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Abstract 

This study utilizes in-situ measurements and numerical weather prediction datasets 

collected during the Coupled Air-Sea Processes Electromagnetic Ducting Research East 

field campaign to assess how thermodynamic properties in the marine atmospheric surface 

layer influence evaporation duct shape and to develop a simple near-surface modified 

refractivity estimation method. This study utilizes a logarithmic linear parametric model, 

which describes evaporation ducts via three main parameters: evaporation duct height, 

evaporation duct curvature, and mixed layer slope. Notably, most studies utilizing this type 

of model assume the curvature, C0, to be a theoretical value derived assuming neutral 

atmospheric stability; a thermodynamic regime that is rarely observed precisely. Prior 

studies suggest varying C0 to represent a wider range of ED shapes. Unfortunately, the 

physical significance of C0 is poorly understood so this approach is not commonly adopted. 

This study investigates relationships between C0 and near surface thermodynamic 

properties. The relationship between C0 and the air-sea temperature difference (ASTD) 

reveal, during unstable periods, that C0 are generally greater than in near-neutral or stable 

environments. C0 in near-neutral environments are generally close to the theoretical value. 

The linear relationship between the near surface specific humidity gradient (NSSHG) and 

C0 is stronger than that with ASTD thus, it is concluded that C0 variations are primarily 

driven by NSSHG. Modified refractivity profiles are modeled using C0 based on a NSSHG 

empirical linear model (termed, EDS model) and compared to other common methods of 

near surface estimation such as Monin-Obukhov similarity theory (MOST) and 

extrapolation from ~3m to the surface. Refractivity estimated from the EDS model was 

similar to in-situ refractivity measurements. Linearly or non-linearly (i.e., polynomials) 
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extrapolating refractivity to the surface resulted in closer agreement between measured and 

modeled propagation loss, indicating that measured data better predicted PL than either 

model. Notably, the EDS model predicted PL that is statistically similar to that predicted 

by MOST implying this novel empirical method is a practical alternative to MOST in 

applications such as propagation modeling and requires significantly less environmental 

measurements.  

  



vii  

Table of Contents 

List of Figures .............................................................................................................................. viii 

List of Symbols and Abbreviations .............................................................................. xiv 

1.0 Introduction ............................................................................................................ 1 

2.0 Background ................................................................................................................. 5 

2.1 Electromagnetic Wave Propagation ...................................................................... 5 

2.2 Environmental Effects on Radar Wave Propagation .......................................... 6 

2.3 Modeling the Refractive Environment ................................................................ 10 

2.4 Current Limitations of Near Surface Refractivity Measurements ................... 11 

3.0 Research Questions ................................................................................................... 19 

4.0 Methods ...................................................................................................................... 23 

4.1 Data Sources .......................................................................................................... 23 

4.1.1 Experimental Data .......................................................................................... 23 

4.1.2 Numerical Data ............................................................................................... 25 

4.2 Data Analysis ......................................................................................................... 28 

4.2.1 Analyzing Near Surface Drivers of EDS ...................................................... 28 

4.2.2 EDS Prediction Model .................................................................................... 30 

4.2.3 EDS Refractivity and Propagation Comparisons ........................................ 32 

5.0 Results ........................................................................................................................ 46 

5.1 Evaporation Duct Shape Metric .......................................................................... 46 

5.2 Near Surface Drivers of EDS ............................................................................... 47 

5.3 Empirical EDS Model ........................................................................................... 51 

5.4 Simulated Propagation Loss Comparison .......................................................... 52 

6.0 Summary .................................................................................................................... 70 

7.0 References .................................................................................................................. 74 

Appendix .......................................................................................................................... 81 

 

  



viii  

List of Figures 

Figure 1. Propagation loss versus range and altitude. Within the domain there are noticeable 

“lobes” that result from multipath effects, or constructive and destructive interference. . 15 

Figure 2. Refraction regimes. (Courtesy of Ian Matsko) .................................................. 16 

Figure 3. (A) An example of a modified refractivity profile with an evaporation duct with 

the top of the trapping layer denoted with red line and (B) an example of a modified 

refractivity profile with an elevated duct with the bounds of the trapping layer (i.e., the 

inversion layer) denoted with red lines. ............................................................................ 17 

Figure 4. (A) Modified refractivity versus height with an evaporation duct height of 10.1m 

(red dashed line) and (B) its corresponding propagation loss pattern (duct height altitude is 

at the white dashed line) for a 10.3m X-band transmitter................................................. 18 

Figure 5. Example spatial and temporal map of data collection on 21 October 2015. The 

bottom x-axis represents the distance in km from Duck Pier, whereas the y-axis represents 

the time the data was collected in UTC. The green lines represent the tracks of the R/V AE 

during radar data collection, the black symbols represent sunrise and sunset, the vertical 

dot-dash black lines represent the buoy locations, the red squares represent the times and 

locations where 30-min averaged meteorological data were collected from the R/V Sharp 

bow mast that is used by the COARE algorithm, and the blue triangles represent the times 

and locations the MAPS system was winched up and down from a small boat deployed 

from the R/V Sharp to obtain the data for the 7th order polynomial fits. The nodes of the 



ix  

grid represent the spatiotemporal resolution of the blended COAMPS®-NAVSLaM 

predictions. ........................................................................................................................ 36 

Figure 6. Measured modified refractivity, blue stars, calculated from the in-situ tethered 

balloon measurements of temperature, pressure, and humidity. The red line is the seventh 

order polynomial fit to the cluster of modified refractivity data points as described in 

Alappattu et al. (2016), Rainer (2016) and Wang et al. (2018). ....................................... 37 

Figure 7. (A) In-situ measurements (Wang et al., 2018) used in the COARE algorithm to 

compute atmospheric vertical profiles of temperature and specific humidity: skin sea 

surface temperature (SST), and air temperature and specific humidity at 12 meters above 

the sea surface measured from the bow of the R/V Sharp. (B) In-situ measurements (Wang 

et al., 2018) of wind speed at 12 meters above the sea surface measured on the bow of the 

R/V Sharp also used in the COARE algorithm to calculate atmospheric vertical profiles of 

wind speed. (C) Air-sea temperature difference (ASTD) used to estimate the 

thermodynamic stability regime of the atmosphere. ......................................................... 38 

Figure 8. COARE vertical profiles from 17 October 2015, at 00:12:29 UTC of (A) 

temperature, (B) specific humidity, and (C) wind speed. (D) The corresponding modified 

refractivity profile calculated using the measured pressure at 12m from the R/V Sharp, (A) 

temperature, (B) specific humidity, and Eqns. 4 and 5. .................................................... 39 

Figure 9. Modified refractivity profiles from a COAMPS®-NAVSLaM blended forecast 

corresponding to 10 October 0600Z, color denotes their respective ranges (km) (see 



x  

colorbar). ........................................................................................................................... 40 

Figure 10. Example nonlinear least squares regression fit of Eqn. (7) to a COAMPS® 

modified refractivity profile. The blue line represents COAMPS®, and the red line 

represents the parametric model (Eqn. 7) for 28 October 0500z. ..................................... 41 

Figure 11. Histograms of Er for COAMPS® (grey) and COARE (blue), where only the fits 

with Er < 1 M-units2 are used in this study. ....................................................................... 42 

Figure 12. The weighted average percent over the blending range (i.e., Zd to Zd + 3m) for 

the EDS or MOST profile that is blended with the corresponding MAPS polynomial M 

profile. ............................................................................................................................... 43 

Figure 13. Example EDS model estimated profile blended into a MAPS polynomial profile 

for 13-Oct-2015 16:49:05 with an EDH of 9.7 m. ............................................................ 44 

Figure 14. VTRPE simulated propagation loss for 21 October MAPS polynomial M profile 

collected at 14:29:07 UTC. The black horizontal lines represent the heights of the in-situ 

radar receivers located at 4 m, 6 m, 9 m, and 12 m. ......................................................... 45 

Figure 15. Relationship between the ASOD of each COAMPS® modified refractivity 

profile with respect to the nonlinear least square’s regression fit of C0. The color of each 

marker corresponds to the profiles respective duct height. (A) The ASOD is calculated over 

the entire modified refractivity profile. The linear fit (  
𝜕2𝑀

𝜕𝑧2

̅̅ ̅̅ ̅
 = 11.41C0 + 0.465) yields an 



xi  

R2 value of 0.49 (R = 0.70); (B) however fitting the data classified by individual duct 

heights yields higher R2 illustrated with black markers showing data for only ~10 m duct 

heights, yielding an R2 of 0.99. ......................................................................................... 59 

Figure 16. Relationship between ASTD and C0. The blue triangles represent COAMPS® 

predictions and the red stars represent COARE predictions. The black vertical line is at 

neutral ASTD (0 °C) and the black horizonal line is at the neutrally derived Paulus value 

for C0 (C0 = 0.125 M-unit m-1). The R2 of the COAMPS® data for the line of best fit is 

0.26 and the R2 for COARE is 0.41. ................................................................................. 60 

Figure 17. The relationship between C0 and wind shear for both COARE and COAMPS®. 

The color of each marker corresponds to the respective ASTD (see colorbar). ............... 61 

Figure 18. The relationship between the NSSHG and C0 where the color of each marker is 

the respective ASTD for both COARE and COAMPS®. ................................................ 62 

Figure 19. (A) Relationship between C0 and NSSHG estimated over various altitude ranges 

for COAMPS® where the colors of the markers represent over which altitudes NSSHG 

was calculated (see legend). Black markers are between the surface and 2Zd, the blue 

markers are between 1/10thZd and 2Zd, and the red markers are between 1/4th Zd and 2Zd. 

(B) The relationship between the NSSHG1.0 and C0 where the color of each marker is the 

respective Zd (see colorbar). ............................................................................................. 63 

Figure 20. Same as Figure 18 but only COAMPS® with the line of best fit shown between 



xii  

the NSSHG and C0 with an R2= 0.96. ............................................................................... 64 

Figure 21. (A) Example modified refractivity profiles from the EDS model (C0 = 0.512 M-

units m-1), the two-layer model using a neutral C0 (C0=0.125 M-units m-1), and the 7th 

order polynomial fit of the in-situ MAPS data from Wang et al., (2018) for 15 October 

2015, at 15:03:40 UTC which has an EDH of 8m. (B) A histogram of the residuals between 

the refractivity based-on the 7th order polynomial fit and the EDS model, and the residuals 

between the refractivity based on the 7th order polynomial fit and the profile calculated 

using the neutral C0 of Paulus (1990) . The residuals are calculated within the “curvature 

zone” for the data shown in (A), which is bounded by the two horizontal blue lines in (A). 

