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A B S T R A C T   

This paper presents a novel method for resiliency assessment of the distribution system considering smart homes' 
arbitrage strategies in the day-ahead and real-time markets. The main contribution of this paper is that the 
impacts of smart homes' arbitrage strategy on the resilient operation of the distribution system are explored. The 
optimal commitment of smart homes in external shock conditions is another contribution of this paper. An 
arbitrage index is proposed to explore the impacts of this process on the system costs and resiliency of the system. 
A two-level optimization process is proposed for day-ahead and real-time markets. At the first stage of the first 
level, the optimal bidding strategies of smart homes are estimated for the day-ahead market. Then, the database 
is updated and the optimal bidding strategies of smart homes for real-time horizon are assessed in the second 
stage of the first level problem. At the first stage of the second level problem, the optimal day-ahead scheduling 
of the distribution system is performed considering the arbitrage and resiliency indices. At the second stage of the 
second level, the distribution system optimal scheduling is carried out for the real-time horizon. Finally, at the 
third stage of the second level, if an external shock is detected, the optimization process determines the optimal 
dispatch of system resources. The proposed method is assessed for the 33-bus and 123-bus IEEE test systems. The 
proposed framework reduced the expected values of aggregated costs of 33-bus and 123-bus systems by about 
62.14 % and 32.06 % for the real-time horizon concerning the cases in which the smart homes performed 
arbitrage strategies. Furthermore, the average values of the locational marginal price of 33-bus and 123-bus 
systems were reduced by about 59.38 % and 63.98 % concerning the case that the proposed method was not 
implemented.   

1. Introduction 

The optimal resilient operation of distribution systems considering 
the smart home contribution scenarios is an important issue in opera-
tional paradigms of electrical systems. The smart homes concept is 
widely utilized in recent papers to increase the efficiency of energy 
conversion, resiliency, and flexibility of electrical systems. Smart home 
commitment in the external shock condition is an optimization process 
that depends on the hierarchical architecture of control systems, smart 
homes' locations, load density, communication infrastructure design, 
consumers' comfort levels, and other technical and economic parameters 
of the electrical system. The Distribution System Operator (DSO) can 
improve the resiliency of its system using the optimal commitment of 

smart homes and other distributed energy resources to reduce the im-
pacts of external shocks [1]. A smart home can be equipped with Elec-
trical Storage Systems (ESSs), Plug-in Hybrid Electric Vehicles (PHEVs), 
fossil-fueled Distributed Generation (DG) facilities, Intermittent Power 
Generation (IPG) facilities, and smart appliances. Further, smart homes 
can participate in distribution system Demand Response Programs 
(DRPs) [2]. The distribution system operator should coordinate its sys-
tem resources considering the smart homes arbitrage opportunities in 
the operational scheduling horizons. 

Over recent years, different aspects of resilient operational sched-
uling of distribution systems are presented considering the optimal 
commitment of Distributed Energy Resources (DERs) and switching of 
system switches. As shown in Table 1, the literature can be categorized 
into the following categories. The first category considers the aspects of 
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Nomenclature 

Abbreviation 
ARIMA Autoregressive Integrated Moving Average 
CMSH Comfort Mode of Smart Home 
SMSH Saver Mode of Smart Home 
EPSH Energy Partner Mode of Smart Home 
DA Day-Ahead 
DER Distributed Energy Resource 
DG Distributed Generation 
DRP Demand Response Program 
DSO Distribution System Operator 
ESS Electrical Energy Storage 
IPG Intermittent Power Generation 
MILP Mixed Integer Linear Programming 
MINLP Mix Integer Non-Linear Programming 
MT Micro Turbine 
MU Monetary Unit 
PHEV Plug-in Hybrid Electrical Vehicle 
PV PhotoVoltaic 
RT Real-Time 
RTLF Real-Time Load Forecasting 
WT Wind Turbine 

Sets 
NSHOS Set of operational states of smart homes 
NSL Set of shed loads 
NCS Set of contingent conditions 
NB Set of buses 
NST Set of system topology 
NDSRT Set of distribution system real-time contingent conditions 

Parameters 
ξSR Price of spinning reserve in day-ahead market (MUs/kW) 
ξactive Price of active power in day-ahead market (MUs/kWh) 
ξreactive Price of reactive power in day-ahead market (MUs/kVARh) 
Prob Probability of scenario 
W Weighting factor 
CIC Customer interruption costs (MUs) 

Variables 
CSH

X DA Smart home distributed energy resources day-ahead costs ∀X ∈
IPG, DG, ESS, PHEV(MUs) 

CSH
Purchase DA Smart home day-ahead energy purchased costs (MUs) 

BSH
Sell DA Smart home day-ahead energy sold benefits (MUs) 

BSH
DRP DA Smart home day-ahead demand response program contribution 

benefits (MUs) 
BSH

AR DA Smart home day-ahead arbitrage benefits (MUs) 
Penaltyactive DA Penalty of arbitrage of smart homes in day-ahead active 

power market (MUs) 
Penaltyreactive DA Penalty of arbitrage of smart homes in day-ahead 

reactive power market (MUs) 
SRDA

SH Spinning reserve provided by smart home for day-ahead 
market (kW) 

PDA
SH Active power provided by smart home for day-ahead market 

(kW) 
QDA

SH Reactive power provided by smart home for day-ahead market 
(kVAR) 

PSH
X Smart home distributed energy resources active power ∀X ∈

IPG, DG, ESS, DRP, PHEV(kW) 
PSH

Load Smart home active power of load (kW) 
PSH

Loss Smart home active power loss (kW) 
QSH

X Smart home distributed energy resources reactive power ∀X ∈
DG, DRP, PHEV(kVAR) 

QSH
Load Smart home reactive power of load (kVAR) 

QSH
Loss Smart home reactive power loss (kVAR) 

PSH Dispatchable
Load Smart home dispatchable active power (kW) 

PSH Deferrable
Load Smart home deferrable active power (kW) 

PSH Non− dispatchable
Load Smart home non-dispatchable active power (kW) 

ΔPSH
TOU Active power change of smart home based on time-of use 

program (kW) 
ΔPSH

DLC Active power change of smart home based on direct load 
control program (kW) 

CSH
X RT Smart home distributed energy resources real-time costs ∀X ∈

IPG, DG, ESS, PHEV(MUs) 
CSH

Purchase RT Smart home real-time energy purchased costs (MUs) 
BSH

Sell RT Smart home real-time energy sold benefits (MUs) 
BSH

DRP RT Smart home real-time demand response program contribution 
benefits (MUs) 

BSH
AR RT Smart home real-time arbitrage benefits (MUs) 

Penaltyactive RT Penalty of arbitrage of smart homes in real-time active 
power market (MUs) 

Penaltyreactive RT Penalty of arbitrage of smart homes in real-time reactive 
power market (MUs) 

PRT
SH Active power provided by smart home for real-time market 

(kW) 
QRT

SH Reactive power provided by smart home for real-time market 
(kVAR) 

CDS
X DA Distribution system distributed energy resources day-ahead 

costs ∀X ∈ IPG, DG, ESS, PLOT(MUs) 
CDS

Purchase DA Distribution system day-ahead energy purchased from 
upward network costs (MUs) 

BDS
Sell DA Distribution system day-ahead energy sold to consumers 

benefits (MUs) 
CDS

DRP DA Distribution system day-ahead demand response program 
contribution costs (MUs) 

CDS
AR DA Distribution system day-ahead arbitrage cost (MUs) 

ENSC Energy not supplied costs (MUs) 
RI Resiliency index 
ARI Arbitrage index 
LMP Locational marginal price (MUs) 
PDS

X Distribution system distributed energy resources active power 
∀X ∈ IPG, DG, ESS, PLOT (kW) 

PCustom
Load Distribution system active power of custom load (kW) 

PDS
Loss Distribution system active power loss (kW) 

PDS
IMPORT Distribution system imported active power from upward 

network (kW) 
CDS

X RT Distribution system distributed energy resources real-time costs 
∀X ∈ IPG, DG, ESS, PLOT(MUs) 

CDS
Purchase RT Distribution system real-time energy purchased from upward 

network costs (MUs) 
BDS

Sell RT Distribution system real-time energy sold to consumers benefits 
(MUs) 

CDS
DRP RT Distribution system real-time demand response program 

contribution costs (MUs) 
CDS

AR RT Distribution system real-time arbitrage cost (MUs) 
y Binary decision variable of boundary line  
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smart home commitment in distribution system operational scheduling 
[3–27]. The optimal resilient scheduling of the distribution system 
considering smart homes contributions can be categorized into the 
following subgroups: 1) load commitment strategies [3–16], 2) PHEVs 
commitment strategies [17–21], and 3) combinations of the above 
strategies [22–27]. 

