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Abstract
We propose an extension of the univariate Lorenz curve and of the Gini coefficient to the
multivariate case, i.e., to simultaneously measure inequality in more than one variable. Our
extensions are based on copulas and measure inequality stemming from inequality in each
single variable as well as inequality stemming from the dependence structure of the vari-
ables. We derive simple nonparametric estimators for both instruments and exemplary apply
them to data of individual income and wealth for various countries.

Keywords Copula · Gini coefficient · Inequality · Multidimensional inequality ·
Joint inequality of income and wealth · Lorenz curve · Dependence of income and wealth
Abbreviations
MEGC Multivariate extension of the Gini coefficient
MEILC Multivariate extension of the inverse Lorenz curve

1 Introduction

The well known Lorenz curve and Gini coefficient are still the most important tools for
representation and analysis of inequality in a distribution, such as the income and wealth
distribution. Both, however, are univariate instruments, i.e., they analyze the variables indi-
vidually, ignoring their dependence structure. Considering the example of income and
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wealth, it is not possible to see the differences in the overall inequality if wealthy people
coincide with high-income people compared to a more balanced, eventually compensating
distribution of wealth over the income groups. Contrary to that, in this paper, we propose
extensions of both tools to study the inequality of d variables X1, . . . , Xd simultaneously.
By that, we explicitly capture the dependence structure of these variables which gets lost if
only one variable is considered at a time.

There had been some efforts to extend Lorenz curve and Gini coefficient to the multi-
variate case before. The earliest suggestion in this direction we know of is Taguchia (1972a,
b) who applied methods of differential geometry. Further suggestions are by Arnold (1987),
Arnold and Sarabia (2018), Gajdos and Weymark (2005) and Koshevoy and Mosler (1996,
1997). We will not give an overview of these contributions because this is - at least par-
tially - done by Arnold and Sarabia (2018). We agree with the view of the latter authors that
all extensions are essentially determined by (elegant) mathematical considerations but may
lack interpretability and economic reasoning.

Here, we propose direct and natural multivariate extensions of both, the (inverse) Lorenz
curve and the Gini coefficient. We exploit the fact that the inverse of a variable’s Lorenz
curve is the distribution function of a simple monotonically increasing transformation of
that variable. The multivariate inverse Lorenz curve of the d variables X1, . . . , Xd is then
defined as the joint distribution function of analogous univariate transformations of them.
The resulting Lorenz curve can explicitly be expressed using copulas. Copulas decompose
the joint distribution function of variables into marginal distribution functions and their
dependence structure. Consequently, for a given vector X = (X1, . . . , Xd) of d variables,
the copula based multivariate Lorenz curve identifies and captures two different sources of
inequality:

a. inequality contained in the individual variables Xi , measured by the univariate Lorenz
curve Li or inverse Lorenz curve L−1

i for i = 1, . . . , d .
b. inequality due to the dependence structure of the variables X1, . . . , Xd which is

captured by the copula of these variables.

Based on the multivariate Lorenz curve, the formulation of a multivariate Gini coefficient
follows in a natural way analogously to the derivation of the univariate Gini coefficient from
the univariate Lorenz curve.

The mathematics we apply in the theoretical part of the paper is some elementary cop-
ula theory and - hopefully - is accessible to a broad readership. Later on in the paper, we
derive simple nonparametric estimators for both instruments, and provide ready to use com-
puter code in the supplementary material of this paper. We illustrate both instruments, the
multivariate Lorenz curve and Gini coefficient, on data sets consisting of individual wealth
and income data of various countries. The results are intuitive and show that the two above
mentioned sources a. and b. of multivariate inequality are reflected in a reasonable and
interpretable way.

The structure of the paper is the following. Section 2 introduces notation and some def-
initions. The multivariate extension of the inverse Lorenz curve (MEILC) is introduced in
Section 3. Various properties of the MEILC are derived. Section 4 presents a multivariate
extension of the Gini coefficient (MEGC) related to the MEILC and considers the bivariate
Gini (i.e., d = 2) as a special case. Nonparametric estimation of MEILC and MEGC is con-
sidered in Section 5. In Section 6 we address some aspects regarding multivariate transfers.
The last section of the paper contains the empirical applications.
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2 Notations and definitions

We consider a d-variate vector of random variables X = (X1, . . . , Xd) defined on a prob-
ability space (�, Σ,P). The joint distribution function is given by FX(x) = P(X1 ≤
x1, . . . , Xd ≤ xd) for x = (x1, . . . , xd) ∈ R

d and the marginal distribution functions Fi

of Xi are given by Fi(xi) = P(Xi ≤ xi) for xi ∈ R and i = 1, . . . , d . Throughout this
paper we assume that Xi ≥ 0 and 0 < μi = E(Xi) < ∞ for i = 1, .., d. Note that all
variables should fit together in an economically meaningful way and should have a cardi-
nal scale. For inequality measurement in the case of ordinal or qualitative data we refer the
interested reader to Allison and Foster (2004) and Gravel et al. (2021) or Kobus and Miłoś
(2012) among others.

There exist a copula C = CFX , such that FX(x1, .., xd) = C(F1(x1), . . . , Fd(xd)) for
(x1, . . . , xd) ∈ R

d . The copula C is uniquely determined if the marginal distribution func-
tions Fi are continous. The basics of copulas are given in Nelson (2006), Joe (2014), and
Durante and Sempi (2015) and also have been applied in the context in income analysis
by Aaberge et al. (2018) recently. An important property is that the copula C of a ran-
dom vector X is invariant with respect to strictly increasing transformations of the marginal
distributions.

Every copula C is for any u = (u1, . . . , ud) ∈ [0, 1]d bounded by the Fréchet–Hoeffding
bounds:

W(u1, . . . , ud) ≤ C(u1, . . . , ud) ≤ M(u1, . . . , ud), (1)

with W(u1, . . . , ud) = max

{
1 − d +

d∑
i=1

ui, 0

}
and M(u1, . . . , ud) = min{u1, . . . , ud}.

