then expressed as:  𝐸𝑘 = 𝑒k 𝑀𝑘𝑏𝑒𝑑 (𝜏𝑏𝜏𝑅 − 1) (15) 
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𝐷𝑘 = 𝑤𝑠𝑘 𝑀𝑘𝑠𝑢𝑠 (1− 𝜏𝑏𝜏𝑆   ) 

where: 

• 𝑀𝑘𝑠𝑢𝑠 ,  𝑀𝑘𝑏𝑒𝑑 = moment value 𝑀𝑘 in the suspension load 

and bottom material respectivbely with units of 3 lower 

order moments being [1/𝑚3], [1/𝑚2], [1/𝑚]; 
• 𝑤𝑠𝑘 = moment settling velocity [m/s]; 
• 𝑒k = moment erosion rate [m/s]; 

Settling velocity of the 𝑘𝑡ℎ  order moment 𝑤𝑠𝑘  is 

expressed in the form:  𝑤𝑠𝑘 = 1𝑀𝑘  ∫+∞
0 𝜉𝑘  𝑤𝑠(𝜉) 𝑛 𝑑𝜉 (16) 

where 𝑤𝑠(𝜉)  is the size dependent settling velocity e.g. 
Stokes equation. The above expression is essentially a 
weighted average of settling velocity. The erosion rate 𝑒k is 
not defined in a similar integral term, instead its values are 
assumed irrespective of the particle size.  

The resulting 2D moment transport equation is expressed as: 𝜕ℎ 𝑀𝑘𝜕𝑡 + 𝜕𝜕𝑥 (hU𝑘  𝑀𝑘) + 𝜕𝜕𝑦 (hV𝑘  𝑀𝑘) −𝜕𝜕𝑥 (ℎ𝐷𝑥 𝜕𝑀𝑘𝜕𝑥 ) − 𝜕𝜕𝑦 (ℎ𝐷𝑦 𝜕𝑀𝑘𝜕𝑦 ) =𝐸𝑘 − 𝐷𝑘
 (17) 

III. TEST CASE: FLUME MODEL 

A. Model implementation 

A test case is developed in TELEMAC-2D to verify the 
use of PBE-MoM with erosion and deposition terms. In this 
regard, the modelling features available in WAQTEL – 
MICROPOL are utilised. WAQTEL is a water quality 
modelling package of the TELEMAC system (TMS) [24]. 
MICROPOL is a module under WAQTEL which allows 
modelling the evolution of the micro-pollutants e.g., heavy 
metals in three components of an aquatic system – water, 
suspended particulate matter and bottom material. Each of 
these components are a homogenous class. MICROPOL 
employs 5 tracer classes – suspended sediment (SS), bottom 
sediment (SF), dissolved micropollutant (C), micropollutant 
fraction adsorbed by suspended sediment (Css) and 
micropollutant fraction adsorbed by bottom sediment (Csf).  
The SS and SF comply to the classical sedimentary physics 
i.e., deposition and resuspension as in case of cohesive 
sediments. These two processes are defined by the law of 
Krone and Partheniades respectively. One of the key 
assumptions made in MICROPOL is that SS and SF are 
passive tracers i.e., they do not have impact on the flow (no 
feedback). Therefore the bed elevation is kept unmodified 
during the simulation [25]. While MICROPOL is designed to 
be used for the micropollutant evolution, we make use of 
only the sediment modelling aspects to implement the PBE-
MoM. The reason for this is the simplicity of the sediment 
transport implementation in MICROPOL and bed elevation 
being unmodified. At this stage, the transformation of bottom 
material moment values to the bed elevation is not yet 

determined. As a result, MICROPOL is a convenient 
candidate for the PBE-MoM implementation with few 
modifications.  

As described under section II.B, in a one-node case the 
first three lower order moments are sufficient to reconstruct 
the NDF. These three moment values are treated as 
suspended and bottom material in MICROPOL model. In 
other words, the three moment values are specified for 
suspended class and three moments for the deposition class, 
resulting in a total of 6 tracers. We introduce these 6 tracers 
in the MICROPOL model along with the associated 
parameter sets. The nomenclature of the 6 moments are given 
in Table I. As explained in the section II.C, each of the 
suspended and bottom material moment values have source 
and sink terms i.e., erosion and deposition fluxes. The 
nomenclature of the parameter sets associated with erosion 
and deposition fluxes is given in Table II.  

