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Abstract: The computational effort of biomolecular simulations can be significantly reduced by means of implicit

solvent models in which the energy generally contains a correction depending on the surface area and/or the volume

of the molecule. In this article, we present simple derivation of exact, easy to use analytical formulas for these quan

tities and their derivatives with respect to atomic coordinates. In addition, we provide an efficient, linear scaling

algorithm for the construction of the power diagram required for practical implementation of these formulas. Our

approach is implemented in a C11 header only template library.
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Introduction

In the last decade, great progress has been made in all atom

computer simulations of biological macromolecules, such as pro

teins and nucleic acids. This progress was possible not only

because of the enormous increase of computer power available

but also because of improvement of the models used in the sim

ulations. In particular, force fields were optimized to provide

better agreement with experiment, even though difficulties still

remain to describe large scale conformational changes. One

attractive choice to reduce the computational effort has been the

use of an implicit solvent model, which permits elimination of

many degrees of freedom associated with the surrounding water

molecules and ions. In this model, the behavior of the solute

macromolecule is governed by a potential of mean force that

can be formally achieved by averaging over all possible confor

mations of the molecules of solvent. Practically, the solute mac

romolecule is considered to be immersed into an infinite homo

geneous medium characterized by a certain dielectric constant

and ionic strength. An additional advantage is that the problems

related to periodic boundary conditions can be avoided in such

simulations. These problems include not only physical limita

tions (self interactions, external potentials, etc.) but also increas

ingly computational difficulties, because efficient evaluation of

electrostatic interactions with periodic boundary conditions has

been challenging on emerging hybrid computational architec

tures, such as graphics accelerators or the Cell processor, which

are expected to play an ever increasing role in novel emerging

computational architectures.

In the implicit solvent models, there is a well defined bound

ary between the simulated solute macromolecule and the sur

rounding medium. Each atom is treated as a ball of a certain ra

dius and the whole macromolecule as a union of such balls. The

solvation energy is then usually decomposed into three contribu

tions. (1) The first term is the energy of creation of a cavity in

the solvent. This term is closely related to the excluded volume

of the solute macromolecule, i.e., the volume that becomes inac

cessible to the centers of mass of the solvent molecules. For

evaluation of this volume, the radii of the balls should be put to

the van der Waals radii of the corresponding atoms augmented

by the effective radius of the water molecule (�1.4 Å). (2) The

second term accounts for the energy of the van der Waals inter

actions and the hydrophobic/hydrophilic effects. The contribu

tion to this term from each atom is proportional to the area of

its surface that is exposed to the solvent (also called the solvent
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accessible surface area, SASA).1 More precisely, this area can

be defined as the uncovered surface area of the corresponding

ball, with the ball radii being specified above. (3) The third term

is a correction to the electrostatic energy. It can be estimated ei

ther by solution of the Poisson Boltzmann equation or by the

generalized Born approximation, which is less accurate but also

less time consuming.2

Therefore, in many currently used force fields, the energy ex

plicitly depends on the surface area of individual atoms or

groups and/or the volume of a solute macromolecule.3 10 For

some simulation methods, such as Monte Carlo, it is enough to

be able to evaluate the energy as a function of the atomic coor

dinates. For others, like molecular dynamics, evaluation of the

forces acting on the atoms is required. Hence, it is important to

have efficient algorithms for computation not only of the surface

area and volume but also of the derivatives of these quantities

with respect to atomic coordinates as well.

In the last years, several exact11 26 and approximate27 42 solu

tions of this problem have been published (see Ref. 43 for review).

Numerical integrations of the surface or volume are straightfor

ward, but involve an enormous number of integration points.

Accurate numerical estimates of derivatives often require compu

tational costs that are so large as to make the use of implicit sol

vent models inefficient. More practical approaches mostly rely on

relatively simple approximate analytical expressions for these

quantities, which can be easily differentiated with respect to the

atomic coordinates. However, in this case, the errors arising in

implicit solvent simulations stem not only from the physical

approximations underlying the model but also from the approxi

mations intrinsic to the evaluation procedures. Regarding the exact

methods, most of the existing works followed a strategy where an

analytical expression for the surface or volume was obtained first.

The derivatives are then obtained by application of the standard

differentiation rules. In the following, we show that the analytical

expressions for the derivatives can be found much easier than for

the surface and volume themselves.