The upper bound M, which is called comonotonicity copula, corresponds to the depen-
dence structure of full monotone positive dependence. An example of wealth and income
with such a dependence structure would be a population of size N, where the i−th wealth-
iest individual has also the i−th highest income (for i = 1, . . . , N ). The lower bound
W is only a proper copula in the bivariate case and then called the countermonotonic-
ity copula. In a countermonotonic income/wealth example, the i−th wealthiest individual
would have the i−th lowest income (for i = 1, . . . , N ). If X is a vector of indepen-
dent variables X1, . . . , Xd the corresponding copula is the independence copula Π with
Π(u1, . . . , ud) = ∏d

i=1 ui . There is a partial order C ≤ C′ on the set of d-variate copulas
given by C(u) ≤ C′(u) for all u ∈ [0, 1]d (see Nelson 2006).

The univariate Lorenz curve for i = 1, . . . , d is given by

Li(ui) = 1

μi

∫ ui

0
F−1

i (t)dt for ui ∈ [0, 1] and in i = 1, . . . , d, (2)

see Gastwirth (1971). Each Li is a continuous, weakly increasing and weakly convex func-
tion. It has all the properties of a distribution function if we extend Li by 1 for ui > 1 and
by 0 for ui < 0. The inverse of Li is defined by

L−1
i (ui) =

{
inf {t |Li(t) ≥ ui}, for ui ∈ ]0, 1]
sup{t |Li(t) = ui}, for ui = 0

and L−1
i is continuous, weakly increasing and weakly concave on [0, 1]. It has all the prop-

erties of a distribution function if we extend L−1
i by 1 for ui > 1 and by 0 for ui < 0. Note

that there might be a point mass at zero.
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Consider individual income in a population. The usual interpretation of the Lorenz curve
L of this variable is that, e.g., for p ∈ [0, 1], L(p) denotes the proportion of total income
that corresponds to the bottom p · 100% of the individuals. The interpretation of the inverse
Lorenz curve is that, for q ∈ [0, 1], L−1

i (q) indicates the maximum percentage of the
population with a combined cumulative share of q ·100% of the total income (the maximum
ensures starting with the bottom income individual here). Obviously, both curves describe
the inequality in an equivalent way. It is worth mentioning that Lorenz (1905) originally
proposed in his paper what we now call the inverse Lorenz curve.

Using Xi, Fi and Li as defined above we now define the following random variables X∗
i

by

X∗
i = Li(Fi(Xi)), for i = 1, . . . , d . (3)

Note, the difference between Xi and X∗
i . In applications Xi has a dimension (such as income

or wealth). X∗
i , however, is a fraction (i.e., a number between 0 and 1). If, e.g., Xi denotes

again individual income in a population then X∗
i is the corresponding joint fraction of the

total income of that part of the population having individual incomes smaller or equal to Xi .
The d-variate vector X∗ is defined by X∗ = (X∗

1, . . . , X∗
d). The marginal distribution

function for X∗
i is given by the inverse Lorenz curve of Xi, i.e.,

FX∗
i
(ui) = P(Li(Fi(Xi)) ≤ ui) = L−1

i (ui)

for ui ∈ [0, 1] and i = 1, . . . , d . The joint distribution function of X∗ is given by

FX∗(u1, . . . , ud) = P(X∗
1 ≤ u1, . . . , X

∗
d ≤ ud) (4)

= C

(
L−1

1 (u1), . . . , L
−1
d (ud)

)
for ui ∈ [0, 1] and i = 1, . . . , d . (5)

Note, that the copula of X is identical to the copula of X∗, since X∗
i is a monotonically

increasing function of Xi for i = 1, . . . , d .

The univariate Gini coefficient is defined as a normalization of the area enclosed by the
Lorenz curve and the diagonal of the unit square. It equals one minus twice the area under
the Lorenz curve (Kakwani 1977; Gastwirth 1972)

G = 1 − 2
∫

[0,1]
L(u)du.

Considering that 1 − ∫
L(u)du = ∫

L−1(u)du and L−1 is the cdf of X∗, it follows that∫
L(u)du = E(X∗) and the univariate Gini coefficient may be expressed as

G = 1 − 2E(X∗)

as well as

G = 2
∫

[0,1]
L−1(u)du − 1

when using the inverse Lorenz curve L−1 and considerations above.
Notation and definitions introduced in this section are used to define a multivariate exten-

sion of the univariate Lorenz curve (see Section 3) and a multivariate extension of the
univariate Gini coefficient (see Section 4).
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3 Amultivariate extension of the Lorenz curve based on copulas
(MEILC)

As mentioned in the introduction, inequality in a d-variate random vector X =
(X1, . . . , Xd) has two different sources:

a. inequality in the individual variables Xi , which is measured by the corresponding
Lorenz curves Li(ui) or inverse Lorenz curves L−1

i (ui) for i = 1, . . . , d and ui ∈
[0, 1].

b. inequality contained in the dependence structure of the vector X = (X1, . . . , Xd) which
is represented by the copula C of X.

To illustrate the effect of b. on the joint inequality in X = (X1, . . . , Xd) in more detail,
we look at a very simple example for the bivariate case, i.e., d = 2, and a population of
five individuals, where X1 and X2 might again stand for individual income and wealth,
respectively.

Individual 1 Individual 2 Individual 3 Individual 4 Individual 5

Society 1

(
X1
X2

) (
1
1

) (
2
2

) (
3
3

) (
4
4

) (
5
5

)

Society 2

(
X1
X2

) (
1
3

) (
2
2

) (
3
5

) (
4
1

) (
5
4

)

Society 3

(
X1
X2

) (
1
5

) (
2
4

) (
3
3

) (
4
2

) (
5
1

)

It can be seen that the marginal distributions of X1 and X2 over the five individuals are
the same in these societies. We think that it is quite obvious to see that the inequality is
largest in Society 1 and smallest in Society 3. Society 2 is somewhere in between.

The differences in joint inequality in these societies are due to different dependence
structures between the variables. In terms of copulas, the dependence structure in Society 1
corresponds to the comonotoncity copula M, the upper bound in the set of bivariate copulas.
In contrast, Society 3 corresponds to the countermonotonicity copula W which is the lower
bound in the set of bivariate copulas. Thus, in Society 1, the high income individuals are
also the wealthiest, whereas in Society 3, income and wealth kind of compensate each other.
Society 2 might stem from the independence copula Π . We conclude from this example
that joint inequality in a vector X = (X1, . . . , Xd) is increasing in C in the partial order as
defined in Section 2.

