
 

1 
 

Physical Modelling of a Light Rail HVAC System Using Long-Term Measurements 

Sebastian Reimann1, Peter Gratzfeld1 

1Karlsruhe Institute of Technology, Institute of Vehicle System Technology - Rail System Technology, Karlsruhe, Germany  
Corresponding Author: Sebastian Reimann (sebastian.reimann@kit.edu) 

Abstract 

A method to develop a physical HVAC model of a light rail using only operation data from long-term 

measurements is presented. Physical HVAC modelling is often based on costly wind tunnel tests or time and 

computationally intensive CFD calculations. This method is a new approach using only data from everyday 

operation of the light rail, reducing modelling cost and improving the model accuracy since real life conditions 

are analysed.  Data from two years of passenger operation of a suburban light rail in Karlsruhe, Germany, is used. 

A standard physical model for a HVAC system and a train compartment is developed. This model is parametrised 

using data driven modelling and model training. For data driven modelling, the conducted data is analysed and 

suitable models are derived. For example, the cooling system is modelled using a look-up table based approach 

developed with the data. For model training, the data is first separated into test and training data. The training 

data is then separated into different batches (heating up, winter-night, winter-day and summer), to 

parameterise different physical quantities of the model. Using a systematic grid search, parameters that fit the 

training data in an optimal manner are found. Finally, the overall model is validated using the test data. Over a 

large temperature range from -5 °C to 35 °C the model shows good consistency with the test data. The mean 

absolute percentage error over all test data is 13 %. Within the batches, the summer data was modelled best 

with an error of about 8 %. The described method allows a fast and reliable method to develop an accurate 

physical HVAC model. 
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1. Introduction 

The energy consumption of the auxiliary consumers can amount to about 40 - 50 % of the overall energy 

consumption of a light rail [1]. In order to develop energy efficient trains, the energy consumption of auxiliary 

consumers is getting more and more attention. The heating ventilation and air conditioning system (HVAC), as 

one of the biggest auxiliary consumers, is in the centre of this discussion. In order to understand, develop and 

improve future HVAC systems, accurate physical models of the HVAC system and the corresponding train 

compartment are necessary. These models are used, for example, to develop smarter operation strategies than 

the set point-based operation modes often used today. In addition, they can be used to show that the Total Cost 

of Ownership (TCO) of a more energy efficient solution, such as a heat pump instead of heating fins, 

compensates for the higher purchase price of this solution.  A detailed look into HVAC modelling shows that the 

development of a physical HVAC model and the corresponding train compartment model is complex, time-

consuming and costly. When a model is built, it has many degrees of freedom and simulation takes time. New 

train projects often include data mining. This data can be used to develop models, for example black-box models 

based on neural networks [2]. Black-box models have the disadvantage that it is not possible to change physical 

parameters within the model. Furthermore, it is difficult to split a black-box model into submodels. During HVAC 

development it is often necessary to change physical parameters or to substitute only a submodel, for example 

the heating system. Therefore, the presented method focuses on using physical models as a basis. Physical 

models are often not as accurate and they are computational time intensive. The idea is therefore to combine 

techniques known from black-box development with physical modelling towards a data driven physical model 

that gives accurate results with an acceptable computational effort.  The presented method works without time 

and cost intensive testing of the HVAC system or the training set. Furthermore, the model accuracy can be 

increased since it is based on real live data.   

2. Literature Overview  

Two fields of research are important for this work: projects doing long term measurements including the 

auxiliary consumers, and physical HVAC modelling for rail cars. Depending on the investigated trainsets, HVAC 
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or only heating and ventilating (HV) is analysed. For 13 months from 2011 to 2013, long-term measurements 

were done in a light rail in Gent, Belgium [3].  The project analysed different energy saving strategies by 

improving the HV management. From 2012 to 2013, a Metro Car of the Tyne and Wear Metro system in the UK 

was equipped with energy meters doing long term measurements, investigating that heating is one of the major 

energy consumers [4]. In [5], the energy consumption of a regional train in Switzerland is discussed, based on 

long-term measurements between 2012 and 2013. Since 2019, a light rail vehicle in Karlsruhe, Germany, is 

equipped with various measurement devices to track traction as well as auxiliary metrics [1]. The data collected 

in Karlsruhe is used for this work.  