The bottom blue line is at an altitude of 0.5m and the top blue line is at z = 2Zd. ............ 65 

Figure 22. Histograms of refractivity residuals for all data between z =0.5m to 2Zd. The 

residuals are computed between EDS modeled and 7th order polynomial (Wang et al., 

2018) modified refractivity profiles in red, and between the two-layer model with neutral 

curvature and 7th order polynomial (Wang et al., 2018) modified refractivity profiles in 

blue. ................................................................................................................................... 66 

Figure 23. Example modified refractivity profiles that are utilized to simulate PL in 

VTRPE. The EDS and MOST profiles are blended with the 7th order MAPS polynomial M 

profiles around an altitude of 9.7m using the weighted average technique (§4.2.3). ....... 67 

Figure 24. PL of the in-situ measurements and the simulated PL using refractivity based 

on the various near-surface estimation methods (see legend) versus range for the MAPS 



xiii  

profile obtained 13 October at 16:49 UTC and the closest in-situ radar data obtained on 14 

October at 00:57 UTC. PL is shown for the four in-situ receiver heights: (A) Rx = 4m, (B) 

Rx = 6m, (C) Rx = 9m, and (D) Rx = 12m. ...................................................................... 68 

Figure 25. RMSEs between in-situ and simulated PL for all near surface estimation 

methods (see legend)......................................................................................................... 69 

 



xiv  

List of Symbols and Abbreviations 

Atlantic Explorer: AE 

Average Second Order Derivative of COAMPS® Modified 

Refractivity Profiles with Altitude: 

 

ASOD 

Air-Sea Temperature Difference: ASTD 

Evaporation Duct Curvature: C0 

Y-intercept of Linear Fit Between C0 and NSSHG: C0y 

Coupled Air-Sea Processes and Electromagnetic Ducting 

Research: 

 

CASPER 

Number of Compared MAPS Modified Refractivity 

Profiles in the Two-Sample T-Test: 

 

CMref 

Coupled Ocean Atmosphere Mesoscale Prediction 

System®: 

 

COAMPS® 

Coupled Ocean Atmosphere Response Experiment: COARE 

Degrees of Freedom: df 

Electric Field in the Environment: E 

Partial Vapor Pressure: e 

Saturation Vapor Pressure es 

Electric Field in Free Space: E0 

Mean Squared Error: Er 

Evaporation Duct: ED 

Evaporation Duct Height: EDH  

Evaporation Duct Shape: EDS 

Electromagnetic: EM 

Correction Factor to Account for Difference in Pressure 

due to a Mixture of Vapor and Air Over Water: 

 

f 



xv  

One-way Pattern Propagation Factor: F 

Receiver Peak Power Gain: Gr 

Transmitter Peak Power Gain: Gt 

Significant Wave Height: hs 

von Karman Constant: k 

Electromagnetic Wavenumber: k0 

Monin-Obukhov Length: L 

Modified Refractivity: M 

Integral of Mean Wave Spectrum: m 

Modified Refractivity Estimated from the Parametric 

Model: 

 

𝑀̂  

Continuity Term: M1 

Mixed Layer Slope: m1 

Marine Atmospheric Profiling System: MAPS 

Marine Atmospheric Surface Layer: MASL 

Modified Refractivity Profiles of COARE or COAMPS®: Mc 

M-Deficit for an Elevated Duct: Md 

Surface Value of Modified Refractivity: M0 

Monin-Obukhov Similarity Theory: MOST 

Mean Squared Error: MSE  

Atmospheric Refractivity: N 

Index of Refraction: n 

Navy Atmospheric Vertical Surface Layer Model: NAVSLaM 



xvi  

Number of Points in a Modified Refractivity Profile Up to 

the Duct Height: 

 

nmref 

Number of Propagation Measurements: nprop 

Near Surface Specific Humidity Gradient: NSSHG 

Near Surface Specific Humidity Gradient Calculated for 

COAMPS® based on points at z = 0.1Zd and z = 2Zd: 

 

NSSHG0.1 

Near Surface Specific Humidity Gradient Calculated for 

COAMPS® based on points at z = 0.25Zd and z = 2Zd: 

 

NSSHG0.25 

Pressure: p 

Propagation Loss: PL 

Propagation Loss: PL 

Received Power: Pr 

Transmitted Power: Pt 

Average Specific Humidity: 𝑞̅ 

Specific Humidity Scaling Factor: 𝑞∗ 

Surface Specific Humidity: qs 

Slant Range: R 

Coefficient of Determination: R2 

Research Vessel: R/V 

Radius of the Earth: Re 

Radio Frequency:  RF 

Relative Humidity: RH 

Measured Propagation Loss: Rm 

Simulated Propagation Loss: Rs 



xvii  

Root Mean Squared Error: RMSE  

Receiver Height: Rx 

Standard Deviations of Simulated EDS PL RMSEs:  SM1 

Standard Deviations of Simulated MAPS, MOST, and 

Linear Extrapolation Methods PL RMSEs: 

 

SM2 

Sea Surface Temperature: SST 

Skin Sea Surface Temperature: Ts 

Temperature: T 

T-Statistic: t 

Temperature Scaling Factor: 𝑇∗ 

Average Temperature: 𝑇̅ 

Wind Speed: U 

Wind Scaling Factor: 𝑈∗ 

Ocean Surface Current: Us 

Average Wind Velocity: 𝑈̅ 

Variable Terrain Radio Parabolic Equation: VTRPE 

Altitude above Mean Sea Level: z 

Evaporation Duct Height: Zd 

Aerodynamic Roughness Factor: z0 

Specific Humidity Roughness Length: z0q 

Temperature Roughness Length: z0T 

Thickness of Inversion Layer for an Elevated Duct: zthick 

Bottom of the Inversion Layer in an Elevated Duct: z1 



xviii  

Top of the Inversion Layer in an Elevated Duct: z2 

Evaporation Layer Height: zL 

Slope of Linear Fit between NSSHG and C0: α 

Vertical Gradient of Modified Refractivity: 

 

 

𝜕𝑀

𝜕𝑧
 

Average Second Order Derivative of COAMPS® Modified 

Refractivity Profiles with Altitude: 
𝜕2𝑀

𝜕𝑧2

̅̅ ̅̅ ̅̅
 

Universal Stability Function of Specific Humidity: 𝛷𝑞 

Universal Stability Function of Temperature: 𝛷𝑇 

Universal Stability Function of Wind Speed: 𝛷𝑈 

Integrated Form of the Universal Stability Function of 

Specific Humidity: 

 

𝛹𝑞 

Near Surface Specific Humidity Gradient: 𝛹𝑠 

Integrated Form of the Universal Stability Function of 

Temperature: 

 

𝛹𝑇 

Integrated Form of the Universal Stability Function of 

Wind Speed: 

 

𝛹𝑈 

Root Mean Squared Error: Ω 

Mean Simulated PL RMSE for EDS Method: 

 
Ω𝑀1̅̅ ̅̅ ̅ 

Mean PL RMSE for Simulated MAPS, MOST, or Linear 

Extrapolation Methods: 
Ω𝑀2̅̅ ̅̅ ̅ 

  



1  

1.0 Introduction 

Electromagnetic (EM) waves are used in everyday applications such as weather 

forecasting, cell phone communications, military defense, and commercial air travel. In the 

marine atmospheric surface layer (MASL), i.e., within ~100 m of the sea surface, effects 

of a constantly varying medium on EM waves are intricate due to the air’s turbulent nature 

and complex air-sea interactions.  

EM waves are influenced by thermodynamic fluctuations in air properties, specifically, 

temperature, pressure, and humidity. These properties vary the range and strength of 

received EM signals by varying the index of refraction, which changes the direction of EM 

signal propagation resulting in anomalies within the expected EM signal patterns compared 

to a standard atmosphere. Modified refractivity is commonly used to describe the index of 

refraction within the MASL (Skolnik, 2003) and is defined as the deviation of the index of 

refraction from that in a vacuum relative to Earth’s curvature (Karimian et al., 2013). When 

modified refractivity decreases with altitude, a ducting scenario is present which causes 

signal refraction towards the Earth’s surface (Skolnik, 2003; Karimian et al., 2013) 

resulting in target positioning errors, signal loss above the duct, and expanded signal range 

within the duct. Evaporation ducts (EDs) are the most common type of duct in the MASL 

(Skolnik, 2003), which are surface ducts driven by rapid decreases of humidity with 

altitude. EDs strongly influence the performance of X-band sensors and communication 

systems; therefore, accurately describing EDs is critical. 
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Measuring near surface thermodynamic properties for this complex environment is 

uniquely difficult; current technologies often have too-coarse spatiotemporal resolution to 

accurately capture rapid changes in air properties as the sea surface is approached. These 

limitations primarily result from platform interference, sensor housing size, and sensor 

damage due to harsh conditions. To compensate for this limitation, methods such as linear 

extrapolation, polynomial fits, and Monin-Obukhov similarity theory (MOST) are 

employed to extend measurements a few meters above the surface to the surface; yet these 

methods also have shortcomings such as not being grounded in the physics of the MASL 

or, in the case of MOST, requiring many bulk measurements which is not always practical. 

MOST is a boundary layer similarity solution for wind, temperature and humidity with 

empirically derived constants and employs the Monin-Obukhov length, an important 

length scale (Monin and Obukhov, 1954; Foken, 2006). Its implementation requires several 

bulk environmental measurements.  

For propagation modeling purposes, another common approach for estimating modified 

refractivity is using log-linear ED models, which describe EDs with a limited number of 

parameters. A two-layer refractivity model proposed by Penton and Hackett (2018; Eqn. 

7) defines EDs using three parameters: duct height (Zd), duct curvature (C0), and mixed 

layer slope (m1). Currently, there is no way to estimate the curvature of a modified 

refractivity profile (C0) a priori via atmospheric measurements due to its unknown 

connection to the physical environment. In most current research on EM wave propagation, 

the value for the duct curvature (C0) is assumed to be 0.125 M-units m-1, which is defined 

as the critical gradient for trapping (Paulus, 1990) and was derived under the assumption 

of a rarely observed thermodynamically neutral atmosphere (Paulus, 1990). Variations in 
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C0 impact EM wave propagation as shown in the global sensitivity study by Lentini and 

Hackett (2015) and the study by Pastore et al. (2021); therefore, the ability to reasonably 

estimate C0 will improve the accuracy of using simple log-linear models to describe EDs.  

All the aforementioned methods (i.e., MOST, linear fits, polynomial fits, and log-linear 

models) all have their unique strengths and weaknesses as they each employ different 

assumptions and have various limitations; thus, the model most appropriate will depend on 

the application. Parametric models are often used in propagation modeling due to their 

simplicity and easy integration into propagation simulations but are limited in how the 

refractivity profile can be modified (i.e., constrained by the parameters in the model). This 

study focuses on improving this parametric model approach by allowing more flexibility 

in the parametric model via adjustment of duct shape for a given duct height.  

More specifically, this research examines the physical significance of duct curvature and 

links this parameter to bulk environmental measurements by evaluating numerical datasets 

for relationships between near surface thermodynamic gradients and C0. Finding 

quantifiable relationships between environmental measurements and duct curvature 

enables development of a model to estimate duct curvatures that are reasonably 

representative of in-situ measurements and thus different atmospheric stabilities.  

The developed C0 model characterizes the MASL directly above the surface based on the 

near surface specific humidity gradient (NSSHG) due to the strong direct relationship 

between C0 and NSSHG and is simpler than current methods (i.e., MOST) due to requiring 

less in-situ measurements. In unstable conditions, the developed method also predicts a 

larger C0 than the neutral value derived by Paulus (1990). Simulated propagation loss (PL) 

using modified refractivity based on this developed C0 model is compared to simulated PL 
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of other current methods of extending coarse resolution data to the surface. The developed 

model preformed statistically similar to MOST. 

This thesis is organized in the following manner: the next section provides background 

information, the third section outlines the research objectives, followed by the methods 

section which discusses data sources and analysis methods, results are presented next, then 

it concludes with a summary. 
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2.0 Background  

The following subsections provide background information on topics relevant to this 

research including radar wave propagation (§2.1), environmental effects on radar wave 

propagation (§2.2), a review of modified refractivity modeling (§2.3), and a review of 

current literature on near surface refractivity estimation methods (§2.4).  

2.1 Electromagnetic Wave Propagation   

Radar is transmitted in two configurations, monostatic and bistatic. For monostatic radar, 

the transmitter and receiver are in the same location, whereas for the focus of this study, 

bistatic radar, the receiver is in a separate location than the transmitter. X-band radar 

propagation in bistatic radar systems is described by the one-way radar transmission 

equation (Friis, 1946; Freehafer et al., 1951): 

 𝑃𝑟
𝑃𝑡
= 𝐺𝑡𝐺𝑟 [

𝐹

2 𝑘0𝑅
]
2

 
(1) 

where Pr/Pt is the ratio of received power (Pr) to transmitted power (Pt), F is the one-way 

pattern propagation factor, Gt is the transmitter peak power gain, Gr is the receiver peak 

power gain, k0 is the EM wavenumber, and R is the slant range from the receiver to the 

transmitter. Gt, Gr, Pr, Pt, R, and k0 are determined by the setup of the specific radar system, 

whereas F is a consequence of the environment. Notably, F is a large term influencing the 

power ratio, implying the key role the environment plays in received power. One-way 

propagation factor (F) is defined as the magnitude of the ratio of the electric field in the 

environment (E) to the electric field in free space (E0): 
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𝐹 = |

𝑬

𝑬𝟎
| 

(2) 

Propagation loss (PL) is the logarithmic difference (i.e., a ratio in a non-logarithmic space) 

between the propagation factor in the environment and the propagation factor in a vacuum 

(Skolnik, 1990): 

 𝑃𝐿 = 20 log(2𝑘0𝑅) − 20log |𝐹| (3) 

Thus, PL is a measure of the effects of the environment on the received radar power. 

