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Abstract
In the sense of Baire categories, we prove that the elements of a typical pair of univariate
distribution functions (defined on a bounded subset of R) cannot be compared in the sense of
the usual stochastic order, the increasing convex order and the mean residual lifetime order.
A similar result is also proved in the class of copulas, i.e. multivariate distribution functions
with standard uniform marginals, equipped with the orthant order.

Keywords Baire category · Copula · Orthant dependence · Stochastic order ·
Weak convergence
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1 Introduction

A large literature has appeared in recent decades about stocastic orders, i.e. partial orders
introduced in the class of distribution functions (see, for instance, Müller and Stoyan [7]
and Shaked and Shanthikumar [14] for an excellent overview of the state-of-art). Given a
partial order ≤∗ and two distribution functions F and G, one may wonder whether either
F ≤∗ G or G ≤∗ F . Such a question has relevance, for instance, when F and G represent
risk distributions (see [7]).
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However, roughly speaking, it is not clear how many pairs of distribution functions can be
compared according to a given partial order ≤∗. Here, by using the topological description
of a set given by Baire categories (see [9]), we are going to show that the set of all pairs of
univariate distributions that can be compared by means of some popular stochastic orders is
topologically small in the set of all possible pairs of distributions.

Moreover,wediscuss an extension of this problem in the class of copulas (see, e.g.,Durante
and Sempi [4]; Joe [6]; Nelsen [8]) equipped with the lower orthant order by showing that
two pairs of copulas are typically not comparable.

2 Preliminaries

Let I denote the interval [0, 1]. LetF be the class of (right-continuous) distribution functions
F with support on I and such that F(0+) ≥ 0 and F(1) = 1. Given F ∈ F , we denote by F
the associated survival function given by F(x) = 1 − F(x) for every x ∈ I. Moreover, the
associated mean residual life function is defined as

m F (x) = 1

F(x)

1∫

x

F(t)dt

for every x ∈ I such that F(x) > 0.
OnF , we consider theweak convergence so that, given F ∈ F and a sequence (Fn)n∈N ⊆

F , Fn tends to F weakly (write Fn
w−→ F) whenever Fn(x) → F(x), as n → ∞, for all the

continuity points x of F . Thanks to Helly-Bray Theorem (see, e.g., Dudley [3]), Fn
w−→ F

whenever

lim
n→∞

∫

R

φ(x) d Fn(x) =
∫

R

φ(x) d F(x),

for all continuous and bounded functions φ : R → R.
The Lévy metric dL onF is a metrization of the weak convergence, that is Fn

w−→ F , as n
tends to ∞, if and only if, dL(Fn, F) → 0. The metric dL is defined, for every F, G ∈ F , as

dL(F, G) = inf {ε > 0 : ∀x ∈ R F(x − ε) − ε ≤ G(x) ≤ F(x + ε) + ε} , (1)

and it makes (F , dL) a complete space (see, e.g., Schweizer and Sklar [11]; Sempi [12]).
Given F ∈ F and ε > 0, we shall denote by BdL(F, ε) (respectively, BdL(F, ε)) the closed
(respectively, open) ball of radius ε centered on F . Thus

BdL(F, ε) = {G ∈ F : ∀x ∈ R F(x − ε) − ε ≤ G(x) ≤ F(x + ε) + ε} .

The following definitions can be found, e.g., in Müller and Stoyan [7]; Shaked and Shan-
thikumar [14].

Definition 1 Given F, G ∈ F , we say that

(a) F ≤st G in the usual stochastic order if F(x) ≥ G(x) for every x ∈ I, or, equivalently,
if F(x) ≤ G(x) for every x ∈ I.

(b) F ≤icx G in the increasing convex order if∫

R

φ(x) d F(x) ≤
∫

R

φ(x) dG(x) (2)
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for every increasing convex function φ : R → R such that the integrals in (2) exist.
(c) F ≤mrl G in the mean residual life order if

m F (x) ≤ mG(x) (3)

for every x ∈ I such that F(x) > 0 and G(x) > 0.

The three partial orders on F introduced above are linked together as follows.

Proposition 1 Let F, G ∈ F . Then:

(a) F ≤st G implies F ≤icx G;
(b) F ≤mrl G implies F ≤icx G.

We recall that part (a) of Proposition 1 follows from the fact that F ≤st G is equivalent to∫

R

φ(x) d F(x) ≤
∫

R

φ(x) dG(x) (4)

for every increasing function φ : R → R such that the expectations in (4) exist (see [7,
Theorem 1.2.8]). Part (b) follows from Shaked and Shanthikumar [14, Theorem 4.A.26].

