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Abstract
We describe software for symbolic computations that we developed in order to find
Hamiltonian operators for Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations,
andverify their compatibility. The computation involves nonlocal (integro-differential)
operators, for which specific canonical forms and algorithms have been used.

Keywords WDVV equations · Hamiltonian operators · Schouten bracket · Symbolic
computations · Integro-differential operators · Weakly nonlocal operators
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1 Introduction

The Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations, also known as asso-
ciativity equations, originated in 2D-topological field theory, but they acquired
mathematical interest from the work of B. Dubrovin [6], who showed the deep con-
nections between solutions of WDVV equations and integrable systems of PDEs, in
particular, bi-Hamiltonian hierarchies.
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916 J. Vašíček, R. Vitolo

Recently [25], we proved that, in low dimensions, theWDVV equations themselves
are bi-Hamiltonian systems of PDEs. The proof required sophisticated symbolic com-
putational tools that have been only recently made available [4, 5].

In this paper, we would like to describe the algorithms and symbolic software that
we developed in order to carry out the computations in [25]. To do that, let us first
describe the mathematical problem that we solved. Following [7], in R

N we are to
find a function F = F(t1, . . . , t N ) such that

1.
∂3F

∂t1∂tα∂tβ
= ηαβ is a constant symmetric nondegenerate matrix;

2. cγ
αβ = ηγ ε ∂3F

∂tε∂tα∂tβ
are the structure constants of an associative algebra;

3. F is quasihomogeneous: F(cd1 t1, . . . , cdN t N ) = cdF F(t1, . . . , t N ).

The conditions of associativity, or WDVV equations, are the system of PDEs

ημλ ∂3F

∂tλ∂tα∂tβ
∂3F

∂tν∂tμ∂tγ
= ημλ ∂3F

∂tν∂tα∂tμ
∂3F

∂tλ∂tβ∂tγ
. (1)

Item 1 implies that F can be rewritten as

F = 1

6
η11(t

1)3 + 1

2

∑

k>1

η1k t
k(t1)2 + 1

2

∑

k,s>1

ηsk t
s tk t1 + f (t2, . . . , t N ), (2)

up to a second degree polynomial of the field variables. This implies that the WDVV
system is an overdetermined system in one unknown function f of N −1 independent
variables.

A technique introduced in [17] (see also [10]) allows to rewrite the WDVV system
as N − 2 commuting quasilinear first-order systems of conservation laws of the form

uit = (V i (u))x , i = 1, . . . , n. (3)

For example, if N = 3 and

ηαβ = δα+β,N+1 =
⎛

⎝
0 0 1
0 1 0
1 0 0

⎞

⎠ , (4)

there is only one WDVV equation:

ft t t = f 2xxt − fxxx fxtt . (5)

Introducing the new coordinates a = fxxx , b = fxxt , c = fxtt we have the compati-
bility conditions

⎧
⎨

⎩

at = bx ,
bt = cx ,
ct = (b2 − ac)x .

(6)
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WDVV equations: symbolic computations of Hamiltonian… 917

The above representation allowed to look for a bi-Hamiltonian formalism. That was
found in [9]: the right-hand side of (6) was rewritten in two ways

uit = Ai j
1

δH2

δu j
= Ai j

2
δH1

δu j
, (7)

where δ/δui stands for the variational derivative, H1 and H2 are two Hamiltonian
densities and A1, A2 are two compatible local Hamiltonian operators. Here, ‘compat-
ible’ means that the pencil A1 + λA2 is a Hamiltonian operator for every value of
the parameter λ. We recall that the Hamiltonian property for a differential operator is
equivalent to differential conditions on its coefficients, to be discussed later. Such a
property is crucial for the integrability of the system of PDEs.

Only a few other examples of bi-Hamiltonian WDVV systems were known until
recently. In [25] we were able to prove that, for N = 3, all WDVV systems admit a
bi-Hamiltonian formulation, with Hamiltonian operators of the form

Ai j
1 =gi j∂x + �

i j
k u

k
x + αV i

qu
q
x∂

−1
x V j

p u
p
x

+ β
(
V i
qu

q
x∂

−1
x u j

x + uix∂
−1
x V j

q u
q
x

)
+ γ uix∂

−1
x u j

x , (8)

A2 =∂x (h
i j∂x + ci jk u

k
x )∂x , (9)

with suitable Hamiltonian densities H1 and H2. We observe that A1 is a nonlocal first-
order homogeneous Hamiltonian operator of Ferapontov type [8]. That is a member
of a more general family of nonlocal operators, namely weakly nonlocal operators,
that is discussed in [5]. In this context, ‘nonlocal’ means integro-differential operator
(derivatives are taken with respect to the variable x). A2 is a local third-order homoge-
neous Hamiltonian operator in canonical form [11, 12]. See more on these operators
in next Section.

One of the computations that is needed in order to prove the bi-Hamiltonian property
is the compatibility of the operators. That is made difficult by the fact that one of the
operators is weakly-nonlocal (the Ferapontov operator A1). The computation has been
made possible by the recent computer algebra packages developed in [4].