Understanding how radar signal propagation is affected by the environment is imperative 

to the optimization of radar systems. 

2.2 Environmental Effects on Radar Wave Propagation 

Major environmental effects on radar propagation are reflection, scattering, absorption, and 

refraction. Interaction with a surface causes reflection, resulting in a phenomenon known 

as multipath, and EM wave scattering (Skolnik, 2003). Multipath occurs when the signal 

has two potential paths it can travel to the same location; the direct path, which is the 

straight-line path from the radar antenna to the receiver and the indirect path, where the 

radar wave reflects off a surface and reaches the receiver. Constructive interference occurs 

when two signals reach the receiver in-phase whereas destructive interference occurs when 

the waves reach the receiver perfectly out-of-phase resulting in total signal loss. This 

constructive and destructive pattern depends on the wavelength of the radar wave and the 

relative distance between the two paths, i.e., on the range and height of the target or 

receiver. Thus, a PL pattern shows what is referred to as a “lobing” pattern due to these 

locations of constructive and destructive interference as seen in Figure 1. The “lobes” refer 

to constructive interference and therefore, the least amount of PL. Between the “lobes” 

there are regions of destructive interference known as “nulls” that have the largest PL.  
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Absorption occurs when the energy of an EM wave is absorbed by the environment and 

most commonly occurs via gas molecules such as water vapor. For example, when the EM 

wave wavelength is close to water vapor molecule size, the molecules absorb energy from 

the EM wave. In this process, energy is transferred from the EM wave to the molecule 

causing a decrease in the received EM wave signal strength and thus an increase in PL. In 

the absence of precipitation, absorption is negligible at X-band frequency (i.e., 8 GHz to 

12 GHz) due to EM wavelength being on the order of centimeters. 

Most importantly, X-band EM waves are affected by refraction which is a change in the 

EM wave’s propagation direction due to a varying medium. This change in direction can 

have beneficial and detrimental implications during extreme refraction scenarios, known 

as ducts, which trap EM waves near the Earth’s surface and cause extended signal range 

and target positioning errors. The extent of the EM waves direction change is dependent 

on the gradient of the index of refraction, which fluctuates with the thermodynamic 

properties of the atmosphere.  

Thermodynamic properties in the MASL are constantly changing due to phenomena such 

as fronts, high/low pressure systems, and sea/land breezes. Atmospheric refractivity (N) is 

related to the atmospheric thermodynamic properties of pressure, temperature, and 

humidity through (Bean and Dutton, 1968): 

 𝑁 = 77.6
𝑝

𝑇
+ 373,256

𝑒

𝑇2
  (4) 

where p is pressure (mb), T is temperature (K), and e is partial vapor pressure (mb). In the 

MASL, humidity and temperature generally have the largest influence on refractivity 

variations since p varies little in comparison. 

Atmospheric stability, which is relevant to the expected refraction regime, is influenced by 
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various thermodynamic factors such as changes in air temperature and humidity. Stability 

is the tendency of a fluid to return to its original state once perturbed and is determined by 

the fluid’s density gradients; when a fluid is stable and perturbed, it tends to return to its 

original state, whereas when a fluid is unstable and perturbed it does not return to its 

original state. This study utilizes the air-sea temperature difference (ASTD) as a stability 

metric and thus assumes the dominating factor on atmospheric stability is temperature. In 

the atmosphere there are three possible thermal stability regimes: stable, unstable, and 

neutral. A stable regime occurs when the air is warmer than the ocean surface; this 

suppresses vertical motion by requiring additional energy to overcome density gradients 

and leads to low turbulence intensities. An unstable regime takes place when the 

atmosphere is cooler than the ocean surface; facilitating vertical motion, mixing, and 

turbulence, and when temperatures differences are large enough, leads to development of 

convection cells. A neutral regime occurs when the atmosphere is the same temperature as 

the ocean surface; this condition is rarely observed precisely, although near-neutral 

conditions can be common.  

Refractive environments are classified into several regimes: standard refraction, sub-

refraction, super-refraction, and trapping/ducting conditions, each defined by the gradient 

of atmospheric refractivity with altitude. Sub-refraction and ducting conditions are 

normally observed during unstable atmospheric conditions and super refraction is normally 

observed during stable atmospheric conditions (Paulus, 1991; Trahan, 1995). 

Standard refraction causes radar waves to slightly bend away from Earth’s surface. Sub-

refraction occurs when the refraction gradient is positive, and this causes the radar waves 

to promptly diverge from the Earth’s surface. Super-refraction causes radar waves to bend 
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towards Earth’s surface slightly more than under standard conditions, but ultimately still 

diverge due to Earth’s curvature. When trapping or ducting conditions occur, radar waves 

bend towards the Earth’s surface, bouncing off Earth’s surface so that radar wave energy 

is trapped near the surface as exemplified in Figure 2. Large negative refractivity gradients 

occur in trapping conditions; trapping a radar wave’s energy can significantly extend the 

range of a radar system (Skolnik, 2003; Kukushkin, 2004). 

When trapping is bound by the Earth’s surface, it is known as a surface duct whereas 

elevated ducts occur when a trapping layer is not directly at the surface, as shown in Figure 

3; elevated ducts are often found between 30° north and 30° south latitudes (Skolnik, 2001). 

The most common type of surface duct in marine environments is an ED, which occur due 

to a rapid decrease in humidity with altitude (Skolnik, 1990; Skolnik, 2003). ED’s are 

known to cause extended signal range within the duct, signal loss above the duct, and 

positioning errors. Positioning errors can be caused, for example, by the radar system not 

accounting for the expanded range of the radar system due to signal trapping.  

To easily identify ducts, modified refractivity (M) is commonly used because it accounts 

for the curvature of the Earth:   

 𝑀(𝑧) =  (𝑛 + 
𝑧

𝑅𝑒
− 1) × 106 = 𝑁 + 

𝑧

𝑅𝑒
× 106 

(5) 

where n is the index of refraction, z is altitude, and Re is the radius of the Earth.  

EDs are easily observed when presented in units of modified refractivity because a duct is 

present anytime the gradient of modified refractivity with height is negative. Evaporation 

duct height (EDH) is defined as the altitude in which the vertical gradient of modified 

refractivity is zero as exemplified in Figure 4a. Resulting radar wave propagation for a 10.3 

m X-band transmitter for an ED with an EDH of 10.1m is shown in Figure 4b, where 
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reduced PL below the EDH out to 60 km is evident.  

2.3 Modeling the Refractive Environment 

 

There are multiple ways to forward model the refractive environment including numerical 

weather prediction models and bulk environmental models. Bulk environmental models 

require some basic meteorological measurements whereas numerical weather prediction 

models may also use meteorological measurements for data assimilation. Primary 

limitations of numerical weather prediction models include coarse spatiotemporal 

resolutions, and approximations for small-scale processes; while limitations of bulk 

environmental models include the need for direct measurements, and limits to their 

applicability outside the range of conditions in which empirical relationships were 

developed.  

Parametric refractivity models are commonly used in propagation modeling (Sirkova, 

2012). Gerstoft et al. (2003) used a model that accounts for both evaporation and elevated 

ducting conditions: 

 

𝑀(𝑧) = 𝑀0 +

{
  
 

  
 𝑀1 + 𝐶0 (𝑧 − 𝑍𝑑𝑙𝑛 (

𝑧 + 𝑧0
𝑧0

)) , 𝑧 < 𝑧𝐿

𝑚1𝑧,                                                𝑧𝐿 ≤ 𝑧 < 𝑧1

𝑚1𝑧1 −𝑀𝑑 (
𝑧 + 𝑧1
𝑧𝑡ℎ𝑖𝑐𝑘

),                  𝑧𝐿 ≤ 𝑧 < 𝑧2

𝑚1𝑧1 − 𝑀𝑑 +𝑚3(𝑧 − 𝑧2),                  𝑧2 ≤ 𝑧}
  
 

  
 

 

(6) 

where zL is the evaporation layer height equal to twice the duct height, z1 is the bottom of 

the inversion layer in an elevated duct (Figure 3B), z2 is the top of the inversion layer in an 

elevated duct, z0 is the aerodynamic roughness factor, which is commonly assumed to be 

0.0015 m, zthick = z2-z1, Md defines the M-deficit in the elevated duct, M0 is surface modified 

refractivity, M1 ensures continuity in the profile between layers, and Gerstoft et al. (2003) 
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set C0, the curvature parameter, to a constant value of 0.125 M-units m-1 as derived by 

Paulus (1990). The ED M-deficit is defined as the difference between M at the surface and 

M at the EDH. The mixed layer is located above the trapping layer and is defined by 

Gerstoft et al. (2003) as the layer where humidity and potential temperature largely do not 

vary with height. For elevated ducts, the mixed layer is directly below the inversion layer 

where the elevated duct exists.  

There are numerous ED models that are a variant of Eqn. 6 (Saeger et al., 2015). One such 

example is a two-layer model proposed by Penton and Hackett (2018) and Matsko and 

Hackett (2019): 

 

𝑀(𝑧) = 𝑀0 + {  
𝐶0 (𝑧 − 𝑍𝑑𝑙𝑛 (

𝑧 + 𝑧0
𝑧0

)),                      𝑧𝐿 ≤ 𝑧

𝑚1𝑧 − 𝑀1,                                                   𝑧 >  𝑧𝐿  

} 

(7) 

This model, unlike Eqn. 6, C0 is not set to the fixed neutral value of 0.125 M-units m-1 

(Paulus, 1990); the assumption of neutral atmospheric stability is unrealistic as this 

condition is rarely observed in practice (§ 2.2). Varying C0 allows variation in the M-deficit 

without altering the EDH, thereby altering the shape of the M-profile (Penton and Hackett, 

2018).  

2.4 Current Limitations of Near Surface Refractivity Measurements  

Recent research has shown that C0 is important in accurately modeling M profiles (Saeger 

et al., 2015) because it significantly impacts ED shape (EDS), which impacts the 

refractivity gradient that in-turn impacts EM propagation (Pastore et al., 2021). In a study 

by Saeger et al. (2015), the accuracy of three log-linear ED models were examined and it 

was concluded Eqn. 6 was the most accurate due to its decoupling of C0 and m1; this 

decoupling allows more flexibility in the curvature of the duct making a more accurate PL 
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prediction within the duct. The importance of EDS is also confirmed in a study by Pastore 

et al. (2021) where the EDS was related to changes in PL; Pastore et al. (2021) also noted 

a direct linear relationship between duct curvature and the M-deficit, which describes the 

strength of the duct (Zhang et al., 2011). Despite the importance of duct curvature, and the 

curvature effects the parameter C0 can have on the refractivity profile, the physical factors 

influencing the magnitude of the C0 parameter are currently unknown and thus, there is no 

way to predict C0 based-on in-situ data.  

Fortunately, the physical conditions that cause and influence EDs have been heavily 

studied with a focus on EDH. In a study by Karimian et al. (2013), it was determined that 

EDH is more sensitive to the ASTD and relative humidity in warmer sea surface conditions 

than cold sea surface conditions. Pastore et al. (2021) found EDS and M-deficit show more 

variation between three methods of estimating refractivity in unstable conditions, whereas 

the three compared methods of estimating refractivity tend to be in greater agreement in 

near neutral conditions. Collectively due to these findings, it is expected C0 will be related 

to ASTD and/or humidity.  