Notice that, in general, ≤st and ≤mrl are not comparable (see [14, Sect. 2.A.2]).
The following multivariate stochastic order will be also considered (see [7, 14]).

Definition 2 Let d ≥ 2. Let F and G be d-dimensional distribution functions. We say that
F ≤lo G in the lower orthant order if F(x) ≥ G(x) for every x ∈ R

d .

Notice that ≤lo is closed under weak convergence and, it is implied by the multivariate
version of the order ≤st (see [7, Sect. 3.3]).

Finally, we recall some terminology from Baire category (see [9]). Given a topological
space (X , d), a subset A ⊆ X is called nowhere dense if its closure has empty interior, i.e.,

Å = ∅. If A can be expressed as countable union of nowhere dense subsets of X , then A is
called meager, or of first category. Subsets of X that are not of first category are called of
second category. If Ac = X \ A is meager, then A is called co-meager. Loosely speaking,
we will also refer to the elements of a co-meager set as typical.

An important result that we need to recall is Baire Category Theorem, which asserts that a
complete metric space (X , d) is a Baire space (we refer to Charalambos and Border [2] for a
proof of this result). Baire spaces are, by definition, metric spaces in which every nonempty
open set is of second category. Obviously, if X is a Baire space, X itself is of second category.
A relevant observation is that, in Baire spaces, e.g. complete metric spaces, a co-meager set
A ⊆ X is necessarily of second category, otherwise we would express X = A ∪ Ac as a
countable union of nowhere dense sets, hence X would be of first category, a contradiction.

3 Stochastic orders of univariate distribution functions

Now, we consider the set F 2 := F × F equipped with the topology induced by the metric
dL × dL . For a given stochastic order ≤∗ on F we denote by

F 2∗ = {
(F, G) ∈ F 2 : (F ≤∗ G) ∨ (G ≤∗ F)

}
the set of all pairs of distribution functions that are comparable according to the given order.
Clearly, the complement set of F 2∗ in F 2 is given by

(F 2∗ )c = {
(F, G) ∈ F 2 : (

F �∗ G
) ∧ (

G �∗ F
)}

.
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Loosely speaking, we are going to show that, in a “typical” pair inF×F , the two distribution
functions are not comparable with respect to any of the stochastic orders introduced in Sect. 2.

Now, we consider some preliminary results.

Lemma 2 Let ≤∗∈ {≤st ,≤icx ,≤mrl} be a stochastic order on F . Then F 2∗ is closed.

Proof First, note that F 2∗ = (F 2∗ )1 ∪ (F 2∗ )2, where

(F 2∗ )1 := {
(F, G) ∈ F 2 : F ≤∗ G

}
and

(F 2∗ )2 := {
(F, G) ∈ F 2 : G ≤∗ F

}
.

We claim that both (F 2∗ )1 and (F 2∗ )2 are closed, hence F 2∗ is closed. We only prove that
(F 2∗ )1 is closed, since the proof for (F 2∗ )2 is analogous.

Consider a sequence ((Fn, Gn))n∈N ⊆ (F 2∗ )1 such that Fn
w−→ F and Gn

w−→ G. We need
to show that F ≤∗ G. If ≤∗=≤st , then F ≤st G because of Müller and Stoyan [7, Theorem
1.2.14]. If ≤∗=≤mrl , then F ≤mrl G follows from Ahmed [1].

Assume that ≤∗=≤icx . In view of the characterization of ≤icx provided in Müller and
Stoyan [7, Theorem 1.5.7], it holds that, for every fixed a ∈ I and for every n ∈ N,

1∫

a

Fn(x) dx ≤
1∫

a

Gn(x) dx .

Thus, by the Dominated Convergence Theorem,

1∫

a

F(x) dx ≤
1∫

a

G(x) dx,

that is, F ≤icx G, so that the pair (F, G) belongs to the set (F 2
icx )1. ��

Remark 1 Notice that, in the space of all distribution functions on R, the stochastic order
≤icx is not closed with respect to weak convergence (see, for instance, Müller and Stoyan
[7, Example 1.5.8]).

Lemma 3 The set F 2
icx is nowhere dense.

Proof Weneed to prove thatF 2
icx cannot contain any interior points. So let us assume, byway

of contradiction, that (F, G) ∈ F 2
icx is an interior point of F 2

icx , that is, there exists ε > 0
such that, for every pair (H , K ) ∈ BdL(F, ε) × BdL(G, ε), either H ≤icx K or K ≤icx H .
Without loss of generality, we can assume that F ≤icx G.

Now, for every, δ, h ∈ I, one can define two functions Fδ : R → I and Gh : R → I in the
following way:

Fδ(x) :=
{
min(1 − δ, F(x)), if x < 1;
1, if x ≥ 1; (5)

and

Gh(x) :=
{

G(x), if x < h;
1, if x ≥ h.