Here we will describe how we used the Reduce computer algebra system, see
https://reduce-algebra.sourceforge.io/, and its CDE package in particular (see [14] for
a general description and [4] for calculations with weakly-nonlocal operators) in the
nontrivial calculations that led to the results presented in [25]. We also checked some
of the computations in Maple using the package jacobi.mpl from [4]. Maple was
also used in a significant part of the computation in the case N = 5.

All files that are described in the text can be found in a GitHub repository. The
files are also downloadable as a single .zip file, see [26].

2 Computing the first-order Hamiltonian operator A1

Below we will focus on finding a first-order, weakly nonlocal Hamiltonian operator
of Ferapontov type.
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918 J. Vašíček, R. Vitolo

In the expression (8) (gi j ) is a non-degenerate matrix of functions of the field
variables (ui ), whose inverse (gi j ) can be interpreted as a covariant 2-tensor. The
matrix V i

q is just the Jacobian of the vector function (V i ) of the fluxes of the system (3),
and α, β, γ are three constants.

The Hamiltonian property of A1 is equivalent to the following conditions [8]:

– gi j is symmetric;
– �i

jk = −g js�
si
k are the Christoffel symbols of gi j , regarded as a metric;

– the identities:

gikV j
k = g jkV i

k , (10a)

∇kV
i
j = ∇ j V

i
k , (10b)

Ri j
kl = α

(
V i
k V

j
l − V i

l V
j
k

)

+ β
(
V i
k δ

j
l − V j

k δil − V i
l δ

j
k + V j

l δik
) + γ (δikδ

j
l − δil δ

j
k ) (10c)

hold, where∇ denotes the covariant derivative with respect to the Levi–Civita connec-
tion of gi j and R

i j
kl = gis R j

skl is theRiemannian curvature tensor. The above conditions
also imply that the operator is a Hamiltonian operator for the system of PDEs (3) [24,
27].

Thus, finding an operator (8) actually reduces to finding the constants α, β and γ

and the metric gi j . However, finding the metric in general is by no means an easy
computational task. To this end, we shall use a theorem from [2] which states that
the metric of a first-order Hamiltonian operator for a non-diagonalizable quasilinear
first-order system in n = 3 unknown functions is proportional to a contraction of the
square of the Haantjes tensor:

gi j = f Hα
iβH

β
jα = f Hi j , f = f (u). (11)

We recall that the Haantjes tensor is obtained from (V i ) and its derivatives by means
of a straightforward formula (see [25]).

After this simplification we are left with a much less demanding computational
problem – we need to find one unknown function f (u) and the above constants. To
this end, we will use a computer algebra system to determine our unknowns.

2.1 The computation

The computation of a nonlocal first-order operator is divided into three smaller steps.
Firstly, we will write down the candidate metric gi j = f Hi j and check (10a). Next
we will solve the Eq. (10b) which will yield an explicit form of the metric gi j and as
a final step, we find the constants α, β and γ after plugging the found metric into the
condition (10c).Wewill concentrate on a case fromMokhov-Pavlenko’s classification
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WDVV equations: symbolic computations of Hamiltonian… 919

[18], where the determining matrix η has the following form:

η4 =
⎛

⎝
1 0 0
0 λ 0
0 0 μ

⎞

⎠ , λ2 = 1, μ2 = 1, (12)

since it is not as computationally demanding and can be solved in full generality with
respect to the constants λ,μ. The WDVV equation takes the form:

μ f 2xxt − μ fxxx fxtt + λ f 2xtt − λ fxxt ft t t − 1 = 0. (13)

After introducing the coordinates u1 = fxxx , u2 = fxxt , u3 = fxtt we obtain the
first-order WDVV system in conservative form:

u1t = u2x ,

u2t = u3x ,

u3t =
(

μ((u2)2 − u1u3) + λ(u3)2 − 1

λu2

)

x
.

(14)

All files used for computation are available at a GitHub repository [26].

2.1.1 The first step

The following computation can be found in the file WDVV-3c-Eta4\dne3_lho2.
red. In Reduce, we start by loading the package cde and initialization of our envi-
ronment by the following sequence:

indep_var:= {x};
dep_var:= {u1,u2,u3};
total_order:= 8;
cde({indep_var,dep_var,{},total_order},{});

followed by initialization of the right hand-side of the system:

de:={u2_x, u3_x,
td((mu*u2ˆ2 - mu*u1*u3 + lam*u3ˆ2 - 1)/(lam*u2),x)};

where the last element is just the WDVV equation. Next, define the velocity matrix
V i
j (and its operator) of our system:

nc:=length(dep_var);
matrix av(nc,nc);
for i:=1:nc do

for j:=1:nc do
av(i,j):=df(part(de,i),part(ford_var,j));

operator avt;
for i:=1:ncomp do for j:=1:ncomp do

avt(i,j):=av(i,j);
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920 J. Vašíček, R. Vitolo