In a report by Thews (1990), resolution limitations are also discussed for a Naval onboard 

integrated refractive effects prediction system which produces a hypothetical probability 

of detection domain that is simulated from meteorological in-situ data. Vertical resolution 

of 4 m was deemed acceptable for altitudes above 50 m, but too coarse to encompass the 

complexity of the environment below 50 m; it is desired for the vertical resolution below 

50 m to be no more than 3 m. Better resolution or an improved ability to model low altitude 

evaporation ducts would increase the accuracy of this system and others like it for low 

altitude radar performance. Unfortunately, current measurement technologies and sensors 
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often have a resolution that is too coarse, or suffer from sensor or platform measurement 

contamination, and therefore cannot accurately capture rapid changes as the surface is 

approached resulting in near surface data gaps (Thews, 1990; Kang and Wang, 2016; 

Pastore et al., 2021). 

To address data gaps near the surface, various models, and methods to estimate near surface 

refractive gradients of EDs have been utilized such as fitting polynomials to the data (Wang 

et al., 2018; Pastore et al., 2021), using Monin-Obukhov (MO) similarity theory (Saeger et 

al., 2015; Kang and Wang, 2016), and linearly extrapolating to the surface (Saeger et al., 

2015; Pastore et al., 2021).  

High resolution meteorological data, described in Wang et al. (2018) and Pastore et al. 

(2021), measured refractivity using a winched sonde from a small boat and showed 

individual profiles of refractivity to be highly scattered, presumably due to a combination 

of turbulence and measurement uncertainty. A polynomial fit to a point cloud of 

measurements questionably captures near surface thermodynamic gradients due to the lack 

of rapid humidity increase as the surface is approached (Pastore et al., 2021).  

Kang and Wang (2016) note the critical importance of near surface gradients and derived 

a novel method based off MOST to calculate surface fluxes and average environmental 

profiles using a least-squares optimization method and a weighted cost function. Saeger et 

al. (2015) also used MOST by merging it with linearly interpolated sonde data.  

This study develops and investigates an alternate method for extending data to the surface 

and compares it with other commonly used methods. Due to the importance and influence 

of C0 on estimating propagation (Saeger et al., 2015; Pastore et al., 2021), an accurate way 

to estimate C0 based on a few basic measurements and a simple model could enable a basic 
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parametric refractivity model to provide accurate representation of refractivity to the 

surface; thus, providing accurate predictions of radar PL with a simpler model. 
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Figure 1. Propagation loss versus range and altitude. Within the domain there are 

noticeable “lobes” that result from multipath effects, or constructive and destructive 

interference. 
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Figure 2. Refraction regimes. (Courtesy of Ian Matsko) 

  



17  

 

 

Figure 3. (A) An example of a modified refractivity profile with an evaporation duct with 

the top of the trapping layer denoted with red line and (B) an example of a modified 

refractivity profile with an elevated duct with the bounds of the trapping layer (i.e., the 

inversion layer) denoted with red lines. 
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Figure 4. (A) Modified refractivity versus height with an evaporation duct height of 10.1m 

(red dashed line) and (B) its corresponding propagation loss pattern (duct height altitude 

is at the white dashed line) for a 10.3m X-band transmitter. 
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3.0 Research Questions 

Near surface thermodynamic gradients are difficult to measure due to the air-sea interface’s 

unsteady nature and complex interactions via waves, wind, sea spray, etc.; therefore, 

accurately measuring and estimating the lowest altitudes of M profiles is difficult. In-situ 

measurement platforms such as aerial vehicles (Fairall et al., 1996; Haack et al., 2010), 

tethered profiling systems (Kang and Wang, 2016; Wang et al., 2018; Babin and Dockery, 

2002) and research vessels (Wang et al., 2018; Ortiz-Suslow et al., 2019) are usually unable 

to obtain accurate measurements within a few meters above the sea surface due to the 

unsteady sea surface and interference from the measurement platform leading to data gaps 

near the surface. Some techniques used to fill in these gaps are extrapolation and semi-

empirical predictive models (Wang et al., 2018; Fairall et al., 1996; Fairall et al., 2003; 

Hodur, 1997).  

Accurate extension of measured data to the surface is imperative because it greatly impacts 

the M-deficit and EDS, which in-turn influences propagation (Saeger et al., 2015; Lentini 

and Hackett, 2015; Pastore et al., 2021). To improve prediction and estimation of near 

surface refractivity gradients, this research targets the following hypotheses:   

i. ED shape (C0) is related to NSSHG and ASTD. 

To evaluate this hypothesis, EDS is quantified by the C0 parameter after demonstrating the 

relationship between C0 and M profile curvature. A nonlinear least square regression is 

used to parameterize numerical modified refractivity profiles to the two-layer parametric 
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refractivity model (Eqn. 7; Penton and Hackett, 2018; Matsko and Hackett, 2019) to fit the 

curvature parameter (C0) and the mixed layered slope (m1). The fitted C0 are used to 

evaluate relationships with NSSHG and ASTD. Temperature and humidity above the 

marine surface are mixed via mechanical processes, such as wind, to create a more uniform 

layer for EM wave propagation; thus, wind shear also plays a role in influencing EDs. 

McKeon (2013) found relative humidity and temperature are weakly related to EDH during 

higher wind speeds and EDH has a direct relationship with wind speed in unstable 

conditions, i.e., EDH increases when wind shear increases. Examining wind shear directly 

above the marine surface provides a more holistic picture of what processes could be 

dominating C0 and the refractive environment in various thermodynamic regimes. Thus, 

the relationship between C0 and wind shear are also examined. 

Numerical data used for this study are generated using the Coupled Ocean Atmosphere 

Response Experiment (COARE, v3.0; Fairall et al., 1996; Fairall et al., 2003) algorithm, 

which estimates vertical profiles of temperature, wind speed, humidity, and pressure using 

measurements from the Coupled Air-Sea Processes and Electromagnetic Ducting Research 

(CASPER) East experiment (Wang et al., 2018) and MOST. These profiles are 

subsequently used to calculate modified refractivity vertical profiles. The Coupled Ocean-

Atmosphere Mesoscale Prediction System (COAMPS®; Hodur, 1997) estimates modified 

refractivity profiles under the same conditions as COARE. Modeled profiles of wind speed, 

temperature, and specific humidity, for both COARE and COAMPS®, are used to calculate 

wind shear, NSSHG, and ASTD directly above the sea surface. 

ii. Near-surface drivers of EDS found in (i) can be used to develop an empirical model 

to predict C0 with reasonable accuracy based on a few basic in-situ measurements. 
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Relationships identified between C0 and NSSHG based on hypothesis (i) for the 

COAMPS® dataset (i.e., the most densely populated dataset) are used to generate an 

empirical EDS model that predicts C0, which then is used in the two-layer parametric 

refractivity model (Eqn. 7) to predict refractivity. 

To evaluate the EDS model for reasonable accuracy, in-situ data collected during 

CASPER-East from a marine atmospheric profiling system (MAPS) are used. Residuals 

between MAPS (in-situ) refractivity (Wang et al., 2018) and that generated from the EDS 

model are computed within the “curvature zone” (i.e., 0.5m – 2Zd) to evaluate the EDS 

model. Shortcomings and limitations of the developed EDS model are identified based on 

this evaluation.  

iii. PL predictions resulting from EDS model-based refractivity produce better 

comparisons with in-situ PL data then those based on alternative near surface 

refractivity estimation methods. 

A parabolic equation propagation simulation is used to forward model PL patterns based-

on M profiles calculated from various sources: calculated from the EDS model and 

alternative methods of estimating near surface refractivity such as MOST, linear 

extrapolation, and polynomial fits. All near surface estimation methods (including the EDS 

model) are blended into a MAPS measured profile, so the only difference between them 

occurs near the surface.  

The sea surface is modeled in the propagation simulation to statistically replicate the ocean 

environment based on sea surface statistics during CASPER-East computed from wave 

spectra measured by deployed buoys; the modeled antenna set up in the propagation 
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simulation replicates that of in-situ radio frequency (RF) measurements. These simulated 

PL patterns are compared to in-situ X-band radar data that was also collected during 

CASPER-East. This radar data is comprised of measurements from four radar receivers, 

each with a unique altitude, measuring power as a research vessel sailed offshore/onshore 

from a transmitter at the end of a pier. Predicted and in-situ PL are compared using root 

mean-square-error (RMSE). Resulting PL RMSEs for EDS-based, and alternative methods 

of refractivity estimation are evaluated using a two-sample t-test, which determines if there 

is a statistically significant difference between the PL RMSEs for the EDS model relative 

to the other examined methods.  
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4.0 Methods 

4.1 Data Sources 

In-situ experimental and numerical data used within this study are discussed in subsections 

§4.1.1 and §4.1.2, respectively. The numerical data was sourced from a numerical weather 

prediction model and a semi empirical boundary layer model, which requires some in-situ 

data; these numerical data sets were evaluated for relationships between C0 and 

thermodynamic properties. The relationship between C0 and NSSHG is used to create an 

EDS prediction model that is evaluated using in-situ meteorological data. This model is 

subsequently used to extend in-situ M profiles to the surface; PL predictions based on 

refractivity estimated via the EDS model, along with conventional methods of estimating 

near surface refractivity, are compared to in-situ measured RF data described in section 

§4.1.1. 

4.1.1 Experimental Data  

The CASPER-East (Wang et al., 2018) experiment was performed to better understand 

radar wave propagation during ED conditions in the MASL; this experiment took place 

offshore Duck, North Carolina between 12 October and 3 November 2015. Meteorological 

data were collected from research vessels (R/V) Atlantic Explorer (AE) and Sharp, and 

from a small boat deployed from the R/V Sharp; an example overview of these data sources 

is shown in Figure 5 for 21 October 2015.  

During the CASPER-East experiment, a weather balloon was outfitted with a MAPS that 
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included a radiosonde, which measured pressure, temperature, and relative humidity. It was 

deployed from a small boat launched from the R/V Sharp so the R/V Sharp would not 

contaminate measured vertical distributions of atmospheric variables near the surface 

(lowest ~10 m); the weather balloon was winched up and down ~7 times to obtain sufficient 

data to estimate mean modified refractivity over altitude as exemplified in Figure 6 (§2.2; 

Eqn. 4). A seventh order polynomial fit is used to estimate the mean M profile (i.e., MAPS 

polynomial M profiles; Rainer, 2016; Alappattu et al., 2016; Wang et al., 2018) from the 

data cluster as described in Wang et al. (2018) and shown in Figure 6; 36 MAPS 

polynomial M profiles were estimated from measured data over the course of the 

experiment for altitudes 0-60 m. A seventh order polynomial was used rather than a 

standard bin-averaged mean profile because it enabled retention of larger near-surface 

gradients (Alappattu et al., 2016; Rainer, 2016; Wang et al., 2018). Examples of times and 

locations of MAPS datasets for 21 October 2015 are shown in Figure 5.  

Bulk environmental data utilized in this study includes air temperature, pressure, wind 

speed, and specific humidity, which were measured from the R/V Sharp’s bow mast 

(denoted by COARE symbols in Figure 5) by sensors that were mounted 12 meters above 

the sea surface and sampled continuously at 20 Hz; a mean for each property was calculated 

every 30 minutes (Wang et al., 2018). Sea surface temperature (SST) measurements are 

bulk measurements taken from the R/V Sharp water intake (Alappattu et al., 2017), which 

are averaged over 5-minute intervals (Wang et al., 2018), and corrected using an infrared 

SST autonomous radiometer skin temperature probe. 

Sea state measurements, specifically significant wave height and sea surface peak 

wavenumber, were obtained from a transect of moored wave buoys (Figure 5) stationed off 
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Duck, North Carolina during CASPER-East (Wang et al., 2018). The buoys measured 

wave spectra every 30 minutes and power spectral densities of all 5 buoys for each 

measurement time were averaged to estimate a spatial-mean power spectral density to 

correspond to each R/V Sharp bow mast measurement (Pastore et al., 2021; Pastore et al., 

2022). Significant wave height (hs) was calculated from mean power spectral density by:  

 ℎ𝑠 = 4√𝑚 (8) 

where m is the integral of mean power spectral density. Peak wavenumber is the 

wavenumber associated with the highest mean power spectral density. 