(6)

Notice that both Fδ and Gh belong to F for all δ, h ∈ I.
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We claim that it is possible to choose δ and h such that (Fδ, Gh) ∈ BdL(F, ε)× BdL(G, ε),
i.e., there exists α ∈ (0, ε) such that, for every x ;

Fδ(x − α) − α ≤ F(x) ≤ Fδ(x + α) + α, (7)

and
Gh(x − α) − α ≤ G(x) ≤ Gh(x + α) + α, (8)

for a suitable choice of δ and h. Indeed, fix any α ∈ (0, ε). Note that the left-hand inequality
in (7) is true, since Fδ(x) ≤ F(x) for every x ∈ I. To prove the right-hand inequality, it is
enough to choose δ such that 1 − δ + α ≥ 1, i.e., δ ≤ α, that is the only restriction one has
on the choice of δ. As far as h, since Gh(x) ≥ G(x) for every x , the right-hand inequality in
(8) is always true; the left-hand inequality holds if and only if, for every x ∈ [α + h, 1), one
has Gh(x − α) − α = 1 − α ≤ G(x), that is, if and only if, h fulfills

G(α + h) ≥ 1 − α,

which is always true if we choose h ≥ 1 − α. To summarize, we have to choose

δ < ε, h > 1 − ε.

Moreover, notice that, for every possible choice of δ and for every a ∈ I, since Fδ(x) ≤ 1−δ

for all x ∈ I, one has

1∫

a

Fδ(x) dx ≥ δ(1 − a) > 0.

Now, without loss of generality, we can assume F �= G, so that there exists some t ∈ (0, 1)
such that

1∫

t

F(x) dx <

1∫

t

G(x) dx . (9)

Furthermore, we can assume that

1∫

a

F(x) dx > 0, for every a ∈ [0, 1),

since we have showed that F and G can be approximated arbitrarily well by pairs of functions
that satisfy all of these properties and that belong to BdL(F, ε) × BdL(G, ε)). Now, let us
focus on the pair (F, Gh) ∈ BdL(F, ε)×BdL(G, ε) ⊆ F 2

icx . Notice that, for every x ∈ [h, 1),
we have Gh(x) = 1, or, equivalently, Gh(x) = 0. So, if we fix any a ∈ [h, 1), then

1∫

a

F(x) dx > 0 =
1∫

a

Gh(x) dx,

that is, F �icx Gh . In order to prove that Gh �icx F , we set

ε0 :=
1∫

t

G(x) dx −
1∫

t

F(x) dx > 0
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(where t ∈ (0, 1) is the same from (9)), and without loss of generality we assume h >

max(t, 1 − ε0) (otherwise, just increase h). Hence we have:

1∫

t

Gh(x) dx =
h∫

t

G(x) dx = ε0 +
1∫

t

F(x) dx −
1∫

h

G(x) dx

≥ ε0 +
1∫

t

F(x) dx − (1 − h) >

1∫

t

F(x) dx,

which shows that Gh �icx F . We have just proved that (F, Gh) /∈ F 2
icx , which is absurd.

Hence F 2
icx is nowhere dense. ��

Theorem 4 Let ≤∗∈ {≤st ,≤icx ,≤mrl} be a stochastic order onF . Then (F 2∗ )c is co-meager.

Proof In view of Lemma 3, F 2
icx is nowhere dense.

Suppose, by way of contradiction, thatF 2
st is not nowhere dense. SinceF

2
st is closed (see

Lemma 2), we have F 2
st = F 2

st , hence
˚

F 2
st = F̊ 2

st �= ∅, i.e., there exists (F, G) ∈ F 2
st

such that BdL(F, ε) × BdL(G, ε) ⊆ F 2
st , for sufficiently small ε > 0. Then every pair

(H , K ) ∈ BdL(F, ε) × BdL(G, ε) fulfills H ≤st K . In view of Proposition 1, if we consider
pairs in F 2

st , then they are ordered in the ≤icx sense. Thus F 2
st ⊆ F 2

icx , hence we have

BdL(F, ε) × BdL(G, ε) ⊆ F 2
st ⊆ F 2

icx ,

which is absurd since we have assumed that F 2
st does not contain any interior points.

In the same way, we can prove that F 2
mrl is not nowhere dense.

Summarizing, F 2≤∗ is co-meager for every ≤∗∈ {≤st ,≤icx ,≤mrl}. ��
Remark 2 In Theorem 4, we can replace F by the class of all distribution functions F
supported on [a, b], where a, b ∈ R, with F(a+) ≥ 0 and F(b) = 1. In general, however,
we cannot directly use the proof of Theorem 4 to the case of all distribution functions on R

since, in such a case, ≤icx is not closed under weak convergence.