Table I Nomenclature of the 6 tracer introduced in MICROPOL model 

Indices of unique tracers Description 

SS_M0, SS_M1, SS_M2 
Moments M0, M1, M2 respectively  

in suspension load 

SF_M0, SF_M1, SF_M2 
Moments M0, M1, M2 respectively  

in bottom material   

Table II Nomenclature of the parameters associated with 6 tracer 
introduced in MICROPOL model 

Parameter  Description 

ERO_M0, ERO_M1, ERO_M2 
Erosion rate of moment M0, M1, 

M2 respectively   

TAUS_M0, TAUS_M1, 

TAUS_M2 

Critical shear stress of 

sedimentation of moment M0, 

M1, M2 respectively   

TAUR_M0, TAUR_M1, 

TAUR_M2 

Critical shear stress of 

resuspension of moment M0, 

M1, M2 respectively   

VITCHU_M0, VITCHU_M1, 

VITCHU_M2 

Settling velocity of moment M0, 

M1, M2 respectively   

 

B. Hydrodynamic model setup 

The model domain is a 50 m long and 2.5 m wide 
rectangular channel. The bottom elevation reduces gradually 
from 0 m at the flow inlet to -0.05 m at the flow outlet. The 
model is provided with an initial condition of 0.47 m water 
depth. A prescribed flowrate of 1 m3/s is assigned at the 
channel inlet, while at the outlet a prescribed elevation of 
0.47 m is assigned. A warming up model simulation of 500 s 
is carried out to create a steady state flow in the channel. The 
result of this simulation at 𝑡 = 500 s is used as restart for the 
further model simulations, results of which are further 
presented. The further simulation and the hydrodynamic 
setup are given in Table III. The resulting flow pattern in the 
channel is a steady state flow with higher bed shear stress at 
the flow inlet and lower at the flow outlet. This is utilised for 
a further erosion and deposition behaviour criterion.  
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Initial moment values M0, M1, M2 are specified over the 
entire domain for the bottom material only. On the other 
hand, moment values for the suspended load are prescribed 
with the channel inflow from t = 0 s to t = 60 s. The values of 
initial bottom material moments and prescribed suspended 
load moments are given in Table IV. The calculation of these 
moment values is detailed under the following section.  

Table III imulation and hydrodynamic model setup 

Simulation time setup 

number of time steps 5000 

time step 0.1 s 

Hydrodynamic setup 

prescribed flowrates   
0.0; 1.0 m3/s (outflow 
boundary; inflow boundary) 

prescribed elevations   
0.47; 0.0 m (outflow 
boundary; inflow boundary) 

option for liquid 
boundaries  

2; 1 (Thompson method; 
strong setting) 

law of bottom friction      Manning’s law 

friction coefficient           0.018 

type of advection   

1; 5; 4 (Method of 
characteristics for velocity; 
PSI distributive scheme for 
depth; N distributive scheme 
for tracer) 

diffusion of tracers  
1ℎ  𝑑𝑖𝑣 (ℎ𝑣 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑇) 

Turbulence model  Constant viscosity  

coefficient for 
diffusion of tracers  

1.E-6 

Table IV Initial and prescribed moment values  

 

C. PBE-MoM model setup 

The values of the moments M0, M1, M2 given in 
Table IV are estimated from the NDF associated with field 
measurements of microplastic particles. These field 
measurement are carried out under the Flemish project – 
PLUXIN [26]. Measurement data is collected at the Wintam 
area of the Scheldt river [27]. The NDF of 4,737 particles is 
shown in Figure 1, along with its reconstructed fit. The 
particles are grouped in size bins and corresponding NDF is 

found. Then Riemann integral with 25 bins is applied to 
calculate the moment value. As explained in the section II.B, 
the calculated moments are used to derive the parameters 𝑤1, 𝜉1 and . Next, these parameters are used to reconstruct the 
NDF. The mismatch between the measured and reconstructed 
NDF is caused by the choice of the integral approximation 
used to calculate the moment values. The resulting moments 
M0, M1, M2 are presented in Table IV. From here on, the 
units of M0, M1 and M2 are omitted as they remain 
consistent i.e., 1/m3, 1/m2 and 1/m respectively. The 
reconstructed NDF corresponds to mean size = 695 µm, 
median size = 380 µm and mode size  = 114 µm.  