Based on the above categorization and for the first subgroup, Ref. [3] 
introduced a tri-level optimization algorithm to maintain the resiliency 
of the system in external shock conditions. The first level optimized the 

system's energy transactions, the second level determined the transacted 
energy between utility and smart homes, and the third level optimized 
the energy costs of smart homes. Ref. [4] assessed the resiliency of 
buildings equipped with energy storage and photovoltaic arrays. The 
results showed that the resiliency of buildings was highly improved 
using the photovoltaic and energy storage facilities. Ref. [5] evaluated a 
robust optimization process to enhance the resiliency of the system using 
demand response programs. The proposed method considered the un-
certainties of external shocks, intermittent power generations, and load 

Table 1 
Comparison of the proposed method with other papers. 
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and price parameters. Ref. [6] proposed an event-based demand 
response program to improve the system resiliency and considered the 
behavior of residential consumers using the game theory model. Ref. [7] 
introduced a two-level optimization process for load commitment of 
smart homes. The first level minimized the smart homes' energy costs, 
and the second level minimized the deviations of load profiles. Ref. [8] 
assessed a distributed real-time demand response process to carry out 
the load curtailment process and increase the flexibility and resiliency of 
the system. Ref. [9] introduced the load curtailment process using the 
Markov model and multiple resiliency indices to assess the resiliency of 
the system. The Monte Carlo simulation procedure was utilized to 
evaluate the proposed indices. Ref. [10] proposed an optimization al-
gorithm for procuring regulation reserve services considering demand 
response alternatives. The optimization algorithm utilized a dynamic 
programming method to optimize the system costs considering the 
system's contingencies. Ref. [11] assessed a load control process to 
determine the maximum admissible time for disconnecting the loads. 
The results showed that for the UK power system about 200 MW of 22 
GW could be controlled in critical conditions. Ref. [12] introduced a 
real-time pricing algorithm to minimize the peak-to-average demand 
ratio. The proposed algorithm maximized the social welfare and opti-
mized the consumers' power consumption. Ref. [13] evaluated an 
optimization process to minimize load curtailments of the system in the 
contingent condition considering uncertainties. The optimal scheduling 
of system resources was determined by a robust optimization algorithm. 
Ref. [14] introduced a resilient optimization model to supply the critical 
loads in external shock conditions that committed adjustable loads. The 
load shedding was minimized and the served non-critical loads were 
maximized. Refs. [3–14] did not consider smart homes' commitment 
modes, arbitrage opportunities, resiliency index, and locational mar-
ginal price in their proposed models. 

Other papers modeled the load commitment procedures for smart 
homes without considering the system's resiliency. Ref. [15] presented a 
day-ahead scheduling load commitment process using a reinforcement 
algorithm. The agent-based optimization algorithm found the optimal 
sequence of load commitment for the scheduling interval. Renewable 
power generation was considered in the proposed model. However, the 
resiliency of the system was not modeled. Ref. [16] proposed a two-stage 
optimization algorithm for optimal demand response coordination of 
residential space heating loads. The model considered day-ahead and 
balancing markets. The first stage model minimized the customers' 
payments and the second stage problem maximized the customers' 
bonus. However, the resiliency of the system and the arbitrage oppor-
tunities were not modeled in Refs. [15,16]. 

Based on the above categorization and for the second subgroup, 
Ref. [17] introduced a two-stage stochastic optimization framework for 
optimal scheduling of microgrids considering PHEVs' contributions to 
improving the resiliency of the system. Ref. [18] assessed an algorithm 
that committed PHEVs in external shock conditions to improve the 
resiliency of the distribution system. The optimization algorithm mini-
mized the maximum electrical power of turned-on smart appliances that 
were supplied by PHEVs. Ref. [19] analyzed the reliability of the system 
considering vehicle-to-grid and vehicle-to-home modes of operations. 
The results showed that the reliability of the system was increased using 
the vehicle to grid process in the external shock conditions. Ref. [17–19] 
did not consider smart home arbitrage opportunities, optimal resilient 
switching of the distribution system, and locational marginal price in 
their proposed models. 

Other papers modeled the PHEVs commitment process for smart 
homes without considering the resiliency of the system. Ref. [20] 
assessed an optimization model that simultaneously optimized the 
objective function of the system operator, distribution generation 
owner, intermittent electricity generations, and parking lot of PHEVs. 
The simulation was carried out for the 33-bus IEEE test system. Ref. [21] 
presented an algorithm for optimizing PHEV commitment considering 
the time-of-use demand response tariff. The model compromised 

photovoltaic arrays and electrical energy storage systems and the opti-
mization process minimized customers' costs. The resiliency of the sys-
tem was not modeled in Refs. [20,21]. 

For the third category of subgroup, Ref. [22] introduced an algo-
rithm for the optimal commitment of loads and PHEVs. The optimization 
process minimized the system costs and inconvenience of customers. 
Ref. [23] assessed an online optimization process to increase the resil-
iency of islanded microgrid using PHEVs and electrical energy storage. 
Ref. [24] presented an optimization framework to increase the resiliency 
of the system considering intermittent electricity generations, energy 
hubs, demand response programs, and PHEVs. Ref. [25] evaluated a 
two-stage optimization process for building microgrids for day-ahead 
and real-time optimization intervals. The building was equipped with 
energy storage, PHEVs, and intermittent electricity generation. The 
proposed algorithm increased the resiliency of buildings considering the 
customers' comfort level. Ref. [26] assessed an optimization process that 
considered aging and reliability as objective functions. The model uti-
lized emergency demand response as an energy resource to increase the 
resiliency of the system. The results showed that the demand response 
reduced the aging of system facilities and system costs. Ref. [27], 
introduced a stochastic optimization algorithm to increase the resiliency 
of the system considering demand response programs and PHEVs. The 
optimization process utilized a conditional value at risk model to find 
the best risk-averse values of system costs. Refs. [22–27] did not 
consider smart homes contribution modes, arbitrage opportunities, 
optimal resilient switching of the distribution system, and locational 
marginal price in their proposed models. 

The second category of papers optimized the operational scheduling 
of the system in external shock conditions utilizing the concept of a self- 
healing process and switching of normally opened/closed switches to 
improve the resiliency of the system [28–36]. These papers investigated 
the optimal switching of the distribution system for pre-event and/or 
post-event conditions. Ref. [28] investigated a sectionalizing process to 
increase the resiliency of the distribution system and schedule the 
distributed energy resources. An optimization algorithm was performed 
that utilized the stochastic model of the system to minimize the opera-
tional costs system and restore the system after tolerating an external 
shock. Ref. [29] assessed an optimization algorithm for the resilient 
scheduling of the distribution system using graph theory. The model 
utilized the Tabu search algorithm to minimize disconnected loads, 
energy losses, and load-generation imbalance. Ref. [30] analyzed a two- 
stage algorithm that simultaneously scheduled microgrids and distri-
bution systems. In the first stage, the commitment schedule of micro-
grids was optimized and in the second stage, the distribution system was 
restored using the capacity of microgrids to reduce the unserved energy. 
The centralized and hierarchical optimization algorithms for scheduling 
were considered and the centralized approach had better results con-
cerning another method. Ref. [31] introduced resilient scheduling of 
networked microgrids using a resiliency index and robust optimization 
process that considered the market price and intermittent electricity 
generation uncertainties. The proposed method reduced the shed load 
by about 78.36 % concerning the base case. Ref. [32] proposed an en-
ergy management framework for the optimal scheduling of networked 
microgrids to reduce the impact of external shocks. The method mini-
mized the operational costs considering the privacy of consumers. The 
demand response procedure decreased the shed load by about 57.3 % 
concerning the base case. Ref. [33] evaluated a resilient optimization 
process to cluster the system into multi-microgrids in external shock 
conditions. The energy loss, energy not supplied, voltage deviations, and 
reactive power not supplied were considered. The Pareto optimality 
method was utilized to find the best solution. Ref. [34] proposed a 
resilient scheduling algorithm for networked microgrids using a resil-
iency index. The analytical hierarchical algorithm calculated the resil-
iency index and the results indicated that the resiliency index was 
increased by about 25.38 % concerning the base case. Ref. [35] evalu-
ated an optimization framework to determine the microgrid formation 
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of the distribution system and maximize the restored loads of the system. 
An iterative linear programming optimization model was utilized and 
the case study was performed for 33-bus IEEE and 69-bus PG&E systems. 
Ref. [36] assessed a three-stage resilient optimization algorithm that in 
the first stage, the hardening process of the system was performed. In the 
second stage, the switching process of the system was carried out and 
finally, in the third stage, the service restoration was optimized. Refs. 
[28–36] did not consider smart homes contribution modes, arbitrage 
opportunities, and locational marginal price in models. Further, 
Ref. [28–36] did not utilize the arbitrage index to explore the arbitrage 
process impacts on the scheduling of the distribution system. 