Having the example in mind, we now define a multivariate extension of univariate
(inverse) Lorenz curves considering the dependence structure of the variables. It will turn
out that the multivariate Lorenz curve of random vector X is the joint distribution function
(compare to Eq. 4) of the random vector X∗ as defined in Eq. 3 in Section 2.

Definition 3.1 Multivariate extension of the inverse Lorenz curve (MEILC) and Lorenz
order
Using the notation of Section 2, let

1. L
−1
C,L−1

1 ,...,L−1
d

(u1, . . . , ud) = C

(
L−1

1 (u1), . . . , L
−1
d (ud)

)
for (u1, . . . , ud) ∈ [0, 1]d .
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2. For a second vector X̃ = (X̃1, . . . , X̃d) with copula C̃ and inverse Lorenz curves

L̃i
−1

(ui) of X̃i for i = 1, . . . , d , we define the multivariate ordering X̃ �
X if and only if
L

−1

C̃,L̃1
−1

,...,L̃d
−1(u) ≥ L

−1
C,L−1

1 ,...,L−1
d

(u) for all u = (u1, . . . , ud) ∈ [0, 1]d .

The extension of the inverse Lorenz curve (MEILC) L−1(u) = L
−1
C,L−1

1 ,...,L−1
d

(u) has a

nice interpretation in terms of the X∗
i for i = 1, . . . , d and u = (u1, . . . , ud) ∈ [0, 1]d .

Since L
−1(u1, . . . , ud) is the joint distribution function of X∗ = (X∗

1, . . . , X∗
d) we see that

L
−1(u1, . . . , ud) is the population fraction for which X∗

1 ≤ u1, . . . , X
∗
d ≤ ud and therefore

the fraction with a cumulative share of the features smaller or equal to u1, . . . , ud . E.g.,
for d = 2 if u1 denotes a share of the cumulative income in a population and u2 a share
of wealth, than L

−1(u1, u2) is the corresponding fraction of people collectively having not
more than shares u1 and u2 of the total income and wealth, respectively. Note that the
interpetation of the MEILC coincides with the interpretation of the upper parts of the Lorenz
zonoid introduced by Koshevoy and Mosler (1996). However, while calculating zonoids
from data is computationally intensive, the copula approach results in simple formulas, also
allowing a straight forward extension of the Gini coefficient later in the paper.

We analyze some of the (formal) properties of the MEILC. Here, we are in particular
interested in how L

−1(u1, . . . , ud) behaves, when ceterus paribus either marginal inequal-
ities or the dependence structures are changed. Later in the paper, in Section 6, we discuss
some implied properties such as the reaction to transfers in empirical data.

1. Obviously L
−1(u1, . . . , ud) is a function from [0, 1]d to [0, 1]. Furthermore for every

C,L−1
1 (u1), . . . , L

−1
d (ud) and u = (u1, . . . , ud) ∈ [0, 1]d we have

L
−1
min(u) ≤ L

−1
C,L−1

1 ,...,L−1
d

(u) ≤ L
−1
max(u)

where
L

−1
min(u) = W(u1, . . . , ud) = max{0,

∑d
i ui − (d − 1)}

and
L

−1
max(u) = M(1, . . . , 1) = min{1, . . . , 1} = 1.

These boundaries follow directly from the Fréchet–Hoeffding bounds. Regarding the
margins, note that the arguments of the lower bound refer to minimal marginal inequal-
ity, i.e., L−1

i (ui) = ui, for i = 1 . . . d, whereas the arguments of the upper bound
refer to maximal marginal inequality, i.e., L−1

i (ui) ≡ 1, for i = 1 . . . d . Thus, e.g., the
upper bound corresponds to the case of maximal marginal inequality as well as maximal
dependence between the variables and reflects thus the case of maximal multivariate
inequality.

2. If X1, . . . , Xd are independent, i.e., C = Π we have
L

−1
Π,L−1

1 ,...,L−1
d

(u) = ∏d
i=1 L−1

i (ui) for u = (u1, . . . , ud) ∈ [0, 1]d .

So the MEILC is the product of the univariate Lorenz curves in such cases.
3. If ud = 1 we know

L
−1
C,L−1

1 ,...,L−1
d−1,L

−1
d

(u1, . . . , ud−1, 1) = L
−1
C,L−1

1 ,...,L−1
d−1

(u1, . . . , ud−1) for

(u1, . . . , ud−1) ∈ [0, 1]d−1 and similar formulas hold for i = 1, . . . , d − 1 as well as
for more general index sets I ⊂ {1, . . . , d}.
This marginalization is quite intuitive, since setting ui = 1 in the MEILC refers to
the fraction of the population having less or equal than the maximum value of Xi .
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Therefore, the i-th dimension is not restrictive anymore, while the other dimensions
still are.

By further marginalizing, we can see that for d = 1, we get the univariate (inverse)
Lorenz curve as a margin, e.g., L−1

C,L−1
1

(u1) = L−1
1 (u1) for u1 ∈ [0, 1].

4. If for u = (u1, . . . , ud) ∈ [0, 1]d at least one L−1
i (ui) is zero, then L

−1(u) is zero. But
note that there might be point masses at zero in some or even all of the Xi . The MEILC
therefore does not necessarily start at zero since a point mass of Xi at zero would imply
L−1

i (0) > 0.
5. Response of L−1(u) to changing L−1

i (ui) for fixed u = (u1, . . . , ud) ∈ [0, 1]d : Higher
values of L−1

i (ui) lead to higher values of L−1(u), ceteris paribus. This follows directly
from the definition of L

−1(u) and general properties of every copula. An increased
inequality in one dimension therefore leads to an increased total inequality without any
further changes.

6. Response of L−1(u) to changes in the dependence structure of the variables, i.e., to
changes of C, when the L−1

i (ui) do not change: Consider two copulas CA and CB

with CA(u) ≤ CB(u) for all u ∈ [0, 1]d . Here, referring to the example of income
and wealth, in B the wealthy would tend to belong more to the high-income part of
the society than in A. It then follows the corresponding multivariate Lorenz order from
Definition 3.1, i.e., L−1

A (u) ≤ L
−1
B (u). Generally, the order properties of the involved

copulas transfer directly to the multivariate Lorenz order. Since the copula order is,
however, a partial order, not all changes in the dependence structure lead to ordered
Lorenz curves.