During the CASPER-East experiment, in-situ EM RF “ship-to-shore” propagation data 

were collected using four receivers on the A-frame of the R/V AE at altitudes of 4.0 m, 6.0 

m, 9.2 m, and 12.3 m, and the transmitter was located on Duck Pier at a range of altitudes 

spanning 10.3 m to 11.1 m due to tidal fluctuations. RF data were collected at 10.7 GHz 

frequency with vertical polarization over ranges up to 60km as the R/V AE sailed offshore 

(Figure 5) away from the shore transmitter. Quality controlled (Wang et al., 2019; Pastore 

et al., 2022) ship-to-shore datasets that were collected within 24 hours of the MAPS balloon 

deployments are used within this study (8 radar datasets). Wang et al. (2019) and Pastore 

et al. (2022) provide further information on collection and quality control of the RF dataset. 

4.1.2 Numerical Data  

The COARE 3.0 algorithm (Fairall et al., 1996; Fairall et al., 2003) is a semi-empirical 

boundary layer model that uses MOST to estimate mean near-surface wind (𝑈̅), 

temperature (𝑇̅), and specific humidity vertical profiles (𝑞̅) using bulk atmospheric and sea 

state measurements (Fairall et al., 1996; Fairall et al., 2003). MOST 𝑈̅, 𝑇̅, and 𝑞̅ profiles 

are respectively (Fairall et al., 2003):  
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𝑈̅(𝑧) =  𝑈𝑠 +

𝑈∗
𝑘
(ln (

𝑧

𝑧𝑜
) − 𝜓𝑈 (

𝑧

𝐿
)) 

(9) 

 
𝑇̅(𝑧) =  𝑇𝑠 +

𝑇∗
𝑘
(ln (

𝑧

𝑧𝑜𝑇
) − 𝜓𝑇 (

𝑧

𝐿
)) 

(10) 

 
𝑞̅(𝑧) =  𝑞𝑠 +

𝑞∗
𝑘
(ln (

𝑧

𝑧𝑜𝑞
) − 𝜓𝑞 (

𝑧

𝐿
)) 

(11) 

where Us is ocean surface current, Ts is skin SST, qs is surface saturation specific humidity, 

k is the von Karman constant (0.4), zoT, and zoq are roughness lengths for wind, temperature, 

and specific humidity respectively, 𝑈∗, 𝑇∗, and 𝑞∗ are scaling factors for wind, temperature, 

and specific humidity respectively, and L is MO length. 𝜓 functions are the integrated 

forms of the universal stability functions for wind, temperature, and humidity denoted by 

subscripts U, T, and q, respectively, that have been empirically determined (Businger et al., 

1971). Equations (9)-(11) are the integrated forms of the universal functions for 

temperature, humidity, and wind. The Appendix provides these universal functions. 

Bulk environmental estimates used in COARE include previously described temperature, 

wind, and specific humidity measurements sourced off the bow mast of the R/V Sharp, 

SST, and sea state parameters (§4.1.1), which are used to determine scaling factors and the 

MO length scale (Fairall et al., 2003). Figure 7A and 7B show in-situ atmospheric and SST 

measurements from the R/V Sharp that are used in the COARE 3.0 algorithm (Fairall et al., 

1996; Fairall et al., 2003) to estimate vertical profiles of wind, temperature, and humidity. 

Figure 7C shows the estimated thermodynamic regimes associated with the same time 

period; when ASTD, i.e., the difference between the measured temperature at 12m and the 

measured skin SST as seen in Figure 7A and 7C, is negative the atmosphere is unstable, 

which was observed for most of CASPER-East. Surface specific humidity was estimated 
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from the measured skin SST, the measured sea level pressure, and an assumption of 98% 

relative humidity at the sea surface (Peixoto and Oort, 1996; Ross and Elliott,1996; Buck 

1981). The conversion of relative humidity to specific humidity was calculated (Peixoto 

and Oort, 1996; Ross and Elliott,1996; Buck 1981): 

 
𝑒𝑠 = 𝑓6.112exp [

(18.279 − 𝑇𝑠/227.3)𝑇𝑠
𝑇𝑠 + 257.87

] 
(12) 

 𝑓 = 1.0007 + 3.46𝑝(10−6) (13) 

 𝑅𝐻 = 100
𝑒

𝑒𝑠
 (14) 

 
𝑞 =  

0.622𝑒

𝑝 − 0.378𝑒
 

(15) 

where f is a correction to account for the difference in pressure due to a mixture of vapor 

and air over water. Ts is skin SST in Celsius, es is saturation vapor pressure in Pascals, and 

RH is relative humidity. Note, pressure must be in units of millibars, and partial vapor 

pressures must be in units of Pascals. Note that slightly different forms of these conversion 

equations exist with minor variations on the empirical constants (Elliot and Gaffen, 1991). 

Significant wave height and peak wavenumber calculated from the buoy data (§4.1.1) are 

used to calculate the roughness length for the wind, temperature, and specific humidity (zo, 

zoT, and zoq). Figure 8 shows example COARE wind, temperature, and specific humidity 

profiles for 17 October 2015 at 00:12:29 UTC (Eqns. 9, 10, and 11), of which, temperature 

and specific humidity are used to calculate modified refractivity (Figure 8D) using Eqns. 

4 and 5.  

COAMPS® (Hodur, 1997) is a numerical weather prediction model that predicts 

mesoscale atmospheric properties. Initial boundary conditions used in COAMPS® for the 
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atmosphere and ocean are estimated from the Naval Global Environmental Model (Hogan 

et al., 2014) and the Global Hybrid Coordinate Ocean Model (Halliwell et al., 2004), 

respectively. COAMPS® has a resolution of seventy-one levels between 4m-4000m, only 

6 levels are below 100m and therefore within the MASL. This resolution is unable to 

resolve EDs, so low altitude COAMPS® data is blended with the Navy Atmospheric 

Vertical Surface Layer Model (NAVSLaM, Fredrickson, 2015), which, like COARE, uses 

MOST to characterize near-surface atmospheric property vertical profiles. The resolution 

of the blended vertical forecasts is a decimeter and spans the sea surface to 100m in altitude.  

COAMPS® data consists of one forecast per hour over the duration of the CASPER-East 

experiment (a total of 648 forecasts). Each forecast includes vertical profiles of 

temperature, specific humidity, and modified refractivity at 31 geographical locations 

~2km apart over a 60km offshore transect beginning at Duck Pier, NC; this spatiotemporal 

resolution is visualized in Figure 5 as the nodes of the grid. Figure 9 shows an example of 

M profiles from a COAMPS® forecast on 10 October 2015 at 0600.  

4.2 Data Analysis 

4.2.1 Analyzing Near Surface Drivers of EDS 

To parameterize COARE and COAMPS® M profiles, a nonlinear least squares regression, 

which minimizes the sum of the squares of the residuals between the parametric model and 

numerical data, is applied. The parametric model is described by Eqn. 7 and two model 

parameters, ED curvature (C0) and mixed layered slope (m1) are fit. Other model 

parameters, EDH (Zd) and surface modified refractivity (M0), are estimated directly from 

COARE and COAMPS® M profiles. M0 is the surface refractivity of the respective 

COARE or COAMPS® refractivity profile, and EDH is determined as the altitude where 
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the gradient of modified refractivity (
𝜕𝑀

𝜕𝑧
) changes sign (from negative to positive). Figure 

10 shows an example of a nonlinear least square regression fit to a COAMPS® profile, 

where agreement between the two profiles is evident.  

Mean squared error (MSE; Er) of refractivity is used to evaluate the goodness of fit:  

 

𝐸𝑟 = 
1

𝑛𝑚𝑟𝑒𝑓
∑ (𝑀𝑐𝑖

− 𝑀̂𝑖)
2

𝑛𝑚𝑟𝑒𝑓

𝑖=1

 

(16) 

where Mc is the COARE/COAMPS® M profiles, 𝑀̂ is modified refractivity estimated from 

the parametric model (Eqn. 7), and nmref is the number of points in the modified refractivity 

profile between the surface and 2Zd.  

Only profiles that contain an ED and fit the parametric model well are considered in this 

study (𝐸𝑟 < 1 M-Unit2). This restriction leaves ~74% of the COARE profiles and ~83% of 

the COAMPS® profiles available for subsequent analysis (Figure 11). This tight criterion 

ensures that interpretations of results linking NSSHG, ASTD, and wind shear to C0 cannot 

be attributed to errors stemming from the parametric model not being able to adequately 

fit the M profile.  

Estimated C0 from a nonlinear least square regression fits are used to evaluate relationships 

between C0 and NSSHG, wind shear, and ASTD to determine a predictive relationship 

between C0 and these environmental variables. For both COARE and COAMPS®, ASTD 

is calculated by subtracting skin SST from air-temperature predictions at z=2Zd. For both 

COARE and COAMPS®, NSSHG (Ψs) and wind shear are calculated by finding the slope 

of specific humidity or wind speed with altitude, respectively, estimated between the points 

at z=0 m and that at z=2Zd. This altitude range is chosen to ensure these gradients envelop 

variations spanning the surface into the constant flux layer.  
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4.2.2 EDS Prediction Model 

Linear relationships between C0 and NSSHG, wind shear, and ASTD were evaluated using 

statistical analysis such as the coefficient of determination and correlation coefficient. The 

relationship between C0 and the thermodynamic property with the highest correlation, 

NSSHG, is fit to a linear function, which relates this thermodynamic parameter to C0:  

 𝐶0 =  𝛼𝛹𝑠 + 𝐶0𝑦 (17) 

C0y is the y-intercept and α is the slope of the linear fit. C0 predicted via Eqn. 17 is 

subsequently used in the two-layer refractivity model (Penton and Hackett, 2018; Eqn. 7) 

to estimate a refractivity profile using a known surface refractivity, duct height, and mixed 

layer slope; this approach will be henceforth referred to as the EDS model. This 

implementation of the EDS model uses the Penton and Hackett (2018) two-layer 

refractivity model but any parametric model utilizing the C0 parameter could be 

implemented instead. 

The EDS model is verified using the MAPS data (see §4.1.1); only MAPS polynomial M 

profiles containing EDs are used (~92% of the aforementioned 36 datasets). MAPS 

polynomial M profiles (§4.1.1) are used for the validation and comparison because this 

dataset was not utilized in generating the EDS model and do not necessarily have MOST-

like behavior built-into them.  

To calculate the NSSHG for the MAPS dataset, surface values of specific humidity are 

estimated using skin SST obtained from the R/V Sharp, an assumption of 98% relative 

humidity at the surface (Peixoto and Oort, 1996; Ross and Elliott,1996; Buck 1981), and 

Eqns. 12-15, whereas the specific humidity at z=2Zd is that estimated by the MAPS 

polynomial. This estimate of the surface value is used rather than using the extrapolation 
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of the polynomial fit because the MAPS polynomial specific humidity profiles can lack 

accurate steep near surface gradients (Wang et al., 2018; Pastore et al., 2021).  

To estimate M profiles, the predicted C0 is used within the two-layer refractivity model 

(Eqn. 7; §2.3) along with M0 and Zd from the MAPS polynomial M profile. Comparisons 

between refractivity based-on the EDS model and that of the MAPS polynomial M profiles 

are performed in the curvature zone, defined as z = 0.5m – 2Zd, to evaluate the EDS method 

for reasonable accuracy. The curvature zone is not impacted by m1 and therefore 

discrepancies are only attributable to C0.  

Note, residuals are not calculated below 0.5m so they are not skewed by discrepancies in 

steep near surface refractivity gradients between MAPS polynomial M profiles and EDS 

model profiles. Due to the large scatter in the in-situ measurements used to develop the 

MAPS polynomial M profiles, and therefore the need to fit these data with a polynomial 

function, inaccuracies in the lowest altitudes where measurements were sparse to non-

existent due to practical and technical limitations of the sampling equipment could exist. 

This shortcoming implies that discrepancies between the EDS model and the MAPS 

polynomial in this region may not be completely attributable to limitations of the EDS 

model and may also have to do with limitations of MAPS polynomial fit. To mitigate this 

issue, the profiles are only compared within the “curvature zone.”  

