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ABSTRACT

We present the first top-down ansatz for constructing lattice Boltzmann methods (LBM) in d
dimensions. In particular, we construct a relaxation system (RS) for a given scalar, linear, d-
dimensional advection–diffusion equation. Subsequently, the RS is linked to a d-dimensional
discrete velocity Boltzmann model (DVBM) on the zeroth and first energy shell. Algebraic
characterizations of the equilibrium, themoment space, and the collision operator are carried out.
Further, a closed equation form of the RS expresses the added relaxation terms as prefactored
higher order derivatives of the conserved quantity. Here, a generalized (2d + 1) × (2d + 1) RS
is linked to a DdQ(2d + 1) DVBM which, upon complete discretization, yields an LBM with
second order accuracy in space and time. A rigorous convergence result for arbitrary scaling of
the RS, the DVBM and conclusively also for the final LBM is proven. The top-down constructed
LBM is numerically tested on multiple GPUs with smooth and non-smooth initial data in d = 3
dimensions for several grid-normalized non-dimensional numbers.

1. Introduction
Lattice Boltzmann methods (LBM) have become a perfectly parallel alternative to conventional methods in

computational fluid dynamics (CFD) and beyond [12]. Several software realizations have been established, such as
the open-source C++ framework OpenLB [11]. The parallel data structure enables multiphysics simulations with
LBM on high-performance computing (HPC) machines [10, 18, 13, 4, 5, 6, 21, 20, 3]. Further, OpenLB is suitable for
studying the multi-dimensional stability sets of LBM itself [17].

Nonetheless, the intrinsic relaxation principle of LBM stands in contrast to the direct design and analysis available
for conventional top-down methods such as finite differences. As a consequence, the rigorous analysis of LBM is
found incomplete [16, 1]. As a first step towards a top-down derivation of LBM, we have proposed a constructive
procedure for transforming a one-dimensional target PDE into a relaxation system (RS), which points to the typical
moment system of LBM [16]. This constructive ansatz for obtaining an LBM from a given target PDE is beneficial
from various perspectives. First, the technique lifts the constraints of LBM in terms of guessing the moment system.
With that, an LBM can be formulated for any PDE, which appears close enough to a balance or conservation law.
Second, from the RS structure the correct limit towards solutions of the initial PDE can be ensured. Third, the added
higher order derivatives, which are responsible for the bottom-up limiting property of LBM to the target PDE, are
already exposed at the relaxation level that is generally valid also for other types of discretizations.

In the present work, we extend the constructive approach for LBM to d dimensions. To the knowledge of the
authors, this technique is the first top-down construction of an LBM for a given d-dimensional conservation law. The
rest of the document is structured as follows. In Section 2 we introduce the target PDE, state the construction procedure,
prove convergence of the relaxation system, assign specific stability parameters and, through discretization, obtain a
second order LBM in space and time. Section 3 discusses the numerical results and conclusions are drawn in Section 4.

2. Methodology
Within the construction procedure, we first transform the d-dimensional target PDE into an RS of size (2d + 1) ×

(2d + 1). For d = 1, the approach reduces to the previous one [16]. Subsequently, we spectrally decompose the RS
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Constructing relaxation systems for lattice Boltzmann methods

to obtain the transformed RS (TRS), which links to a discrete velocity Boltzmann model (DVBM). Discretizing the
latter, we obtain a lattice Boltzmann equation (LBE) as a space-time evolution rule determining the final LBM.

2.1. Target equation
Let � ∶ Ω × I → ℝ, (x, t) ↦ � (x, t) denote the conservative variable of the target equation (TEQ), which is an

initial value problem (IVP) formed by a scalar, linear, d-dimensional advection–diffusion equation (ADE)

)t� + (x ⋅ F (�) − ��x� = 0, in Ω × I, (1)
� (⋅, 0) ≡ �0, in Ω, (2)

where x = (x, y, z)T ∈ Ω ⊆ ℝd , t ∈ I ⊆ ℝ+0 , � is periodic on Ω, F ∶ ℝ → ℝd is linear, and � > 0 is a given
diffusivity. Unless stated otherwise, we assume d = 3 and F (�) ∶= u� with a constant convection speed u ∈ ℝd .

