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Abstract: Traffic flow prediction is an important part of intelligent transportation systems. In recent
years, most methods have considered only the feature relationships of spatial dimensions of traffic
flow data, and ignored the feature fusion of spatial and temporal aspects. Traffic flow has the features
of periodicity, nonlinearity and complexity. There are many relatively isolated points in the nodes
of traffic flow, resulting in the features usually being accompanied by high-frequency noise. The
previous methods directly used the graph convolution network for feature extraction. A polynomial
approximation graph convolution network is essentially a convolution operation to enhance the
weight of high-frequency signals, which lead to excessive high-frequency noise and reduce prediction
accuracy to a certain extent. In this paper, a deep learning framework is proposed for a causal
gated low-pass graph convolution neural network (CGLGCN) for traffic flow prediction. The full
convolution structure adopted by the causal convolution gated linear unit (C-GLU) extracts the
time features of traffic flow to avoid the problem of long running time associated with recursive
networks. The reduction of running parameters and running time greatly improved the efficiency of
the model. The new graph convolution neural network with self-designed low-pass filter was able to
extract spatial features, enhance the weight of low-frequency signal features, suppress the influence
of high-frequency noise, extract the spatial features of each node more comprehensively, and improve
the prediction accuracy of the framework. Several experiments were carried out on two real-world
real data sets. Compared with the existing models, our model achieved better results for short-term
and long-term prediction.

Keywords: traffic flow forecasting; graph convolution network; deep learning; smart city

1. Introduction

Three factors are involved in traffic flow, i.e., flow, occupancy, and speed, and these
factors determine the extent of road congestion. Usually, traffic flow is predicted for a short
term (5–30 min) or a long term (more than 30 min). Previous popular statistical methods
(e.g., linear regression) perform satisfactorily in short-term prediction but are ineffective
in the long term because there a range of factors that impact traffic flow. In addition, the
factors and their interdependencies vary over time.

Traffic flow prediction is a kind of spatiotemporal prediction problem. For spatiotem-
poral prediction problems, the focus of research is how best to obtain the temporal cor-
relation and spatial correlation. The development of traffic flow prediction methods has
experienced several stages: statistical methods, machine learning methods and deep learn-
ing. Among these, deep learning methods have become a research hotspot in recent years
because of their high efficiency of obtaining spatial and temporal correlations.
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Related Work

• Non-Depth Learning Method

The early research on traffic flow prediction generally adopted traditional statistical
theory and methods, including historical average (HA), the autoregressive integrated
moving average model (ARIMA), the Kalman filter, and other methods. Williams et al. [1],
according to the periodic change of traffic flow in urban areas, considered that a one week
lag seasonal difference applied to traffic data in unrelated sections would produce a weak
average transformation. The original traffic data was transformed into a time series with
stable mean and variance, and then ARIMA was used to model the transformed time series
and make empirical analysis on the data of the intelligent transportation system. The
accuracy of the conjecture was verified. The premise of time series modeling is that the data
is stable. However, traffic flow data is usually unstable. Although weakly stable data can
be obtained after processing, such methods require complex parameter estimation and a
large number of high-quality historical data. Therefore, intelligent application in short-term
prediction (less than 30 min) cannot meet the needs of medium- and long-term predictions.
Okutani et al. [2] and Kuchipudi et al. [3] used the Kalman filter model to predict traffic flow
and commuting time. In their research, they considered not only the road section under
investigation, but also the sections related to that, thus introducing more spatial information
to the model. The Kalman filter uses a recursive spatial model, which overcomes the
limitation that time series modeling can only be applied to stationary series. However,
the Kalman filter is a linear model and the reusability of its parameters is poor. With the
development of data-driven methods, machine learning methods have also been applied
to traffic-flow prediction. Sun Hongyu et al. [4] proposed application of the local linear
regression model to short-term traffic prediction. This study was compared with previous
nonparametric methods (such as neighborhood and kernel methods), and it was found
that the local linear method was always better than the nearest-neighborhood or kernel-
smoothing methods. Zheng et al. [5] and Wu et al. [6] used support vector regression (SVR)
to fit historical data to predict traffic events. Mou et al. [7] proposed a short-term traffic
flow prediction model based on wavelet denoising and a Bayesian network. In addition,
machine learning methods to complete the predictions include random forests (RF) [8],
gradient boosting decision tree (GBDT) [9], XGBoost (Extreme Gradient Boosting) [10].
Machine learning methods are often better than traditional statistical learning methods, but
machine learning methods rely on manual construction of features, and different feature
selection has a great impact on the results. On the other hand, the structure of machine
learning methods is usually shallow and the expression ability is very limited.