We also need to load a riemann4.red library in order to generate the Nijenhuis
and Haantjes tensors by the commands:

generate_all_nt(avt,dep_var);
generate_all_ht(avt,dep_var);

And finally the contraction of the square of Haantjes tensor is obtained by:

temphtc:={};
matrix hmet(nc,nc);
for i:=1:nc do

for j:=1:nc do
hmet(i,j):=
<<

temphtc:=for k:=1:nc join for h:=1:nc collect
riemann_list2ids({ht_,k,i,h})*riemann_list2ids
({ht_,h,j,k});
part(temphtc,0):=plus

>>;

As a last step we check the symmetry condition HihV h
j = HjhV h

i :

for i:=1:nc do for j:=i+1:nc do
<<

templhs:=(for h:=1:nc sum hmet(i,h)*av(h,j));
temprhs:=(for h:=1:nc sum hmet(j,h)*av(h,i));
write templhs - temprhs

>>;

and save the result hmet for later computations. We remark that, by construction,
hmet is a rational function of the field variables u1, u2, u3 and the parameters
lam, mu.

2.1.2 The second step

The following computation can be found in the file WDVV-3c-Eta4\dne3_lho3.
red. We, again, start by initializing the environment as in previous step. After con-
structing the velocity matrix V i

j and loading the previous result we proceed to defining
the metric gi j as a functional factor of the contraction of the square of the Haantjes
tensor:

for each el in dep_var do depend f,el;
gl1:=f*hmet;

Besides the metric itself, we will need its inverse gi j and Christoffel symbols of the
third kind �

i j
k (which are constructed inside the package riemann3.red by means

of Christoffel symbols of the first and second kind):
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WDVV equations: symbolic computations of Hamiltonian… 921

gu1:=gl1ˆ(-1);
operator gl1_op,gu1_op;
for i:=1:nc do for j:=1:nc do gl1_op(i,j):=gl1(i,j);
for i:=1:nc do for j:=1:nc do gu1_op(i,j):=gu1(i,j);

generate_all_chr1(gl1_op,chr1_,dep_var);
generate_all_chr2(gl1_op,gu1_op,chr1_,chr2_,dep_var);
generate_all_chr3(gl1_op,gu1_op,chr2_,chr3_,dep_var);

operator gamma_hi;
for i:=1:nc do for j:=1:nc do for k:=1:nc do

gamma_hi(i,j,k):=mk_chr3(chr3_,i,j,k);

To find the coefficients of the metric we will use the condition (10b) which is in
our case equivalent to:

V k
j �

si
k = V s

k �ki
j .

Hence, we first construct the left and right hand-side respectively:

operator ag1;
for all s,i,j let ag1(s,i,j)=

(for k:=1:nc sum av(k,j)*gamma_hi(s,i,k));
operator ag2;
for all s,i,j let ag2(s,i,j)=

(for k:=1:nc sum av(s,k)*gamma_hi(k,i,j));

and we assemble the system:

total_eq:=
for i:=1:nc join

for j:=1:nc join
for s:=1:nc collect

ag1(s,i,j) - ag2(s,i,j);

Using the package crack, a solver of overdetermined systems of PDEs [28, 29],
we obtain a solution for our unknown function f (u) by the following sequence:

split_vars:=cde_difflist(all_parametric_der,dep_var);

splitvars_total_eq:=splitvars_list(total_eq,split_vars);

unk:={f};

load_package crack;
lisp(max_gc_counter:=10000000000);
crack_results:=crack(splitvars_total_eq,{},unk,{});

sol_unk:=second first crack_results;
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922 J. Vašíček, R. Vitolo

Then by a mere substitution, have the explicit form of the metric g:

gl1:=sub(sol_unk,gl1);
gu1:=sub(sol_unk,gu1);

We again export this result in order to finish the final step - finding the nonlocal
part of the first-order operator.

2.1.3 The third step

The following computation can be found in the file WDVV-3c-Eta4\dne3_lho4.
red. At last, we need to find the nonlocal tail of the operator A1. We simply need to
plug everything we found into the condition (1) and see for which values of constants
α, β, γ it is satisfied.

As usual, we initialize the environment. As an addition to that we load the results
from the previousfile and then construct themetric and generate all Christoffel symbols
�
i j
k :

gl1:=gu1ˆ(-1);

operator gl1_op,gu1_op;
for i:=1:nc do for j:=1:nc do gl1_op(i,j):=gl1(i,j);
for i:=1:nc do for j:=1:nc do gu1_op(i,j):=gu1(i,j);

generate_all_chr1(gl1_op,chr1_,dep_var);
generate_all_chr2(gl1_op,gu1_op,chr1_,chr2_,dep_var);
generate_all_chr3(gl1_op,gu1_op,chr2_,chr3_,dep_var);