2.2. Constructing the relaxation system
To approximate the TEQ (1) with LBM, we construct a generic RS via expanding the conservation law part of

the PDE by perturbation terms [16]. Let �♭, a
(1)
� , a(2)� define stability variables that need to be determined, where

� ∈ {1, 2,… , d}, 
 > 0, � = 2(
 − 1), and ♭ generalizes physical moment tensors [17]. Unless stated otherwise,
)� ∶= )∕)x� . Additionally, ⋅� denotes a perturbed conservative variable, i.e. a quantity which solves the perturbed
version of a PDE which initially is solved by ⋅. The ansatz is based on the hyperbolic conservation law

)t� + (x ⋅ F (�) = 0, in Ω × I. (3)

To obtain an RS up to the first energy shell, two subsequent steps are performed. Each step consists of (i) introducing
artificial variables (AV) and (ii) additional perturbation (AP) terms [16]. In particular, for each �,

AV ∶ �� = F� (�) ⇒

⎧

⎪

⎨

⎪

⎩

)t� +
d
∑

k=1
)k�k = 0,

0 = F� (�) − �� ,
(4)

AP ∶ �
��

(

)t�
�
� +

a(1)�
��
)��

�

)

= F� (��) − ��� ⇒

⎧

⎪

⎨

⎪

⎩

)t�� +
d
∑

k=1
)k��k = 0,

)t��� +
a(1)�
�� )��

� = − 1
�
��

(

��� − F� (�
�)
)

,
(5)

AV ∶  �� =
a(1)�
��
�� ⇒

⎧

⎪

⎪

⎨

⎪

⎪

⎩

)t�� +
d
∑

k=1
)k��k = 0,

)t��� + )� 
�
� = − 1

�
��

(

��� − F� (�
�)
)

,

0 = a(1)�
�� �

� −  �� ,

(6)

AP ∶ �
� 

(

)t 
��
� +

a(2)�
��
)��

��
�

)

=
a(1)�
��
��� −  ��� ⇒

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

)t��� +
d
∑

k=1
)k���k = 0,

)t���� + )� 
��
� = − 1

�
��

(

���� − F� (�
��)

)

,

)t ��� + a(2)�
�� )��

��
� = − 1

�
� 

(

 ��� − a(1)�
�� �

��
)

,

(7)

in Ω × I . Hence, we obtain a (2d + 1) × (2d + 1) system of equations (7) with relaxation terms on the right.

Definition 1. We write (7), as a relaxation system

)t��� +
∑

�
A�)���� = −

1
�

S
[

��� − �̂��
]

, A� =
⎡

⎢

⎢

⎢

⎣

0 eT� 01×d
0d×1 0d×d diag

(

eT�
)

0d×1 diag
(

a(2)�
�� e

T
�

)

0d×d

⎤

⎥

⎥

⎥

⎦

∈ ℝ(2d+1)×(2d+1), (8)
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which governs the perturbed conservative variable ��� ∶= (��� , (���)T, ( ��)T)T ∈ ℝ2d+1, whereA� is diagonalizable
by construction, S = diag(�−1� , �−1� 11×d , �

−1
 11×d) ∈ ℝ(2d+1)×(2d+1) defines the relaxation matrix with ra×b ∈ ℝa×b

being the all-r tensor of size a × b for a, b ∈ ℕ and r ∈ ℝ, and e� ∈ ℝd denoting the �th unit vector. The function
�̂�� (���) ≡ (��� ,F T(���), ����� (a(1))T)T is called equilibrium.

Lemma 1. Together with the initial condition given by ��� (⋅, 0) ≡ �̂��|���(⋅,0)=�0 in Ω, (8) forms a well-posed IVP.

PROOF. Note that the equilibrium is solely dependent on ��� . The proof of a similar statement is given in [2].

Theorem 2. Let ��� be smooth in space and time. The RS (7) forms a closed equation for ��� , namely

)t�
�� +

∑

�
)�F� (���) − �2−
��

∑

�
a(1)� )���

�� = �
��
[

−
(

1 +
� 
��

)

)tt�
�� −

� 
��

∑

�
)�tF� (���)

− �
� )ttt��� + �2−
� 
∑

�
a(2)� )��t�

��
]

. (9)

PROOF. Recall the generalization of Schwarz’s theorem for symmetric partial derivatives of arbitrary order and the
fact that the graph of ��� approximates the linear flux F . Thus we perform an inverse recursive insertion from the last
artificial variable to the initial conservation law [16]. For any �, let the equations of the RS (8) be numbered as (I),
(II)� , and (III)� , respectively. Solve (III)� for  ��� and )t(II)� for )�t ��� = )t� ��� , and insert both into (II)� . The result
in turn is solved for ���� and inserted into (I). Finally, computing )t(I), )tt(II), and

∑

� )��a
(2)
� (I) allows for substituting

partial derivatives of ���� with expressions in ��� and proves the claim.