HVAC modelling often uses limited real live data: For example, in [6], a physical model of a subway car 

compartment as well as a HV model  are developed without using real live data. Energy savings due to CO2-

controlled ventilation is discussed. In [7], an extensive HVAC model is developed using test data from the 

manufacturer. [8] develops a HVAC model and a corresponding tram compartment model using look-up tables 

from manufacturers as well as wind tunnel test data. Data from cooling tests in a depot were used for developing 

a HVAC and a compartment model in [9]. Since real world data is often missing, [10] is developing representative 

operating conditions for a train HVAC system, highlighting the need for real world data.  

Overall it can be stated that the potential of long-term measurement data for HVAC modelling has not been 

exploited yet. Using two years of data to develop a physical model, this work shows the potential of this idea.  

3. Method 

The methodology is presented in Figure 1 containing four steps. The basis of the methodology is real train data 

collected during normal operation of a light rail train running in the area of Karlsruhe, Germany. The data is split 

into two parts, a training and a test set, in order to ensure that data for later validation wasn’t used to build or 

train the model. The data used in this paper was collected over a period of two years during an ongoing project 

that collects data until 2023. This project was presented on WCCR 2019 [11]. 

3.1 Step 1: Modelling   

First, the train compartment and the HVAC model are developed using models from literature, mainly from [8]. 

For simplification, the train compartment is only modelled using one heat capacity and the train isn’t separated 

into sections for each wagon. The overall system shown in Figure 2 can be divided into two subsystems, the 

HVAC system (black dotted line) and the train compartment system. To model the effects two approaches are 

considered: Theoretical modelling and data-driven modelling. If a physical effect is well known and easy to 

describe, then theoretical modelling is used. If data is present and the physical effect is difficult to describe, data-

driven modelling is used. 

Inside the HVAC system, outside fresh air �̇�𝐴𝑖𝑟𝑓𝑟𝑒𝑠ℎ
 as well as inside air �̇�𝐴𝑖𝑟𝑖𝑛𝑠𝑖𝑑𝑒

 are mixed. This supply air �̇�𝐴𝑖𝑟 is 

then pumped into the vehicle. If the HVAC is in heating mode, the supply air is heated. If the HVAC is in cooling 

mode, the supply air is cooled.   

Figure 1: Method to derive the physical model from real train data 
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𝑃𝐸𝑙𝑒𝑐   Electric power driving the HVAC 

�̇�𝐴𝑖𝑟   Enthalpy flow, ventilation and leakage 

�̇�𝑆𝑢𝑛−𝑅𝑜𝑜𝑓   Heat flow due to radiation onto the roof 

�̇�𝑆𝑢𝑛−𝑆𝑖𝑑𝑒   Heat flow due to radiation onto the side 

�̇�𝐷𝑜𝑜𝑟   Enthalpy flow through open doors 

�̇�𝑃𝑎𝑠𝑠   Heat flow from passengers in the vehicle 

�̇�𝐻𝑉𝐴𝐶   Heat flow from the HVAC system  

𝐶𝑇  Heat capacity of the vehicle 

�̇�𝐶𝑜𝑛𝑣(𝑣𝑜)  Convection heat flow at standstill 

�̇�𝐶𝑜𝑛𝑣(𝑣)  Convection heat flow  
  

Figure 2: HVAC and train compartment model 

The amount of intake fresh air as well as the amount of supply air is calculated according to data from the 

manufacturer. Data shows that to a good approximation the amount of fresh air intake within the operation 

mode is constant. It changes between the operation modes heating, ventilation and cooling. The temperature 

of the supply air 𝑇′𝐴𝑖𝑟  before heating or cooling is  

 
𝑇′𝐴𝑖𝑟 = 𝑇𝑜𝑢𝑡 ∗ (

�̇�𝐴𝑖𝑟𝑓𝑟𝑒𝑠ℎ

�̇�𝐴𝑖𝑟
) + 𝑇𝑖𝑛 ∗ (

�̇�𝐴𝑖𝑟𝑖𝑛𝑠𝑖𝑑𝑒

�̇�𝐴𝑖𝑟
). 

(1) 

Besides the inside temperature the inside absolute humidity is relevant. The conducted data show that as a 

simplification the absolute humidity inside and outside the light rail can be considered as equal. The overall error 

due to this assumption is small. The absolute humidity of the supply air 𝑥𝐴𝑖𝑟  is therefore 

 𝑥𝐴𝑖𝑟 = 𝑥𝐴𝑖𝑟𝑖𝑛𝑠𝑖𝑑𝑒
= 𝑥𝐴𝑖𝑟𝑜𝑢𝑡𝑠𝑖𝑑𝑒

. (2) 

Because of this assumption, the density 𝜌ℎ𝐴𝐼𝑅  and the heat capacity 𝑐𝑝ℎ𝐴𝐼𝑅  of the humid air are calculated during 

the simulation according to outside temperature and outside dew point temperature serving as an input to the 

simulation.  