• Deep Learning Method

Deep learning has shown strong learning ability and representation ability in many
fields. It can model linear, nonlinear, stationary and non-stationary data, and has high
scalability. Deep learning has been applied to traffic flow and other spatial–temporal
prediction problems; this has been a gradual process with the development of deep learning.
Feedforward neural networks (FNN) were an early deep learning method used in traffic
flow prediction. Park et al. [11] designed a feedforward neural network with a three-layer
structure: input layer, hidden layer and output layer. The number of neurons in the hidden
layer was dependent on the number of input data roads. When the numbers of input
data roads were 1, 3, 4, and 5, the number of neurons were 4, 5, 5, and 6, respectively,
which achieved better results. Dia et al. [12] designed an object-oriented neural network
model to predict short-term traffic conditions on the Pacific Expressway from Brisbane,
Queensland, Australia to the Gold Coast. The input of the model included the average
speed and traffic flow upstream and downstream of the expressway, and the output was the
passing time of vehicles. With the development of convolutional neural networks (CNN)
in recent years, FNN is generally not used to obtain spatiotemporal correlation, but as an
output aggregation or external data-processing sub-module. Wu et al. [13] used FNN to
combine the outputs of one CNN network and two long short-term memories (LSTM),
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and Panzhevi et al. [14] used FNN to learn road network features and add them to the
model. However, the ability of convolutional neural networks to obtain time correlation is
still insufficient.

Further studies have combined long-term and short-term memory with convolutional
neural networks, to extract spatial correlation by CNN and temporal correlation by LSTM.
Pu et al. [15] first used CNN to capture spatial features and added a residual neural unit
to CNN to increase network depth, then used LSTM to capture temporal features, fusing
the two parts to obtain traffic flow prediction results. Du et al. [16] used multi-layer LSTM
and multi-layer CNN to process traffic flow data, and then fused the results obtained by
the two sub-networks with a feedforward neural network. Yao et al. [17] first used CNN
to extract the data of each time slice as a feature vector, and then input it into LSTM for
time-series modeling. On this basis, they proposed a spatiotemporal dynamic network for
prediction of taxi demand, which could dynamically learn the correlations between loca-
tions. Yu et al. [18] used a stacked autoencoder to encode traffic accident data, and LSTM to
capture the time correlation of data. Shi et al. [19] proposed the CONVLSTM model, which
replaces all operations of ordinary LSTM with convolution operations, so can be used to
process matrix sequences. Yuan et al. [20] proposed a heterogeneous traffic-accident predic-
tion framework based on CONVLSTM. The framework adds a variety of auxiliary data,
and divides the target area into three types: urban, rural, and mixed, and trains different
models of different regions for fusion, to process heterogeneous spatiotemporal data.