We illustrate the MEILC for some bivariate examples in Figs. 1 and 2. We consider two
different types of marginal Lorenz curves in all examples, Li(ui) = u2

i (this corresponds
to values Xi which are uniformly distributed over a finite interval [0, b] with b > 0) or
Li(ui) = u

10/9
i (which is close to the Lorenz curve of minimal inequality). Note that the

corresponding marginal inverse Lorenz curves are L−1
i (ui) = √

ui and L−1
i (ui) = u0.9

i ,

respectively. In Fig. 1, we consider Gaussian dependence structures of the variables and vary
Spearman’s ρ from negative to positive dependence, starting from the case of strong nega-
tive dependence (a) to the case of independent margins (b), small positive dependence (c)
and strong positive dependence (d). As expected, the surface of the MEILC becomes more
domed for increasing strength of dependence. Recall that a point on the surface L−1(u1, u2)

at (u1, u2) reflects the maximum share of the society having together less than shares u1
and u2 of the total variable sums of X1 and X2, respectively. Thus, it refers to the share of
individuals being at the bottom in both variables. A more domed surface therefore reflects
a larger inequality.

In Fig. 2, we illustrate the effect of the copula family and a case of unequal marginal
inverse Lorenz curves. Panels (a) and (b) both refer to cases with a rank correlation of
X1 and X2 of ρ = 0.8 but different asymmetric dependence structures, i.e., copulas. The
Clayton copula (a) has a stronger dependence between small values, while the Gumbel
copula (b) has strongest dependence between large values. Consequently, we see that the
surface of the MEILC in the Clayton case is more domed for pairs of small values than in
the Gumbel case (b). Panel (c) depicts the case of independence where the margins are now
different. It can be seen that surface interpolates between the margins. Again, the surface
gets more domed, if the dependence is increased, e.g., by using a Clayton copula with
ρ = 0.8 (d). This is done by visualising L

−1(u) for data with Gaussian and Archimedean
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Fig. 1 Graphs of L−1(u1, u2) based on Gaussian copulas with different values for the dependence parameter
Spearman’s ρ. The surface of L−1(u1, u2) gets more domed with increasing parameter ρ. a Gaussian Copula,
Spearman’s ρ = −0.9 and L−1

i (ui ) = √
ui for i = 1, 2. b Gaussian Copula, Spearman’s ρ = 0.0 (equals

the independence copula) and L−1
i (ui ) = √

ui for i = 1, 2. c Gaussian Copula, Spearman’s ρ = 0.5 and

L−1
i (ui ) = √

ui for i = 1, 2. d Gaussian Copula, Spearman’s ρ = 0.9 and L−1
i (ui ) = √

ui for i = 1, 2

copulas (see Nelson 2006 Chapter 2-4 for various parametric copulas) as well as different
dependence parameter Spearmann’s ρ and marginal distributions.

Remark 3.1 It might be surprising that our extension of the Lorenz curve is based on its
inverse and not on the Lorenz curve itself. The inverse Lorenz curve draws proportions of
the people on the y-axis and the variable of interest, e.g., share of total income, on the x-axis.
Proportion of people is thus the value of the inverse function, while the variable of interest
is the argument. Having only one variable of interest, the choice between Lorenz curve or
inverse Lorenz curve seems arbitrary. Considering d > 1 variables of interest, however, it
seems conceptually more natural to add these variables as further arguments of the inverse
Lorenz curve. Furthermore, the resulting extension is easily interpretable.

Alternatively, starting from the Lorenz curve, a seemingly intuitive idea like

(u1, . . . , ud) �−→ C(L1(u1), . . . , Ld(ud)).

behaves contradictorily. If inequality in the Xi rises than the above definition indicates a
decreasing value. If inequality accounted in C increases an increasing value is indicated.
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Fig. 2 Graphs of L
−1(u1, u2) based on Archimedean copulas with different values for the dependence

parameter Spearman’s ρ and marginal distributions. Panels (a) and (b) illustrate the effect of different asym-
metric dependence structures, while (c) and (d) illustrate effects of margins and dependence structure. a
Clayton copula, Spearman’s ρ = 0.8 and L−1

i (ui ) = √
ui for i = 1, 2. b Gumbel copula, Spearman’s

ρ = 0.8 and L−1
i (ui ) = √

ui for i = 1, 2. c Independence copula � and L−1
1 (u1) = u0.9

1 and and

L−1
2 (u2) = √

u2. d Clayton copula, Spearman’s ρ = 0.8 and L−1
1 (u1) = u0.9

1 and L−1
2 (u2) = √

u2

Obviously this is contradictory.
A possible adjustment would be to look at

(u1, . . . , ud) �−→ 1 − C(1 − L1(u1), . . . , 1 − Ld(ud))

This object reacts in the expected directions in all cases, but it lacks a reasonable and
convincing interpretation.

Remark 3.2 We are quite aware that there might be further reasonable ways of combining
a copula with Lorenz curves Li or its inverses. The survival copula C which corresponds
to copula C (see Nelson 2006 p.33) might also be a useful tool for the definition of a
multivariate extension of the Lorenz curve, but we have not derived any details.
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4 Amultivariate extension of the Gini coefficient (MEGC) related
to themultivariate extension of the Lorenz curve

In the univariate setting, i.e., d = 1, it is well known that the Lorenz order is only a weak
order. Indeed, Lorenz curves may intersect and consequently X1 and X̃1 with intersect-
ing Lorenz curves cannot be ordered with respect to inequality. A numerical measure of
inequality, such as the Gini coefficient, is called for.

In the multivariate setting it can be seen that the order defined in Section 4 is a also a
weak order and a related numerical measure of inequality is required, too. Using the notation
of Sections 2 and 3 we define a Gini coefficient related to the MEILC as follows.