Remark 3 Theorem 4 can be extended to any stochastic order that implies the increasing
convex order and is closed under weak convergence; consider, for instance, the hazard rate
order≤hr (see [7, Sect. 1.3]). Then it can be proved in a similarway that (F 2≤hr

)c is co-meager.

4 A bivariate extension for copulas

Now, we consider an extension to the bivariate case by considering the Fréchet class
F (F1, F2) of continuous two-dimensional distribution functions with fixed univariate
marginals F1, F2. As known (see, e.g., Rüschendorf [10]), each element F of such a class
can be uniquely represented as F = C(F1, F2), where C is a copula, i.e. a two-distribution
function with standard uniform marginals (see, e.g., Durante and Sempi [4]). Moreover, it
holds that:

• for every F, G ∈ F (F1, F2), F ≤lo G if, and only if, CF (x, y) ≥ CG(x, y) for every
(x, y) ∈ I

2, where CF and CG are the copulas associated with F and G, respectively;
• weak convergence inF (F1, F2) is equivalent to uniform convergence of the correspond-

ing copulas (see, e.g., Sempi [13]).
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In view of the one-to-one correspondance between elements of the Fréchet class and copulas,
we shall only consider the space of all bivariate copulas, which as usual we denote by C2,
equipped with the metric d , defined for every A, B ∈ C2 as

d(A, B) := max
(x,y)∈I2

| A(x, y) − B(x, y) | .

We recall that the metric space (C2, d) is complete (and compact); see, e.g., Durante and
Sempi [4].

Given A, B ∈ C2, A is less than or equal to B in the pointwise order (A ≤ B, in symbols),
whenever A(x, y) ≤ B(x, y) for every (x, y) ∈ I

2; hence A ≥ B if and only if A ≤lo B. In
particular, for every C ∈ C2, it holds

W (x, y) := max(x + y − 1, 0) ≤ C(x, y) ≤ M(x, y) := min(x, y)

for every (x, y) ∈ I
2. Notice that, the upper orthant order could be considered as well.

For every C ∈ C2, we shall denote by δC the diagonal section of C , that is, the function
δC : I → I defined by δC (t) := C(t, t), for every t ∈ I. Note that, for every t ∈ I and every
copula C ∈ C2, one has δC (t) = C(t, t) ≤ C(t, 1) = t . We can now state the following
result.

Theorem 5 Let C be a fixed copula in C2. The following statements hold:

(a) If there exists some ε ∈ (0, 1) such that either δC (t) < t holds for all t ∈ (1 − ε, 1) or
for all t ∈ (0, ε), then the set

AC := {G ∈ C2 : C ≤lo G}
is nowhere dense in (C2, d).

(b) If there exists some ε ∈ (0, 1/2] such that δC (t) = t holds for all t ∈ [0, ε] ∪ [1 − ε, 1],
then the set AC is of second category in (C2, d).

Proof First of all, it is straightforward to verify that AC is closed with respect to the metric
d . Thus, in (a), the goal is to show that AC does not contain any interior points, whereas in
the proof of (b) we need to prove that AC contains at least an interior point (with respect to
the metric d). In fact, in this latter case, the assertion will follow from the fact that the metric
space (C2, d) is a Baire space.

As for (a), let us first assume that δC (t) < t holds for all t ∈ (1−ε, 1) for some ε ∈ (0, 1)
and that, by way of contradiction, there exist G ∈ AC and δ > 0 such that Bd(G, δ) ⊂ AC .
Without loss of generality, we can assume δ < ε/2. Note that every copula D ∈ AC fulfills
δD(t) ≤ δC (t) for every t ∈ I, and δD(t) < t for all t ∈ (1− ε, 1). Having set γ := δ/2, we
define D as the ordinal of G and M with respect to the intervals [0, 1 − γ ] and [1 − γ, 1]
(for an overview of ordinal sums, see, e.g., Durante et al. [5]), i.e., D is the copula given, for
every (x, y) ∈ I

2, by

D(x, y) :=
⎧⎨
⎩

(1 − γ )G

(
x

1 − γ
,

y

1 − γ

)
, if (x, y) ∈ (0, 1 − γ )2;

min(x, y), elsewhere.
(10)

Since γ < ε, we have 1 − γ > 1 − ε, hence

δD(1 − γ ) = D(1 − γ, 1 − γ ) = 1 − γ,

which implies that D /∈ AC . We shall prove that D ∈ Bd(G, δ) ⊂ AC and that will be the
contradiction we need. Let (x, y) ∈ I

2. We have to distinguish several cases.
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• If (x, y) ∈ (0, 1 − γ )2 and D(x, y) ≥ G(x, y), then, because of the Lipschitz property
of G, we have

|D(x, y) − G(x, y)| = D(x, y) − G(x, y)

= (1 − γ )G

(
x

1 − γ
,

y

1 − γ

)
− G(x, y)

≤ G

(
x

1 − γ
,

y

1 − γ

)
− G(x, y) ≤ (x + y)

(
1

1 − γ
− 1

)

≤ 2(1 − γ )

(
γ

1 − γ

)
≤ 2γ = δ.