Because the traffic network is arranged in non-Euclidean space, but prediction models
aim to use the convolution scheme that achieves excellent results in Euclidean space, the
convolution for this kind of non-Euclidean space came into being. Figure 1 is a comparison
of the differences between graph structure data and Euclidean spatial data. Convolu-
tion cannot be performed on graph structured data, but graph convolution can solve
this problem.
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Graph convolution is a scheme developed in recent years, which is suitable for con-
volution operation of non-Euclidean spatial data. The two mainstream methods of graph
convolution are the spatial method and the spectral method. The spatial method performs
convolution filters directly on the nodes of the graph and their neighbors. Therefore, the
core of this method is to select the neighbors of nodes [21]. A heuristic linear method selects
the neighborhood of each central node, which has achieved good results in social network
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tasks. Bruna et al. [22] (Figure 1) proposed a general graphical convolution framework
(GCN) based on the Laplace matrix, and then Seo et al. [23] optimized the method by
using Chebyshev polynomials instead of a convolution kernel (chebnet). In recent years,
GNN has been widely used in computer vision [24,25], recommendation systems [26,27],
traffic prediction, and other fields. Li et al. [28] proposed the DCRNN model, which uses
bidirectional random walk on the graph and encoder–decoder architecture with planned
sampling to obtain spatial correlation and temporal correlation, respectively. The STGCN
model proposed by Yu et al. [29] uses a graph convolution network and Chebyshev net-
work. Two graph neural networks and a one-dimensional CNN model spatial and temporal
correlation, respectively, to form a spatiotemporal convolution module, and the final model
is obtained by stacking two spatiotemporal convolution modules. Guo et al. [30] proposed
a spatiotemporal attention mechanism, based on a graph convolution network and atten-
tion mechanism, to study the dynamic spatiotemporal correlation of traffic data. Spatial
attention is used to capture the complex spatial correlation between different locations, and
temporal attention is used to capture the dynamic correlation between different time slices.
Geng et al. [31] indicated that STMGCN could calculate predictions of regional taxi demand.
In their study, three graphs were constructed from the perspectives of connectivity between
regions, location relationship between regions, and functional similarity between regions.
The graph convolution network was used to extract the temporal correlation and spatial
correlation from the three graph representations, and finally to calculate the average values
to obtain prediction results. Zhong, W, et al. [32] proposed a heterogeneous spatiotemporal
prediction framework for traffic prediction using incomplete historical data. This method
uses a recurrent neural network to capture the time correlation and simultaneously estimate
the missing values. At the same time, it models the dynamic correlation between road
segments from aspects of their geography and history. It is also able to supplement the
missing values. Siddiqi et al. [33] proposed a denoising automatic encoder to generate
a clearer version of the input signal, and optimized the model by adjusting the superpa-
rameter. This was shown to be an effective method for supplementing traffic data with
missing data. Joelianto et al. [34] proposed a data interpolation method based on spatiotem-
poral probabilistic principal component analysis (PPCA), which was more robust for the
supplementation of extreme missing values and successfully accounted for incomplete
feature capture caused by missing values. Liu et al. [35] proposed a model of FSTGCN for
fusing vehicle speed features to further capture spatial features, while building a dynamic
adjacency matrix of multiple graphs to better explore hidden spatial information.

There are several problems with the above methods: (1) Some only pay attention to
the spatial correlation of traffic flow data and ignore the temporal correlation. (2) Others
pay attention to the temporal correlation and ignore the spatial correlation. (3) In some
methods, although the spatial and temporal correlation are calculated at the same time,
the model for calculating the temporal correlation has a large number of parameters and
requires large resource consumption, while the model for calculating spatial correlation
pays too much attention to the high-frequency spatial feature information and ignores the
low-frequency information.

To solve such problems, we propose several strategies for effectively building models
to simulate the temporal dynamics and spatial correlation of traffic flows. We used graph
convolution to capture the spatial features of traffic flow. To avoid the high weight impact
resulting from high-frequency data features, an LPF was designed in the graph convolution.
This can suppress high-frequency data features and strengthen the low-pass filter of low-
frequency data features, and thus make the signals on the whole graph smoother and
improve their robustness. To address the inherent defects of recurrent networks, C-GLU
was used on the time axis to capture the features in time series, and LSTM was not used. In
this way, the training was accelerated and the efficiency was improved. Finally, the two
parts were combined to extract spatial and temporal features. We validated our model by
using two real datasets. The experiment results show that our model is better than the five
existing typical models.
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2. Preparations
2.1. Traffic Networks

We defined the traffic flow network as a directionless graph Gt = {Vt, E, A}. As
shown in Figure 2, Gt is the traffic network graph at time t, Vt is the set of |V|= n nodes
at time t, E is the set of sides, representing the connectivity between the nodes, A ∈ Rn×n

is the adjacency matrix, and Ai,j = Aj,i defines the connectivity between node i and node j.
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We used xc,i
t ∈ R to represent node i, the ct feature value at time t, and ct ∈ ( ft, ot, st),

xi
t ∈ RT to represent the values of all the features of node i at time t. ft represents the traffic

flow features at time t in the traffic network graph G on time
series. Xt =

(
x1

t , x2
t , . . . , xn

t
)T ∈ RN×C represents the values of all the features of all

nodes at time t, and X = (X1,X2, . . . , Xτ)
T ∈ Rτ×N×C represents the values of all the

features of all nodes on the time slice. Finally, we set the traffic flow value yi
t = x f ,i

t of any
node i at any time t in the future: Gt+1, Gt,Gt−1.