Remark 1. The present ansatz enables both, constructing an RS and expressing the added relaxation terms as higher
order derivatives, for any conservation law akin to (3) and thus any PDE which is transformable into a similar form.

2.3. Transformed relaxation system (TRS)
Definition 2. With � (i)� ∶= a(i)� ∕�� for i ∈ {1, 2} and any �, define C(i) ∶= diag(�

(i)
� )� ∈ GLd(ℝ) and

D ∶=
⎡

⎢

⎢

⎢

⎣

11×d 1 11×d
−
(

C(2)
)◦ 12 0d×1

(

C(2)
)◦ 12

C(2) 0d×1 C(2)

⎤

⎥

⎥

⎥

⎦

∈ GL2d+1 (ℝ) , D−1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0d×1 − 12
(

C(2)
)◦− 12 1

2

(

C(2)
)◦−1

1 01×d −
(

1
� (2)�

)

�

0d×1
1
2

(

C(2)
)◦− 12 1

2

(

C(2)
)◦−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (10)

where the ◦-exponents denote Hadamard operations [14]. For any �, A� can be diagonalized with Ad� ∶= D
−1A�D =

diag((C(2))◦(1∕2)e� , 01×1, (C(2))◦(1∕2)e�).

Definition 3. Spectrally decomposing the RS (8), we define the vector g ∶= D−1��� which is governed by the TRS

)tg +
∑

�
Ad�)�g = −

1
�

D−1SD [g −G (g)] . (11)

Here, G ∶= ◦�◦ such that G (g)
!
= D−1�̂�� , where � ∶ ��� ↦ ��� extracts the non-artificial variables, the linear map

induced by D is ∶ ℝ2d+1 → ℝ2d+1, and, with a ∶= (a(1)� ∕a
(2)
� )� ∈ ℝd , the generalized Maxwellian is defined as

 ∶ [0, 1] ×ℝ → ℝ2d+1, (�, �)↦  (�, �) =
(1,… ,2d+1)T (�, �) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
2

[

a� −
(

C(2)
)◦− 12 F (�)

]

(

1 − 1d×1 ⋅ a
)

�
1
2

[

a� +
(

C(2)
)◦− 12 F (�)

]

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (12)

The preceding derivation enables the algebraic characterization of the collision, the AV space, as well as the equilibrium
which completely determine the relaxation limit of the generic RS and in turn the relaxation procedure of LBM.
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Remark 2 (Collision). The multi-relaxation-time (MRT) collision matrix K ∶= D−1SD is explicitely computed as

K =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
2

(

1
��
+ 1

� 

)

Id 0d×1 − 12

(

1
��
− 1

� 

)

Id
(

1
��
− 1

� 

)

11×d
1
��

(

1
��
− 1

� 

)

11×d

− 12

(

1
��
− 1

� 

)

Id 0d×1
1
2

(

1
��
+ 1

� 

)

Id

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (13)

In comparison to a single-relaxation-time (SRT) collision K̆ ∶= D−1S̆D = �−1� I2d+1, where S̆ ∶= �
−1
� I2d+1, the MRT

collision carries off-diagonal entries which correlate non-equilibrium contributions via relaxation frequency sums.

Remark 3 (AV space). The choice of the appearance of AP and AV (��� and  ��) within the constructive ansatz,
already determines the unified diagonalizerDwhich in turn defines the structure of the TRS viaAd� andG. In particular,

colsp (D) = span
(

⋂

�
E
(

A�
)

)

(14)

determines the possibilities for D, where E
(

A�
)

denotes the eigenbasis of A� consisting of right eigenvectors. In
response of both, the choice of the AV and that the TRS is obtained through eigendecomposition of A� , we limit our
discussion on orthogonal moment bases.