Ref. [37] introduced a framework for optimal scheduling of active 
distribution networks considering the arbitrage strategies of distributed 
energy resources and aggregators. The model utilized a two-level opti-
mization process for day-ahead and real-time horizons. The optimiza-
tion process used robust and lexicographic ordering optimization 
methods. Ref. [37] did not consider the resilient operation of the dis-
tribution system, arbitrage index, locational marginal price modeling, 
and optimal resilient switching of the distribution system. Further, 
Ref. [37] did not model the smart homes categorization, contribution 
modes, and their arbitrage opportunities. Ref. [38] utilized the node 
resilience criteria to assess the impacts of hazards on the multi- 
infrastructure energy system. The model considered the interdepen-
dency of gas and electric networks and the load curtailment process was 
utilized using multiple scenarios. The performance of energy systems 
was explored considering the time-dependent performance of energy 

generation and transmission facilities. Ref. [39] proposed a model to 
characterize the time dependency of renewable energy resources. A 
stochastic optimization process was used to optimize the dynamic 
microgrid formations. The model assessed the impacts of droop control 
and frequency regulation. The served critical load and frequency re-
quirements of loads criteria were considered in the optimization process. 
Ref. [40] introduced a framework for simultaneously utilizing distrib-
uted energy resources and automated switches. The feasible network- 
based score method was developed to restore the critical loads of the 
system. A composite resiliency index was used to assess the effectiveness 
of the proposed process. Refs. [38–40] did not consider smart homes 
contribution modes and their arbitrage opportunities, locational mar-
ginal price, and optimal resilient switching of the distribution system. 
Further, Ref. [38–40] did not utilize the arbitrage index to assess the 
impacts of arbitrage of DERs on the scheduling of the distribution 
system. 

An integrated framework that considers the impacts of the arbitrage 
process of smart homes on the optimal operational scheduling of resil-
ient distribution system is less frequent in the literature. In this paper, an 
integrated framework for resiliency assessment of distribution system in 
the day-ahead and real-time horizons considering different modes of 
commitment of smart homes is proposed. The proposed model optimally 
dispatches the system energy resources considering arbitrage opportu-
nities and resiliency of the system in the day-ahead and real-time 
markets. 

The contributions of this paper are: 

Fig. 1. Electrical distribution system with multiple distributed energy resources and smart homes.  
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• The proposed model categorizes the smart homes into comfort, en-
ergy saver, and energy partner modes and the model considers a 
framework for optimizing the energy procurement from the smart 
homes dispatchable, non-dispatchable, and deferrable loads,  

• The optimal bidding strategies of energy partner smart homes are 
simulated in the day-ahead and real-time markets considering their 
arbitrage opportunities,  

• An arbitrage index is proposed that determines the smart homes 
arbitrage impacts on the distribution system operational cost, 

• A resiliency index is proposed to assess the resiliency of the distri-
bution system in day-ahead and real-time markets, 

• The proposed algorithm determines the optimal scheduling of dis-
tribution system energy resources in normal and contingent condi-
tions for the day-ahead and real-time horizons considering the 
arbitrage and resiliency indices, 

• The algorithm minimizes the impacts of the external shocks contin-
gencies using sectionalizing system into multi-microgrids and 
rescheduling of system resources. 

The paper is organized as follows: The formulation of the problem is 
introduced in Section 2. In Section 3, the solution algorithm is presented. 

In Section 4, the case study is presented. Finally, the conclusions are 
included in Section 5. 

2. Problem modeling and formulation 

As shown in Fig. 1, the distribution system utilizes IPGs, ESSs, 
microturbines, parking lots, and DRPs. Further, the distribution system 
imports electricity from the upward network in day-ahead and real-time 
horizons. Smart homes can contribute to demand response programs 
and deliver electricity to the distribution system in normal and external 
shock conditions. However, the arbitrage strategies of smart homes and 
their commitment scenarios may reduce the resiliency of the distribu-
tion system in external shock conditions. Thus, the distribution system 
should consider the impacts of arbitrage strategies of smart homes and 
their commitment scenarios on its scheduling process. 

2.1. Smart home modeling 

Smart homes may have photovoltaic panels, small wind turbines, 
energy management system electrical energy storage facilities, plug-in 
electric vehicles, and smart appliances [41]. The smart home 

Fig. 2. The overall flowchart of the proposed procedure.  
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appliances loads are categorized into dispatchable, non-dispatchable, 
and deferrable load groups. The non-dispatchable loads are 1) refrig-
erator, 2) lighting system and 3) entertainment system [41]. It is 
assumed that the non-dispatchable loads cannot be scheduled by the 
energy management system and they can be interrupted in contingent 
conditions. Further, their operation time cannot be transferred to 
another time. 

The dispatchable loads are 1) air conditioning system, 2) PHEV, 3) 
electrical energy storage, and 4) water heaters with a thermal storage 
system. The dispatchable loads have predefined quantities considering 
the consumers' comfort levels and these quantities are continuously 
monitored by the energy management system. Thus, these loads can be 
controlled through a direct load control process without reducing the 
consumers' comfort levels. 

The deferrable loads are 1) washing-drying machine and 2) oven. 
The deferrable load operation time is fixed and they cannot be inter-
rupted during their operational time. The time-of-use demand response 
program is utilized by the distribution system operator to encourage 
smart homeowners to transfer the operation time of their deferrable 

loads to other times. The distribution system receives data from the 
volume and duration of each smart appliance of the customer through 
the smart meter and the volume of non-dispatchable, dispatchable, and 
deferrable loads are known variables for the system operator. The 
customer can behave as prosumer and sell its energy and ancillary ser-
vices to the distribution system [41]. 

Based on the above description, the customer operational modes can 
be categorized into the following groups from the distribution system 
viewpoint: 

1) Comfort Mode of Smart Home (CMSH): the customer does not 
participate in demand response programs in normal conditions and the 
maximum value of the electrical load is considered as critical load. This 
type of customer prefers to maximize his/her comfort levels. Only for 
external shock conditions, the direct load control process is carried out 
and there is not any arbitrage scenario. 

2) Saver Mode of Smart Home (SMSH): the customer fully partici-
pates in day-ahead and real-time demand response programs and the 
minimum value of the electrical load is considered a non-dispatchable 
load. This type of customer prefers to maximize his/her profits by 

Fig. 3. The modified 33-bus IEEE test system.  

Table 2 
The location and capacity of distributed energy resources.  

Type Bus Capacity (kW) 

Photovoltaic system 3,9,17,28 60,60,40,50 
Wind turbine 4,16,22,24,26,30 30,85,60,50,50,70  

Table 3 
The location and capacity of distributed energy resources.  

#Microturbine #Bus CDS
DG ($/kW) PMax

DG (kW)  

1  15  0.095  800  
2  18  0.093  650  
3  19  0.085  100  
4  25  0.098  750  
5  29  0.099  750  

Table 4 
The scenario generation and reduction scenarios.  

System parameter Value 

Number of solar irradiation scenarios  1000 
Number of wind turbine power generation scenarios  1000 
Number of PHEVs scenarios  1000 
Number of demand response scenarios  1000 
Number of day-ahead market load and price scenarios  1000 
Number of real-time market load and price scenarios  1000 
Number of energy partner smart homes bidding scenarios  1000 
Number of solar irradiation reduced scenarios  10 
Number of wind turbine power generation reduced scenarios  10 
Number of PHEVs contribution reduced scenarios  10 
Number of demand response contribution reduced scenarios  10 
Number of day-ahead market load and price reduced scenarios  10 
Number of real-time market load and price reduced scenarios  10 
Number of energy partner smart homes bidding scenarios  10  
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participating in demand response programs. The direct load control and 
time of use process are fully allowed to carry out for their dispatchable 
and deferrable loads, respectively. There is not any arbitrage scenario 
for this type of customers. 

3) Energy Partner mode of Smart Home (EPSH): the prosumer fully 
participates in day-ahead and real-time energy markets and demand 
response programs to transact energy and ancillary services with the 
distribution system. These prosumers perform the optimization process 
to participate in energy and ancillary markets and optimize their arbi-
trage opportunities. Further, the direct load control and time of use 
process are fully allowed to carry out for their dispatchable and defer-
rable loads, respectively. This type of smart home can deliver energy, 
reserve, and reactive power to the distribution system in the day-ahead 
market, meanwhile; they can deliver/purchase active power and reac-
tive power to/from the distribution system in the real-time market. The 

active and reactive power arbitrage can be performed by smart homes 
based on the fact that they can purchase electricity when the active 
power and/or reactive power prices are low and sell them when the 
prices of these services are high [42]. The arbitrage process can be 
implemented in both day-ahead and real-time markets. This process can 
highly increase the profit of smart homeowners and the energy pro-
curement costs of the system. Further, this process has serious impacts 
on the distribution system resiliency in external shock conditions based 
on the fact that the scarcity of distributed energy resources may happen 
in the external shock conditions. The external shock may change the 
system topology and the distributed energy resources of the distribution 
system may not be available and dispatchable. Further, the energy 
partner smart homes may increase their bidding parameters, which may 
lead to higher values of locational marginal prices and energy pro-
curement costs of the system. Thus, the distribution system should 
penalize them and reduce the arbitrage process of energy partner smart 
homes to increase the available dispatchable energy resources of its 
system. 