 To calculate residuals, the EDS profile was first shifted by a constant (therefore not 

influencing the refractive gradients) of modified refractivity such that modified refractivity 

at the EDH of each profile was equivalent. These residuals in the curvature zone are most 

representative for isolating EDS differences.  

Notably, to use the EDS method to extend in-situ data to the surface a priori estimates of 
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EDH and M0 are required. Using the EDS method at altitudes above the evaporation layer 

would require estimation of m1 as well.  

4.2.3 EDS Refractivity and Propagation Comparisons 

Henceforth, only MAPS polynomial M profiles collected within 24 hours of an in-situ PL 

measurement are used (~56% of MAPS polynomial M profiles). M profiles extended to the 

surface using the EDS model are compared against three conventional techniques of 

estimating near surface refractivity: linear and non-linear extrapolation, and MOST. The 

linearly extrapolated profiles are MAPS polynomial M profiles extrapolated to the surface 

from 3 m, as this height range is considered a region where vessel contamination of 

measurements is highly likely and satisfies resolution requirements discussed in Thews 

(1990). The non-linear extrapolation is the MAPS polynomial fit profiles (Rainer, 2016; 

Alappattu et al., 2016; Wang et al., 2018); this near surface estimation method fits an in-

situ data cloud that does not have a clear “cut-off” altitude yet utilizes scarce scattered near 

surface measurements to estimate a mean M profile. MOST profiles are calculated using 

COARE and environmental parameters estimated by the MAPS data collection (§4.1.1).  

EDS and MOST M profiles are blended into the MAPS polynomial M profiles using a 

weighted average over the altitude range: Zd - Zd + 3 m. The blended profiles are 100% the 

near surface estimation method (i.e., EDS or MOST) from the surface to Zd and 100% the 

MAPS polynomial M profiles 3m above the EDH (Figure 12). Thus, the only differences 

between M profiles occurs below z = Zd + 3 m where near surface gradients differ. Figure 

13 shows an example of a blended profile for the EDS model.  

To compare methods of estimating M profiles near the surface with respect to their use in 

propagation modeling, RMSEs are calculated between in-situ measured PL and simulated 
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PL of blended EDS and conventional methods profiles. The Variable Terrain Radio 

Parabolic Equation (VTRPE) computer model (Ryan, 1991) is used to simulate EM waves 

in varying environmental conditions within the MASL and accounts for environmental 

effects (i.e., reflection and refraction). The simulated antenna set up in VTRPE is matched 

to that of the in-situ RF data collection previously described in §4.1.1. VTRPE models EM 

wave propagation over rough surfaces; sea surface realization in VTRPE is based on a 

modified Donelan-Pierson-Banner spectral wind-capillary wave model (Pierson and 

Moskowitz, 1964; Donelan et al., 1985; Banner et al., 1989) that is appended to a narrow-

band Gaussian swell model. To match in-situ wave conditions, parameters of said model 

are adjusted so the modeled wave spectrum matches the averaged buoy spectrum described 

in §4.1.1 (Figure 5).  

RMSE (Ω) between the simulated and in-situ PL are calculated:  

 

Ω =  √
1

𝑛𝑝𝑟𝑜𝑝
∑(𝑅𝑚 − 𝑅𝑠)2 

(18) 

where RS is simulated PL, Rm is measured PL, and nprop is the number of propagation 

measurements over all ranges beyond 13 km at all 4 receiver heights. To minimize the 

impact of slight differences in multipath “null” locations on the RMSE statistic, PL 

predictions and measurements were averaged over the peak sea surface wavelength (Penton 

and Hackett, 2018) before the RMSE is computed. Furthermore, results are focused on PL 

beyond 13 km – referred to as “long range” since this region is mostly beyond the multipath 

nulls. Figure 14 shows an example of simulated PL for a MAPS polynomial profile with 

the in-situ radar receiver heights denoted as horizontal lines (§4.1.1).  

RMSEs for the various methods (Ω) are compared utilizing two-sample t-tests to establish 
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if the mean RMSE for each conventional method is significantly different from the EDS 

model’s mean RMSE. This method can only be used if the data is known or assumed to be 

normally distributed (i.e., mean and median are approximately equivalent) and each 

population is independent. This test is performed three times; for each test, RMSEs of the 

EDS profiles are the first population and RMSEs of each conventional method (i.e., linear 

extrapolation, MAPS polynomial M profiles and MOST blended at EDH) are the second 

population. The t-test is performed by first calculating the t-statistic (t): 

 
𝑡 =  

Ω𝑀1̅̅ ̅̅ ̅ − Ω𝑀2̅̅ ̅̅ ̅

√
𝑆𝑀1
2

𝐶𝑀𝑟𝑒𝑓
+

𝑆𝑀2
2

𝐶𝑀𝑟𝑒𝑓

 
(19) 

where Ω𝑀1̅̅ ̅̅ ̅  and Ω𝑀2̅̅ ̅̅ ̅ are the mean RMSE for the EDS method and other compared method 

(i.e., linear extrapolation, MAPS polynomial M Profiles, or MOST profiles), respectively, 

SM1 and SM2 are their respective standard deviations, and CMref is the number of compared 

M profiles.  

Degrees of freedom (df) are the number of independent measurements able to vary: df = 

2CMref - 2.; for this study, df = 38. Significance level is the probability of the null hypothesis 

being rejected, despite being true; for this study, the significance level was 5%. Degrees of 

freedom and significance level are used to find the critical value of a t-probability density 

function. The critical value is the threshold for the area under the probability distribution 

curve to be equal to the significance level and accounts for the sampled data’s uncertainty; 

therefore, if the absolute value of t is less than the critical value, it is not significant since 

it is within the margin of error and indicates there is not enough evidence to reject the null 

hypothesis, i.e., there is no difference between mean RMSE of each tested method. If the 

resulting absolute value of t is greater than the critical value, the null hypothesis is rejected. 
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If the null hypothesis is rejected, that establishes there is a significant difference between 

the RMSEs of the two tested methods and presumably the one with lower mean RMSE 

better replicates in-situ PL data.   
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Figure 5. Example spatial and temporal map of data collection on 21 October 2015. The 

bottom x-axis represents the distance in km from Duck Pier, whereas the y-axis represents 

the time the data was collected in UTC. The green lines represent the tracks of the R/V AE 

during radar data collection, the black symbols represent sunrise and sunset, the vertical 

dot-dash black lines represent the buoy locations, the red squares represent the times and 

locations where 30-min averaged meteorological data were collected from the R/V Sharp 

bow mast that is used by the COARE algorithm, and the blue triangles represent the times 

and locations the MAPS system was winched up and down from a small boat deployed 

from the R/V Sharp to obtain the data for the 7th order polynomial fits. The nodes of the 

grid represent the spatiotemporal resolution of the blended COAMPS®-NAVSLaM 

predictions. 
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Figure 6. Measured modified refractivity, blue stars, calculated from the in-situ tethered 

balloon measurements of temperature, pressure, and humidity. The red line is the seventh 

order polynomial fit to the cluster of modified refractivity data points as described in 

Alappattu et al. (2016), Rainer (2016) and Wang et al. (2018).  
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Figure 7. (A) In-situ measurements (Wang et al., 2018) used in the COARE algorithm to 

compute atmospheric vertical profiles of temperature and specific humidity: skin sea 

surface temperature (SST), and air temperature and specific humidity at 12 meters above 

the sea surface measured from the bow of the R/V Sharp. (B) In-situ measurements (Wang 

et al., 2018) of wind speed at 12 meters above the sea surface measured on the bow of the 

R/V Sharp also used in the COARE algorithm to calculate atmospheric vertical profiles of 

wind speed. (C) Air-sea temperature difference (ASTD) used to estimate the 

thermodynamic stability regime of the atmosphere. 
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Figure 8. COARE vertical profiles from 17 October 2015, at 00:12:29 UTC of (A) 

temperature, (B) specific humidity, and (C) wind speed. (D) The corresponding modified 

refractivity profile calculated using the measured pressure at 12m from the R/V Sharp, (A) 

temperature, (B) specific humidity, and Eqns. 4 and 5. 
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Figure 9. Modified refractivity profiles from a COAMPS®-NAVSLaM blended forecast 

corresponding to 10 October 0600Z, color denotes their respective ranges (km) (see 

colorbar). 
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Figure 10. Example nonlinear least squares regression fit of Eqn. (7) to a COAMPS® 

modified refractivity profile. The blue line represents COAMPS®, and the red line 

represents the parametric model (Eqn. 7) for 28 October 0500z.  
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Figure 11. Histograms of Er for COAMPS® (grey) and COARE (blue), where only the fits 

with Er< 1 M-units2 are used in this study. 
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Figure 12. The weighted average percent over the blending range (i.e., Zd to Zd + 3m) for 

the EDS or MOST profile that is blended with the corresponding MAPS polynomial M 

profile.  
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Figure 13. Example EDS model estimated profile blended into a MAPS polynomial profile 

for 13-Oct-2015 16:49:05 with an EDH of 9.7 m.  
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Figure 14. VTRPE simulated propagation loss for 21 October MAPS polynomial M profile 

collected at 14:29:07 UTC. The black horizontal lines represent the heights of the in-situ 

radar receivers located at 4 m, 6 m, 9 m, and 12 m. 
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5.0 Results  

The validity of using the parameter C0 as an estimation of profile curvature is discussed in 

the first subsection (§5.1) and relationships between C0 and thermodynamic gradients (i.e., 

ASTD and NSSHG) as well as with wind shear are discussed in subsection §5.2. The third 

subsection explores an EDS model (§5.3). The EDS model is used to estimate C0 under the 

same environmental conditions as 33 MAPS refractivity profiles (Wang et al., 2018) and 

the curvature of these EDS-based refractivity profiles are compared against the MAPS 

polynomial M profiles. Simulated PL based-on EDS modeled profiles and other near 

surface refractivity estimation methods are compared to in-situ PL data to explore potential 

applicability of the developed EDS model for propagation modeling in the final subsection 

(§5.4).  

5.1 Evaporation Duct Shape Metric  

The metric used to describe EDS is C0 from the two-layer refractivity model (Eqn. 7) 

proposed by Penton and Hackett (2018) and Matsko and Hackett (2019). To verify this 

metric, the relationship between C0 and average second order derivative of modified 

refractivity with altitude (ASOD; 
𝜕2𝑀

𝜕𝑧2

̅̅ ̅̅ ̅
) is shown in Figure 15. Pastore et al. (2021) use 

ASOD as a measure of duct curvature because the ASOD is an indicator of the shape of a 

function. In general, the relationship between ASOD and C0 is linear with a statistically 

signigficant correlation coefficient of 0.70 and p-value of zero (Figure 15A). This 

correlation increases when correlating ASOD and C0 for refractivity profiles with similar 
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duct heights (Figure 15B); for example the correlation coefficient for profiles with ~10m 

EDH is 0.99. The correlation coefficient increases when only considering one EDH (e.g., 

~10m, Figure 15B) because EDH also influences the curvature of the ED. When the effects 

of EDH on curvature are removed by isolating a narrow duct height range, the relationship 

between duct shape and C0 is more evident. This result reinforces that C0 is a model 

parameter that can change the ED shape without changing the duct height (Saeger et al., 

2015; Penton and Hackett, 2018). Due to these results, C0 is considered a valid metric of 

refractivity profile curvature or shape. C0 is used as the shape metric instead of the ASOD 

directly because of its applicability in logarithmic-linear models used in propagation 

simulations.  

5.2 Near Surface Drivers of EDS  

Fundamentally, thermodynamic properties such as ASTD and NSSHG influence modified 

refractivity (§2.2, Eqn. 4), thus it is logical to conclude that EDS is dependent on gradients 

of these thermodynamic properties. Wind shear is a flow characteristic that can destroy 

vertical gradients of these thermodynamic properties. Relationships between ASTD, 

NSSHG, wind shear and C0 are explored.  