Definition 4.1 Multivariate extension of the Gini coefficient (MEGC)
The MEGC is defined as:

G
C,L−1

1 ,...,L−1
d

=
∫
[0,1]d L

−1

C,L
−1
1 ,...,L

−1
d

(u)du−∫
[0,1]d L

−1
min(u)du

∫
[0,1]d L

−1
max(u)du−∫

[0,1]d L
−1
min(u)du

. (6)

Using
∫
[0,1]d L

−1
max(u)du = 1 and

∫
[0,1]d L

−1
min(u)du = 1

(d+1)! (see Nelson 2006)
we can rewrite,

G
C,L−1

1 ,...,L−1
d

=
(d + 1)! ∫[0,1]d L

−1
C,L−1

1 ,...,L−1
d

(u)du − 1

(d + 1)! − 1
.

Note, the similarity of the above definition to the univariate Gini coefficient. The latter
is two times the area between the inverse Lorenz curve and the diagonal of the unit square,
where the diagonal stands for the inverse Lorenz curve of minimal inequality. The factor two
results from normalization to the unit interval. In our the multivariate definition, we measure
the volume enclosed by the actual Lorenz curve and the curve of minimal inequality (see
numerator of Eq. 6 and rescale the result to be between 0 and 1 (see denominator of that
equation). Consequently, setting d = 1 yields,

G
C,L−1

1
= 2

∫
[0,1]

L−1
1 (u1)du1 − 1 = G1

which is the Gini coefficient in the univariate case (see, e.g., Section 2).
For d = 2 we have 0 ≤ G

C,L−1
1 ,L−1

2
≤ 1, where G

C,L−1
1 ,L−1

2
= 0 implies that C = W

and G
C,L−1

1 ,L−1
2

= 1 implies that C = M . For d ≥ 3 we have 0 < G
C,L−1

1 ,...,L−1
d

≤ 1. This

is due to the fact, that W is not a copula for d ≥ 3. Further G
C,L−1

1 ,...,L−1
d

= 1 implies that

C = M .

Example 4.1 Consider the case of independent X1, . . . , Xd, where cov(Xi, Xj ) =
0, for i, j ∈ {1, . . . , d} and i �= j . With C = � and u = (u1, . . . , ud) it follows from∫

[0,1]d
L

−1
Π,L−1

1 ,...,L−1
d

(u)du =
(

1 − E(X∗
1)

)(
1 − E(X∗

2)

)
. . .

(
1 − E(X∗

d)

)

=
(

1

2

)d d∏
j=1

(1 + Gj)

and Definition 4.1 that the MEGC can be written as

G
C,L−1

1 ,...,L−1
d

= (1+d)!( 1
2 )d

∏d
j=1(1+Gj )−1

(d+1)!−1 .
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In the special case d = 2, we obtain

G1,2 = 1

10
(1 + 3G1 + 3G2 + 3G1G2) . (7)

Focusing on the two dimensional case, the MEGC is decomposable into the marginal
Gini coefficients and a term resulting from the dependence structure.

Theorem 4.1 Decomposition of two dimensional MEGC
The two dimensional MEGC can be expressed as

G
C,L−1

1 ,L−1
2

= G1,2 = 6

5
E(X∗

1X∗
2) + 3

5
G1 + 3

5
G2 − 1

5
.

Proof Note, that cov(X∗
1 , X∗

2) = ∫ 1
0

∫ 1
0

(
C(L−1

1 (u1), L
−1
2 (u2)) − L−1

1 (u1)L
−1
2 (u2)

)
du1du2

(Nelson 2006) and remember that the cdf of X∗
i is L−1

i , for i = 1, 2. So
∫

L−1
1 (u1)du1 =

1 − ∫
L1(u1)du1, with

∫
L1(u1)du1 = E(X∗

1). It follows∫
[0,1]2

L
−1
C,L−1

1 ,L−1
2

(u1, u2)du1du2 = cov(X∗
1, X∗

2) +
∫ 1

0
L−1

1 (u1)du1

∫ 1

0
L−1

2 (u2)du2

= cov(X∗
1, X∗

2) + (1 − E(X∗
1))(1 − E(X∗

2))

= cov(X∗
1, X∗

2) + 1 − E(X∗
1) − E(X∗

2) + E(X∗
1)E(X∗

2)

= E(X∗
1X∗

2) + 1

2
G1 + 1

2
G2

and therefore

G1,2 =
6

∫
[0,1]2 L

−1
C,L−1

1 ,L−1
2

(u1, u2)du1du2 − 1

5
= 6

5
E(X∗

1X∗
2) + 3

5
G1 + 3

5
G2 − 1

5
.

It follows from Theorem 4.1 that upper and lower bounds for G1,2 are given by

3
5G1 + 3

5G2 − 1
5 ≤ G1,2 = 6

5E(X∗
1X∗

2) + 3
5G1 + 3

5G2 − 1
5

≤ 6
5min{E(X∗

1), E(X∗
2)} + 3

5G1 + 3
5G2 − 1

5

= 6
5min{ 1

2 − 1
2G1,

1
2 − 1

2G2} + 3
5G1 + 3

5G2 − 1
5

= 6
5 ( 1

2 − 1
2max{G1,G2}) + 3

5G1 + 3
5G2 − 1

5

= 2
5 − 3

5max{G1,G2} + 3
5G1 + 3

5G2

Note, that the sum of weights is 1 in the lower and upper bound.
Table 1 shows the univariate Gini coefficients and the MEGC for the examples using the

Gaussian copula from Figs. 1 and 2.
As expected, the MEGC increases with increasing strength of the dependence between

X1 and X2. For the example of wealth and income, the influence of the dependence structure
on the MEGC is positive if a rich person tends to belong to the group of high income
individuals and is negative if a rich person is more likely to belong to the individuals with
low income.