With the assumption that the mass flow of air going into the tram is equal to the mass flow going out of the 

tram, the heat flow �̇�𝐻𝑉𝐴𝐶  going from the HVAC system into the tram can be calculated as  

 �̇�𝐻𝑉𝐴𝐶 = �̇�𝐴𝑖𝑟 ∙ (ℎ𝐴𝑖𝑟 − ℎ𝑖𝑛)  (3) 

with ℎ𝐴𝑖𝑟 being the enthalpy of the supply air after heating or cooling and ℎ𝑖𝑛 the enthalpy of the air inside the 

train compartment. Because of Equation 2 for heating and ventilation, Equation 3 simplifies to  

 �̇�𝐻𝑉𝐴𝐶 = �̇�𝐴𝑖𝑟 ∙ 𝜌ℎ𝐴𝐼𝑅 ∙ 𝑐𝑝ℎ𝐴𝐼𝑅 ∙ (𝑇𝐴𝑖𝑟 − 𝑇𝑖𝑛) (4) 

considering the temperature of the supply air after the HVAC system 𝑇𝐴𝑖𝑟 . During heating, 𝑃𝐸𝑙𝑒𝑐  heats up a heat 

capacity modelling the heating fins. Using equations from [12], the cooling effect of the supply air to the heating 

fins is calculated. This cooling results in a temperature rise within the supply air, being the heating effect of the 

HVAC. Cooling is modelled using a data driven approach. Analysing the measured real live data, the temperature 

as well as the absolute humidity and the mass flow of the supply air after cooling is modelled using look-up 

tables and switch-on respectively switch-off time constants. The absolute humidity and the temperature of the 

supply air before cooling are look-up table inputs. 𝑃𝐸𝑙𝑒𝑐  is then calculated according to the operation mode 

(switch-on, cooling, switch-off, idle) of the HVAC system.  

With the temperature inside the tram as 𝑇𝑖𝑛, the governing equation for the train compartment system is 

 𝐶𝑇�̇� = ∑ �̇�𝑖 + ∑�̇�𝑖 . (5) 

�̇�𝑆𝑢𝑛−𝑅𝑜𝑜𝑓  and �̇�𝑆𝑢𝑛−𝑆𝑖𝑑𝑒, the heat flow due to radiation onto the tram, are modelled using the equations given 

in DIN 5034-2 [13]. Since the tram is equipped with a pyranometer, solar radiation is an input into the simulation. 

For simulating without knowing the solar radiation, a coherence analysis is done using the measured data to 

study the impact of light and shades onto the tram. A data driven model for the impact of shadows is built. The 

enthalpy flow �̇�𝐷𝑜𝑜𝑟 results from a mass flow of air (dry air and vapor) through the open doors. The mass flow 
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going into the tram is assumed to be equal to the mass flow going out of the tram. The resulting equation is 

 �̇�𝐷𝑜𝑜𝑟 = �̇�𝐷𝑜𝑜𝑟 ∙ 𝜌ℎ𝐴𝐼𝑅 ∙ 𝑐𝑝ℎ𝐴𝐼𝑅 ∙ (𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛). (6) 

�̇�𝐷𝑜𝑜𝑟  is calculated using literature values [14]. 

With 𝑛𝑃𝑎𝑠𝑠  being the number of passengers inside the tram, �̇�𝑃𝑎𝑠𝑠 is calculated according to DIN EN 14750 [15], 

considering sensible and latent heat from the passengers:  

 �̇�𝑃𝑎𝑠𝑠 = 118 ∙ 𝑛𝑃𝑎𝑠𝑠. (7) 

The heat flow due to convection is split into two parts: The effect at standstill and the effect that applies when 

the vehicle is moving. The effect at standstill is calculated using the heat transfer coefficient 𝑘𝑣0
 from 

manufacturing data. The effect due to moving the vehicle is estimated using the effects present at a flat plate. 

A speed dependent factor 𝑘𝑣(𝑣)  is calculated. The equation considering the tram outside shell area 𝐴𝑠ℎ𝑒𝑙𝑙  is 

 �̇�𝐶𝑜𝑛𝑣(𝑣𝑜)  + �̇�𝐶𝑜𝑛𝑣(𝑣) = (𝑘𝑣0
+ 𝑘𝑣(𝑣)) ∙ 𝐴𝑠ℎ𝑒𝑙𝑙 ∙ (𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛). (8) 

3.2 Step 2: Implementing  

The model is modelled using the software tool Dymola with the object-based modelling language Modelica. 