• If (x, y) ∈ (0, 1 − γ )2 and D(x, y) < G(x, y), then

|D(x, y) − G(x, y)| = G(x, y) − D(x, y)

= G(x, y) − (1 − γ )G

(
x

1 − γ
,

y

1 − γ

)

≤ G(x, y) − (1 − γ )G(x, y) = γ G(x, y) ≤ γ = δ

2
.

• If max(x, y) ≥ 1 − γ and min(x, y) ≥ γ , then

|D(x, y) − G(x, y)| = min(x, y) − G(x, y)

≤ M(x, y) − W (x, y) = 1 − max(x, y) ≤ γ = δ

2
.

• If max(x, y) ≥ 1 − γ and min(x, y) < γ , then

|D(x, y) − G(x, y)| = min(x, y) − G(x, y) ≤ M(x, y) < γ = δ

2
.

Putting all together, we have d(G, D) ≤ δ, which proves (a) in this case.
Let us now prove (a) in the other case, assuming that δC (t) < t holds for all t ∈ (0, ε) for
some ε ∈ (0, 1) and that, by way of contradiction, there exist G ∈ AC and δ > 0 such
that Bd(G, δ) ⊂ AC . Again, without loss of generality, we can assume δ < ε/2 and we
set γ := δ/2. Note that every copula D ∈ AC fulfills δD(t) ≤ δC (t) for every t ∈ I, and
δD(t) < t for all t ∈ (0, ε). In this case, we define D as the ordinal sum of M and G with
respect to the intervals [0, γ ] and [γ, 1], i.e., the copula given, for every (x, y) ∈ I

2, by

D(x, y) :=
⎧⎨
⎩

γ + (1 − γ )G

(
x − γ

1 − γ
,

y − γ

1 − γ

)
, if (x, y) ∈ (γ, 1)2;

min(x, y), elsewhere.
(11)

Notice that, for all t ∈ [0, γ ] ⊂ [0, ε], we have δD(t) = D(t, t) = min(t, t) = t , hence
D /∈ AC . We shall prove that D ∈ Bd(G, δ) ⊂ AC and that will be the contradiction we
need. Let (x, y) ∈ I

2. Again, we have to distinguish several cases.

• Assume (x, y) ∈ (γ, 1)2 and D(x, y) ≥ G(x, y). First of all, note that

x − γ

1 − γ
≤ x and

y − γ

1 − γ
≤ y.

Then:

|D(x, y) − G(x, y)| = D(x, y) − G(x, y)

123
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= γ + (1 − γ )G

(
x − γ

1 − γ
,

y − γ

1 − γ

)
− G(x, y)

≤ γ (1 − G(x, y)) ≤ γ = δ

2
.

• Assume (x, y) ∈ (γ, 1)2 and D(x, y) < G(x, y). Then, because of theLipschitz property
of G:

|D(x, y) − G(x, y)| = G(x, y) − D(x, y)

= G(x, y) − γ − (1 − γ )G

(
x − γ

1 − γ
,

y − γ

1 − γ

)

= G(x, y) − G

(
x − γ

1 − γ
,

y − γ

1 − γ

)
+ γ

(
G

(
x − γ

1 − γ
,

y − γ

1 − γ

)
− 1

)

≤ G(x, y) − G

(
x − γ

1 − γ
,

y − γ

1 − γ

)
≤ x − x − γ

1 − γ
+ y − y − γ

1 − γ

= x − xγ − x + γ + y − yγ − y + γ

1 − γ
= γ (1 − x + 1 − y)

1 − γ

< 2γ
1 − γ

1 − γ
= 2γ = δ.

• Assume min(x, y) ≤ γ . In this last case:

|D(x, y) − G(x, y)| = min(x, y) − G(x, y) ≤ M(x, y) ≤ γ = δ

2
.