Let us also define the identity matrix which will represent the Kronecker δij :

idm:=mat((1,0,0),(0,1,0),(0,0,1));

and finally assemble the condition (10c):

eq_curv:=for i:=1:nc join
for j:=1:nc join

for k:=1:nc join
for h:=1:nc collect

riem3(gl1_op,gu1_op,chr2_,i,j,k,h,dep_var) -
alp*(av(i,k)*av(j,h) - av(i,h)*av(j,k)) -
bet*(av(i,k)*idm(j,h) - av(j,k)*idm(i,h) -

av(i,h)*idm(j,k) + av(j,h)*idm(i,k)) -
gam*(idm(i,k)*idm(j,h) - idm(i,h)*idm(j,k));

The system is a rational expression that should vanish for any value of the field
variables u1, u2, u3. That yields an overdetermined linear system on the coef-
ficients alpha, beta, gamma that can be solved only if alp=mu, bet=0,
gam=lam. The substitution:
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WDVV equations: symbolic computations of Hamiltonian… 923

A:=sub({
alp=mu,
bet=0,
gam=lam
},eq_curv);

write eq_curv;

yields a list of non-zero equations in terms of the parameters mu, lam. However, we
should check only for all the possible combinations of the values of constants μ, λ:

sub({mu=1,lam=1},A);
sub({mu=-1,lam=1},A);
sub({mu=1,lam=-1},A);
sub({mu=-1,lam=-1},A);

which finally yields four lists of zeroes.
The metric gi j that defines A1, according with the expression (8), is:

gi j = λ

μ

⎛

⎜⎝
−a2μ − b2λ − 4μλ −b(aμ + cλ) −b2μ − c2λ − 1

−b(aμ + cλ) −b2μ − c2λ − 1 c(acμ−2b2μ−c2λ+1)
b

−b2μ − c2λ − 1 c(acμ−2b2μ−c2λ+1)
b

δ
b2

⎞

⎟⎠ , (15)

where δ = 2ab2cλ−a2c2λ+2ac3μ−2acμλ−b4λ−3b2c2μ−2b2μλ−c4λ+2c2−λ

and the values of constants in (8) are α = μ, β = 0, γ = λ, with λ,μ = ±1.

3 Computing the third-order Hamiltonian operator A2

To find a bi-Hamiltonian structure for the system (3) we need a second Hamiltonian
operator compatible with A1. It was proved in [25] that in the case N = 3, 4 and
5 the WDVV systems admit a third-order homogeneous Hamiltonian operator in the
canonical form

A2 = ∂x (h
i j∂x + ci jk u

k
x )∂x (16)

(we always require det (hi j ) �= 0; (hi j ) denotes the inverse matrix). We recall that the
Hamiltonian property of A2 is equivalent to the conditions

ci jk = 1

3
(hik, j − hi j,k). (17a)

hmk,s + hks,m + hms,k = 0, (17b)

cmsk,l = −h pqcpmlcqsk . (17c)

and that the Eq. (17b) implies that hi j is a Monge metric [11, 12]. For computational
purposes, that implies that the coefficients hi j are quadratic polynomials of the field
variables.
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924 J. Vašíček, R. Vitolo

Then, it is also known [13] that the conditions under which a third-order Hamil-
tonian operator is the Hamiltonian operator for a quasi-linear system of first-order
conservation laws are:

himV
m
j = h jmV

m
i , (18a)

cmklV
m
i + cmikV

m
l + cmli V

m
k = 0, (18b)

hksV
k
i j = csmj V

m
i + csmi V

m
j . (18c)

Thus, with respect to the problem of finding a third-order operator forWDVV systems,
knowing the vector of fluxes (V i (u)) reduces the above system of equations to a linear
system of algebraic equations in the coefficients of the quadratic polynomials hi j that
can be solved in short time for small values of N .

For the particular example that we discussed in the previous section (system (14))
we can easily solve the system (18) and verify that the unique solution hi j that we
get fulfills the conditions (17b) and (17c). This implies that hi j generates a third-
order homogeneous Hamiltonian operator (16) using the formula (17a). We have the
expression:

hi j =
⎛

⎝
b2 + μ bμ(λc − μa) −μλb2

bμ(λc − μa) λ + a2 − λc(2μa − λc) λb(μa − λc)
−μλb2 λb(μa − λc)) b2

⎞

⎠ . (19)

As this computation is not using any special package, there is no need to go into
details in the code itself. The computation is provided in the file WDVV-3c-Eta4
\wdvv_3ord_op_eta4.red

4 Compatibility of the Hamiltonian operators A1, A2

A bi-Hamiltonian system is just a system of PDEs which is Hamiltonian with respect
to two Hamiltonian operators, A1 and A2 in our case, which are compatible. The
compatibility condition can be either checked by means of the requirement that the
pencil A1 + λA2 is a Hamiltonian operator for every value of the parameter, or,
equivalently, by computing the Schouten bracket [A1, A2] (see [5]).