Inputs to the simulation measured on the light rail are: location relative to the sun, speed, stop time, door 

opening time and global radiation. Inputs measured at a local weather station are: diffuse radiation, outside 

temperature and dew point temperature. A statistical input to the simulation is the number of passengers.  

3.3 Step 3: Model Training 

During model training the model is parameterized using separate batches of input data. With each batch only a 

few physical properties of the model are parameterized. The first batch is a highly separated batch containing 

only data that influences a few physical properties. From batch to batch the data can become more general since 

a previous parameterized parameter is not changed again. Each batch is used to parameterize two to three 

parameters. For the overall model shown in Figure 2, four batches are chosen: 

1. Data from the heating up of the light rail are used to parameterize the heat capacity and the cooling 

coefficient of the heating fins and the heat capacity of the train compartment 𝐶𝑇.  

2. Data from the tram operation during the night in winter are used to parameterize the amount of intake 

fresh air �̇�𝐴𝑖𝑟𝑓𝑟𝑒𝑠ℎ
, the air flow through the door �̇�𝐷𝑜𝑜𝑟  and the speed dependent factor of the heat 

transfer coefficient 𝑘𝑣(𝑣). The advantage of using operation during the night is that no radiation due 

to sunlight impacts the train. 

3. Data from the tram operation during the day in winter are used to parameterize the heat flow due to 

radiation �̇�𝑆𝑢𝑛−𝑅𝑜𝑜𝑓 and �̇�𝑆𝑢𝑛−𝑆𝑖𝑑𝑒  onto the tram.  

4. Data from the tram operation in summer are used to parameterize the switch-on respectively switch-

off time constants used for AC modelling.  

The parametrization is performed using a systematic grid search on the training data. This technique known 

from machine learning finds a set of parameters that fits in an optimal manner to the training data. This process 

enhances the model accuracy significantly in contrast to a normal physical model. 

3.4 Step 4: Validation 

In the fourth step, the derived model is validated using the predefined test data. The validation is performed 

separately for all batches and finally for the overall model. 

4. Results  

For the first training step, data from the heating up of the light rail is used. Since the measuring device also 

measures during idle time, this data can be used for parametrization. Only data is chosen where the light rail 

was stationed outside. For heating up, the inside temperature is compared between simulation 𝑇𝑆𝑖𝑚. and 

measurement 𝑇𝑀𝑒𝑎𝑠..  

For all other training steps, normal operation trips from start to terminus of the light rail are simulated. Each trip 

contains up to 70 stops within a 2 hour ride. The measured auxiliary energy during the trip 𝐸𝑀𝑒𝑎𝑠. is compared 
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with the simulated auxiliary energy 𝐸𝑆𝑖𝑚.. Because the power consumption of the HVAC system isn’t measured 

directly, the overall auxiliary power of the light rail is used. Since all other auxiliary consumers are known, this is 

a reasonable approach. 

  

For each step during training the mean absolute error (MAE) and the mean absolute percentage error (MAPE) 

are calculated being the chosen quality criterion for the model. All results are presented in Table 1.   

 

Batch Training Data Test Data MAE MAPE 

Heating up 5 heating 

processes 

5 heating 

processes 

0.22 °C 1.43 % 

Winter night  10 trips 10 trips 3.7 kWh/trip 10.3 % 

Winter day 19 trips 24 trips 4.2 kWh/trip 9.2 % 

Summer 20 trips 20 trips  1.4 kWh/trip 8.7 %. 

Table 1: Results of the model training 

5. Validation  

For overall validation, 197 trips with different outside conditions from different days in 2019 and 2020 are 

simulated. The results are then compared to the measured data. A wide operation area of the HVAC is analysed, 

the results are presented using the mean outside temperature present during the simulated trip. In Figure 11, 

the simulated average auxiliary power during simulation and during measurement are compared. Figure 12 

shows all validation data in an 𝐸𝑆𝑖𝑚./𝐸𝑀𝑒𝑎𝑠. comparison. The mean absolute error of all validation data is 2.38 

kWh/trip, the mean absolute percentage error is 12.92 %. 

  

6. Conclusion  

The presented physical model parametrized with the described method leads to a model with good accuracy of 

about 13 %.  Figure 11 shows that the biggest relative error between simulation and measurements occurs 

between 15 °C and 22 °C. Within this temperature range, the simulated HVAC control sometimes switches to 

ventilation although the measured data shows that the HVAC was in cooling mode. Because of these different 

modes the relative error can become large, although the absolute error stays small since the overall energy 

demand of the HVAC system is small within this temperature range. The incoherent HVAC control is due to the 

simplifications made previously such as simulating just one heat capacity rather than one for each wagon. 