Putting all together, we have d(G, D) < δ, so that completes the proof of (a).
As for the proof of (b), suppose that there exists some ε ∈ (0, 1/2] such that δC (t) = t holds

for all t ∈ [0, ε]∪[1−ε, 1].We shall prove that Bd (W , ε/2) ⊂ AC . Fix anyG ∈ Bd(W , ε/2),
that is, any copula G such that, for every (x, y) ∈ I

2, it holds

G(x, y) < max(x + y − 1, 0) + ε

2
. (12)

In order to prove that C(x, y) ≥ G(x, y) holds for every (x, y) ∈ I
2, we have to distinguish

several cases. So, let (x, y) ∈ I
2.

• If min(x, y) ≤ ε, then, it holds

C(x, y) ≥ C(M(x, y), M(x, y)) = δC (M(x, y)) = M(x, y) ≥ G(x, y).

• If min(x, y) > ε and max(x, y) ∈ (ε, 1 − ε), then we distinguish two subcases.

� W (x, y) = 0. In this subcase, (12) yields G(x, y) < ε/2. Moreover:

C(x, y) ≥ C(M(x, y), M(x, y)) ≥ C(ε, ε) = δC (ε) = ε >
ε

2
> G(x, y).

� W (x, y) > 0. In this subcase, (12) yields

G(x, y) < x + y − 1 + ε

2
.

Moreover, because of the Lipschitz property of C , we have

C(1 − ε, 1 − ε) − C(x, y) ≤ 1 − ε − x + 1 − ε − y = 2 − 2ε − x − y,
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which is equivalent, since δC (1 − ε) = 1 − ε, to

C(x, y) ≥ x + y − 1 + ε,

hence

C(x, y) ≥ x + y − 1 + ε > x + y − 1 + ε

2
> G(x, y).

• If min(x, y) > ε and max(x, y) ≥ 1 − ε, then, as in the first case, we shall prove
that C(x, y) = M(x, y). Indeed, having set z := max(x, y), because of the Lipschitz
property of C one has

C(z, z) − C(x, y) ≤ z − x + z − y,

which is equivalent, since δC (z) = z, to

C(x, y) ≥ x + y − z = x + y − max(x, y) = min(x, y).

Since C(x, y) = M(x, y) ≥ G(x, y), the proof of (b) is completed.

��
The following result focuses on C2 × C2 and basically states that, in a “typical” pair of

copulas (C1, C2), C1 and C2 are not comparable.

Theorem 6 The set

P := {(C1, C2) ∈ C2 × C2 : (C2 ≤lo C1) ∨ (C1 ≤lo C2)}
is nowhere dense in C2 × C2 with respect to the metric d × d.

Proof First of all, it is easy to prove thatP is closed with respect to the metric d ×d: indeed,
note that

P = P1 ∪ P2,

where

P1 := {(C1, C2) ∈ C2 × C2 : C2 ≤lo C1}
and

P2 := {(C1, C2) ∈ C2 × C2 : C1 ≤lo C2} ,

bothP1 andP2 being closed with respect to the product distance d × d . The assertion will
follow from proving thatP does not have any interior points, i.e., every product of open balls
of the kind Bd(C1, γ ) × Bd(C2, γ ) contains at least one pair (S1, S2) of copulas that are not
comparable (that is, S1 �lo S2 and S1 �lo S2), for every possible choice of (C1, C2) ∈ P
and γ ∈ (0, 1]. Fix any pair (C1, C2) ∈ P and choose any ρ ∈ (0, γ /3). We define S1 as the
ordinal sum of W , C1, and M with respect to the intervals [0, ρ], [ρ, 1 − ρ] and [1 − ρ, 1],
i.e., for every (x, y) ∈ I

2,

S1(x, y) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρW

(
x

ρ
,

y

ρ

)
, if (x, y) ∈ (0, ρ)2;

ρ + (1 − 2ρ)C1

(
x − ρ

1 − 2ρ
,

y − ρ

1 − 2ρ

)
, if (x, y) ∈ (ρ, 1 − ρ)2;

min(x, y), elsewhere,
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and S2 as the ordinal sum of M , C2 and W with respect to the same intervals, , i.e., for every
(x, y) ∈ I

2,

S2(x, y) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ + (1 − 2ρ)C2

(
x − ρ

1 − 2ρ
,

y − ρ

1 − 2ρ

)
, if (x, y) ∈ (ρ, 1 − ρ)2;

1 − ρ + ρW

(
x + ρ − 1

ρ
,

y + ρ − 1

ρ

)
, if (x, y) ∈ (1 − ρ, 1)2;

min(x, y), elsewhere.

Note that

S1
(ρ

2
,
ρ

2

)
= 0 <

ρ

2
= S2

(ρ

2
,
ρ

2

)
,

hence S1 � S2, and

S2

(
2 − ρ

2
,
2 − ρ

2

)
= 1 − ρ <

2 − ρ

2
= S1

(
2 − ρ

2
,
2 − ρ

2

)
,

hence S1 � S2. Thus, the copulas S1 and S2 are not comparable. We need to prove that

(S1, S2) ∈ Bd(C1, γ ) × Bd(C2, γ ).