2.2. Graph Neural Networks

It is known that typical convolution has brought great success in natural language
processing and image processing. However, it can only process data of fixed input dimen-
sions (dimension consistency) and the local input data must be sequential (series sequence);
i.e., it is only applicable to regular data generated within Euclidean space. Obviously,
traffic networks are not regular data, so how can convolution operations be performed on
non-Euclidean spatial data? There are two basic methods for the application of CNN to
non-Euclidean data. One is to expand the spatial definition of convolution [21], and the
other is based on spectral theory and graph Fourier transform [22]. The former involves
re-arranging the vertexes into a grid form that can be processed by normal convolution
operations. The latter introduces spectral theory and converts the data from the spatial
domain to the spectral domain for processing, and then back to the spatial domain after
processing. This is known as spectral graph convolution.

Our method is based on spectral graph convolution. The first graph convolution
problem was how to define the Fourier transform on the graph, and the Laplacian matrix
was introduced to fulfill the Fourier transform on the graph [22]. The graph Laplacian
matrix is defined as L = D − A. D ∈ RN×N represents the diagonal matrix of the sum
of the weights of all sides starting from node i. Dii = ∑ jAi,j, the normalized Laplacian
matrix, is defined as L = In − D−1/2 AD−1/2. The features of the Laplacian matrix are
decomposed into L = UΛUT , where U = (u1, . . . , un) is the feature vector of the Lapla-
cian matrix. The diagonal matrix Λ = diag([λ1, . . . , λn]) ∈ RN×N is composed of the
feature values of the Laplacian matrix. Take the flow at time t as an example. The flow
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signal on the graph is defined as x = x f
t ∈ RN . Through the graph Fourier transform,

the flow signal is transformed from the spatial domain to the spectral domain, which is
defined as x̂ = UTx ∈ RN = (x̂(λ1), . . . , x̂(λn)). Finally, the signal must be returned
from the spectral domain to the spatial domain, because U is an orthogonal matrix. There-
fore, the graph inverse Fourier transform is defined as x = Ux̂. Graph convolution is a
convolutional operation performed by using diagonal Laplacian operators in the graph
Fourier transform, in place of the operators employed in conventional convolution [36].
The signal x on the traffic network graph G is filtered through the kernel gθ = diag

(
UT g

)
,

where UT g = ĝ = (ĝ(λ1), . . . , ĝ(λn)):

x ∗G gθ = U
(

UTx�UT g
)
= Ugθ(Λ)UTx (1)

3. Model Framework
3.1. Network Structure

The overall framework of the CGLGCN model proposed in this paper is illustrated
in Figure 3. It consists of a causal gated–LPF convolution block. Each causal gated LPF
convolution block consists of two C-GLU temporal convolution blocks plus a LPF convo-
lution block, forming a “sandwich” structure as shown in the figure. The causal gated
linear unit is responsible for capturing temporal features, and low-pass graph convolution
is responsible for capturing spatial features.
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3.2. LPF Convolution Module

Usually, a traffic network will produce an irregular graph; even if junctions are deemed
as the vertex, roads as sides, and the road network as a graph of points and sides, it cannot
be deemed as a grid. This is because the distances between junctions are different and
the spatial relationship between the junctions would be ignored if the road network were
deemed as a grid. The spatial domain information captured by such convolution is not
reasonable. Therefore, we introduced graph convolution and defined convolution directly
on the graph data to capture the features that impacted different weights on junctions. The
graph convolution operations in Formula (1) require the decomposition of Laplacian matrix
features. The calculation complexity is O

(
n2), and great challenges can be encountered

in cases of large-scale graph data caused by large numbers of nodes. Therefore, we used
Chebyshev polynomials as the convolutional kernel and effectively solved this problem.