Figure 11 Simulated average auxiliary power during 

simulation and measurement 

Figure 12 Energy demand comparison for all  

validation data 
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Because of this simplification, the model assumes an even distribution of all passengers within the train. The 

uneven distribution of passengers which is normally present can lead to a small temperature difference within 

the wagons, allowing the HVAC control to switch on cooling.  

 

Overall, a method is presented that leads to an accurate physical model of a HVAC system without the cost 

inefficient testing of the train in a wind tunnel or in the depot. Furthermore, complex computer simulations such 

as 3D CFD simulations are not necessary.  Only real operation data is used, enhancing the model’s accuracy and 

reducing the overall project cost. 

 

References 

[1] P. Otto, M. Tesar, and P. Gratzfeld, “Design and Evaluation Examples of a Data Acquisition System for Light 

Rail Applications”, 33rd World Electric Vehicle Symposium & Exposition (EVS33), 2020. 

[2] M. Tesar, S.Müller-Broich, L. Hilmer, P. Gratzfeld, "Predicting Traction Energy Demand of a Light Rail Vehicle 

Using Deep Learning Methods", 2021 IEEE Vehicle Power and Propulsion Conference (VPPC), 2021 

[in press]. 

[3] B. Beusen, B. Degraeuwe, and P. Debeuf, “Energy savings in light rail through the optimization of heating 

and ventilation”, Transportation Research Part D: Transport and Environment, vol. 23, pp. 50–54, 2013. 

[4] J. P. Powell, A. González-Gil, and R. Palacin, “Experimental assessment of the energy consumption of urban 

rail vehicles during stabling hours: Influence of ambient temperature”, Applied Thermal Engineering, vol. 

66, 1-2, pp. 541–547, 2014. 

[5] O. Bouvard et al., “Solar heat gains through train windows: a non-negligible contribution to the energy 

balance”, Energy Efficiency, vol. 11, no. 6, pp. 1397–1410, 2018. 

[6] H. Amri, R. N. Hofstadter, and M. Kozek, “Energy efficient design and simulation of a demand controlled 

heating and ventilation unit in a metro vehicle”, IEEE Forum on Integrated and Sustainable Transportation 

Systems, Vienna, Austria, pp. 7–12, 2011. 

[7] W. Li and J. Sun, “Numerical simulation and analysis of transport air conditioning system integrated with 

passenger compartment”, Applied Thermal Engineering, vol. 50, no. 1, pp. 37–45, 2013. 

[8] R. N. Hofstadter, J. Amaya, and M. Kozek, “Energy optimal control of thermal comfort in trams”, Applied 

Thermal Engineering, vol. 143, pp. 812–821, 2018. 

[9] E. M. Vinberg, “Energy use in the operational cycle of passenger rail vehicles”, KTH, School of Engineering 

Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles, Stockholm, 2018. 

[10] C. Luger, J. Kallinovsky, and R. Rieberer, “Identification of representative operating conditions of HVAC 

systems in passenger rail vehicles based on sampling virtual train trips”, Advanced Engineering Informatics, 

vol. 30, no. 2, pp. 157–167, 2016. 

[11] M. Tesar, P. Otto, and P. Gratzfeld, “Design of a data acquisition system for condition evaluation and 

operation optimization of a light rail vehicle and infrastructure”, 12th World Congress on Railway Research 

(WCRR 2019), Tokyo, Japan, 2019. 

[12] P. Stephan, S. Kabelac, M. Kind, D. Mewes, K. Schaber, and T. Wetzel, “VDI-Wärmeatlas“ Springer Berlin 

Heidelberg, Berlin, 2019. 

[13] DIN 5034-2:1985-02, “Tageslicht in Innenräumen; Grundlagen“, DIN, Berlin, 1985. 

[14] P. Häupl et al., “Lehrbuch der Bauphysik: Schall - Wärme - Feuchte - Licht - Brand - Klima“, 8th ed., Springer 

Vieweg, Heidelberg, 2017. 

[15] DIN EN 14750-1:2006-08, “Bahnanwendungen - Luftbehandlung in Schienenfahrzeugen des 

innerstädtischen und regionalen Nahverkehrs - Teil 1: Behaglichkeitsparameter“, DIN, Berlin, 2006. 

 

 

 

 