2.2. Uncertainty modeling 

The uncertainty of the following parameters is modeled in the opti-
mization process using scenario generation/reduction of autoregressive 
integrated moving average model: energy partner mode smart homes 
biddings, electricity and ancillary services prices, electrical load profiles, 
intermittent power generations, parking lots charge and discharges, and 
demand response contribution scenarios of saver and comfort modes of 
smart homes [43–44]. Further, the Monte Carlo stochastic process is 
utilized to estimate the intensity and location of external shocks [44]. 

2.3. The proposed optimization framework 

This paper presents a multi-level optimization process to assess the 
resiliency of the distribution system in the day-ahead and real-time 
horizons. The optimization process is decomposed into two levels that 
consist of optimal operational scheduling of smart homes and distribu-
tion system in the first and second levels, respectively. The first level 
problem consists of two stages of the optimization process for optimal 
operational scheduling of smart homes in the day-ahead and real-time 
horizons, respectively. Then, the outputs of the first-level optimization 
problem are delivered to the second-level optimization procedure. The 
second level problem consists of three stages of optimization problems 
for operational scheduling of distribution system in normal and 
contingent conditions. 

At the first stage of the second level problem, the DSO determines the 
day-ahead optimal scheduling of distributed energy resources in the 
normal conditions of its system. At the second stage of the second level 
problem, the DSO optimizes the real-time operational scheduling of the 

Fig. 4. The day-ahead forecasted electrical load for the reduced scenarios.  

Fig. 5. The forecasted photovoltaic electricity generation for one of the 
reduced scenarios. 

Fig. 6. The forecasted wind turbine electricity generation for one of the 
reduced scenarios. 
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system. Finally, in the third stage of the second level problem, the DSO 
explores the impacts of external shocks on its systems, optimizes the 
system topology, and redispatches its resources. 

2.4. Energy partner smart homes optimal bidding strategies in the day- 
ahead market (first stage of first level problem) 

The smart home can submit its energy, reserve, and reactive power to 
the distribution system in the day-ahead market. Thus, the objective 
function of the first stage of the first level problem is the maximization of 
smart homes profits for the day-ahead electricity market, which can be 
written as (1):   

The objective function is divided into ten terms: 1) the cost of smart 
home intermittent power generation (CSH

IPG DA); 2) the cost of smart home 
fossil-fueled distributed generation (CSH

DG DA); 3) the cost of smart home 
energy storage system (CSH

ESS DA); 4) the cost of smart home PHEV (CSH
PHEV 

DA); 5) the smart home energy purchasing cost (CSH
Purchase DA); 6) the smart 

home benefit of energy and ancillary services sold to the distribution 
system (BSH

Sell DA); 7) the smart home benefit of demand response pro-
grams (BSH

DRP DA); 8) the smart home benefit of energy and ancillary 
services arbitrage (BSH

AR DA); 9) the smart home active power mismatch 
penalties (

∑
Penaltyactive DA); and 10) the smart home reactive power 

mismatch penalties (
∑

Penaltyreactive DA). 
The smart home revenue in the day-ahead market can be written as 

(2): 

Fig. 7. The forecasted day-ahead electricity and ancillary services prices for one of the reduced scenarios.  

Fig. 8. The forecasted load of the system in the real-time horizon for 5 min forecasting intervals.  

Max FSH
DA =

∑24

t=1

∑

NSHOS
Prob.

⎛

⎝
− CIPG DA

SH − CDG DA
SH − CESS DA

SH − CPHEV DA
SH − CPurchase DA

SH +

BSell DA
SH + BDRP DA

SH + BAR DA
SH −

∑
Penaltyactive DA −

∑
Penaltyreactive DA

⎞

⎠ (1)   
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BSell DA
SH =

(∑
ξSR⋅SRSH

DA +
∑

ξactive⋅PSH
DA +

∑
ξreactive⋅QSH

DA

)
(2) 

Eq. (2) decomposes into the following terms: the profit of smart 
home spinning reserve sold to the distribution system in the day-ahead 
market (

∑
ξSR ⋅ SRDA

SH), the profit of smart home active power sold to the 
distribution system for the day-ahead market (

∑
ξactive ⋅ PDA

SH), and the 
profit of smart home reactive power sold to the distribution system in 
the day-ahead market (

∑
ξreactive ⋅ QDA

SH). 
The smart home optimization objective function for the day-ahead 

horizon has the following constraints: 
A. Electrical power balance constraint:   

QTotal
SH =

(∑
QDG

SH +
∑

QDRP
SH −

∑
QLoad

SH − QLoss
AMG ±

∑
QPHEV

SH

)
(4) 

Eq. (3) terms are the intermittent and distributed generation power 
generation active power injections to the distribution system (

∑
PSH

IPG +
∑

PSH
DG), the active power injection/ withdrawal of energy storage 

(
∑

PSH
ESS), the active power injection of demand response program 

(
∑

PSH
DRP), the active power injection/withdrawal (

∑
PSH

PHEV), the active 
power consumption of load (

∑
PSH

Load), and active power loss (
∑

PSH
Loss). 

Eq. (4) terms are the distributed generation power generation reac-

Fig. 9. (a) The average hourly values of forecasted real-time electricity and ancillary services prices for scenarios 1–5, (b) The average hourly values of forecasted 
real-time electricity and ancillary services prices for scenarios 6–10. 

PTotal
SH =

(∑
PIPG

SH +
∑

PDG
SH ±

∑
PESS

SH +
∑

PDRP
SH ±

∑
PPHEV

SH −
∑

PLoad
SH −

∑
PLoss

SH

)
(3)   
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tive power injection to the distribution system (
∑

QSH
DG), the demand 

response program reactive power injection (
∑

QSH
DRP), the reactive power 

withdrawal of load (
∑

QSH
Load), reactive power loss (QSH

Loss), and reactive 
power injection/withdrawal of PHEV (

∑
QSH

PHEV). 
B. Demand response constraints: 
The smart home loads consist of dispatchable, non-dispatchable, and 

deferrable loads that can be written as (5–11): 

PLoad
SH = PLoad

SH Dispatchable +PLoad
SH Deferrable +PLoad

SH Non− dispatchable (5)  

ΔPTOU
SH = PLoad

SH Deferrable (6)  

∑T

t=1
ΔPTOU

SH = 0 (7)  

ΔPDLC
SH Max = PLoad

SH Dispatchable (8)  

PDRP
SH = ΔPDLC

SH +ΔPTOU
SH (9)  

ΔPDLC
SH Min ≤ ΔPDLC

SH ≤ ΔPDLC
SH Max (10)  

ΔPTOU
SH Min ≤ ΔPTOU

SH ≤ ΔPTOU
SH Max (11) 

Eq. (5) terms are the smart home dispatchable load (PSH Dispatchable
Load ), 

deferrable load (PSH Deferrable
Load ), and non-dispatchable load (PAMG Dis-

patchable
Load), respectively [45]. Eq. (6) presents that the maximum value 

of time-of-use change in electrical loads is equal to deferrable load. Eq. 
(7) presents that time-of-use changes in loads should equal zero in the 
day-ahead horizon based on the fact that the deferrable loads should be 
supplied through the optimization interval [45]. Eq. (8) presents that the 
maximum value of direct load control is equal to dispatchable load. Eq. 
(9) terms are the sum of the changes of direct load control and time-of- 
use active powers based on the fact that the demand response process 
can be implemented through direct load control and time-of-use pro-
cedures [45]. Eq. (10) and Eq. (11) are the limits of direct load control 
and time-of-use active powers, respectively [45]. 

The PHEV model and constraints are available in [45] and are not 
presented for the sack of space. 

2.5. Energy partner smart homes optimal bidding strategies in the real- 
time market (second stage of first level problem) 

The second stage of the first level problem maximizes the profit of 
smart home resources in the RT market. The objective function of this 
problem can be represented as (12):   

The objective functions of (12) terms are the same as (1). However, 

Fig. 10. (a) The day-ahead active power bidding and their accepted values of EPSH (2, 5, 11, 13, 17), (b) The day-ahead active power bidding and their accepted 
values of EPSH (20, 23, 25, 27, 29, 30, 33). 
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Fig. 11. (a) The day-ahead reactive power and spinning reserve bidding and accepted values of EPSH (2, 5, 11, 13, 17, 20), (b) The day-ahead reactive power and 
spinning reserve bidding and accepted values of EPSH (23, 25, 27, 29, 30, 33). 

Fig. 12. The estimated values of day-ahead active generations of microturbines for one of the reduced scenarios.  
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Fig. 13. The estimated values of day-ahead electricity transactions of PHEV parking lots for one of the reduced scenarios.  

Fig. 14. The distributed energy resources and smart homes electricity transactions for the day ahead optimization interval.  

Fig. 15. The aggregated expected operational and energy not supplied costs for the 54 most credible external shocks and day-ahead optimization horizon.  
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Fig. 16. The estimated values of the average hourly arbitrage index for the day-ahead and real-time optimization horizons.  

Fig. 17. The estimated values of the average hourly resiliency index for the day-ahead and real-time optimization horizons without implementing the pro-
posed method. 