However, tensorial conditions which are equivalent to the compatibility condition
of A1 and A2 as in our case are not available. So, the calculation should be made
through the definition, which makes a pen-and-paper approach to the problem almost
completely unfeasible. This is also due to the fact that an algorithm to do the calculation
in the nonlocal case was missing until recently. A computational algorithm [5] and
software packages [4] became available a short time ago. Through this software we
checked the compatibility of the operators A1 and A2.

All of the computations described below are contained in the files wdvv_comp_
nl1_eta4.red and wdvv_comp_nl2_eta4.red. For convenience they are
split into two separate files where in the first one we check the bracket [A1, A1] and
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WDVV equations: symbolic computations of Hamiltonian… 925

then in the second file we check the compatibility condition [A1, A2]. Let us focus on
the second computation.

We start as usual by initializing the environment:

indep_var:= {x};
dep_var:= {u1,u2,u3};
total_order:= 8;
cde({indep_var,dep_var,{},total_order},{});

de:={u2_x, u3_x,
td((mu*u2ˆ2 - mu*u1*u3 + lam*u3ˆ2 - 1)/(lam*u2),x)};

From now on, we initialize the Ferapontov operator A1. Themetric of the first-order
operator is loaded from another file:

in "dne3_lho3_res.red";
gu1:=gl1**(-1);

To construct the local part we further need to initialize the Christoffel symbols �
i j
k

in the same way as before. We construct the local part of the operator by the following
lines:

operator b;
for i:=1:nc do for j:=1:nc do

b(i,j):=for k:=1:nc sum mk_chr3(chr3_,i,j,k)
*part(dv1,k);

mk_cdiffop(ham1_l,1,{3},3);
for all i,j,psi let ham1_l(i,j,psi)=

gu1(i,j)*td(psi,x) + b(i,j)*psi;

where b represents the contraction �
i j
k (u)ukx .

The other, nonlocal, part of our operator consists of a nonlocal tail which is defined
by the previously found values of constants α, β, γ :

mk_wnlop(c,w,2);
c(1,1):= mu;
c(2,2):= rho;
c(1,2):=0;
c(2,1):=0;
for i:=1:nc do w(i,1):=(for j:=1:nc sum av(i,j)
*part(dv1,j));
w(1,2):=u1_x;
w(2,2):=u2_x;
w(3,2):=u3_x;

Here the constants are represented by a symmetric matrix ci j ;wk
i on the other hand

represents the nonlocal terms.
Now, we import the metric (in lower indices) of the third-order operator, stored in

gl3, and we generate the constants ci jk = 1
3 (hki, j − h ji,k):
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926 J. Vašíček, R. Vitolo

operator c_lo;
for i:=1:nc do for j:=1:nc do for k:=1:nc do

c_lo(i,j,k):= (1/3)*(df(gl3(k,i),part(dep_var_equ,j))
- df(gl3(j,i),part(dep_var_equ,k)));

then we raise two indices:

templist:={};
operator c_hi;
for i:=1:nc do for j:=1:nc do for k:=1:nc do

c_hi(i,j,k):=
<<
templist:=

for m:=1:nc join for n:=1:nc collect
gu3(n,i)*gu3(m,j)*c_lo(m,n,k);

templist:=part(templist,0):=plus
>>;

and finally we need the contraction ci jk u
k
x :

operator c_hi_con;
for i:=1:nc do for j:=1:nc do

c_hi_con(i,j):=
<<
templist:=for k:=1:nc collect

c_hi(i,j,k)*mkid(part(dep_var_equ,k),!_x);
templist:=part(templist,0):=plus

>>;

We assemble the local part:

mk_cdiffop(ham2_l,1,{3},3);
for all i,j,psi let ham2_l(i,j,psi) =
td( gu3(i,j)*td(psi,x,2)+c_hi_con(i,j)*td(psi,x), x);

and even though there is no nonlocal part, we need to introduce a zero tail:

mk_wnlop(d,z,1);
d(1,1):=0;
for i:=1:nc do z(i,1):=0;

and put the two parts together:

ham2:={ham2_l,d,z};

All that remains to do is to configure the nonlocal variables. Here we have two
distinct operators so we need three nonlocal variables and their names will be different
this time:

nloc_var:={{tpsi,w,1},{tpsi,w,2},{tchi,z,1}};
nloc_arg:={{tpsi,w},{tchi,z}};
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WDVV equations: symbolic computations of Hamiltonian… 927

Finally we prepare the jet space

dep_var_tot:=cde_weaklynl(
indep_var,dep_var_equ,loc_arg,nloc_var,total_order);

and run the computation:

sb_res:=schouten_bracket_wnl(
ham1,ham2,dep_var_equ,loc_arg,nloc_arg);

We have to plug in all the possible combinations of values μ, λ = ±1 to obtain the
desired result:

A:=sub({mu=1,rho=1},sb_res);
B:=sub({mu=-1,rho=1},sb_res);
C:=sub({mu=1,rho=-1},sb_res);
D:=sub({mu=-1,rho=-1},sb_res);

the result is always zero.
Thus we have proved by a direct computation that previously found operators A1

and A2 are compatible Hamiltonian operators.