Using Chebyshev polynomial approximation, the kernel gθ can be limited to the poly-
nomial of Λ in order to localize the filter and reduce the number of parameters. For example
gθ(Λ) = ∑k=k−1

k=0 θkΛk, where the kernel is replaced with Chebyshev polynomial approx-
imation, can be approximately considered as gθ(Λ) = ∑k=k−1

k=0 θkTk
(
Λ̂
)
; after Chebyshev

polynomials are introduced, the graph convolution is changed into:

x ∗G gθ = Ugθ(Λ)UTx = U ∑k=k−1
k=0 θkTk

(
Λ̂
)
UTx = ∑k=k−1

k=0 θkTk
(

L̂
)
x (2)

where θ ∈ Rk is the polynomial coefficient, k is the size of the graph convolution kernel
which determines the number of node orders covered by the target node convolution
L̂ = 2

λmax−2 L− In, and λmax is the maximum feature value of the Laplacian matrix.
Chebyshev graph convolution is a filter in which the weight of high-frequency signal

increases with the rising k value.

gθ(Λ) =
K−1

∑
k=0

θkΛk (3)

As the weight of high-frequency features increases, it interferes with researchers’
ability to capture low-frequency features, which in turn affects the prediction accuracy.
To solve this problem, we propose a LPF to replace it, which can increase the weight of
low-frequency signals and suppress high-frequency signals. The data processed by LPF
convolution are smoother, and the interference of high-frequency noise can be avoided.

From the signal x on the graph, we can obtain:

x = α1u1+, . . . ,+αnun (4)

Because the Laplacian matrix is a symmetric positive semi-definite matrix, we can obtain:

uiui
T = 1 , uiuj

T = 0, i 6= j (5)

In formula (1) Ugθ(Λ)UTx =
(
θ1u1u1

T+, . . . ,+θnunun
T)x, and we can obtain:

unun
Tx = α1u1u1

Tu1+, . . . ,+αnunun
Tun = αnun (6)

Therefore,
{

unun
T}n

n=1 can be considered a set of basic filters in graph convolution,
and allowing only the passage of feature values associated with un. αn is equivalent to the
weight assigned to the filters. Polynomial approximation graph convolution includes a set

of combined filters
{

L̂k
}k−1

k=0
. So, for the basic filters of polynomial approximation graph

convolution, the basic filter of high-frequency signals has a greater weight, αn = λn
k. We

therefore considered that an LPF could be designed to replace the previous filters.
Our LPF is defined as:

f (λi) = 1− 1
2

λi (7)
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We bring it into the Laplacian matrix and replace Λ with Λs. Λs = diag
({

1− 1
2 λi

}n

i=1

)
,

so we define the kernel of the graph convolution as:

gθ = ∑k−1
k=0 θk(Λs)

k (8)

Then, our LPF convolution can yield:

x ∗G gθ = U ∑k−1
k=0 θk(Λs)

kUTx

=
{

θ0 I + θ1

((
1− 1

2 λ1

)
u1u1

T + . . .
(

1− 1
2 λn

)
unun

T
)
+ . . .

+θk−1

((
1− 1

2 λ1
k−1
)

u1u1
T + . . . +

(
1− 1

2 λn

)k−1
unun

T
)}

x

=

{
θ0 I + θ1

(
I − 1

2 L
)
+ . . . + θk−1

(
I − 1

2 L
)k−1

}
x

(9)

Through LPF convolution, a higher weight can be assigned to the basic filter of the
low-frequency signal, but the features of the high-frequency signal are not given up. Thus,
we can obtain better flow features on the traffic network graph without missing the flow
features of the high-frequency signal.

3.3. Causal Gated Linear Unit (C-GLU)

Although RNN-based models are widely used in time series analysis, recurrent net-
works used for flow prediction have disadvantages including long iteration time, complex
gate mechanisms, and slow response to dynamic changes. In contrast, CNNs show such
advantages as fast training, simple structure, and independence from the previous step [37].
We performed convolution on the time axis to capture the feature relationships of traffic
flow in the time dimension. Causal convolution can simply and effectively capture long-
term dependencies, so we used causal convolution to capture the feature connections of the
time dimension. Meanwhile, in order to alleviate the problem of gradient disappearance,
we used a residual connection gating mechanism of to enable the causal convolution to
learn the features relationship for longer.