Fig. 18. The estimated values of the average hourly arbitrage index for the 54 most credible external shocks and day-ahead optimization horizon.  
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Fig. 19. The estimated values of operational costs of the system for the day-ahead and real-time optimization horizons with and without the arbitrage process of 
smart homes. 

Fig. 20. (a) The value of load commitment of CMSHs, (b) the value of load commitment of SMSHs.  

Max FSH
RT =

∑k+1

t=k

⎛

⎝
− CIPG RT

SH − CDG RT
SH − CESS RT

SH − CPHEV RT
SH − CPurchase RT

SH +

BSell RT
SH + BDRP RT

SH + BAR RT
SH −

∑
Penaltyactive RT −

∑
Penaltyreactive RT

⎞

⎠ (12)   
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the optimization process is carried out for 15 min snapshots. 
The smart home revenue in the real-time market can be written as 

(13): 

BSell RT
SH =

(∑
γactive⋅PSH

RT +
∑

γreactive⋅QSH
RT

)
(13) 

Eq. (13) terms are the smart home active power sold to the distri-
bution system for the real-time market (

∑
γactive ⋅ PRT

SH), and the smart 
home reactive power sold to the distribution system in the real-time 
market (

∑
γreactive ⋅ QRT

SH). 
The smart home optimization objective function for the real-time 

horizon has the same constraints as the day-ahead optimization process. 

2.6. Optimal operation of distribution system in day-ahead normal 
conditions (first stage of second level problem) 

The distribution system receives the smart homes' bids for the next 
24 h and optimizes the scheduling of its distributed energy resources 
using the unit commitment process. The distribution system operator 
can reject the smart home bids that utilize the arbitrage strategy and 
penalize them. Further, the distribution system can schedule the de-
mand response programs that consist of direct load control and time-of- 
use processes. 

Thus, the day-ahead system control variables can be categorized into 
the following groups: 

• The day-ahead dispatching of the system distributed energy re-
sources, dispatchable and deferrable loads of saver mode of smart 
homes, and energy partner mode of smart homes distributed energy 
resources,  

• Penalizing smart homes that utilize arbitrage strategy for the day- 
ahead horizon,  

• Changing the time-of-use and direct load control fees for the day- 
ahead horizon. 

The objective functions of the first stage of the second level problem 
are the maximization of profits of the distribution system for the day- 
ahead operational horizon that can be written as (14):   

The objective function is divided into fourteen terms: 1) the cost of 
distribution system intermittent power generation (CDS

IPG DA); 2) the cost 
of distribution system distributed generation (CDS

DG DA); 3) the cost of 
distribution system energy storage system (CDS

ESS DA); 4) the cost of dis-
tribution system PHEV parking lots (CDS

PLOT DA); 5) the distribution system 
energy cost purchased from the upward market (CDS

Purchase DA); 6) the 
energy not supplied costs (ENSC); 7) the benefit of energy sold to the 
smart homes (BDS

Sell DA); 8) the cost of demand response programs (CDS
DRP 

DA); 9) the cost of energy and ancillary services arbitrage imposed by 
smart homes (CDS

AR DA); 10) the benefit of smart homes active power 
mismatch penalties (

∑
Penaltyactive DA);11) the benefit of smart homes 

reactive power mismatch penalties (
∑

Penaltyreactive DA); 12) the resil-
iency index; 13) the sum of the locational marginal price of system 

Fig. 21. The estimated values of the highest value of locational marginal of the system for external shocks considering the arbitrage process of smart homes.  

Max ℤDA
DS =

∑24

t=1

∑

NDSDA
prob.

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

W1⋅
(
− CIPG DA

DS − CDG DA
DS − CESS DA

DS − CPLOT DA
DS − CPurchase DA

DS −

ENSC + BSell DA
DS − CDRP DA

DS − CAR DA
DS +

∑
Penaltyactive DA+

∑
Penaltyreactive DA

)

+W2⋅RI − W3⋅
∑

NB
LMP − W4⋅

∑

NDSRT
prob.ℤRT

DS

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(14)   
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buses; 14) the expected objective function of the optimization process of 
the distribution system in the real-time horizon (second stage optimi-
zation objective function of the second level problem). 

The optimal day-ahead operational scheduling of distribution system 
constraints consists of the following terms. 

A. Electric power balance constraints 
The electric power balance constraint for each bus of the distribution 

system can be written as (15): 

PIPG
DS +PDG

DS ±PESS
DS ±PPLOT

DS ±PLoad
SH − PLoad

Custom − PLoss
DS +PIMPORT

DS = 0
(15) 

The (15) terms are the active power of intermittent power genera-
tions, distributed generations, electrical energy systems, parking lots, 
smart home energy partners, custom loads, electric loss, and imports 
from the upward electricity market for each simulation interval. It is 
assumed that all of the custom loads are non-dispatchable loads. 

Further, the imported active power from the upward electricity 
markets constraint can be written as (16): 

PIMPORT
DS Min ≤ PIMPORT

DS ≤ PIMPORT
DS Max (16) 

The load flow, wind turbines, and photovoltaic arrays constraints 
that are considered in the optimization process are available in [45]. 

The upper and lower capacity of electricity generation constraints 
and the constraints of distributed generation ramp rates are considered 
in the optimization process [45]. Further, the electrical energy storage 
and PHEV parking lots' minimum and maximum limits of charge con-
straints, their charge and discharge constraints, and the maximum 
charge limits are also considered in the optimization procedure and are 
not presented for the sack of space [45]. 

A resiliency index is utilized to assess the resiliency level of the 
system in the worst-case condition and for the area where the external 
shock occurs. The resiliency index is defined as (17): 

Table 5 
The number of switching of switches to restore the system from external shock impacts. 
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The resiliency index tends to the infinite for these conditions:  

1) In the areas where external shocks have not occurred,  
2) The area where the external shock has occurred and there are 

adequate distributed energy resources to recover from contingent 
conditions. 

Further, a day-ahead arbitrage index is defined that detects the ex-
pected benefits of arbitrage opportunities of smart homes in the day- 
ahead market (18): 

ARIDA =
(
ℤDA

DS|No AR − ℤDA
DS

)/
ℤDA

DS|No AR (18)  

ℤDS∣No AR
DA and ℤDS

DA are the objective functions of (14) without and with 
arbitrage opportunities. Higher values of ARIDA present the reduced 
surplus and resiliency of the distribution system based on the arbitrage 
process of smart homes. 

2.7. Optimal operation of distribution system in real-time normal 
conditions (second stage of second level problem) 

The distribution system operator optimizes its system's control var-
iables every 15 min for real-time operational scheduling of the system. 
The DSO control variables for the real-time normal operational condi-
tions can be categorized into the following groups:  

• The real-time dispatching of the system distributed energy resources, 
dispatchable and deferrable loads of saver mode of smart homes, and 
energy partner mode of smart homes distributed energy resources,  

• Penalizing smart homes that utilize arbitrage strategy for the real- 
time horizon,  

• Changing the direct load control fees for the real-time horizon. 

The objective functions of the second stage of the second level 
problem are the maximization of distribution system profit in the real- 
time horizon, which can be written as (19):  

Fig. 22. The optimal electricity generation of microturbines for the most credible external shock.  

Fig. 23. The estimated values of day-ahead electricity transactions of PHEV parking lots for one of the most credible external shock conditions.  

RI =
∑

Served Loads in Contingent Conditions
∑

Served Loads in Normal Conditions −
∑

Served Loads in Contingent Conditions
(17)   
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Fig. 24. (a) The value of load commitment of CMSHs for the most credible external shock, (b) the value of load commitment of SMSHs for the most credible 
external shock. 

Table 6 
The sensitivity analysis of the 33-bus test system. 

A1 A2 A3 A4 A5 A6 A7 A8 A9

Case 1 18.67 6 5 145009.6 6369.45 7389.937 5357.063 0.20129 5.526200

Case 2 30 6 5 139821.3 6291.64 7298.319 5277.629 0.23921 4.326914

Case 3 50 6 5 135923.6 6019.21 7102.391 5156.394 0.22362 4.321262

Case 4 30 20 5 128921.2 5893.14 6892.72 4987.961 0.25693 4.120903

Case 5 30 20 20 109281.1 5625.78 6514.28 4723.412 0.26951 3.921481

Case 6 50 20 20 111987.2 5729.31 6715.96 4789.175 0.23512 4.292192

A1: EPSHs Percent, A2: SMSHs Percent, A3: CMSHs Percent, A4: expected average daily operational 
and energy not supplied costs (MUs), A5: average daily locational marginal (MUs), A6: maximum 
daily locational marginal (MUs), A7: minimum daily locational marginal (MUs), A8: average daily 
arbitrage index, A9: expected average number of switching to recover the system. 