The implementation of our approach is based on the power

diagram of the solute macromolecule. In this respect, our

approach is similar to that of Edelsbrunner et al.25,44 46 who

developed the software package PROGEOM47 for calculation of

molecular surface, volume, and their derivatives. However, our

derivations and final formulas are much simpler, and our soft

ware is essentially more efficient in terms of central processing

unit (CPU) time, accuracy, and stability.

Surface Area and Its Derivatives

Consider a molecule as a union of overlapping balls (atoms) of

different radii. Let us select a single arbitrary atom. We denote

its radius by q and the position of its center by r. The buried

area of its surface has a boundary that consists of the arcs result

ing from the intersection with the neighboring atoms. Consider a

single contour formed by n such arcs as illustrated in Figure 1.

We denote the arcs by a1, a2, . . ., an, with the indices increasing

as one moves round the buried area in an counterclockwise man

ner. For simplicity, we ascribe the same indices to the corre

sponding neighboring atoms (note that, in general, one atom

may obtain several different indices). The problem is to find the

derivatives dS/dri, where S is the accessible area of the selected

atom and ri is the center of the ith neighbor (i 5 1, 2, . . ., n).
Let ei be the unit vector in the direction to the ith neighbor

(i.e., from the point r to the point ri). We will first calculate the

component of the gradient dS/dri that is parallel to this vector.

The total area of the cap covered by the ith atom is

S
ðcapÞ
i ¼ 2pð1 cos hiÞ � q2; (1)

where hi is the angular radius of the cap. From a simple geomet

rical consideration, it can be easily obtained that

cos hi ¼ 1

2q
bi þ q2 q2i

bi

� �
; (2)

where qi is the radius of the ith neighbor and bi is the distance to it

(i.e., the distance between the points r and ri). Let ui be the central

angle of the arc ai. By an infinitesimal increment of bi, the fraction
of the cap boundary contributing to the change of the buried area

is equal to ui/2p. Thus, using eqs. (1) and (2), we get

dS

dri
ei ¼ ui

2p
dS

ðcapÞ
i

dbi
¼ uiq

2
1þ q2 q2i

b2i

� �
: (3)

An infinitesimal displacement dri of the ith neighbor in the

direction perpendicular to ei can be treated as a rotation by the

angle

dci ¼ ðei3driÞ=bi (4)

Figure 1. The surface of the selected atom (example). The buried

area is shown in white and light gray. The arcs forming the bound

ary are represented by the thick solid lines. The thinner solid lines

(without arrows) are geodesics. The dashed lines are straight seg

ments that do not belong to the surface.



about the central point r. If the surface tension of the selected

atom is r, then

Tidci ¼ rdS; (5)

where Ti is the corresponding torque. Substituting Eq. (4) into

Eq. (5) and changing the order of multipliers in the triple prod

uct, we get

driðTi3eiÞ ¼ rbidS: (6)

Now, we will make use of the fact that the torque acting

on any line on the ball surface depends only on the end

points of the line but not on its particular shape. We will find

Ti as the torque acting on the geodesic that connects the end

points vi and vi11 of the arc ai. For symmetry reasons, the

vector Ti points to the same direction as the vector (vi11

vi) (if i 5 n, the index i 1 1 should be substituted by 1). If

we rotate the geodesic by the full angle 2p about the axis

that passes through the ball center and is parallel to Ti, then

the swept area is 4pq2�|vi11 vi|/2q 5 2pq|vi11 vi|. If the

angle of rotation is dci, then the swept area, corrected by the

factor of dci/2p, becomes dS 5 q|vi11 vi|dci. Hence, we

have:

Ti ¼ rdS=dci ¼ rqðviþ1 viÞ: (7)

After the substitution into Eq. (6) we get

dS ¼ ðq=biÞ½ðviþ1 viÞ3ei�dri; dri?ei; (8)

Combining eqs. (3) and (8), we obtain finally

dS

dri
¼ uiq

2
1þ q2 q2i

b2i

� �
ei

q
bi
½ðviþ1 viÞ3ei�: (9)

Note that if two different indices i and j correspond to

the same neighboring atom then this formula just provides

the additive contributions from the arcs ai and aj. The gener

alization to the case when the boundary of the buried area

consists of several contours is straightforward. If a single

neighboring atom gives rise to k arcs possibly belonging to

different contours, the total derivative is the sum of k terms,

each of which is given by Eq. (9). It is also obvious that

the contribution from one contour to the derivative dS/dr
(with respect to the position of the selected atom) is given

by

dS

dr
¼

Xn
i 1

dS

dri
: (10)