EDs are generally permanent features over marine surfaces in unstable thermal regimes, 

yet, rare in stable thermal regimes due to presumably weaker near surface thermodynamic 

gradients (Skolnik, 2003); thus, atmospheric stability is an important property to consider 

when evaluating EDs. For example, Ding et al. (2020) demonstrated modeled EDHs have 

high sensitivity to thermodynamic stability functions used within various models in their 

study. To explore relationships between C0 and stability, the ASTD is utilized because it is 

a simple metric of stability.  
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Figure 16 illustrates a weak inverse relationship between C0 and ASTD for both COARE 

and COAMPS® profiles (Table 1); notably, scatter in the data is reduced near expected 

neutral values (i.e., ASTD of 0 °C and C0 = 0.125 M-Units m-1) with a slight offset. In 

stable regimes (i.e., ASTD > 0°C), C0 values are smaller (<~0.2 M-Units m-1) whereas in 

unstable regimes (i.e., ASTD < 0°C), C0 values are larger (>~0.2 M-Units m-1) (Figure 16). 

There is a subset of COARE and COAMPS® profiles with C0 between ~0.35 and 0.55 M-

Units m-1 that are associated with an extremely unstable thermal regime (i.e., ASTD < -

6°C) and do not follow the trend of near neutral or mildly unstable profiles. This highly 

unstable regime, at or near convective conditions, likely invokes slightly different forms of 

the stability functions between NAVSLaM and COARE (Fredrickson, 2016) since this 

regime exhibits the least overlap in the COARE and COAMPS® predictions. In this 

stability regime, the seemingly different relationship between C0 and ASTD could suggest 

that other factors are significant.  

Near surface wind speeds could influence ED properties by mixing thermodynamic 

gradients responsible for controlling atmospheric refractivity (Bean and Dutton, 1968; Eqn. 

4). For example, McKeon (2013) found relative humidity and temperature weakly 

influence EDH in times of increased wind speeds. As such, the relationship between C0 

and wind shear is investigated directly above the marine surface to provide a more holistic 

picture of what processes drive variations in C0 with respect to ASTD, as shown in Figure 

17. Notably, COARE and COAMPS® behave similarly with respect to wind shear and 

NSSHG so they are shown using the same symbols to focus on only the overall trends 

between C0 and the respective thermodynamic property.  

When wind shear is smaller (~ < 1 s-1), the range of potential C0 values is large (Figure 17) 
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and C0 is generally below 0.2 M-units m-1 during times of greater wind shear (~ > 1 s-1). In 

slightly unstable conditions and low wind shear, C0 is a strong function of wind shear with 

much higher C0 occurring during times of lower wind shear. This observation could be 

attributed to growing instabilities due to steeper near surface thermodynamic gradients in 

comparison to times with larger wind shear where those gradients are mixed by the wind. 

In near neutral to stable conditions, wind shear varied up to 3 s-1 (Figure 17), which C0 was 

relatively insensitive to, remaining at small values (~ 0 – 0.1 M-Units m-1) regardless of 

wind shear. This observation is potentially due to mechanical mixing which limits stability 

causing thermodynamic gradients to remain approximately the same regardless of wind 

shear – at least over the range measured here. Notably, Figure 17 shows the very unstable 

(near convective) cluster of M profiles seen in Figure 16 as occurring during a relatively 

low wind shear of ~0.5 s-1.  

The final driver of ED characteristics this study evaluates is NSSHG due to ED’s forming 

from steep near surface humidity gradients (Skolnik, 2003, Karimian et al., 2013). Pastore 

et al. (2021) suggest stability regime and near surface humidity gradients are likely direct 

drivers of EDS (i.e., duct curvature or in this study C0). This study utilizes specific humidity 

because it is not influenced by temperature or pressure.  

Figure 18 illustrates the relationship between NSSHG and C0 with respect to ASTD; 

COARE and COAMPS® both have a strong inverse linear relationship between C0 and 

NSSHG implying NSSHG is a primary driver of C0 variations. R2 for COARE and 

COAMPS® are both 0.96. The relationship between NSSHG and C0 becomes less linear 

when ASTD is thermally stable (Figure 18) shown by the increased scatter in the 

predictions in this region. This result could imply discrepancies between the models and/or 
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generally more model uncertainty in stable regimes. The linear relationship appears weakly 

dependent on the ASTD for neutral and unstable regimes, consistent with the prior result 

of the weaker relationship between C0 and ASTD. The NSSHG is a dominant factor 

influencing C0 and therefore EDS. 

The strongest relationship between C0 and evaluated thermodynamic properties is with 

NSSHG (Table 1). The viability of the linear relationship between NSSHG and C0 (Figure 

18) relies on how NSSHG is calculated. To explore this concept, two additional separate 

variations of NSSHG are calculated for COAMPS®: (i) NSSHG based on points at z = 

0.1Zd and z = 2Zd and (ii) NSSHG based on points at  z = 0.25Zd and z = 2Zd. These will be 

referred to as NSSHG0.1 and NSSHG0.25, respectively.  Recall, NSSHG in Figure 18 is 

computed between the surface and 2Zd. Note the average EDH for the COAMPS® dataset 

is 9m.  

The relationship between C0 and NSSHG0.1 notably has two distinct behaviors; a portion of 

NSSHG0.1 follow the same trend as NSSHG, and the rest deviates (Figure 19A). Thus, by 

an altitude of 0.1Zd a reliable relationship between C0 and NSSGH breaks down indicating 

the importance of the near surface region. Notably cases with low EDHs (Zd < ~9 m) follow 

the same trend as NSSHG (Figure 19B). For these cases, the altitude 0.1Zd is less than 1m 

above the sea surface, making it remarkably similar to NSSHG. This result suggests that 

the very near surface region (z <~1m) is critical for the prediction of the duct shape (C0). 

Additionally, this result might also suggest that C0 prediction only requires a measurement 

within the lowest meter of altitude versus a precise surface measurement. By an altitude of 

0.25Zd, the variation of specific humidity with height has greatly diminished likely 

indicating the presence of the constant flux layer.  
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5.3 Empirical EDS Model 

The EDS model utilizes the line of best fit between C0 and NSSHG, for the COAMPS® 

data (Figure 20); the COAMPS® data were selected in isolation because it is a denser 

dataset than COARE and overall, the nonlinear least square regression was able to better 

replicate this dataset (§4.2.1; Figure 11). This linear fit is: 

 𝐶0 = −1.241𝜓𝑠 − 0.00131 (20) 

C0 is predicted via Eqn. 20 and subsequently used in the two-layer refractivity model 

(Penton and Hackett, 2018; Eqn. 7) to estimate a refractivity profile using a known surface 

refractivity, EDH, and mixed layer slope; recall, this approach is the EDS model.  

The EDS model is used to estimate M profiles for 33 in-situ ED MAPS polynomial M 

profiles measured during CASPER-East. Figure 21 shows an example comparing 

refractivity estimated via the EDS model, estimated using the two-layer refractivity model 

with the Paulus (1990) neutral C0, and the measured in-situ data including a polynomial fit 

to that data. Notably, the EDS model fits the MAPS data cloud relatively well but produces 

a longer near surface refractive gradient “tail” compared to the MAPS polynomial M 

profile (Figure 21A). In this example, the neutral profile seems to under-predict the 

curvature compared to MAPS polynomial M profiles, whereas the EDS model predicts 

curvature remarkably similar to the MAPS profile until ~1 m to the surface where the EDS 

model predicts much larger surface gradients resulting in a tighter curvature. Residuals 

between each compared profile are calculated within the “curvature zone” - 0.5m to 2Zd 

(Figure 21B) - by subtracting the compared profile from the MAPS polynomial M profiles. 

Residuals are only calculated within the curvature zone to exclude the “tails”; thus, the 

overall main curvature shape is evaluated instead of being skewed by the known 
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differences in near surface gradients.  

Figure 22 shows the residuals over all 33 MAPS datasets. The neutral C0 dataset has more 

positive residuals, indicating a neutral C0 value under predicts curvature compared to the 

curvature observed in the MAPS polynomial M profiles; the negative EDS model residuals 

indicate the EDS model generates a tighter curvature than observed in the MAPS 

polynomial M profiles (Figure 22). Overall, M profiles calculated using the neutral C0 and 

the EDS model have an approximately normal distribution of residuals. 

5.4 Simulated Propagation Loss Comparison 

As previously discussed in §2.4, limitations of measurement equipment to measure in the 

lowest few meters above the sea surface require the use of near surface estimation methods 

such as linear extrapolation, polynomial fits, and MOST to extend data to the sea surface. 

Notably when comparing near surface estimation methods, the main difference between 

the data extrapolation methods and those based on MOST or semi-empirical models (i.e., 

EDS) is the much larger surface gradients in the latter (Figure 23). Wang et al. (2018) and 

Pastore et al. (2021) discuss limitations of the MAPS polynomial profiles in capturing the 

expected large surface gradients in this region. MOST and EDS profiles always have larger 

surface gradients although the shape of the curve in this region can vary between them. 

Figure 24 is an example of simulated long range PL for all near surface estimation methods 

compared to the in-situ PL measurements for the MAPS polynomial M profile obtained 13 

October at 16:49 UTC and the closest in-situ radar data obtained on 14 October at 00:57 

UTC. The linear and polynomial extrapolation methods are the most similar to each other 

(Figure 23) and therefore also have the most similar PL predictions (Figure 24; Table 2). 

RMSEs between simulated and in-situ PL are shown in Figure 25. MAPS polynomial M 
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profiles and linear extrapolation of MAPS polynomial M profiles from 3m to the surface 

have the lowest RMSEs for most of the datasets examined, particularly prior to 17 October. 

Notably, atmospheric conditions are close to a neutral thermal regime until 17 October 

where the regime then suddenly becomes unstable due to the passage of a cold front on 18 

October (Figure 7C).  

One interpretation of this trend is that preserving in-situ data closer to the surface is critical 

to accurately predict PL. There were no apparent trends found between RMSE and 

NSSGH, ASTD, or duration between the time of radar measurements and that of the 

corresponding MAPS measurements. A future study could investigate these potential 

trends further with more intricate statistical methods such as principal component analysis.  

To evaluate whether the RMSEs between the EDS model and other methods are 

significantly different in a statistical sense, a two-sample t-test is used. The test requires 

RMSE populations to each be normally distributed, which was evaluated by comparing the 

mean and median of each population (Table 2). The mean and median RMSE of each 

RMSE population varied between ~ 0.4-2.5 dB, which is less than the commonly accepted 

“baseline error” of ~5 dB for measured RF data (Goldhirsh and Dockery, 1998). Notably, 

Pastore et al. (2021) considered significant differences in PL to be >20 dB, which is much 

greater than the differences between the mean and median of the RMSE populations. Given 

that the mean and median of each population are approximately equal, it is assumed that 

the data are normally distributed and thus the two-sample t-test is valid to compare RMSE 

populations. 

The critical value for the two-sample t-test between the RMSEs of the EDS model and the 

other three near surface estimation methods is 2.024; the t-statistics for the linear 
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extrapolation of the MAPS polynomial M profiles and MAPS polynomial M profiles are 

2.68 and 2.29, respectively, which are greater than the critical value and therefore reject 

the null hypothesis (i.e., EDS model RMSEs = MOST model RMSEs). The t-statistic of 

MOST is 0.43 which is less than the critical value; therefore, the null hypothesis is 

accepted. Thus, the EDS model is not significantly different than MOST but is for the 

MAPS polynomial M profiles and linear extrapolation of the MAPS polynomial M profiles 

(Table 3). Note, when the p-value of a two-sample t-test is larger than the significance 

level, there is little to no evidence that the means of the two compared populations (i.e., 

EDS and compared method of near surface refractivity estimation) are statistically 

different. 

The lower RMSEs of the extrapolation-based techniques relative to that of the EDS and 

MOST models indicates that the extrapolation-based techniques result in PL predictions 

that more closely match the in-situ radar measurements (Table 2). These results reject this 

study’s third research hypothesis (§3) that EDS profiles produce closer PL predictions to 

in-situ PL than alternative methods – although the EDS model’s accuracy was similar to 

the other methods. Perhaps linear extrapolation and MAPS polynomial methods result in 

propagation predictions that are more similar to the in-situ radar data because these 

methods utilize in-situ data closer to the surface. Since the average RMSEs for EDS and 

MOST are not statistically different, the EDS model is a convenient alternative to MOST 

(as it requires fewer supporting measurements) for estimating near surface M gradients 

within the MASL for ED scenarios. These estimated gradients can then be utilized for 

applications such as propagation modeling. 