5 A computation in Maple using jacobi

In this section we describe another tool which might be used to check if a weakly non-
local operator is Hamiltonian and possibly compatible with another one: the package
jacobi [4]. Since that package is written in Maple some readers might find it more
convenient, and we thought that it is worth to explain how to achieve the same result
with a different computer algebra system.

The main structural difference with the computation in the previous section is that
jacobi uses the language of distributions, which is more popular among Theoretical
Physicists.

The plan is the same as before, we need the metrics of both operators to generate
their local parts and the three constants for the nonlocal part. However the notation is
slightly different and that will be the main point of this section.

For the following computationwealsoneed the externalMaple libraryjacobi.mpl
which can be found on [23]. The computation itself is contained in the file
WDVV-3c-Compat_Example_Eta4.mw. For simplicity, we consider λ = μ = 1
for this case.

We start by constructing A1. The metric is declared as follows:

g1 := Matrix(N, N);
g1[1, 1] := -u[1, x, 0]ˆ2-u[2, x, 0]ˆ2-4;

where by u[1, x, 0] we denote in our case u10x (with the convention u0x = u).
Other coefficients are defined in a similarway.After thematrix, we need theChristoffel
symbols which can be computed in Maple or, if we have them available from previous
computations, input them as a three-dimensional field:
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Gamma1 := Array(1 .. N, 1 .. N, 1 .. N);
Gamma1[1, 1, 1] := -u[1, x, 0];
Gamma1[1, 1, 2] := -u[2, x, 0];

and so on. Next, we input the two tail vectorsW1X and W1Ywhich in this notation differ
only by using a different symbol for the independent variable. The W1X is introduced
as follows:

W1X := Matrix(N, N)
W1X[1] := u[2, x, 1];
W1X[2] := u[3, x, 1];
W1X[3] := (-u[1, x, 0]*u[2, x, 0]*u[3, x, 1]+

+u[1, x, 0]*u[2, x, 1]*u[3, x, 0]-
-u[1, x, 1]*u[2, x, 0]*u[3, x, 0]+
+u[2, x, 0]ˆ2*u[2, x, 1]+2*u[2, x, 0]*u[3, x, 0]*u

[3, x, 1]-
-u[2, x, 1]*u[3, x, 0]ˆ2+u[2, x, 1])/u[2, x, 0]ˆ2;

and the same goes for W1Y with y instead of x . The first-order nonlocal operator A1
is then assembled by:

A1 := Array(1 .. N, 1 .. N, 0 .. M);
for i to N do

for j to N do
A1[i, j, 0] := g1[i, j]*delta[x-y, 1]+

add(Gamma1[i, j, k]*u[k, x, 1], k = 1 .. N)*
delta[x-y, 0]+W1X[i]*delta[x-y, -1]*W1Y[j]+
+u[i, x, 1]*delta[x-y, -1]*u[j, y, 1]

end do
end do;

Next for the third-order operator we need its metric hi j as well as constants c
i j
k . We

input the metric, denoted by g3, as before and, similarly to Christoffel symbols for
the previous metric, the constants ci jk are handled as a three-dimensional field:

c_hi := Array(1 .. N, 1 .. N, 1 .. N);
c_hi[2, 3, 1] := -1/u[2, x, 0];
c_hi[2, 3, 2] := (u[1, x, 0]-u[3, x, 0])/u[2, x, 0]ˆ2;
c_hi[3, 3, 1] := 1/u[2, x, 0];

and so on. For the local operator the tail matrix is just a zero matrix:

W3 := Matrix(N, N)

Finally, the operator A3 is assembled by:

A3 := Array(1 .. N, 1 .. N, 0 .. M)
for i to N do

for j to N do
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A3[i, j, 0] := g3[i, j]*delta[x-y, 3]
+add(

(diff(g3[i, j], u[k, x, 0])+c_hi[i, j, k])
*u[k, x, 1],
k = 1 .. N)*delta[x-y, 2]

+add(
add(

(diff(c_hi[i, j, h], u[k, x, 0]))*u[k, x, 1]
*u[h, x, 1],
k = 1 .. N)+c_hi[i, j, h]*u[h, x, 2],

h = 1 .. N)*delta[x-y, 1]
end do

end do;

We can then proceed to computing the Schouten bracket itself.We load the package
jacobi by:

read ‘jacobi.mpl‘;

The bracket is calculated by the following command and saved into an array T3:

T3 := Array(1 .. N, 1 .. N, 1 .. N);
Schouten_bracket(A3, A3, T3, N, M);

We can view the result just by printing the contents of T3 (further simplification
might be needed):

for i to N do
for j to N do

for k to N do
print(T3[i, j, k])

end do
end do

end do;

The samecommand is used for computing theSchoutenbracket of [A1, A3], proving
the compatibility of the two operators:

T13 := Array(1 .. N, 1 .. N, 1 .. N);
Schouten_bracket(P1, P3, T13, N, M);

6 Large scale computations

While doing the above computations for N = 3 is not a time demanding task, the
situation quickly changes for N = 4, where just finding the third-order operator
usually takes around 5 h on an average PC. To obtain the results for N = 5 in a similar
way one would have to have an access to a huge amount of computational resources.