Max ℤRT
DS =

∑k+1

k=1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

W5⋅
(
− CIPG RT

DS − CDG RT
DS − CESS RT

DS − CPLOT RT
DS −

CPurchase RT
DS −

∑

NSL
CIC + BSell RT

DS − CDRP RT
DS − CAR RT

DS

+
∑

Penaltyactive RT +
∑

Penaltyreactive RT

)

+W6⋅RI − W7⋅
∑

NB
LMP

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(19)   
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The objective function is divided into thirteen terms: 1) the cost of 
distribution system intermittent power generation (CDS

IPG RT); 2) the cost 
of distribution system distributed generation (CDS

DG RT); 3) the cost of 
distribution system energy storage system (CDS

ESS RT); 4) the cost of dis-
tribution system PHEV parking lots (CDS

PLOT RT); 5) the distribution system 
energy cost purchased from the upward market (CDS

Purchase RT); 6) the 
energy not supplied costs (ENSC); 7) the benefit of energy sold to the 
smart homes (BDS

Sell RT); 8) the cost of demand response programs (CDS
DRP 

RT); 9) the cost of energy and ancillary services arbitrage imposed by 
smart homes (CDS

AR RT); 10) the benefit of smart homes active power 
mismatch penalties (

∑
Penaltyactive RT); 11) the benefit of smart homes 

reactive power mismatch penalties (
∑

Penaltyreactive RT); 12) the resil-
iency index; 13) the sum of the locational marginal price of system 
buses. 

The constraints of the second stage objective function consist of the 
day-ahead optimization process of the distribution system. 

The real-time arbitrage index detects the expected benefits of arbi-

Fig. 25. The modified 123-bus IEEE test system.  

Fig. 26. The day-ahead forecasted electrical load for different scenarios.  
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Fig. 27. The forecasted photovoltaic electricity generation for different scenarios.  

Fig. 28. The forecasted photovoltaic electricity generation for different scenarios.  

Fig. 29. The day-ahead aggregated active power bidding and their accepted values of energy partner mode of smart homes for one of the reduced scenarios.  
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trage opportunities of smart homes in the real-time market and this 
index is defined as (20): 

ARIRT =
(
ℤRT

DS|No AR − ℤRT
DS

)/
ℤRT

DS|No AR (20) 

ℤDS∣No AR
RT and ℤDS

RT are the objective functions of (19) without and 
with arbitrage opportunities. Same as the day-ahead index of the arbi-
trage index, higher values of ARIRT present the reduced surplus and 
resiliency of the distribution system for the real-time horizon based on 
the arbitrage process of smart homes. 

2.8. Optimal operation of distribution system in external shock conditions 
(third stage of second level problem) 

The distribution system operator updates its data and detects any 
external shock impacts. The distribution system sectionalizes its system 
into multi-microgrids to reduce the impacts of external shocks. Thus, the 
system control variables for external shock conditions can be catego-
rized into the following groups: 

Fig. 30. The estimated values of day-ahead active generations of microturbines for one of the reduced scenarios.  

Fig. 31. The estimated values of day-ahead electricity transactions of PHEV parking lots for one of the reduced scenarios.  

Min SESC
DS =

∑

NST

∑k+1

k=1

⎛

⎜
⎜
⎜
⎜
⎝

W8⋅
(
CIPG RT

DS + CDG RT
DS + CESS RT

DS + CPLOT RT
DS + CPurchase RT

DS − BSell RT
DS

+CDRP RT
DS + CAR RT

DS −
∑

Penaltyactive RT −
∑

Penaltyreactive RT
)

+W9⋅
∑

NSL
CIC − W10⋅RI +W11⋅

∑

NCS
Y +W12⋅

∑

NB
LMP

⎞

⎟
⎟
⎟
⎟
⎠

(21)   
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• The real-time dispatching of the system distributed energy resources, 
dispatchable and deferrable loads of saver mode of smart homes, and 
energy partner mode of smart homes distributed energy resources,  

• Load curtailment of all types of smart homes,  
• Sectionalizing the distribution system into multi-microgrids. 

The objective functions of the external shock condition of the dis-
tribution system can be written as (21):   

The objective function is divided into fourteen terms: 1) the cost of 
distribution system intermittent power generation (CDS

IPG RT); 2) the cost 

Fig. 32. (a) The value of load commitment of CMSHs, (b) the value of load commitment of SMSHs.  

Fig. 33. The distributed energy resources and smart homes electricity transactions for the day ahead optimization interval.  
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of distribution system distributed generation (CDS
DG RT); 3) the cost of 

distribution system energy storage system (CDS
ESS RT); 4) the cost of dis-

tribution system PHEV parking lots (CDS
PLOT RT); 5) the distribution system 

energy cost purchased from the upward market (CDS
Purchase RT); 6) the 

benefit of energy sold to the smart homes (BDS
Sell RT); 7) the cost of demand 

response programs (CDS
DRP RT); 8) the cost of energy and ancillary services 

arbitrage imposed by smart homes (CDS
AR RT); 9) the benefit of smart 

homes active power mismatch penalties (
∑

Penaltyactive RT);10) the 
benefit of smart homes reactive power mismatch penalties 
(
∑

Penaltyreactive RT); 11) the interruption cost of comfort mode cus-
tomers; 12) the resiliency index; 13) the boundary lines of multi- 
microgrids that the zero value of X means the electricity flow in the 
boundary line equals zero; 14) the sum of the locational marginal price 
of system buses. 

The thirteen term of (21) determines the boundary lines of micro-
grids and the zero value of Y means the electricity flow in the boundary 
line equals zero. The boundary lines are equipped with normally closed 
switches that can be opened in contingent conditions to change the 

topology of the distribution system into multi-microgrids. 
The constraints of the optimal operation of the distribution system in 

external shock conditions are the same as the real-time optimization 
process and are not presented for the sack of space. 

3. Optimization algorithm 

The first and second-level optimization models are linear program-
ming and mixed integer nonlinear programming problems, respectively. 
The following solvers are utilized to solve the problems:  

1. The first and second stages of the first level problem are solved by the 
CPLEX solver of GAMS,  

2. The first and second stages of the second-level problem are solved by 
the DICOPT solver of GAMS,  

3. The third stage of the second-level problem is solved by the SCIP 
solver of GAMS. 

Fig. 34. The aggregated expected operational and energy not supplied costs for the 144 most credible external shock and day-ahead optimization horizon.  

Fig. 35. The estimated values of arbitrage index for the 144 most credible external shocks and day-ahead optimization horizon.  

Fig. 36. The estimated values of resiliency index for day-ahead and real-time optimization horizons without implementing the proposed method.  
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Fig. 2 depicts the flowchart of the proposed algorithm. As shown in 
Fig. 2, the proposed optimization algorithm is decomposed into optimal 
operational scheduling of smart homes and distribution system in the 
first and second levels, respectively. The first level problem is decom-
posed into optimal operational scheduling of smart homes in the day- 
ahead (first stage) and real-time (second stage) optimization horizons, 
respectively. The second level problem consists of three stages of opti-
mization problems for optimal operation of the distribution system in 
normal and contingent conditions. At the first stage of the second level 
problem, the distribution system dispatches its distributed energy re-
sources for the day-ahead market in normal conditions. At the second 
stage of the second-level problem, the system schedules the system's 
resources for the real-time horizon. Finally, in the third stage of the 
second-level problem, the impacts of external shocks on the distribution 
system are analyzed, system resources are redispatched, and the topol-
ogy of the system is optimized. 

4. Simulation results 

4.1. Simulation results for 33-bus system 

The proposed method was assessed by 33-bus and 123-bus IEEE test 
systems. Fig. 3 depicts the topology of the 33-bus test system [45]. 
Table 2 presents the characteristics of distributed energy resources. 

Table 3 shows the operational costs and capacity of microturbines. 
The scenario generation and reduction scenarios are presented in 
Table 4. 

Figs. 4, 5, and 6 present the day-ahead forecasted load, per unit 
values of electricity generation of photovoltaic arrays, and per unit 
values of wind turbines for one of the reduced scenarios, respectively. 
Fig. 7 presents the forecasted day-ahead electricity and ancillary ser-
vices prices for one of the reduced scenarios. The MU stands for the 
monetary unit. 

Fig. 37. The estimated values of operational costs of the system for the day-ahead and real-time optimization horizons with and without the arbitrage mechanism of 
smart homes. 

Fig. 38. The estimated values of the highest value of locational marginal of the system for external shocks considering the arbitrage process of smart homes.  
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Table 7 
The number of switching of system switches to restore the system from external shock impacts. 
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Fig. 8 depicts the forecasted load of the system in the real-time ho-
rizon that was carried out for 5 min forecasting intervals. 

Fig. 9 (a) and Fig. 9 (b) present the average hourly values of fore-
casted real-time electricity and ancillary services prices for different 
scenarios. 

4.2. Simulation results for 33-bus system 

The optimization process was carried out for the normal operation of 
the 33-bus system. Different values of energy partner mode, comfort 
mode, and energy saver mode of smart home loads were considered for 
the simulation process. When the average hourly arbitrage index was 
greater than 0.1, the selected values of these parameters were consid-
ered as initial values. For the 33-bus system, the initial values of energy 
partner mode, comfort mode, and energy saver mode of smart home 
loads were 18.67 %, 5 %, and 5 % of the system peak load, respectively. 
Other selected values will be discussed in the sensitivity analysis. Fig. 10 
(a) and Fig. 10 (b) present the day-ahead active power bidding and their 
accepted values of energy partner mode of smart homes for one of the 
reduced scenarios. Figs. 11 (a) and Fig. 11 (b) depict the day-ahead 
reactive power and spinning reserve bidding and their accepted values 
of energy partner mode of smart homes for one of the reduced scenarios. 