As shown in Figure 3, the first step of the causal gated convolution block is to perform
one-dimensional causal convolutions of data. Each convolution without filling explores the
kt order neighborhood of each node on the traffic network graph G, and each convolution
shortens the time series of kt − 1. So, the i node data can be considered as the data
Y ∈ RN×τ×Ci with a slice time series length of τ and the number of channels Ci, and
the convolution kernel can be defined as Γ ∈ R1×Ci×2C0 . In the first convolution, one-
dimensional causal convolution is performed; in the second convolution, nonlinear change
is performed after the one-dimensional causal convolution is completed. The data of the
two parts are the two gates of the causal gated linear unit, and the two data outputs are
recorded as [P, Q] ∈ RN×(M−kt+1)×2C0 . Finally, the data of the two parts are recorded with
the Hadamard product. Therefore, the convolution of the causal gated linear unit can be
defined as:

Γ ∗ f Y = P� sigmoid(Q) ∈ RN×(τ−kt+1)×C0 (10)

3.4. Fusion of Causal Gated-LPF Convolutions

Because the input traffic flow data are recorded as xt ∈ Rτ×N×Ct after time slicing, and
then recorded as xt+1 ∈ R(τ−kt+1)×N×Ct after the temporal and spatial features are extracted
by the causal gated graph convolution module, the causal gated graph convolution and the
LPF convolution are fused and recorded as:

out = Relu
(

Γ1 ∗ f

(
Relu

((
Γ0 ∗ f xt

)
∗G gθ

)))
(11)
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Γ0 is the convolutional kernel of the first C-GLU convolution module. Γ1 is the
convolutional kernel of the second C-GLU convolution module. gθ is the convolutional
kernel of the intermediate LPF convolution module, and the rectified linear unit (RELU) is
the activation function of the graph convolution module and the full connection layer at
the final output. ∗ f represents the causal gated convolution operation, ∗G represents the
graph convolution operation.

4. Experiment
4.1. Data

We validated our model on two highway traffic datasets, PeMS04 and PeMS08, col-
lected in California. Both datasets were collected by the Caltrans Performance Measurement
System (PeMS) in real time every 30 s, and the traffic flow data were aggregated once every
5 min. The system has more than 45,514 detectors deployed on highways in the major
metropolitan areas of California. The datasets involve three kinds of traffic measurements:
flow, occupancy, and speed. We selected the data from Californian areas 4 and 8 as the
dataset for this study.

PeMS04 comprises traffic data from the San Francisco Bay Area, collected by 3848 detectors
on 29 roads in this area over 59 days from January to February 2018. The data were collected
every 30 s and aggregated every 5 min. We selected the data from the first 45 days as the
training set, and the remaining data as the test set.

PeMS08 is traffic data from San Bernardino, collected by 1979 detectors on 8 streets in
this area over 62 days from July to August 2016. The data were collected every 30 s and
aggregated every 5 min. We selected the data from the first 48 days as the training set, and
the remaining data as the test set.

As shown in Figure 4, through visual processing of the two data sets, we found that
the traffic flow is the most direct indicator of intersection congestion, and that change of
traffic flow can help us to predict congestion.
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4.2. Data Processing and Parameter Setting

We removed redundant detectors to ensure that each detector represented one junction
and that the distance between detectors was not less than 3.5 miles. Finally, there were
307 detectors in the PeMS04 set and 170 detectors in PeMS08. The detectors aggregated the
traffic flow data at junctions every 5 min, and so the data of 288 points were collected for
each junction every day. The missing values were filled by linear interpolation. In addition,
the data were processed by zero-mean normalization to bring the average to 0.

In the experiment, we tested our model by using the pytorch framework. We tested
order k ∈ [0, 1, 2] of the LPF convolution module and achieved satisfactory results. Experi-
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mentation revealed that the optimal results were obtained for k = 2. Meanwhile, the kernel
size of the causal gated convolution was set to 3. In terms of data, we adopted the concept
of “sliding window” to divide the data. In the LPF convolution module, the space axis was
convoluted as per the time axis slice. The “sliding window” was employed to predict the
traffic flow of the τ + 1-th time point by using the traffic flow of the previous 0 ∼ τ time
points. The τ + 1 data constituted a training set sample, the τ data were input x and the
τ + 1 data were labelled ŷ. To obtain the next sample, we moved the “sliding window” to
the next time point where the traffic flows of the 1 ∼ τ + 1 time points constituted the new
input data x, and the traffic flow of the τ + 2-th time point became the new label ŷ. These
data and labels formed the training set and the test set. The “sliding window” used the
average value of multiple data for prediction, avoiding outliers and differences caused by
single data. In this way, the impact on the prediction results was minimized and our data
were more stable. In this study, the size of our “sliding window” was set to τ = 12. For the
prediction range, the list of continuous time nodes may be selected at will; the prediction
ranges in this study were set to 5 min, 15 min, 30 min, and 45 min, including two time
marker points for short-term prediction and long-term prediction, respectively.