In this section, we describe the way in which we found the third-order operators in
the case N = 5 (results in [25]). Since we did not even try to find a first-order operator
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when N = 5, we will not deal with related problems. Only partial results are known
in the case N = 4 [20].

There are two ways how to approach this problem. First, we could find a powerful
enough machine to handle this computation. However, we are talking about hundreds
of GB of RAM memory and possibly a week of computing time.

The other option is to optimize the computation itself, so that it not excessively
resource-demanding. It can be done in a few ways, but the most effective at the begin-
ning is to reduce the number of equations we try to solve at once.

As both approaches were used to obtain the results for N = 5 let us
explore those below in more detail. All files used below are in a separate folder
\WDVV-5c-Large_scale.

6.1 Using a supercomputer

If you have an access to a supercomputer it could be beneficial to try to use a rather
“brute force” approach. Given the fact we cannot say for sure how many equations
need to be solved in order to obtain the solution, it is by far the best first try.

To obtain the result in case of N = 5 for a canonical choice of η we have used
the whole super-computing grid provided by a virtual organization CESNET – Meta-
Centrum. The command to start the computation on the grid can be found in the file
starter.sh.

It is also important tomention thatwe need to provide the filewith the generated sys-
tem in the conservative form as the algorithm has not been transferred into Maple yet.
The algorithm itself is contained inside the file w10_hydro_system_gen.red
whose output file (w10_eta2_eq.red) is then loaded intoMaple. Finding the quasi-
linear system in the conservative form using an algorithm was described in detail in
[25] and is an interesting computational problem. However, since the program literally
follows the steps described there, we will omit repeating the details. Note that some
syntax adjustments are required before importing.

After we obtain the result from a remote computation it is important to have an
independent check. We will use Reduce, file w10_ham1_eta2_check.red. We
initialize as usual:

load_package cde;

nc:=10;

indep_var:={x};
dep_var:=for i:=1:10 collect mkid(a,i);
total_order:=6;
resname:="w10_ham1_eta_check_res.red";

cde({indep_var,dep_var,{},total_order},{});

in "w10_eta1_eq_transformed.red";
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cap_v:=for each el in cons_laws_system collect second el;

in "w10_eta_gl3.red";

where in the files w10_eta2_eq.red and w10_eta_gl3.red we saved the
general WDVV system and the result of the computation—the metric hi j respectively
which again needs to be transformed into the proper syntax.

Then we need to confirm that the Eq. (18) holds for the metric hi j already in place
(in form of the constants ci jk) to confirm the compatibility with the first-order system.
Lastly we need to check the Hamiltonian condition which we assemble by:

gu3:=gl3**(-1);
for k:=1:nc do
for l:=1:nc do
for m:=1:nc do
for n:=1:nc do

<< if
df(c_lo(m,n,k),part(dep_var,l)) + (

for i:=1:nc sum (
for j:=1:nc sum (

gu3(i,j)*c_lo(i,m,l)*c_lo(j,n,k)
))

) neq 0 then rederr "Error - not Hamiltonian!"
>>

which also passes in our case and confirms the result obtained by a super-computation.

6.2 Simplifying the computation

If we look into the algorithm we can quickly realize that it is massively inefficient in
the sense of computational resources. The unknowns are exactly the coefficients of the
quadratic polynomials in the metric of the third-order operator. In the case of N = 5
we need to find 1540 unknown constants.

On the other hand, the conditions (18) generate 2100 equations but those equations
are polynomial with respect to the field variables. We need to collect the coefficients
of each monomial out. There will be an immense amount of those collected equations.
Just for comparison, in the case N = 4 we have 231 unknown coefficients, slightly
more than 450 equations polynomial in the field variables and we generate around
350,000 of such linear equations.

It is now obvious that solving all of the collected equations is completely unnec-
essary and in this case a waste of resources. We could try to make an algorithm that
will solve only a few of the equations which are polynomial in the field variables at
once, plug the result into the rest and repeat the process batch by batch until all the
equations are solved. This process could work, however, it is very hard to predict how
much resources it will consume and what is the optimal size of the mentioned batch.
The two extreme cases being the batch is too small and the number of iterations will
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project into the time of the computation or the batch being too big literally clogging
the memory and maybe never finish.

There is certainly enough space to optimize the whole process of solving those
massively over-determined system of linear equations. However, by experiment we
have found out that in our case there are around 60 equations out of the original 2100
polynomial ones needed to completely solve the posed problem. They originate from
the system (20) below.

Also, saving partial results in the whole process is an absolute must. While the
setup of the problem does not consume much time, relative to solving it, it is much
easier to plug in a partial result from earlier and continue the computation.