Fig. 12 presents the estimated values of day-ahead active generations 
of microturbines for one of the reduced scenarios. As shown in Fig. 12, 
microturbines 3, 4, and 5 were fully committed for the day-ahead ho-
rizon and microturbines 1 and 2 were partially loaded to track the 
electrical load of the system. 

Fig. 13 shows the estimated values of day-ahead electricity trans-
actions of PHEV parking lots for one of the reduced scenarios and normal 
operating conditions. As shown in Fig. 13, the maximum and minimum 
values of PHEV parking lots were 355.23 kW and − 562.95 kW, 
respectively. 

Fig. 14 presents the distributed energy resources and smart homes' 
electricity transactions for one of the reduced scenarios. The maximum 
value of aggregated active power injection of energy partner mode of 
smart homes was 204.65 kW for hour 19. The maximum value of 
aggregated active power withdrawal of energy partner mode of smart 
homes was 157.06 kW for hour 5. The net transacted energy of energy 
partner smart homes was 1303.57 kWh with an average value of 54.31 
kWh. The aggregated electrical energy consumption of comfort modes 
and saver modes of smart homes were 14,451.70 kWh and 4607.83 
kWh, respectively. The energy consumptions of comfort and energy 
saver modes of smart homes were 18.68 %, and 6 % of the electrical load 
of the system, respectively. 

Fig. 15 presents the aggregated expected operational and energy not 
supplied costs for the 54 most credible external shocks and day-ahead 

optimization horizon. The average value of aggregated expected oper-
ational and energy not supplied costs was 21,081.57 MUs. Further, the 
maximum value of aggregated expected operational and energy not 
supplied costs was 104,752 MUs for external shock 15 and hour 19. 

Fig. 16 presents the estimated values of the average hourly arbitrage 
index for day-ahead and real-time optimization horizons. The maximum 
values of arbitrage indices for day-ahead and real-time markets were 
0.45678 for hour 12 and 0.74 for hour 10, respectively. As shown in 
Fig. 16, the average values of the real-time arbitrage index were greater 
than the average values of the day-ahead arbitrage index based on the 
fact that in the real-time market, the energy partner smart homes had 
more opportunities to gain benefits and sell active power and ancillary 
services concerning the day-head market. 

Fig. 17 presents the estimated values of the average hourly resiliency 
index for the day-ahead and real-time optimization horizons without 
implementing the proposed method. The resiliency index of the system 
tended to the infinity with the proposed method. As shown in Fig. 17, 
the average values of the real-time resiliency index were lower than the 
average values of the day-ahead resiliency index based on the fact that in 
the real-time market, the energy partner smart homes had more op-
portunities to arbitrage concerning the day-head market. This process 
decreased the available dispatchable distributed generation variables 
for the system when the proposed method did not carry out. 

Fig. 18 presents the estimated values of the average hourly arbitrage 
index for the 54 most credible external shocks and day-ahead optimi-
zation horizon. The maximum value of the average hourly arbitrage 
index was one for external shock 9 and hour 12. The energy partner 
smart homes bids reduced the available distributed energy generation 
by about 65.98 % concerning the base case. Further, the arbitrage op-
portunity of energy partner smart homes reduced the resiliency index of 
the system from infinite to 4.85 when the system operator did not 
consider the proposed method. Fig. 19 depicts the estimated values of 
operational costs for the day-ahead and real-time optimization horizons 
with and without the arbitrage process of smart homes. The expected 
values of aggregated system costs without and with arbitrage in the day- 
ahead horizon were 496,763 MUs and 750,259 MUs, respectively. The 
arbitrage of energy partner smart homes increased the expected values 
of aggregated system costs by about 51.02 % concerning the no- 
arbitrage case in the day-ahead market. Further, the expected values 
of aggregated system costs without and with arbitrage in the real-time 
horizon were 613,800.36 MUs and 995,218.56 MUs, respectively. The 
arbitrage of energy partner smart homes increased the expected values 
of aggregated system costs by about 62.14 % concerning the no- 
arbitrage case in the real-time market. The proposed method reduced 
the aggregated system costs in the real-time horizon more than the 
corresponding costs in the day-ahead market. 

Fig. 39. The optimal electricity generation of microturbines for the most credible external shock.  
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Fig. 20 (a) and Fig. 20 (b) show the values of load commitment of 
CMSHs and SMSHs, respectively. As shown in Fig. 20 (a) and Fig. 20 (b), 
the average values of CMSHs and SMSHs load commitments were 81.97 
% and 82.91 %, respectively. 

Fig. 21 presents the highest value of locational marginal of the sys-
tem for external shocks considering the arbitrage process of smart 
homes. The average value of locational marginal prices was 6.36945 
MUs. The maximum value of locational marginal prices was 7.38993 
MUs for external shock 40 and hour 2. The minimum value of locational 
marginal prices was 5.35706 MUs for external shock 13 and hour 17. 
The average value of locational marginal price was reduced by about 
59.38 % concerning the case that the proposed method was not 
implemented. 

Table 5 depicts the number of switching of switches to restore the 
system from external shock impacts. The optimal restoration of the 33- 
bus test system required 3–8 switching of the system switches to recover 
from external shock impacts. 

Fig. 22 presents the optimal electricity generation of microturbines 
for one of the most credible external shocks (external shock number 15 
for hour 19 that multiple facilities were out of service between line 2–3 
and line 2–19 area and all of the electrical loads of bus 19–22 were 
impacted by the external shock). When the proposed method was not 
carried out, the resiliency index of the system decreased to 1.75 and 2.82 
for the day-ahead and real-time horizons, respectively. The proposed 
process recovered the system by multiple switching and the resiliency 
index of the system tended to the infinity. In this external shock con-
dition, 360 kW of system load was out of service when the proposed 
method was not implemented. 

Fig. 23 depicts the estimated values of day-ahead electricity trans-
actions of PHEV parking lots for the most credible external shock con-
dition. As shown in Fig. 23, the maximum and minimum values of PHEV 
parking lots were 200.5 kW and − 217.38 kW, respectively. 

Fig. 24 (a) and Fig. 24 (b) show the values of load commitment of 
CMSHs and SMSHs for the most credible external shock, respectively. As 
shown in Fig. 24 (a) and Fig. 24 (b), the average values of CMSHs and 
SMSHs load commitments were 56.1 % and 55.26 %, respectively. 

For sensitivity analysis, five cases were considered. The results are 
depicted in Table 6 and A1, A2, and A3 parameters were considered as 
inputs. 

As shown in Table 6, for the second and third cases, the expected 
average daily operational and energy not supplied costs, average daily 
locational marginal, maximum and minimum values of daily locational 
marginal, and expected average number of switching to recover system 
were decreased when the percent of energy partner smart homes was 

increased. Further, the average daily arbitrage index was increased 
when the energy partner smart homes percent was increased. For the 
fourth and fifth cases, the A4-A7 and A9 variables were decreased when 
the energy partner smart homes percent was increased. Further, the 
average daily arbitrage index was increased based on the fact that the 
arbitrage opportunities for energy partners were increased. Finally, for 
the sixth case, the A4-A7 and A9 variables were increased concerning 
the fifth case variables. Further, the average daily arbitrage index was 
decreased based on the fact that the energy partner smart home bidding 
strategies reduced their profits. It can be concluded that the operational 
costs of the system were increased when the percentage of energy 
partner mode of smart homes was increased. Further, the resiliency 
index reduced when the percentage of energy partner smart homes was 
increased. 

4.3. Simulation results for 123-bus system 

The optimization process was performed for the modified 123-bus 
system. Fig. 25 depicts the topology of the 123-bus test system [46]. 

Figs. 26, 27, and 28 depict the day-ahead forecasted load, electricity 
generation of photovoltaic arrays, and wind turbines for different sce-
narios, respectively. 

For the 123-bus system, the initial values of energy partner mode, 
comfort mode, and energy saver mode of smart home loads were 2 %, 
34.67 %, and 63.32 % of system peak load, respectively. Fig. 29 presents 
the day-ahead aggregated active power bidding and their accepted 
values of energy partner mode of smart homes for one of the reduced 
scenarios. 

Fig. 30 presents the optimal electricity generation of microturbines 
for one of the reduced scenarios. Microturbines were not fully loaded 
and tracked the electrical load. The average value of MT electricity 
generation was about 94.103 kWh. 

Fig. 31 depicts the electricity transaction of PHEV parking lots for 
one of the reduced scenarios. The maximum and minimum values of 
PHEV parking lots' electricity transactions were 341.29 kW and 
− 367.93 kW, respectively. 