Mean absolute error (MAE) and root mean square error (RMSE) were used as metrics
and baselines for measuring and evaluating the performance of different methods in the
experiment. We compared our method with the following typical methods: (1) historical
average (HA); (2) auto-regressive integrated moving average (ARIMA); (3) Vector auto-
regressive (VAR); (4) long short-term memory (LSTM) network; and (5) gated recurrent
unit (GRU) network.

4.3. Analysis and Comparison of Results

Table 1 shows that our CGLGCN performed best for both datasets in terms of all
metrics. It can be seen that the prediction results of conventional time series analysis
methods were usually not ideal. This proves that the capabilities of such methods for
model nonlinear and complex flow data are suboptimal. Generally, methods based on deep
learning achieved better prediction results than conventional time series analysis methods.
Our model considered temporal correlation and spatial correlation simultaneously, and
so achieved better prediction results than LSTM and GRU models that considered only
temporal correlation. Our model thus further reduced prediction errors.

Table 1. Performance comparison of different methods applied to PeMS04 and PeMS08.

Model
PeMS04 (5/15/30/45 min)

Model
PeMS08 (5/15/30/45 min)

MAE RMSE MAE RMSE

HA 35.12/35.75/36.89/37.25 41.25/44.97/52.87/54.89 HA 26.98/27.77/28.45/29.12 32.87/35.31/42.08/47.29

ARIMA 30.06/30.56/31.95/32.63 33.12/43.98/59.87/65.73 ARIMA 21.43/22.02/22.98/23.87 22.47/29.15/39.21/48.34

VAR 30.58/31.72/32.69/33.52 46.29/49.92/52.87/54.89 VAR 19.19/19.56/20.35/21.12 22.12/26.93/31.45/35.91

LSTM 27.57/28.03/28.65/29.15 34.05/37.72/44.89/47.01 LSTM 21.41/21.85/22.45/23.21 21.32/27.73/36.78/42.51

GRU 26.41/27.08/28.23/29.12 34.12/37.59/45.12/46.85 GRU 19.52/19.98/20.82/22.46 21.39/26.69/37.83/43.28

CGGCN 23.15/24.08/25.23/26.12 32.12/33.49/35.15/37.90 CGGCN 17.52/17.98/18.84/20.46 21.15/22.49/24.15/25.85

CGLGCN 22.12/22.94/23.51/24.24 31.23/32.45/34.05/35.91 CGLGCN 16.41/170.1/17.74/18.84 20.28/21.87/23.29/24.89
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Figures 5 and 6 show the varying performance of different methods when the predic-
tion was carried out for a longer period. In general, the models’ prediction precision became
lower when the prediction spanned a longer period. The models which only considered
the temporal correlation, including ARIMA, LSTM, and GRU, achieved almost the same
quality of results as our model in the 5-min short-term traffic flow prediction, but their
performance declined sharply when the prediction time became longer. The VAR model
considering both temporal and spatial correlations performed stably. However, it showed
significant differences for different sample scales, and its performance badly declined with
the expansion of the road network scale. Although the VAR model considers temporal
and spatial correlations, it is not applicable to traffic flow prediction for large-scale road
networks, and real-world road networks are usually huge. Our CGLGCN model performed
well in the test. It was shown to be competent for the prediction task no matter whether
the road network was large or small, and always delivered adequately stable performance
even when the prediction spanned a longer period.
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As shown in Figures 7 and 8, we performed ablation experiments on CGLGCN on
pems04 and pems08 datasets, respectively. The model that does not use our low-pass
filtering constraints is labelled CGGCN. Experiments demonstrated that our model using
a low-pass filter constraint had better performance, which proves the feasibility of our
low-pass filter constraint.
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Our model abandons the LSTM and GRU models that use multiple parameters and
involve considerable time consumption, and uses gated linear units to capture the features
of time dimension, which greatly reduces the training time. As shown in Figure 9 and
Table 2, our CGLGCN model took only 2579.79 s and 1279.83 s for 1000 rounds of training
in pems04 and pems08 datasets, respectively, while the LSTM model took 21,844.54 s and
17,973.62 s, and the GRU model 10,000.15 s and 7589.26 s. These substantial increases in
training speed (more than eight-fold and approximately seven-fold, respectively) were
mainly due to the fact that recursive structures were not used. Our method can realize full
parallel training rather than relying entirely on a chain structure.