Note, that also values G1,2 > max{G1, G2} and G1,2 < min{G1,G2} are possible to
correctly capture the influence of the dependence on the inequality. This is in contrast to a

737



O. Grothe et al.

Table 1 Univariate Gini coefficients and corresponding MEGC

Copula type (Fig. No.) MEGC

Gaussian ρ = −0.9 (1a) 0.25

Gaussian ρ = −0.5 - 0.29

Gaussian ρ = 0.0 (1b) 0.33

Gaussian ρ = 0.5 (1c) 0.39

Gaussian ρ = 0.9 (1d) 0.43

Gumbel ρ = 0.8 (2a) 0.42

Clayton ρ = 0.8 (2b) 0.41

Gaussian ρ = 0.0 (2c) 0.22

Clayton ρ = 0.8 (2d) 0.30

Values of MEGC for the examples from Figs. 1 and 2. Note that the univariate Gini coefficients are 0.33 in
all cases, except for the last two where the marginal Gini coefficient of the first variable equals 0.05. Further
notice that the MEGC, unlike a convex combination, is not necessarily enclosed by the marginal univariate
Gini coefficients

convex combination of G1 and G2. Consider for example the first eight cases in Table 1,
where we have G1 = G2 = 1/3. If the MEGC would be bounded by these values to be
equal to 1/3 in all cases, the different dependence structures would not be reflected.

5 Nonparametric estimation of themultivariate Lorenz curve (MEILC)
and the correspondingmultivariate Gini coefficient (MEGC)

We assume that we have observations X1, . . . ,Xn on X = (X1, . . . , Xd), where Xj =
(X1j , X2j , . . . , Xdj ) for j = 1, . . . , n. We only consider the case where n > d, where we
have more observations than dimensions. If Fi and Li would be known for i = 1, . . . , d

we could easily derive observations X∗
1 , . . . , X

∗
n on X∗ with X∗

ij = Li(Fi(Xij )) for i =
1, . . . , d and j = 1, . . . , n.

However, Fi and Li are unknown in practical applications and have to be estimated using
X1, . . . ,Xn.
We estimate Fi for i = 1, . . . , d by its empirical counterpart

F̂in(x) = 1

n

n∑
j=1

1{Xij ≤x} for x ∈ R.

Li is usually estimated by

L̂in

(
u = k

n

)
=

∑k
j=1 Xi[j :n]∑n

j=1 Xij

for k = 0, 1, . . . , n and , i = 1 . . . , d,

where Xi[1:n] ≤ Xi[2:n] ≤ · · · ≤ Xi[n:n] is the increasingly ordered sequence of Xij and
linear interpolation between L̂in(u = k

n
) and L̂in(u = k−1

n
) for k = 1, 2, . . . , n. This is

tantamount to the compact formula

L̂in(ui) =
∫ ui

0 F̂−1
in (t)dt

1
n

∑n
j=1 Xij

for i = 1, . . . , d and ui ∈ [0, 1].
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It is now possible to estimate the observations X∗
ij by what we suggest to call “pseudo-

observations” of X∗
ij with

X̂∗
ij,n = L̂in(F̂in(Xij )) =

∑
l:Xil≤Xij

Xil∑n
l=1 Xil

for i = 1, . . . d and j = 1, . . . n (8)

and obtain the corresponding vector X̂
∗
j,n = (X̂∗

1j,n, X̂
∗
2j,n . . . , X̂∗

dj,n) for j = 1, . . . , n.

5.1 Estimation of theMEILC

It was pointed out that the MEILC is given by

u = (u1, . . . , ud) �−→ C

(
L−1

1 (u1), . . . , L
−1
d (ud)

)
for u ∈ [0, 1]d

and that it is the joint distribution function of the vector X∗ = (X∗
1, . . . , X∗

d). Therefore, the

MEILC is estimated by the empirical distribution function based on X̂
∗
j,n for j = 1, . . . , n,

i.e.,

L̂
−1
C,L−1

1 ,...,L−1
d ,n

(u1, . . . , ud) = 1

n

n∑
j=1

d∏
i=1

1{X̂∗
ij,n≤ui }.

5.2 Estimation of themultivariate Gini coefficient (MEGC)

In order to estimate G
C,L−1

1 ,...,L−1
d

we have to estimate the integral

I
C,L−1

1 ,...,L−1
d

=
∫

[0,1]d
L

−1
C,L−1

1 ,...,L−1
d

(u)du

for u = (u1, . . . , ud), which is usually done by

Î
C,L−1

1 ,...,L−1
d ,n

=
∫

[0,1]d
L̂

−1
C,L−1

1 ,...,L−1
d ,n

(u)du = 1

n

n∑
j=1

∫
[0,1]d

d∏
i=1

1{X̂∗
ij,n≤ui }dui

= 1

n

n∑
j=1

d∏
i=1

∫ 1

0
1{X̂∗

ij,n≤ui }dui

= 1

n

n∑
j=1

d∏
i=1

(1 − X̂∗
ij,n).

After normalizing we obtain the estimator

Ĝ
C,L−1

1 ,...,L−1
d ,n

= (d + 1)! 1
n

∑n
j=1

∏d
i=1(1 − X̂∗

ij,n) − 1

(d + 1)! − 1
. (9)

6 Considerations on transfers

In this section we want to discuss some considerations on transfers and their effect on the
MEILC and MEGC. We are aware that this is a very wide and complex topic, so we can

739



O. Grothe et al.

not cover it in all its aspects. However, we at least want to share first considerations and
encourage further research on this topic.

First, we define the Correlation Increasing Transformation (CIT) introduced by Tsui
(1998) into the inequality literature and further considered by many authors, e.g. Epstein and
Tanny (1980), Atkinson and Bourguignon (1982), Decancq (2012), and Gravel and Moyes
(2012) or lately Faure and Gravel (2021).

Definition 6.1 Correlation Increasing Transformation (CIT)
We are considering two possible distributions or allocations A and B of d variables

among a fixed number of individuals. Let, e.g., tA denote the d-dimensional vector of
variables of individual t in allocation scenario A, with analogue expressions for other
individuals and distributions. We say that distribution B is obtained from distribution A

by a Correlation Increasing Transformation (CIT), if for two individuals t and z with
d-dimensional attribute vectors tB, zB ∈ R

d we have the reallocation

tB := max(tA, zA) and zB := min(tA, zA), (10)

while the variable vectors of all other individuals stay unchanged, i.e., mB = mA for all
other individuals m �∈ {t, z}. Here, max/min denote the element-wise maximum/minimum.

Note, that within our framework, this corresponds to only swapping X̂∗ values between
two individuals while all others X̂∗ values remain unchanged. A distribution B is called
a Correlation Increasing Majorization (CIM) of distribution A if it is obtained by a finite
sequence of CIT’s from A.