 

 

Figure 1. Measured and approximated log-normal fit of the NDF  

The settling velocities 𝑤𝑠𝑘 for the moment values are 

calculated as formulated in (5). The size dependent settling 
velocity is calculated with Stokes’ equation. The initial 
moment values are used for the calculation of settling 
velocities and these settling velocities are kept constant 
during the simulation.  As in the case of the moment value 
calculation, a Riemann integral with 25 bins is applied. The 
resulting settling velocities of the moments M0, M1, M2 are 
presented in Table V. In the absence of the integral size 
dependent formulation for the erosion rate, the initial 
moment values themselves are assigned to the erosion rates 𝑒k. This implicitly allows erosion of scaled-down NDF from 
the bottom material at each timesteps when bed shear stress 
exceeds the critical shear stress of resuspension.  

The critical shear stresses for resuspension and deposition 
are selected in order to have two distinct zones in the channel 
domain – an erosion zone and a deposition zone. The steady 
state flow allows for these zones to be static in time. The 
erosion zone is observed in the first 1/3rd length of the 
channel from the inflow boundary and the deposition zone in 
the last 1/3rd length of the channel (Figure 2). Further 
analyses on the moment and NDF evolution are carried out at 
two nodes roughly 14 m after the beginning of the respective 
zones. While the node 662 is at the end of erosion zone with 
a bed shear stress higher than the critical shear stress for 
resuspension = 2.68 N/m2, node 840 is at the end of the 
deposition zone with a bed shear stress lower than the critical 
shear stress of deposition = 2.42 N/m2. 

initial bottom 
material moment 
values  

SF_M0 
SF_M1 
SF_M2 

0.5146 1/m3 
3.576E-4 1/m2 
8.294E-7 1/m 

prescribed 
suspended load 
moment values  

SS_M0 
SS_M1 
SS_M2 

0.5146 1/m3 
3.576E-4 1/m2 
8.294E-7 1/m 
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Figure 2. Bed shear stress (N/m2) in the channel  

Table V Parameters set corresponding to three moment values 

PBE-MoM model parameters 

erosion rates of 
moments  

ERO_M0 0.5146 m/s 

ERO_M1 3.576E-4 m/s 

ERO_M2 8.294E-7 m/s 

settling velocity of 
moments 

VITCHU_M0 0.083 m/s 

VITCHU_M1 0.387 m/s 

VITCHU_M2 0.756 m/s 

critical shear stress 
of resuspension  

TAUR_M0, 
TAUR_M1, 
TAUR_M2 

2.68 N/m2 

critical shear stress 
of sedimentation 

TAUS_M0, 
TAUS_M1, 
TAUS_M2 

2.42 N/m2 

 

IV. RESULTS AND DISCUSSION 

A. Mass balance  

Firstly, the moment value conservation is checked. For this 
purpose, the model domain is transformed into a still basin 
case, by assigning all boundaries to be solid boundary. Only 
initial suspended load moment values (M0 = 0.5146, M1 = 
3.576E-4, M2 = 8.294E-7) are imposed. This allows all the 
suspended moment values to be deposited as bottom material 
moments. The relative error after 500 s simulation is 
provided in Table VI. These Percentage errors show a good 
mass conservation of the moment values.  

Table VI Mass conservation of moment values  

Suspended 
load  
moments 

Percentage 
error 

Bottom 
material   
moments 

Percentage 
error 

SS_M0 -0.561E-13 SF_M0 -0.195E-10 

SS_M1 0.572E-11 SF_M1 -0.138E-10 

SS_M2 0.257E-8 SF_M2 -0.182E-10 

B. Moment evolution  

The moment values in suspension load as well in bottom 
material are further analysed over the simulation time. The 
evolution of moment values is shown for the two nodes with 
node index 662 and 840 in Figure 3.  

Node 662, located at the end of the erosion zone, shows 
the expected behaviour in the moment values of suspension 
and deposition loads (Figure 3a). M0, which assumes a 
higher magnitude erosion rate, is intensively eroded due to 
the exceeded bed shear stress. However, both the M1 and M2 
bed load moments do not show significant erosion as they 
assume erosion rates of 3 and 6 orders of magnitude less than 
that of M0. The eroded bed load moment is added to the 
suspended moments. In the M0 suspended load, we see that 
peak value is higher than 0.6 as compared to the prescribed 
M0 suspended load = 0.5146. However, this is not noticeable 
in the case of M1 and M2 in suspension load due to the 
aforementioned reasons. 

Node 840, located at the end of the deposition zone, 
shows the deposition behaviour of the suspended load 
moment values (Figure 3b). It should be noted that M0 has 
the lowest settling velocity and M2 the highest settling 
velocity. This leads to M2 in the suspension load diminishing 
significantly in comparison to the other two moments as the 
bed shear stress stays below the critical shear stress for 
deposition. Consequently, the bed load moments also show a 
proportional increase in their values as suspended load 
moments are deposited to the bed layer. The highest gain in 
bed load moment is seen for M2 and the lowest one for M0. 