More specifically, instead of solving the whole set of equations (18) we can simply
restrict the system to

hikV
k
j = h jkV

k
i , i, j, k = 1, . . . , 4. (20)

This computation takes around 8 hours on an average PC and the result is checked in
the same way as in the previous case.

7 Conclusions

In this paper we described the computations that we performed in [25] in order to
support the conjecture that all WDVV equations are endowed with bi-Hamiltonian
formalism. These are symbolic software calculations that are nontrivial under both the
viewpoint of the mathematical algorithm and the viewpoint of the symbolic program-
ming that is needed to achieve the goal.

However, we think that further computational goals might be achieved to support
and broaden the above conjecture.

– First of all, in the N = 4 case the bi-Hamiltonian property has been proved only
for one of the two canonical forms of η, η(1). This was a result found in [20]. For
the system arising from the second canonical form η(2) we found a third-order
operator but we haven’t even tried to find a first-order operator. It should be said
that the method that we used in the case N = 3, coming from a characterization in
[2], is not applicable in higher dimensions, hence the calculation might be a real
challenge. Of course, the case N = 5 is even harder.
A way to find a first-order operator might be to restrict the search to matrices gi j

of rational functions of a certain degree. This common pattern can be observed in
our examples (see also [25]) and might greatly simplify the search.
More generally, it should be possible to program a cde or jacobi computation
of all first-order nonlocal operators that are compatible with a given third-order
operator. This is a task for a future research project.

– Then, there is a well-known generalization of the WDVV equations, the oriented
associativity equation [15]. These equations and the associated geometric struc-
tures are called F-manifolds with compatible flat structures [16], or simply flat
F-manifolds. They share many properties with WDVV equations and Dubrovin-
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Frobenius manifolds including the existence of an associated integrable dispersive
hierarchy (see [1] for details).
We observe, in particular, that the oriented associativity equation has an infinite
hierarchy of nonlocal symmetries [22], a first-order local Hamiltonian operator of
the same type as A1 [19] and a third-order nonlocal Hamiltonian operator which
is the straightforward generalization of A2 [3, 21].
Until now, the results on Hamiltonian operators are known only for one of the
simplest cases of oriented associativity equation; more calculations are needed in
order to support a conjecture on the bi-Hamiltonianity of the F-manifold equation.
Indeed, the compatibility of A1 and A2 is still an open question even in the simplest
case, see [21] for a discussion.

The above problems are on our schedule.

Acknowledgements R.V. would like to thank P. Lorenzoni and A. Sergyeyev for useful comments and
suggestions. Computational resources were supplied by the project “e-Infrastruktura CZ” (e-INFRA CZ
LM2018140) supported by theMinistry of Education, Youth and Sports of the CzechRepublic. The research
of J.V.was supported in part by the SpecificResearch grant SGS/13/2020 of the SilesianUniversity inOpava,
Czechia. The research of R.V. has been funded by the Dept. of Mathematics and Physics “E. De Giorgi” of
the Università del Salento, Istituto Naz. di Fisica Nucleare IS-CSN4 Mathematical Methods of Nonlinear
Physics, GNFM of Istituto Nazionale di Alta Matematica.

Funding Open access funding provided by Universitá del Salento within the CRUI-CARE Agreement.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Arsie, A., Buryak, A., Lorenzoni, P., Rossi, P.: Flat F-manifolds, F-CohFTs, and integrable hierarchies.
Commun. Math. Phys. 1, 2 (2021). https://doi.org/10.1007/s00220-021-04109-8

2. Bogoyavlenskij, O.I.: Necessary conditions for existence of non-degenerate Hamiltonian structures.
Commun. Math. Phys. 182, 253–290 (1996)

3. Casati, M., Ferapontov, E.V., Pavlov,M.V., Vitolo, R.F.: On a class of third-order nonlocal Hamiltonian
operators. J. Geom. Phys. 138, 285–296 (2019). https://doi.org/10.1016/j.geomphys.2018.10.018

4. Casati, M., Lorenzoni, P., Valeri, D., Vitolo, R.: Weakly nonlocal Poisson brackets: tools, examples,
computations. (2021). arXiv:2101.06467

5. Casati, M., Lorenzoni, P., Vitolo, R.: Three computational approaches to weakly nonlocal poisson
brackets. Stud. Appl. Math. 144(4), 412–448 (2020). https://doi.org/10.1111/sapm.12302

6. Dubrovin, B.A.: Geometry of 2D topological field theories. In: Integrable systems and quantum
groups, volume 1620 of Lect. Notes Math., pp. 120–348. Springer, Berlin, Heidelberg (1996).
arXiv:org/abs/hep-th/9407018

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00220-021-04109-8
https://doi.org/10.1016/j.geomphys.2018.10.018
http://arxiv.org/abs/2101.06467
https://doi.org/10.1111/sapm.12302
http://arxiv.org/org/abs/hep-th/9407018
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