The CIT naturally affects the order of multivariate Lorenz curves (MEILC) as summa-
rized in the following proposition 6.1.

Proposition 6.1 Any Correlation Increasing Transformation (CIT) or Correlation Increas-
ing Majorization (CIM) from a distribution A towards a distribution B, implies the
multivariate Lorenz order B � A from Definition 3.1.

Keeping in mind, that a CIT only exchanges values of X̂ of two individuals (with the
same effect to X̂∗) and that L̂−1 is the joint distribution function of X̂

∗ = (X̂∗
1, . . . , X̂∗

d) for
k = 1, . . . , d , the proposition follows directly from Epstein and Tanny (1980).

Consequently, any CIT has also direct implications towards the MEGC.

Proposition 6.2 Any Correlation Increasing Transformation (CIT) or Correlation Increas-
ing Majorization (CIM), induces a higher multivariate Gini coefficient MEGC. An analo-
gous statement applies to the decreasing counterparts of the operations, which induce lower
MEGCs.

Proposition 6.2 follows directly from Proposition 6.1 and Definition 4.1.
More intuitively, a CIT does only have an impact on the dependence structure, i.e., the

copula, as it only swaps the coupling of realizations in the margins. Then, a CIT results
per definition in more concordant dependence structure and consequently to an increased
multivariate Gini coefficient.

Further, we want to elaborate the topic with the help of an example motivated by an
anonymous referee. We look at a population of three individuals and consider the bivariate
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case, i.e., d = 2, where X1 and X2 might again stand for the individuals’ income and wealth,
respectively.

Individual 1 Individual 2 Individual 3

Society 1

(
X1
X2

) (
3
3

) (
4
4

) (
6
6

)

Society 2

(
X1
X2

) (
5
3

) (
2
4

) (
6
6

)

Society 3

(
X1
X2

) (
4
3

) (
3
4

) (
6
6

)

Society 1 is obtained from Society 3 by a simple CIT between Individual 1 and Individual
2. We therefore expect the MEGC of Society 1 to be higher than that of Society 3. For
Society 2 the transfer is more complicated. Society 2 is obtained from Society 1 by a transfer
of two units X1 from Individual 2 to Individual 1. Reversely, this is equal to first applying
a CIT to Society 2 (increases inequality) and then a transfer of one unit X1 from Individual
2 to Individual 1, which is typically considered to reduce inequality. In this case we can
not directly rank the distributions by means of their multivariate inequality from looking
at the transfers. However, it is possible to rank the distributions by calculating the MEGC,
resulting in MEGC = 0.121 for the first society, MEGC = 0.098 for the second society
and MEGC = 0.084 for the third society. As expected, we see that Society 1 is more
unequal than Society 3. Furthermore, we now can include Society 2 in the ordering.

More general, Pigou-Dalton transfers are widely known to reduce inequality in the
univariate case (Dalton 1920). However, the extension to the multivariate case is not
straightforward and multiple suggestions have been made, see e.g. Basili et al. (2017),
Bosmans et al. (2009), and Banerjee (2014). The problem at hand in the multivariate case
is that both, the marginal distributions and the dependence structure, can be changed at
the same time, even in opposite directions, e.g., decreasing inequality in the margins while
increasing in the dependence structure. Thus it might not be so clear to define types of pure
basis transfers between two individuals which act always in the same directions with respect
to margins and dependence structure. Further complicating matters, individuals which are
not directly included in the transfer can be effected and general statements are very difficult
to make. The following example illustrates the above and hopefully encourages for further
research.

Example 6.1 Multivariate Pigou-Dalton-Bundle-Transfers (PDBT) are defined as non-
negative transfer from one unambiguously richer individual to a poorer individual in each
attribute. The amounts or the proportions of the transfers need not to be the same for all
attributes, i.e., it is possible to transfer only one attribute (see Fleurbaey and Trannoy 2003;
de la Vega et al. 2010). Consider the two societies below, where Society 2 is obtained from
a PDBT of 1.1 units of X1 from Individual 1 to Individual 4.

Individual 1 Individual 2 Individual 3 Individual 4 MEGC

Society 1

(
X1
X2

) (
5
4

) (
4
5

) (
3
2

) (
2
3

)
0.131

Society 2

(
X1
X2

) (
3.9
4

) (
4
5

) (
3
2

) (
3.1
3

)
0.141
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The transfer from richer Individual 1 to Individual 4 obviously reduces the inequality in
X1, but also affects Individuals 2 and 3 leading to another result in the multivariate case.
Individual 2 now is the richest in both dimensions whereas Individual 3 is the poorest.
Therefore, the transfer increased the dependence, more specific the rank-dependence, within
the society which increases inequality in this case leading to a higher MEGC.

Example 6.1 displays the complexity of the topic. Although a transfer seems to reduce
inequality at the first glance, it may have an opposing efficacy within the dependence struc-
ture of the whole society. In our example, the PDBT results in a clear richest and poorest
individual, decreasing the balancing effect of the dependence structure.

For more general considerations on transfers we refer to Epstein and Tanny (1980),
Atkinson and Bourguignon (1982), and Decancq (2012), or most lately Faure and Gravel
(2021).

7 Analysis of Income andWealth Inequality using theMEILC and the
MEGC

In the following section we demonstrate a possible application of the MEILC and the cor-
responding MEGC. The first example in Section 7.1 uses data for Germany (SOEP 2019)
and is implemented in Python 3.8 (Van Rossum and Drake 2009). Section 7.2 is imple-
mented via the LISSY R-Interface (Luxembourg Wealth Study (LWS) Database 2020) and
examines the MEGC of 13 additional countries.