Now, we will provide an elementary derivation of the

Connolly formula11 for the accessible area S. At first, we

assume that the boundary consists of a single contour as illus

trated in Figure 1. The buried surface can be represented as

the union of the central polygon with the vertices v1, v2, . . .,
vn (white area in Fig. 1) and the caps truncated by the sides

of this polygon (light gray areas in Fig. 1). The polygon area

is

SðpolygonÞ ¼
Xn
i 1

ai pðn 2Þ
" #

� q2: (11)

Here and further the notations are as shown in Figure 1. The

area of the ith truncated cap can be found as the area of the sec

tor with the central angle ui [compare Eq. (1)]

S
ðsectorÞ
i ¼ ðui=2pÞSðcapÞi ¼ uið1 cos hiÞ � q2 (12)

plus (if ui [ p) or minus (if ui \ p) the area of the triangle

with the vertices vi, vi11, and the center of the ith cap. For

example, the area of the first triangle with u1 [ p (Fig. 1) is

S
ðtriangleÞ
1 ¼ ½ð2p u1Þ þ 2ðb1 p=2Þ p� � q2

¼ ð2b1 u1Þ � q2: ð13Þ

The area of the second triangle with u2 \ p is

S
ðtriangleÞ
2 ¼ ½u2 þ 2ðp=2 b2Þ p� � q2 ¼ ðu2 2b2Þ � q2: (14)

In both cases, the area of a truncated cap is given by

S
ðtr:capÞ
i ¼ ð2bi ui cos hiÞ � q2: (15)

Using eqs. (11) and (15), we obtain the Connolly formula11

for the accessible surface area:

S ¼ 2pþ
Xn
i 1

ðui cos hi þ wi pÞ
" #

� q2; (16)

wherewi 5 2p ai bi bi 1, as illustrated in Figure 1. The

generalization for an arbitrary number of contours is obvious. One

should sum up the contributions from the single contours [given

by Eq. (16)] and then put the resulting value to the interval [0,

4pq2] by subtracting 4pq2, the necessary number of times.

The angle (p wi) can be found as the angle between the

vectors [ei 13(vi r)] and [ei3(vi r)]:

cosðp wiÞ ¼
ei�1ei cos hi�1 cos hi

sin hi�1 sin hi
(17)

(if i 5 1, then i 1 should be substituted by n). The angle ui

can be found as the angle between the vectors [vi (r 1
eiqcoshi)] and [vi11 (r 1 eiqcoshi)]:

cosui ¼
ðvi rÞðviþ1 rÞ q2 cos2 hi

q2 sin2 hi
; (18a)

sinui ¼
ei½ðvi rÞ3ðviþ1 rÞ�

q2 sin2 hi
: (18b)



The most difficult problem is to construct the contour of arcs

and to identify the vertices vi among all the other triple intersec

tions of the atomic spheres. It can be done by means of the

power diagram, which is the Voronoi diagram modified for

the set of the balls with different radii.18,44,45 The vertices vi are
the intersections of the selected atom surface with the edges of

the corresponding power cell. An algorithm for the construction

of the power diagram is given in the Appendix.

Volume and Its Derivatives

The problem now is to obtain the derivative of the total volume

V of the molecule with respect to the position r of the selected

atom. This derivative can be written as

dV=dr ¼ F=P; (19)

where P is the external pressure and F is the corresponding

force acting on the accessible surface. This force does not

depend on the particular shape of the surface, but is entirely

determined by its boundary. At first, we assume that the bound

ary is a single contour consisting of n arcs (Fig. 1). Then F can

be easily found as the force acting on the auxiliary surface that

is composed of the following 2n flat pieces: (i) the n triangles

with the vertices r, vi, and vi11 and (ii) the n circular segments

bounded by the arcs ai and the chords connecting their end

points (i.e., vi and vi11). The force acting on the ith triangle is

F
ðtriangleÞ
i ¼ 1

2
½ðvi rÞ3ðviþ1 rÞ� � P: (20)

The force acting on the ith circular segment is

F
ðcirc:segm:Þ
i ¼ 1

2
q2 sin2 hiðui sinuiÞ � Pei: (21)

Thus, combining eqs. (19) (21), we get

dV

dr
¼ 1

2

Xn
i 1

½vi3viþ1 þ q2 sin2 hiðui sinuiÞei�: (22)

If the boundary consists of several contours, Eq. (22) pro

vides the additive contribution from each of them.