It is also important to contextualize these results based on the nature of the data. The in-
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situ PL measurements required ~2hrs to collect the ~50 km data in range (Wang et al., 

2018; Pastore et al., 2021; Pastore et al., 2022) and the dynamic environment of the MASL 

can vary considerably during this time frame. Thus, the measured distribution of PL over 

range is not “instantaneous” in the same sense as the PL model predictions are. 

Furthermore, each MAPS dataset is collected over a 20-40 min period at one discrete range 

that varied from 0-11 hours from when the radar data were collected. These varying 

characteristics of the data imply that none of the estimation methods can represent the “true 

environment” that the radar data were collected over. Hence, some discrepancies are 

expected and may not be completely attributable to EDS model shortcomings.  

Also note, all data in this study were sourced from the CASPER-East experiment in Duck, 

North Carolina in October. Future studies in differing locations and seasons should be 

compared to this study’s results to assess how unique the results are to autumn in Duck, 

North Carolina.   
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Table 1. Correlation of each examined thermodynamic property and C0 for both 

COAMPS® and COARE. 

 COAMPS® COARE 

Thermodynamic 

Property 

Correlation 

Coefficient 

P-Value Correlation 

Coefficient 

P-Value 

ASTD -0.51 0 -0.64 0 

NSSHG -0.98 0 -0.98 0 

Wind Shear -0.56 0 -0.39 0 
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Table 2. Mean and median RMSE between the PL based on the near surface estimation 

method and in-situ measurement. 

Method Mean RMSE (dB) Median RMSE (dB) 

MAPS Polynomial 

Extrapolation 

8.51 7.02 

EDS Model 12.52 10.01 

MOST Model 11.64 11.20 

MAPS Linear 

Extrapolation 

7.90 6.63 
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Table 3. Results of the two-sample t-test comparing RMSEs of EDS model to the other 

methods. 

Method vs EDS t-Statistic Critical Value Statistically 

Significantly 

Different 

P-Value 

MAPS 

Polynomial 

Extrapolation 

2.29 2.024 YES 0.03 

MOST Model 0.43 2.024 NO 0.67 

MAPS Linear 

Extrapolation 
2.68 2.024 YES 0.01 
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Figure 15. Relationship between the ASOD of each COAMPS® modified refractivity 

profile with respect to the nonlinear least square’s regression fit of C0. The color of each 

marker corresponds to the profiles respective duct height. (A) The ASOD is calculated over 

the entire modified refractivity profile. The linear fit ( 
𝜕2𝑀

𝜕𝑧2

̅̅ ̅̅ ̅
 = 11.41C0 + 0.465) yields an R2 

value of 0.49 (R = 0.70); (B) however fitting the data classified by individual duct heights 

yields higher R2 illustrated with black markers showing data for only ~10 m duct heights, 

yielding an R2 of 0.99. 
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Figure 16. Relationship between ASTD and C0. The blue triangles represent COAMPS® 

predictions and the red stars represent COARE predictions. The black vertical line is at 

neutral ASTD (0 °C) and the black horizonal line is at the neutrally derived Paulus value 

for C0 (C0 = 0.125 M-unit m-1). The R2 of the COAMPS® data for the line of best fit is 0.26 

and the R2 for COARE is 0.41. 

  



61  

 

Figure 17. The relationship between C0 and wind shear for both COARE and COAMPS®. 

The color of each marker corresponds to the respective ASTD (see colorbar).  
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Figure 18. The relationship between the NSSHG and C0 where the color of each marker is 

the respective ASTD for both COARE and COAMPS®. 
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Figure 19. (A) Relationship between C0 and NSSHG estimated over various altitude ranges 

for COAMPS® where the colors of the markers represent over which altitudes NSSHG was 

calculated (see legend). Black markers are between the surface and 2Zd, the blue markers 

are between 1/10thZd and 2Zd, and the red markers are between 1/4th Zd and 2Zd. (B) The 

relationship between the NSSHG1.0 and C0 where the color of each marker is the respective 

Zd (see colorbar). 
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Figure 20. Same as Figure 18 but only COAMPS® with the line of best fit shown between 

the NSSHG and C0 with an R2= 0.96. 
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Figure 21. (A) Example modified refractivity profiles from the EDS model (C0 = 0.512 M-

units m-1), the two-layer model using a neutral C0 (C0=0.125 M-units m-1), and the 7th 

order polynomial fit of the in-situ MAPS data from Wang et al., (2018) for 15 October 

2015, at 15:03:40 UTC which has an EDH of 8m. (B) A histogram of the residuals between 

the refractivity based-on the 7th order polynomial fit and the EDS model, and the residuals 

between the refractivity based on the 7th order polynomial fit and the profile calculated 

using the neutral C0 of Paulus (1990) . The residuals are calculated within the “curvature 

zone” for the data shown in (A), which is bounded by the two horizontal blue lines in (A). 

The bottom blue line is at an altitude of 0.5m and the top blue line is at z = 2Zd. 
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Figure 22. Histograms of refractivity residuals for all data between z =0.5m to 2Zd. The 

residuals are computed between EDS modeled and 7th order polynomial (Wang et al., 

2018) modified refractivity profiles in red, and between the two-layer model with neutral 

curvature and 7th order polynomial (Wang et al., 2018) modified refractivity profiles in 

blue. 

  



67  

 
 

Figure 23. Example modified refractivity profiles that are utilized to simulate PL in 

VTRPE. The EDS and MOST profiles are blended with the 7th order MAPS polynomial M 

profiles around an altitude of 9.7m using the weighted average technique (§4.2.3).  
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Figure 24. PL of the in-situ measurements and the simulated PL using refractivity based 

on the various near-surface estimation methods (see legend) versus range for the MAPS 

profile obtained 13 October at 16:49 UTC and the closest in-situ radar data obtained on 

14 October at 00:57 UTC. PL is shown for the four in-situ receiver heights: (A) Rx = 4m, 

(B) Rx = 6m, (C) Rx = 9m, and (D) Rx = 12m. 
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Figure 25. RMSEs between in-situ and simulated PL for all near surface estimation 

methods (see legend).  
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6.0 Summary 

The MASL is a highly dynamic environment where atmospheric refractivity is varied by 

changes in  pressure, temperature, and humidity. Certain atmospheric conditions create EM 

trapping layers (i.e., EDs) that can cause anomolous EM propagation. EDs trap EM signals 

close to Earth’s surface, which causes unaccounted-for range increases in radar systems 

leading to target positioning errors. To account for these anomolies, accurate estimations 

of EDH and corresponding near surface refractive gradients are essential. 

Currently, technologies that meausure near-surface (i.e., within the first few meters of 

altitude) thermodynamic properties struggle to resolve small vertical variations due to 

many factors such as waves, sea spray, and platform and sensor housing interference; these 

limitations lead to data gaps in the near-surface region making the estimation of refractive 

gradients in this region difficult and thus, modeling techniques for ED estimation are 

essential. Commonly, logarithmic-linear parametric models are used to describe EDs with 

altitude (Paulus, 1990; Gersoft et al., 2003; Saeger et al., 2015). This study uses a two-

layer logarithmic-linear parametric refractivity model proposed by Penton and Hackett 

(2018) to describe EDs via three paramters: EDH, ED curvature (C0), and mixed layer 

slope. 

Prior to this study, the physical significance of C0 was unknown and reguarly assumed to 

be a value derived by Paulus (1990) (0.125 M-units m-1) under the assumption of a rarely-

oberserved neutral atmosphere (Babin et al.,1997; Rogers et al., 2000; Gerstoft et al., 2003; 
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Zhang et al., 2011; Wang et al., 2019) limiting their application in different thermal 

stabilities.    

To increase the understanding of C0 variatons in non-neutral environments, this study 

determines the physical drivers of C0, creates a novel model that predicts C0 via minimal 

environmental measurements, and uses that model to extend in-situ data to the surface with 

reasonable accuracy for the purposes of propagation predictions. To accomplish these 

goals, numerical data and bulk environmental measurements from the CASPER-East field 

campaign are used.  

ASTD and wind shear have a weak inverse relationship with C0 for both COARE and 

COAMPS® data. In unstable regimes C0 tends to be larger and in stable regimes C0 tends 

to be smaller. This result suggests ASTD has some influence on C0 variations. When wind 

shear is small, the range of C0 is large and in times of greater wind shear, C0 ranges are 

relatively small. Wind shear varied the most in near neutral to stable conditions, which C0 

was relatively insensitive to, remaining at small values (~0 – 0.1 M-Units m-1); this result 

may suggest interactions between mechanical mixing and thermal stability result-in 

thermodynamic gradients remaining similar. It could also be associated with known 

shortcomings of MOST in stable conditions (Foken, 2006). 

NSSHG and C0 have the strongest inverse relationship for both COARE and COAMPS®. 

The relationship between NSSHG and C0 becomes less linear in a stable atmospheric 

regime and the linear relationship appears weakly dependent on the ASTD for neutral and 

unstable regimes, which is consistent with the previously noted weak relationship between 

C0 and ASTD. As suggested by the high correlation coefficient, NSSHG is potentially the 
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primary driver of variations in C0; thus, a linear function between C0 and NSSHG is 

calculated that can predict C0 from the NSSHG. 

Predicted C0 from the linear function are utilized within the two-layer refractivity model 

(Penton and Hackett, 2018) to estimate refractivity - this procedure is known as the EDS 

model. Refractivity based-on a neutral C0 generates a slightly broader curvature than that 

observed in the measured MAPS polynomial M profiles. The EDS model’s predicted C0 

are larger than the neutral value and typically generate a slightly tighter curvature than 

observed in the MAPS polynomial M profiles. Overall, residuals between the MAPS 

polynomial M profiles and the EDS model have an approximately normal distribution with 

a small residual (~1 M-unit); thus, the EDS model gives reasonable estimation of near 

surface refractivity. 

M profiles estimated via the EDS model and other methods of near surface refractivity 

estimation (MOST, linear extrapolation, and polynomial extrapolation) are compared in 

terms of propagation prediction. The EDS model and MOST M profiles have the steepest 

near surface refractivity gradients compared to the linear and polynomial extrapolations. 

This discrepancy could be due to the extrapolations being strictly mathematical and not 

incorporating the complexities of the environment that involve steep humidity gradients at 

the very lowest altitudes.  

PL is simulated for all M profile estimation methods and compared to in-situ PL data via 

RMSE. The PL RMSEs associated with the EDS model are evaluated against the other near 

surface estimation methods RMSEs using two-sample t-tests. EDS and MOST PL RMSEs 

are statistically similar, whereas EDS PL RMSEs differ from that of linear and polynomial 

extrapolated profiles.  
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The linear and polynomial extrapolated profiles have smaller mean RMSEs relative to the 

EDS model. Recall, these mathematical methods utilize in-situ data closer to the surface 

than the MOST or EDS model. This result suggests employing in-situ data closer to the 

surface is always better than using a model for accurately predicting PL. Since the EDS 

model and MOST are not statistically different, the EDS model is a convenient alternative 

to MOST when estimating near surface refractivity gradients (within the evaporation layer) 

for use in propagation modeling, as the EDS model requires fewer supporting 

measurements relative to MOST.  

Future research should be conducted to evaluate the integrity of these results in other 

regions of the world in various seasons. Furthermore, evaluating the relationship between 

C0 and these thermodynamic variables considering heterogenous environments would be 

advantageous as this study assumed a homogenous environment.  
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Appendix 

 

The non-dimensional universal functions of MOST (Monin and Obukhov, 1954; Garratt, 

1992; Foken, 2006) for wind, temperature, and humidity are respectively: 
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where 𝛷 are universal stability functions for wind, temperature, and humidity denoted via 

subscripts of U, T, and q, respectively. Note that it is typically assumed that 𝛷𝑇 = 𝛷𝑞. 
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