Table 2. Comparison of training consumption time.

Dataset
1000 Epoch Time Consumption (s)

LSTM GRU CGLGCN

PeMS04 21,844.54 17,973.62 2579.79

PeMS08 10,000.15 7589.26 1279.83



Appl. Sci. 2022, 12, 7010 13 of 15

Appl. Sci. 2022, 12, 7010 12 of 15 
 

 
Figure 8. Performance comparison of ablation experiment for the pems08 dataset. 

Our model abandons the LSTM and GRU models that use multiple parameters and 
involve considerable time consumption, and uses gated linear units to capture the features 
of time dimension, which greatly reduces the training time. As shown in Figure 9 and 
Table 2, our CGLGCN model took only 2579.79 s and 1279.83 s for 1000 rounds of training 
in pems04 and pems08 datasets, respectively, while the LSTM model took 21,844.54 s and 
17,973.62 s, and the GRU model 10,000.15 s and 7589.26 s. These substantial increases in 
training speed (more than eight-fold and approximately seven-fold, respectively) were 
mainly due to the fact that recursive structures were not used. Our method can realize full 
parallel training rather than relying entirely on a chain structure. 

Table 2. Comparison of training consumption time. 

Dataset 
1000 Epoch Time Consumption (s) 

LSTM GRU CGLGCN 
PeMS04 21,844.54 17,973.62 2579.79 
PeMS08 10,000.15 7589.26 1279.83 

 
Figure 9. Visualization of training time comparison. 

Figures 5 and 6 show that our model performed stably in short-term and long-term 
predictions. To validate the stability of our model, we tried to predict 24-h traffic flow. 
The scale of the x-coordinate in Figure 10 represents the flow prediction for a total of 288 
time points collected every 5 min from 0:00 to 24:00 on a single day. It can be seen from 
the figure that the prediction generated by our model for traffic flow changes throughout 
the day well matched the trend of traffic flow changes. Our model was able to predict 

Figure 9. Visualization of training time comparison.

Figures 5 and 6 show that our model performed stably in short-term and long-term
predictions. To validate the stability of our model, we tried to predict 24-h traffic flow. The
scale of the x-coordinate in Figure 10 represents the flow prediction for a total of 288 time
points collected every 5 min from 0:00 to 24:00 on a single day. It can be seen from the figure
that the prediction generated by our model for traffic flow changes throughout the day
well matched the trend of traffic flow changes. Our model was able to predict accurately
the traffic flow in each period at each junction. This fully demonstrates the stability of
our model.
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Figure 10. (left) the fitting map of traffic flow prediction from 00:00 a.m. to 24:00 p.m. for detector
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5. Conclusions and Outlook

This paper proposes a causal gating low-pass graph convolution neural network
for traffic flow prediction, called CGLGCN, and has demonstrated that the causal gating
linear unit has a good effect in capturing time features. On the premise that the prediction
accuracy is not greatly impacted, the method reduces the amount of parameters and time
of operation. Because the traffic network graph is irregularly distributed, low-pass graph
convolution can better capture the spatial correlation of non-Euclidean data, which is
consistent with the definition of the graph and can reduce the impact of high-frequency
noise. High-frequency noise would shift the focus points during network model training
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and reduce the capacity to learn the spatial features of traffic data. Experiments on two
real-world data sets show that our model performed better than five existing models.

Our model does not consider various unexpected events, such as bad weather or
traffic accidents, and their effects on real traffic flow prediction. Meanwhile, no weight
was assigned to the importance of different junctions. The weights of junctions in core
areas and more remote areas should not be equal, and even junctions that are not directly
connected may have hidden correlations. In the future, more factors will be considered to
further improve our model. In addition, we may also consider using our model in relation
to 5G traffic distribution, to reduce the energy loss of 5G base stations.
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