2.4. Convergence result
Let Ξ = {� ∈ ℝ ∶ |�| ≤ ‖�0‖∞} and F (0) = 0d×1. Thus ∀� ∈ (0, 1] it holds (�, 0) ≡ 0(2d+1)×1 and we assume

that i(�, ⋅) is non-decreasing in Ξ respectively for all i ∈ {1, 2,… , 2d + 1}. In [16] the stability structures [15] are
proven to coincide with the sub-characteristics condition [8, 2]. Hence, we proceed with evaluating the latter.
Lemma 3. The generalized Maxwellian  admits conditions (M1–M4) in [2].

PROOF. Unless stated otherwise, let i = 1,… , 2d + 1. Some algebra verifies

(M1)
∑

i
i (�, �) = � ∀� ∈ (0, 1] ∀� ∈ Ξ, (15)

(M2)
∑

i

(

Ad�
)

i,i i (�, �) = F� (�) ∀� ∈ {1, 2,… , d} ∀� ∈ (0, 1] ∀� ∈ Ξ, (16)

(M3)
∑

i

[√

��
(

Ad�
)

i,i

] [√

��
(

Ad�
)

i,i

]i (0, �) = ����,� ∀�, � ∈ {1, 2,… , d} ∀� ∈ Ξ, (17)

(M4) lim
�↘0

i (�, �) = i (0, �) uniformly for � ∈ Ξ, (18)

where (M3) requires that ∀�∶ a
(1)
� = �.

Definition 4. The TRS is termed relaxation-stable if the stability constants are chosen such that ∀�∶ a(1)� = � and

a(2)� ≥ a(1)� ∧
a(1)�

√

��a(2)�

≥ |F ′� (�) |. (19)

Lemma 4. Let �♭ = 1 ∀♭ ∈ {�, �,  } and �0 ∈ L∞ (Ω) ∩ L1 (Ω). Initialize the TRS (11) with g (⋅, 0) = 
(

�, �0
)

and
specify the stability constants such that the TRS is relaxation-stable. Then

lim
�↘0

��� = �⋆ ∈ C(I ;L1loc (Ω)) ∩ L
∞ (Ω × I) (20)

is the unique solution to the TEQ (1).

PROOF. The claim follows from [16, Corollary 3.1].

Remark 4. With Lemma 4, we have also verified structural stability of the TRS, in case of �♭ = 1. For LBM, the
conditions (19) represent a positivity-preserving bound and a linear stability criteria of the equilibrium distribution,
respectively. The LBM-counterpart of (19) is sufficient for stability under the premise of uniform relaxation [7].
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2.5. Discrete velocity Boltzmann model
We adapt the notation of [16]. A description of the D3Q7 discrete velocity stencil is given for example in [21].

Theorem 5. Let � = 1, 
 = 2, and Sk ∶= diag(sk) with the component maps sk ∶= ((cj)k)T0≤j<q . The D3Q7 DVBE

)tf +
d
∑

k=1
Sk)kf = −

1
�
�

(

f − f eq (f )
)

, (21)

with initial condition f (x, 0) = f eq (f ) ∶= "(�0; s) converges in C(I ;L1loc (Ω)) to the unique solution of the IVP (1).

PROOF. We link the TRS (11) to theD3Q7DVBE via assigning the stability parameters. Given the constants �, � > 0,
set �♭ ∶= �, a

(1)
� ∶= �2∕�, and a(2)� ∶= �2 ∀�. Thus, with " (⋅; s) ≡  (�, ⋅) and � = 1, Lemma 4 implies convergence.

2.6. Lattice Boltzmann method
Using the limit consistent second order discretization of (21) with a Crank–Nicolson-type method [19], we obtain

an LBE evolving the populations fi in space-time on D3Q7 with SRT collision

fi
(

x +△tci, t +△t
)

= fi (x, t) −
△t

� − △t
2

[

fi (x, t) − f
eq
i (x, t)

]

, for i = 0, 1… , 6. (22)

Following [19], the embedded limit yields convergence to the solution of the target IVP (1) up to a truncation error of (

△x2
)

in diffusive scaling 
 = 2 and � ↤△t ∼△x2, where � = c2s (� −△t∕2).