For both the proofs of S1 ∈ Bd(C1, γ ) and S2 ∈ Bd(C2, γ ), we have to consider several
cases, depending on the “position” of an arbitrarily chosen pair (x, y) ∈ I

2.
STEP 1: S1 ∈ Bd(C1, γ ). Let (x, y) ∈ I

2.

• If (x, y) ∈ (0, ρ)2, then

|S1(x, y) − C1(x, y)| ≤ M(max(x, y),max(x, y)) < ρ < γ.

• If (x, y) ∈ (ρ, 1 − ρ)2 and S1(x, y) ≥ C1(x, y), then we distinguish four subcases.

� Assume (x, y) ∈ (ρ, 1/2]2. Since in this subcase

x − ρ

1 − 2ρ
≤ x and

y − ρ

1 − 2ρ
≤ y,

we have:

|S1(x, y) − C1(x, y)| = S1(x, y) − C1(x, y)

= ρ + (1 − 2ρ)C1

(
x − ρ

1 − 2ρ
,

y − ρ

1 − 2ρ

)

− C1(x, y) ≤ ρ + (1 − 2ρ)C1(x, y) − C1(x, y)

= ρ − 2ρC1(x, y) ≤ ρ < γ.

� Assume y ∈ (ρ, 1/2] whereas x > 1/2. Since in this subcase

x − ρ

1 − 2ρ
> x and

y − ρ

1 − 2ρ
≤ y,

we have, because of the Lipschitz property of C1:

|S1(x, y) − C1(x, y)| = S1(x, y) − C1(x, y)

= ρ + (1 − 2ρ)C1

(
x − ρ

1 − 2ρ
,

y − ρ

1 − 2ρ

)
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− C1(x, y) ≤ ρ + (1 − 2ρ)C1

(
x − ρ

1 − 2ρ
, y

)
− C1(x, y)

≤ ρ + x − ρ

1 − 2ρ
− x = ρ + 2ρx − ρ

1 − 2ρ
= ρ

(
1 + 2x − 1

1 − 2ρ

)

< ρ

(
1 + 2 − 2ρ − 1

1 − 2ρ

)
= 2ρ < γ.

� Assume x ∈ (ρ, 1/2] whereas y > 1/2. This subcase is analogous to the previous
one, so the reader can easily verify that, again, it holds

|S1(x, y) − C1(x, y)| ≤ 2ρ < γ.

� Assume (x, y) ∈ (1/2, 1 − ρ)2. Since in this subcase

x − ρ

1 − 2ρ
> x and

y − ρ

1 − 2ρ
> y,

we have, because of the Lipschitz property of C1:

|S1(x, y) − C1(x, y)| = S1(x, y) − C1(x, y)

= ρ + (1 − 2ρ)C1

(
x − ρ

1 − 2ρ
,

y − ρ

1 − 2ρ

)

− C1(x, y) ≤ ρ(1 − 2C1(x, y))

+ C1

(
x − ρ

1 − 2ρ
, y

)
− C1(x, y)

≤ ρ(1 − 2C1(x, y)) + x − ρ

1 − 2ρ
− x + y − ρ

1 − 2ρ
− y

= ρ

(
1 − 2C1(x, y) + 2x − 1

1 − 2ρ
+ 2y − 1

1 − 2ρ

)

≤ ρ

(
1 − 2C1(x, y) + 2

2(1 − ρ) − 1

1 − 2ρ

)
≤ 3ρ < γ.

• Assume (x, y) ∈ (ρ, 1 − ρ)2 and S1(x, y) < C1(x, y). In this case:

|S1(x, y) − C1(x, y)| = C1(x, y) − ρ − (1 − 2ρ)C1

(
x − ρ

1 − 2ρ
,

y − ρ

1 − 2ρ

)
,

and again we need to distinguish four subcases, in which we apply the monotonicity,
with respect to both arguments, as well as the Lipschitz property, of C1.

� (x, y) ∈ (ρ, 1/2]2. We obtain:

|S1(x, y) − C1(x, y)| ≤ ρ

(
1 − 2x

1 − 2ρ
+ 1 − 2y

1 − 2ρ
− 1 + 2C1(x, y)

)

≤ ρ

(
2
1 − 2ρ

1 − 2ρ
− 1 + 2C1(x, y)

)
≤ 3ρ < γ.