C. NDF evolution  

The transported moment values are transformed into a 
NDF in the post-processing as briefed in section II.B. The 
initial moment values result in a mean particle size of 695 
µm, which is reflected in the bed layer NDF as shown in 
Figure 4a. Only a few time steps are selected for Figure 4 
such that a moment set at that time at the corresponding node 
results in a valid NDF. The size range of the NDF are 
trimmed until 2000 µm, instead of full scale up to 8000 µm 
as meagre changes are observed at larger size range. 

At node 662, located at the end of erosion zone, the bed 
load NDF is progressively diminishing in its peak particle 
number as well as the peak number is shifting towards larger 
particle size (Figure 4a). This is reflected in the mean particle 
size presented along with each subplot. This shows that the 
moment value erosion is reflecting the smaller particle 
erosion which leads to NDF skewing more towards the larger 
particle. It should be noted that the chosen erosion rate 
parameters for the moments implicitly favours the erosion of 
smaller particles. The suspended load NDF shows higher 
particle number i.e., ~1500 than the prescribed value which is 
~900 (Figure 4a), which is due to the addition of eroded 
material to suspension. The mean size in suspended NDF is 
remarkably lower than the prescribed value i.e., 695 µm, also 
caused by the addition of eroded smaller size particles to the 
suspension.  
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At node 840, located at the end of the deposition zone, 
the bottom material NDF is gradually gaining the larger 
particle sizes reflected in the increasing number on the 
particles in larger size range (Figure 4b). Also, the NDF of 
the suspended load is gradually skewed toward the smaller 
size in coherence with the changes in bottom material NDF. 
It should be noted that the NDF of the suspended load has a 
mean size much lower than the prescribed value of 695 µm, 
as a portion of heavier particles have already settled in the 
deposition zone before reaching the node 840 (Figure 4b).  

The NDFs of the suspended and bottom material do not 
show significant changes in the larger size range (>2000 µm) 
due to the fact that log-normal KDF is used for 
approximating the NDF. Log-normal distribution by its 
characteristics tend to zero at the larger size range. When 
significant changes at the larger size range is expected, more 
than one subordinate KDF would be required.  

 

 

 

 

 

a) b) 

  

Figure 3. Moment evolution of suspended load and bottom material at two nodes a) 662 (erosion zone) and b) 840 (depostion zone). First, second and third 

row of plots show evolution of M0, M1 and M2 respectively. 
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V. CONCLUSIONS  

In this study, a first attempt is made to include erosion and 
deposition terms in the framework of PBE-MoM. The 
MICROPOL module of the WAQTEL modelling package is 
utilised for implementing the PBE-MoM. The use of the 
EQMOM procedure to model the evolution of the moments 
and subsequently of the NDF are discussed. A procedure has 
been developed to determine the initial moment values as well 
as a post-processing technic for reconstruction of the NDF. In 
spite of the limited knowledge of the parameter values for 
erosion and deposition fluxes in MoM, physically meaningful 
results are obtained. The evolution of the NDF as a result of 
erosion and deposition are discussed and results are justified. 
However, the authors recognise the need for the validation of 
the results against measured data. In the absence of measured 
NDF datasets, the model needs to be first validated against 
concentration of suspended and deposited load. Further it is 
recommended that deposited bottom material moments would 
be transformed into mass and volumetric concentration, which 
can lead to the computation of bed elevation changes using the 
Exner equation. Apart from erosion and deposition, 
microplastics very likely undergo the process of flocculation 
with sediment and subsequent breakage of the flocs. This needs 
to be treated as additional source and sink terms to model the 
microplastic transport in aquatic environment. This would also 

need redefining the NDF such that both sediment and 
microplastic are taken into account. This is possible with 
multivariate NDFs and by employing more than one kernel 
density function to approximate the NDF. The implementation 
of additional source and sink terms would need reconstruction 
of the NDF at every time step and at every computational node. 
This would require efficient integral approximation methods to 
be implemented within the TELEMAC computation 
environment. Considering all the additional and unique 
computational requirements of PBE-MoM in TELEMAC, it is 
recommended to implement a standalone module. 
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a) b) 

  

Figure 4. NDF evolution at two nodes  a) 662 (erosion zone) and b) 840 (depostion zone) for selected time steps. The mean particle size of the NDF in the 

suspension load and bottom material are denoted as φsus and  φbed . 

https://www.pluxin.be/nl
http://www.labplas.eu/
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