7.1 MEILC and theMEGC for Germany 2017

We analyse the joint inequality of income and wealth in Germany based on the data provided
by the Socio-Economic Panel (SOEP) for 2017 (SOEP 2019). Detailed information about
the survey and the methods used in the SOEP are provided by Goebel et al. (2019) and
Wagner et al. (2007). The analysis is based on the variable ‘i11102’ from the pequi dataset
for income and ‘n0111a’ from the hwealth dataset for wealth. Entries with negative values
in one of the variables are dropped as suggested by many authors (see e.g., Rehm et al.
2014; Harvey et al. 2017; Saez and Zucman 2016; Formby et al. 1989). The data set refers to
households, whereas inequality numbers are usually reported at the individual level. Income
and wealth numbers in the data set are therefore broken down to the individual level. To this
end, the values (income and wealth) are equivalised with respect of the number of household
members by multiplying with 1/(household members)0.5, see, e.g., OECD (OECD Income
(IDD) and Wealth (WDD) Distribution Databases 2017). In a next step, each adjusted pair of
income and wealth is replicated K times, where K is the product of the household members
(e.g., to get 5 individual entries from a 5 person household) and the integer part of a weight
reported in variable ‘w11102’. The variable ‘w11102’ corrects for differences in the socio-
economic distribution between households in the panel and all households of the country.
Additionally, data errors are eliminated by excluding individuals with values lying more
than 30 standard deviation off the mean.

The resulting data is presented in Fig. 3. For better visualization, the figure only shows
data with income and wealth below EUR 0.1 million and EUR 1 million, respectively. This
corresponds to more than 98.0% of the data. The empirical copula of the full data set is
shown in Fig. 4 and the resulting MEILC in Fig. 5. For the univariate Gini coefficients we
compute G1 = 0.29 for income and G2 = 0.65 for wealth. Thus, inequality in wealth is
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Fig. 3 Scatter-plot and corresponding histograms of income and wealth in Germany 2017 based on the SOEP
dataset

considerably higher than in income. This difference is also observable in the shape of the
margins L−1

income and L−1
wealth of the MEILC in Fig. 5. The multivariate Gini coefficient of

wealth and income yields G1,2 = 0.47. Due to the moderate positive dependence of wealth
and income (Spearman’s ρ is ρ = 0.56, here) this is slightly higher than it would be for
independent variables (compare to Eq. 7 in Section 4).

7.2 MEGC of income andwealth for other countries

Table 2 summarizes the Gini coefficients for wealth G1, income G2 and the MEGC G1,2
for several countries based on the Luxembourg Wealth Study (LWS) database (Luxembourg
Wealth Study (LWS) Database 2020). For an extensive documentation of the cross-national
wealth database, see LIS (2019a) and LIS (2019b). In the analysis, the variables disposable
household income (‘dhi’) and disposable net worth (‘dnw’) from the latest available data sets
are used (if too many of the values are missing, we use the total current income (‘hitotal’)
variable instead of ‘dhi’). The data processing is done analogously to the SOEP data set
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Fig. 4 Empirical copula of income and wealth in Germany 2017 based on the SOEP dataset

Fig. 5 MEILC of income and wealth in Germany 2017 based on the SOEP dataset
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Table 2 Gini coefficient, MEGC and and Spearman’s ρ on wealth and income

Country Gini on income Gini on wealth MEGC Spearman’s ρ

Australia 0.33 0.62 0.46 0.28

Austria1 0.28 0.67 0.47 0.41

Canada 0.32 0.66 0.48 0.41

Finland 0.25 0.60 0.43 0.41

Germany2 0.29 0.65 0.47 0.56

Greece1 0.32 0.55 0.45 0.41

Italy 0.34 0.58 0.48 0.56

Luxembourg1 0.39 0.63 0.51 0.54

Slovakia1 0.34 0.51 0.44 0.40

Slovenia1 0.36 0.59 0.46 0.29

South Africa 0.61 0.85 0.71 0.43

Spain1 0.38 0.60 0.50 0.45

United Kingdom 0.35 0.60 0.48 0.55

United States 0.45 0.80 0.61 0.63

Gini coefficient, MEGC and and Spearman’s ρ on wealth and income for multiple countries based on the
Luxembourg Wealth Study (LWS) Database (2020) database. 1hitotal instead of ‘dhi’ from LWS dataset used
because of missing values. 2 From SOEP data, Section 7.1

in the last section. Again, households with negative values in one or both variables are
excluded. Both household variables are again broken down to individual levels. First we
equalize by multiplying by 1/(household members)0.5 and then we replicate each income
and wealth pair in the sample according to the number of household members times the
integer part of panel adjustment weights. In this database, the number of household members
is stored in the variable ‘nhhmem’, while the adjustment weights are stored in ‘hpopwgt’.

Turning to Table 2, all reported numbers are plausible and inequality is larger for wealth
than for income in all cases. With regard to wealth, South Africa as well as the United
States have the highest inequality. South Africa shows also the largest inequality in the
income distribution. Considering all countries, dependencies between income and wealth
are positive and mainly moderate. The reported numbers of Spearman’s rho are often below
0.5. For this reason all reported MEGC numbers of multivariate inequality lie well between
the univariate Gini coefficients. The highest MEGC is reported for South Africa followed
by the United States. The lowest MEGC numbers are reported for Slowakia and Finland.
An interesting example for the effect of the dependence structure on inequality is the pair of
Italy and Slovenia. While marginal inequalities in wealth and income are slightly lower in
Italy than in Slovenia, the stronger dependency of these variables in Italy (i.e., the rich tend
to coincide with the higher earners) results in a higher MEGC in Italy than in Slovenia. As
an alternative, graphical illustration of the dominance structure within the three aspects, two
univariate Gini coefficients and the MEGG, we provide a Hasse-diagram in Fig. 6. There,
concordant ordering of all three aspects between two countries, results in a connecting edge
within the graph.

Note, that the values for the univariate Gini coefficients can differ from other publications
for various reasons. First, we do not apply any top or bottom coding of the data and exclude
all individuals with negative values in the variables. Second, we floor the provided weights
to the next integer because of computational reasons. Third, we only use complete cases of
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Fig. 6 Illustration of the incomplete ranking resulting from Table 2 in terms of a Hasse diagram. Dominance
in all three Gini coefficients leads to an edge between countries, whereas inequality decreases from the top
down

the datasets. This means we consider a person in our calculation only, if all information (dhi,
dnw, hpopwgt, nhhm) of the case is available. Furthermore we treated both variables in the
same way, especially when adjusting for the household size. See Sierminska and Smeeding
(2005) for a brief discussion on the topic. Last, we used only the data provided by the LWS
database and did not supplement it with data from other sources.
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