The same auxiliary surface is very useful in the calculation

of the volume itself. Outside this surface, the ball can be decom

posed into the following fractions of simple geometry (we con

sider, again, a single contour of n arcs). (i) The fraction corre

sponding to the accessible surface. One can imagine it as being

cut off by the straight segment with one end fixed at the ball

center r and the second end running along the contour of arcs.

Its volume is

Vð1Þ ¼ 1

3
Sq; (23)

where S is given by Eq. (16). (ii) The n cones with the bases

being the circular segments embraced by the arcs ai and with

the apex at the ball center r. The height of the ith cone is q
coshi. The total volume of n cones can be written as an alge

braic sum [compare Eq. (21)]

Vð2Þ ¼ 1

6
q3

Xn
i 1

cos hi sin
2 hiðui sinuiÞ (24)

with some of the terms possibly being negative (for hi [ p/2).
With this choice of signs, the sum V(1) 1 V(2) provides the cor

rect volume of the ball fraction outside the auxiliary surface.

If one builds the auxiliary surface for each contour on each

atom and then cuts off the external fraction of the molecule, the

remaining (internal) part will represent one or several polyhedra,

with all the faces being the triangles. Let us connect all the verti

ces of the polyhedra with the space origin by straight segments,

so that each face becomes the base of a tetrahedron with the apex

at the space origin. Then the total volume of the internal part can

be found as the algebraic sum of the volumes of these tetrahedra.

The volume of a tetrahedron is positive, if the corresponding face

is looking from the origin and negative otherwise. The contribu

tion from the n faces associated with a single contour of arcs is

Vð3aÞ ¼ 1

6

Xn
i 1

rðvi3viþ1Þ: (25)

To obtain the total volume of the molecule, one has to sum

up eqs. (23) (25) over all contours and over all atoms and add

the results together (by summation, if the accessible surface of

one atom becomes larger than 4pq2, it should be reduced by

4pq2). Note that the final result does not depend on the position

of the space origin. However, this dependence is present in Eq.

(25) and, for this reason, the three terms V(1) 1 V(2) 1 V(3a),

summed over all contours belonging to one atom, cannot be

interpreted as the volume of this atom.

For computation of the volume of an individual atom, the

third term should be modified. It is natural to define the atom

volume as the volume of intersection of the corresponding ball

with its cell in the power diagram (described in Appendix). In

this case, the term V(3a), summed over all contours, should be

substituted by the volume of the internal part of the cell trun

cated by the auxiliary surfaces:

Vð3bÞ ¼ 1

3

Xm
j 1

rjðq cos hjÞ; (26)

where rj is the area of the jth truncated face of the cell, i.e., the

area of the face fraction that lies strictly inside the auxiliary

surfaces. The expression q coshj is equal to the distance from the

face plane to the center of the atom. The summation is performed

over all faces of the cell for which the absolute value of this dis

tance is smaller than the atom radius q (or, in other words, for

which cos hj is defined). Each individual term of the sum repre

sents the volume of a pyramid, the base of which coincides with

a truncated face and the apex with the center of the atom. If the

center of the atom lies outside the corresponding cell, the contri

bution from some terms in Eq. (26) becomes negative, which is

automatically accounted for by the sign of cos hj. For a totally

covered atom, V(3b) is equal to the volume of the entire cell.



Thus, to obtain the volume of an individual atom, one has to

sum up the terms V(1) and V(2) [eqs. (23) and (24)] over all its

contours and add the term V(3b) [eq. (26)].

Implementation and Benchmark

We implemented the above formulas for computation of the mo

lecular surface area, volume, and their derivatives in a C11
header only template library POWERSASA that comprises two

files: power diagram.h and power sasa.h. Both float and double

precision are provided. At present, we work on the next versions

adapted for parallel and graphics processing unit (GPU) comput

ing. More information about this library is available from the

authors on request.

As a benchmark for our software, we performed the com

putation of SASA for the set of all proteins in the Protein

Data Bank (PDB) released in 2010 (total number 7375). The

PBD files containing macromolecules other than proteins were

not included. If multiple models were available, we took only

the first one. When an ‘‘alternate location indicator’’ was pres

ent, we considered only the structure marked with ‘‘A.’’ In

the case of multiple ligand positions, the ligand was removed.