� y ∈ (ρ, 1/2] whereas x > 1/2. Since in this subcase

x − ρ

1 − 2ρ
> x and

y − ρ

1 − 2ρ
≤ y,
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we have:

|S1(x, y) − C1(x, y)| ≤ C1

(
x − ρ

1 − 2ρ
, y

)
− ρ − (1 − 2ρ)C1

(
x − ρ

1 − 2ρ
,

y − ρ

1 − 2ρ

)

≤ ρ

(
1 − 2y

1 − 2ρ
− 1 + 2C1

(
x − ρ

1 − 2ρ
,

y − ρ

1 − 2ρ

))
≤ 2ρ < γ.

� x ∈ (ρ, 1/2] whereas y > 1/2. This subcase is analogous to the previous one, so
the reader can easily verify that, again, it holds |S1(x, y) − C1(x, y)| ≤ 2ρ < γ .
� (x, y) ∈ (1/2, 1 − ρ)2. In this last subcase, we have:

|S1(x, y) − C1(x, y)| ≤ C1(x, y) − C1(x, y) + ρ

(
2 − C1

(
x − ρ

1 − 2ρ
,

y − ρ

1 − 2ρ

))

≤ ρ < γ.

• (x, y) /∈ (0, ρ)2 ∪ (ρ, 1− ρ)2. In this case one has S1(x, y) = M(x, y) ≥ C1(x, y), and
there are two subcases.

� min(x, y) ≤ ρ. In this subcase:

|S1(x, y) − C1(x, y)| = M(x, y) − C1(x, y) ≤ M(x, y) ≤ ρ < γ.

� min(x, y) > ρ. Since in this subcase we necessarily have max(x, y) ≥ 1− ρ, and
because of the Lipschitz property of C1, it holds

|S1(x, y) − C1(x, y)| = M(x, y) − C1(x, y)

≤ 1 − max(x, y) ≤ 1 − (1 − ρ) = ρ < γ.

Sincewe covered all the possible cases and subcases, we have finally proved that d(S1, C1) <

γ , so that S1 ∈ Bd(C1, γ ).
STEP 2: S2 ∈ Bd(C2, γ ). Let (x, y) ∈ I

2.

• If (x, y) ∈ (ρ, 1− ρ)2, then we just replace S1 with S2 and C1 with C2 in the analogous
case covered in STEP 1, and it turns out that

|S2(x, y) − C2(x, y)| ≤ 3ρ < γ.

• If (x, y) ∈ (1 − ρ, 1)2, then note that it holds

x + ρ − 1

ρ
≤ x and

y + ρ − 1

ρ
≤ y.

If S2(x, y) ≥ C2(x, y), we have, because of the Lipschitz property of C2:

|S2(x, y) − C2(x, y)| = 1 − ρ + ρW

(
x + ρ − 1

ρ
,

y + ρ − 1

ρ

)
− C2(x, y)

≤ 1 − ρ + ρC2(x, y) − C2(x, y) ≤ 1 − ρ + ρ − C2(x, y)

≤ C2(1, 1) − C2(1 − ρ, 1 − ρ) ≤ 2(1 − (1 − ρ)) = 2ρ < γ.

If, instead, S2(x, y) < C2(x, y), then it holds:

|S2(x, y) − C2(x, y)| = C2(x, y) − 1 + ρ − ρW

(
x + ρ − 1

ρ
,

y + ρ − 1

ρ

)

≤ ρ

(
1 − W

(
x + ρ − 1

ρ
,

y + ρ − 1

ρ

))
≤ ρ < γ.
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• If (x, y) /∈ (ρ, 1− ρ)2 ∪ (1− ρ, 1)2, then one has S2(x, y) = M(x, y) ≥ C2(x, y), and
we distinguish two subcases.

� min(x, y) ≤ ρ. In this subcase:

|S2(x, y) − C2(x, y)| = M(x, y) − C2(x, y) ≤ M(x, y) ≤ ρ < γ.

� min(x, y) > ρ. Since in this subcase we necessarily have max(x, y) ≥ 1− ρ, and
because of the Lipschitz property of C2, it holds

|S2(x, y) − C2(x, y)| = M(x, y) − C2(x, y) ≤ 1 − max(x, y) ≤ 1 − (1 − ρ) = ρ < γ.

Sincewe covered all the possible cases and subcases, we have finally proved that d(S2, C2) <

γ , so that S2 ∈ Bd(C2, γ ). Hence

(S1, S2) ∈ Bd(C1, γ ) × Bd(C2, γ ),

which means that every possible product of open balls includes pairs of copulas that are not
comparable. This proves the assertion, that is, P is nowhere dense in C2 × C2 with respect
to the metric d × d . ��

Thus the following result holds.

Corollary 7 (P)c is co-meager. Thus, two elements of the same Fréchet class F (F1, F2) of
continuous distribution functions are typically not comparable in the ≤lo sense.
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