3. Numerical tests
All computations were done with OpenLB release 1.5 [11] on at most four nodes with two Intel Xeon Platinum

8368 CPUs and four NVIDIA A100-40 GPUs each. The experimental order of convergence (EOC) is evaluated with
specific choices of Ω, I , u, �, and �0 for benchmark tests from [4]. Let Ω = (−1, 1)3 ∋ (x, y, z)T = x and I = (t0, tM ).
We use SI units with characteristic scales lc = 2[m] and uc = 2.5[m∕s] and neglect further notation. A relative
L2-error with respect to the analytical solution �⋆ is averaged in (t0, tM ) = (0, 1.52) to measure an overall error
err = (1∕M)

∑M
i=1({

∑

x∈Ω[�(x, ti) − �⋆(x, ti)]2}∕{
∑

x∈Ω[�⋆(x, ti)]2})1∕2. We compute samples (N,Pe) ∈ N × P,
where N = {2n × 25 ∶ n ∈ {0, 1,… , 5}} and P = {10n ∶ n ∈ {2, 3, 4, 5}}, and thus test a range of grid Péclet
Peg = Pe∕N and Courant numbers Co = (uc△ t)∕△ x. The results of the computations in N × P under diffusive
scaling for the following examples are compiled in Figure 1.

Example 1: Smooth initial data The IVP (1) with �(sm)0 (x) = sin (�x) sin (�y) sin (�z) + 1 is analytically solved by

�(sm)⋆ (x, t) = sin
(

�
[

x − uxt
])

sin
(

�
[

y − uyt
])

sin
(

�
[

z − uzt
])

exp
(

−3��2t
)

+ 1. (23)

Example 2: Non-smooth initial data We initialize (1) with a superposition of Gaussian hills along the x-axis. To
realize a non-differentiability which persists only for Peg ↗ ∞, we set an initial in-domain peak

�(ns)0 (x) =
⎧

⎪

⎨

⎪

⎩

1
√

4��△t
+ 1, if x ∈

(

−△x
2 ,

△x
2

)

,

1, otherwise.
(24)

The analytical solution is formed through diffusion transport of a Dirac comb

�(ns)⋆ (x, t) = 1
√

4��t

∑

k∈ℤ
exp

(

−
[

x −
(

x0 + uxt
)

+ 2k
]2

4�t

)

+ 1, lim
t↘0

�(ns)⋆ (x, t) =X2
(

x − x0
)

+ 1, (25)

where x0 denotes the x-location of the peak at t = 0. Further details and a proof of the limit t ↘ 0 are given in [4].
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Peg
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r

LBM (sm)
LBM (ns)
(N−2)
(N−1)

Figure 1: Errors of D3Q7 SRT LBM approximating (1) with smooth (sm) and non-smooth (ns) initial data.

The spatio-temporal grid size is△t =△x2 = (lc∕N)2 with convection speeds of u(sm) = uc1d×1 and u(ns) = ucex
and the corresponding relaxation time �. The Courant number sequences over Co = 0.5n × 0.2 with n ∈ {0, 1,… , 4},
while several magnitudes of grid Péclet numbers, Peg ∈ [(10−1),(103)] are swept. Whereas Figure 1 approves the
EOC of two for the smooth IVP, a reduction from second to first order is clearly visible for non-smooth initialization
at Peg ≳ 102. Increasing Peg ↗ 104 in the latter case, induces a larger error contribution breaking also the EOC of
one, which agrees to previous results withD3Q19 [4]. Since, for further increase of Peg, the non-smooth initialization
exits the function space in Lemma 4, a blowup is expected due to delayed smoothing.

4. Conclusion
A novel procedure to construct an RS for a given d-dimensional ADE is established. Subsequently, the RS is linked

to aDdQ(2d + 1) DVBM on the zeroth and first energy shell. With that, we extend the top-down design of LBM [16]
to d dimensions. Additionally, the necessary LBM ingredients represented by the moment space, the collision scheme,
and the equilibrium, are algebraically characterized at the relaxation level. A closed equation with general scaling for
the RS unfolds the approximation order of the relaxation terms. The DVBM is proven to converge to the solution of the
target IVP. The second order discretization of the DVBM leads to an LBM of spatio-temporal order two. We provide
numerical tests of the top-down constructed LBM for smooth and non-smooth initial data in d = 3 dimensions via
computing over several ranges of grid-normalized non-dimensional numbers. The numerical results indicate that the
second order convergence in space for smooth initial data reduces to first order and eventually breaks, when sharpening
the initial peak towards a non-smooth delta function. Future studies should include solutions to this observation via
dynamic MRT stabilization [17, 20], or entropy control [9] of artificial relaxation parameters.
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