The water molecules were deleted. For the atom radii, the fol

lowing values were used (in angstroms): 1.8 (C), 1.2 (H), 1.5

(O), 1.6 (N), 1.75 (S), and 3.14 (others). These values were

augmented by the effective radius of the water molecule 1.4

Å. The benchmark was carried out with a float precision on a

64 bit personal computer (PC) with an AMD Opteron 246

processor (2,0 GHz) and 8 GB RAM running under Linux

2.6.32. The CPU time required for one evaluation of the

SASA as a function of the number of atoms in a structure,

N, is shown in Figure 2.

For comparison, the results for two other programs, ASC15,48

and ALPHASURF from the PROGEOM package,25,47 are pre

sented as well. For ALPHASURF, no data with N [ 7834 are

available, as the program always crashed with segmentation

fault. For the lower N values, ALPHASURF crashed or entered

an infinite loop in 3.9% of all the cases. ASC proved to be more

stable and failed to produce a result for only 0.27% of the whole

set of structures. Our software was always stable. As one can

see in Figure 2, its performance is essentially better than that of

the other programs. The computational time scales are practi

cally linear with N. This linearity persists also for the larger N
values not shown in Figure 2 (the largest structure in the set, of

101,798 atoms, required 2.6 s).

As all the three programs are based on exact analytical for

mulas, they should, in principle, provide very similar numbers

for the SASA values. Indeed, in the most of the cases, the five

to six leading digits of the results were identical. As a typical

SASA value for a structure with �8000 atoms is of the order of

�40,000 Å2, the results usually differed by less than 0.1 Å2.

However, larger deviations took place sometimes. These devia

tions can be attributed to the wrong identified vertices vi for

some atoms. As a tentative measure da for accuracy of a SASA

value Sa calculated by a certain program a, we took its minimal

deviation from the values Sb and Sc given by the other two pro

grams: da 5 min(|Sa Sb|, |Sa Sc|). Thus, if Sa 5 Sb 5 Sc
(all the programs give the same result), then da 5 db 5 dc 5 0

(it is assumed that this result is precise). If Sa 5 Sb = Sc (the

first two results are the same but differ from the third one), then

da 5 db 5 0 and dc [ 0 (the coinciding results are assumed to

be precise, and the third one has the deviation dc 5 |Sc Sa|).
For all the three programs, the percentage of the cases when the

tentative deviation exceeds a given threshold value d is plotted

versus d in the Figure 3. Note that, in most of the cases, the

Figure 2. Benchmark for performance of POWERSASA (green

circles), ASC (orange triangles), and ALPHASURF (yellow

squares). The CPU time required for calculation of the SASA is

plotted against the number of atoms in a protein structure. The com

putations were performed on a 64 bit PC with an AMD Opteron

246 processor (2.0 GHz) and 8 GB RAM running under Linux

2.6.32. The set of structures comprised the proteins from PDB

released in 2010.

Figure 3. Percentage of calculated SASA values for which the ten

tative deviation exceeds the given threshold d: POWERSASA, float

precision (circles), ASC (triangles), and ALPHASURF (squares).

Tentative deviation was measured not with respect to the actual

SASA value (which is mostly unknown), but with respect to the

nearest result of the other two programs. The dashed lines corre

spond to the case when the POWERSASA computations were per

formed with the double precision.



deviations are either less than 0.1 Å2 or greater than 50 Å2. For

our software, the tentative deviation exceeded 1 Å2 for 57 struc

tures out of the total number of 5800 (when the results from all

the three programs were available). It does not mean that the

calculated SASA values are not correct: they just differ from the

results of the other both programs. For these 57 questionable

structures, we performed additional calculations of the SASA by

a reliable (though very slow) Monte Carlo procedure and found

out that the actual deviation of our results lies within 1 Å2.

Thereupon, we concluded that our results were, in fact, always

correct. The tentative deviation registered for 57 structures was

due to the simultaneous errors in the other programs.

Appendix: Algorithm for Construction of a

Power Diagram

The power distance from an arbitrary point x in the three dimen

sional space to atom i is defined as (x ri)
2 q2i , where, as

before, ri is the center of atom i and qi is its radius. The power

cell of atom i is the set of all those points, for which the power

distance to atom i is not larger than to any other atom. The cell

faces are shared between two cells, the cell edges are shared

between at least three cells, and the cell vertices are shared

between at least four cells. For simplicity, we will further

assume that each edge is shared by exactly three cells and each

vertex is shared by exactly four cells, as this can always be

achieved by slight modification of the atom radii.