Fig. 32 (a) and Fig. 32 (b) present the values of load commitment of 
CMSHs and SMSHs, respectively. As shown in Fig. 32 (a) and Fig. 32 (b), 
the average values of CMSHs and SMSHs load commitments were 81.64 
% and 83.1 %, respectively. 

Fig. 33 presents the distributed energy resources and smart homes' 
electricity transactions for the day ahead optimization interval. 

The maximum value of aggregated active power injection of energy 
partner mode of smart homes was 578.7821 kW for hour 19. The 

Fig. 40. The estimated values of day-ahead electricity transactions of PHEV parking lots for one of the most credible external shock condition.  
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maximum value of aggregated active power withdrawal of energy 
partners was 414.13 kW. The net transacted energy of energy partner 
smart homes was 3079.62 kWh with an average value of 128.02 kWh. 
The aggregated electrical energy consumption of comfort modes and 
saver modes of smart homes were 69,808.08 kWh and 12,897.12 kWh, 
respectively. Fig. 34 presents the aggregated expected operational and 
energy not supplied costs for the 144 most credible external shocks and 
day-ahead optimization horizon. 

The average value of aggregated expected operational and energy 
not supplied costs was 68,596.5 MUs. Further, the maximum value of 
aggregated expected operational and energy not supplied costs was 
633,620.2 MUs that was for external shock 128 and hour 17. Fig. 35 
presents the estimated values of the arbitrage index for the 144 most 
credible external shocks and day-ahead optimization horizon. 

The maximum value of the arbitrage index was 0.894434 for hour 2. 
The average values of the real-time arbitrage index were greater than the 
average values of the day-ahead arbitrage index based on the fact that in 
the real-time market, the energy partner smart homes had more op-
portunities to gain profits. 

Fig. 36 presents the estimated values of the resiliency index for the 
day-ahead and real-time optimization horizons without implementing 
the proposed method. The resiliency index of the system tended to the 
infinity with the proposed method. 

Fig. 37 presents the estimated values of operational costs of the 

system for day-ahead and real-time optimization horizons with and 
without the arbitrage mechanism of smart homes. The expected values 
of aggregated system costs in day-ahead horizon without and with 
arbitrage were 2,625,907 MUs and 3,480,230 MUs, respectively. The 
arbitrage of energy partner smart homes increased the expected values 
of aggregated system costs by about 43.95 % concerning the no- 
arbitrage case in the day-ahead market. Further, the expected values 
of aggregated system costs without and with arbitrage in the real-time 
horizon were 4,020,217 MUs and 5,309,059 MUs, respectively. The 
arbitrage of energy partner smart homes increased the expected values 
of aggregated system costs by about 32.06 % concerning the no- 
arbitrage case in the real-time market. 

Fig. 38 presents the estimated values of the highest value of loca-
tional marginal of the system for external shocks considering the arbi-
trage process of smart homes. The average value of locational marginal 
prices was 10.66367 MUs. The maximum value of locational marginal 
prices was 13.07643 MUs for external shock 38 and hour 18. 

The minimum value of locational marginal prices was 8.26344 MUs 
for external shock 56 and hour 20. The average value of locational 
marginal price was reduced by about 63.98 % concerning the case that 
the proposed method was not implemented. Table 7 depicts the number 
of switching of switches to restore the system from external shock 
impacts. 

Fig. 39 presents the optimal electricity generation of microturbines 

Fig. 41. (a) The value of load commitment of CMSHs for the most credible external shock, (b) the value of load commitment of SMSHs for the most credible 
external shock. 
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for one of the most credible external shocks (external shock number 128 
for hour 17 that multiple facilities were out of service between line 8–13 
and line 13–18 area and all of the downward electrical loads were 
impacted by this external shock). When the proposed method was not 
carried out, the resiliency index of the system decreased to 7.85 and 3.65 
for day-ahead and real-time horizons, respectively. The proposed pro-
cess recovered the system and the resiliency index of the system tended 
to the infinity. 

Fig. 40 depicts the estimated values of day-ahead electricity trans-
actions of PHEV parking lots for the most credible external shock con-
ditions. As shown in Fig. 40, the maximum and minimum values of 
PHEV parking lots were 493.51 kW and − 295.8 kW, respectively. 

Fig. 41 (a) and Fig. 41 (b) present the values of load commitment of 
CMSHs and SMSHs for the most credible external shock, respectively. 

As shown in Fig. 41, the aggregated energy of CMSH and SMSH loads 
were 630.59 kWh and 183.52 kWh, respectively. However, the aggre-
gated energy of CMSH and SMSH committed loads were 345.01 kWh 
and 101.41 kWh, respectively. The optimization process committed the 
electrical loads of CMSH and SMSH by about 55.62 % and 54.7 % 
concerning their base values, respectively. 

For sensitivity analysis, five cases were considered and their results 
are depicted in Table 8. As shown in Table 8, for the second and third 
cases, the expected average daily operational and energy not supplied 
costs, average daily locational marginal, maximum and minimum values 
of daily locational marginal, and expected average number of switching 
to recover system were decreased when the percent of energy partner 
smart homes was increased. Further, the average daily arbitrage index 
was increased when the energy partner smart homes percent was 
increased. For the fourth and fifth cases, the A4-A7 and A9 variables 
were decreased when the energy partner smart homes percent was 
increased. Further, the average daily arbitrage index was increased 
based on the fact that the arbitrage opportunities for energy partners 
were increased. Finally, for the sixth case, the A4-A7 and A9 variables 
were increased concerning the fifth case variables when the energy 
partner smart homes percent was increased. Further, the average daily 
arbitrage index was decreased based on the fact that the energy partner 
smart home bidding strategies reduced their profits. 

As shown in Table 8, for the 2–4 cases, the expected average daily 
operational and energy not supplied costs, average daily locational 
marginal, and maximum and minimum values of daily locational mar-
ginal were increased when the percent of energy partner smart homes 
was increased. However, the average daily arbitrage index and the ex-
pected average number of switching to recover the system decreased 
when the energy partner smart homes percent was increased. For the 
fifth case, the A4-A7 and A9 variables were decreased when the energy 
partner smart homes percent was increased. Further, the average daily 
arbitrage index was increased based on the fact that the arbitrage op-
portunities for energy partners were increased. 

It can be concluded that the increase of energy partner mode of smart 
homes may highly increase the operational costs of the system when 
these entities consider the arbitrage opportunities in their bidding 

strategies that may lead to reduce the resiliency of the system. Thus, the 
system operator should optimally dispatch the available energy re-
sources of its system considering the arbitrage strategies of smart homes. 

The simulation was carried out on a PC (AMD A10-5750M processor, 
4*2.5 GHz, 8 GB RAM). The maximum simulation time for the normal 
operating condition of the 123-bus system was about 20,081 s. Further, 
the maximum simulation time for the worst-case contingent condition of 
the 123-bus system was about 732 s. 

In conclusion, the proposed optimization algorithm successfully 
considered the arbitrage strategies of smart homes in the day-ahead and 
real-time horizons of distribution system scheduling for normal and 
contingent conditions. Further, the proposed model utilized the arbi-
trage index to explore the impacts of arbitrage of smart homes on the 
distribution system costs. Finally, the method considered the resiliency 
index in the optimization process for the day-ahead and real-time 
markets. 

5. Conclusion 

This paper introduced a multi-level multi-stage optimization process 
for optimal scheduling of distribution system resources in normal and 
contingent conditions of the system in the day-ahead and real-time ho-
rizons. The proposed algorithm considered the arbitrage and resiliency 
indices in the operational scheduling of the system and optimally dis-
patched the smart homes' energy resources to minimize the system costs 
and maximize the resiliency of the system. Further, the method sec-
tionalized the distribution system into multi-microgrids to reduce the 
impacts of external shocks. The introduced algorithm was assessed for 
the 33-bus and 123-bus test systems and different external shock sce-
narios were considered. The proposed method reduced the expected 
values of aggregated system costs of 33-bus and 123-bus systems by 
about 62.14 % and 32.06 % concerning the cases that the smart homes 
performed arbitrage strategies. 
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Table 8 
The sensitivity analysis of the 123-bus test system optimization process. 

A1 A2 A3 A4 A5 A6 A7 A8 A9

Case 1 2 63.32 34.67 68596.5 10663.67 13076.43 8263.44 0.2815 4.5167

Case 2 32 33.32 34.67 71239.21 11923.95 14685.21 9385.39 0.3691 3.2317

Case 3 52 13.32 34.67 75367.98 13045.68 15952.17 10983.15 0.3325 3.1092

Case 4 52 33.32 14.68 78923.83 14612.52 17014.32 12982.23 0.2912 2.9624

Case 5 32 53.32 14.68 68217.23 10121.69 12923.77 8123.71 0.3354 3.1838

A1: EPSHs Percent, A2: SMSHs Percent, A3: CMSHs Percent, A4: expected average daily operational 
and energy not supplied costs (MUs), A5: average daily locational marginal (MUs), A6: maximum 
daily locational marginal (MUs), A7: minimum daily locational marginal (MUs), A8: average daily 
arbitrage index, A9: expected average number of switching to recover the system. 
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