The collection of all the cells defines the power diagram. In

our algorithm, implemented in a C11 program, the power dia

gram is represented by the following objects. (1) The atoms with

indication of their position, radius, and with the pointers to the

vertices of their cell. (2) The vertices specified by their coordi

nates, the pointers to the four partner vertices that terminate the

outgoing edges at the opposite ends, and the pointers to the four

nearest atoms (in terms of the power distance), which we will fur

ther call generators. In addition, a vertex is characterized by the

power value that is equal to the power distance to any of its gen

erators. (3) There is also a special sort of vertices, called infinite

vertices, that can be thought as the ‘‘farthest’’ points of those

edges that stretch to infinity. Instead of position, an infinite vertex

is characterized by direction. It has only three generators and no

power value. However, it still has the pointers to four partner ver

tices: one of these vertices is finite and terminates the correspond

ing edge, the rest three are infinite and will be defined later.

The initial step of our algorithm is the construction of the

power diagram for the first four atoms (that should not lie in the

same plane). We will not describe this step in detail, as it is

quite trivial. This initial power diagram contains five vertices of

which only one is finite. Each vertex has pointers to the other

four. Further, we add the rest of the atoms one by one, modify

ing the power diagram accordingly each time.

Suppose we have already constructed the power diagram for

the first j atoms. After adding the next one, the modifications

are carried out by the procedure that is outlined as follows.

1. First, we find and delete the vertices with the power value

larger than the power distance to the new atom. An infinite

vertex is deleted if the new atom lies ‘‘nearer’’ to it than its

generators. (More precisely, this has the following meaning.

The three generators of the infinite vertex define a plane. The

new atom may lie either exactly on this plane or to one of

the two sides from it. The infinite vertex is deleted if the new

atom lies to the side specified by the vertex direction. In the

case then the new atom lies exactly on the plane, the infinite

vertex is deleted only if its finite partner is deleted.) The

deleted vertices are put temporarily into a ‘‘trash,’’ so that the

information stored in them remains available during the next

step, after which the trash is emptied.

2. Second, we construct the new finite vertices, which obvi

ously lie on the ‘‘pending’’ edges, i.e., the edges with one

terminal vertex survived and the other deleted. The three

atoms whose cells share the pending edge and the new

atom constitute the four generators for the new vertex. At

this stage, for the new vertices only one pointer to a partner

vertex is specified.

3. Next, we connect the new vertices by appropriate new edges.

Namely, we find all those pairs of the new vertices that have

three generators in common and provide the new partners

with the pointers to each other.

4. After that, some pointers of the new vertices still remain

vacant. They should obviously point to the new infinite verti

ces, which we now construct. If, among the generators of a

new finite vertex, there are three that are not shared by any

of its existing finite partners, then this triplet of generators

defines the new infinite vertex.

5. Finally, each pair of the infinite vertices that have two gener

ators in common is provided with the pointers to each

other.

It should be noted that the search for the vertices to be

deleted (step 1) is not required to be exhaustive. We start with

an arbitrary finite vertex and, if it survives, jump to its finite

partner that has the smallest difference between the power dis

tance to the new atom and the power value. We iterate these

jumps until we come to a vertex for which this difference is

negative and find, in this way, the first vertex to be deleted.

(In the case then all possible jumps would lead to an increase

of the specified difference, we check if the infinite partners are

to be deleted. If not, the new atom does not contribute to the

power diagram.) As soon as the first vertex is found, the fur

ther search becomes trivial, because all the vertices to be

deleted can be reached by jumps from one such vertex to

another. The search efficiency improves when the starting ver

tex belongs to a cell of the atom that is covalently bound to

the new one. In this case, the time required for adding a new

atom does not depend explicitly on j, but only on the local

surrounding. Thus, for usual molecular conformations, the

entire algorithm scales almost linearly with the total number of

atoms.

The power diagram constructed by the above algorithm

occupies the whole space, which is somewhat redundant, as we

are interested only in the region near the simulated molecule.

The efficiency and numerical stability of the algorithm can be

further improved if we restrict the construction of the power

diagram to some fixed parallelepiped comprising the molecule.
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