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Abstract

One of the most important challenges in the development of autonomous driving systems is to

make them robust against unexpected or unknown objects. Many of these systems perform really

good in a controlled environment where they encounter situation for which they have been trained.

In order for them to be safely deployed in the real world, they need to be aware if they encounter

situations or novel objects for which the have not been sufficiently trained for in order to prevent

possibly dangerous behavior. In reality, they often fail when dealing with such kind of anomalies,

and do so without any signs of uncertainty in their predictions. This thesis focuses on the problem

of detecting anomalous objects in road images in the latent space of a VAE. For that, normal

and anomalous data was used to train the VAE to fit the data onto two prior distributions. This

essentially trains the VAE to create an anomaly and a normal cluster. This structure of the latent

space makes it possible to detect anomalies in it by using clustering algorithms like k-means.

Multiple experiments were carried out in order to improve to separation of normal and anomalous

data in the latent space. To test this approach, anomaly data from multiple datasets was used in

order to evaluate the detection of anomalies. The approach described in this thesis was able to

detect almost all images containing anomalous objects but also suffers from a high false positive

rate which still is a common problem of many anomaly detection methods.
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Kurzfassung

Eine der größten Herausforderungen bei der Entwicklung von autonomen Fahrsystemen besteht

darin, sie robust gegenüber unerwarteten oder unbekannten Objekten zu machen. Viele dieser

Systeme funktionieren gut, solange sie sich in einer kontrollierten Umgebung bewegen, in der sie

ausschließlich auf Situationen treffen, für die sie trainiert wurden. Damit sie sicher unter realen

Bedingungen eingesetzt werden können, müssen sie jedoch in der Lage sein zu erkennen, wenn sie

auf Situationen oder Objekte treffen, für die sie nicht ausreichend trainiert wurden. Unerkannt kön-

nen solche Situationen zu möglicherweise gefährlichem Verhalten führen. In der Realität scheitern

sie daran jedoch oft, ohne dabei Anzeichen für Unsicherheit zu zeigen. Diese Arbeit befasst sich

mit der Erkennung von Anomalien in Verkehrsbildern im latenten Raum eines VAEs. Um dies zu

ermöglichen, wurde der VAE so gestaltet und trainiert, dass sich Anomalien und normale Daten

in seinem latenten Raum um zwei verschiedene Normalverteilungen sammeln. Dadurch wird im

latenten Raum des VAEs ein anomales und ein normales Cluster erstellt. Diese Struktur des laten-

ten Raums ermöglicht es, mithilfe von Clustering-Algorithmen wie k-means Anomalien in diesem

Raum zu erkennen. In dieser Arbeit wurden mehrere Methoden getestet, um die Trennbarkeit von

Anomalien und normalen Daten zu erhöhen. Um diesen Ansatz zu bewerten, wurden mehrere

Datensätze verwendet, welche Anomalien beinhalten, um zu testen, ob diese erkannt werden. Der

in dieser Arbeit beschriebene Ansatz war in der Lage, fast alle Anomalien als solche zu erkennen,

jedoch produziert er auch eine hohe Falsch-Positiv-Rate, was ein häufig auftretendes Problem

vieler Methoden zur Anomalie Erkennung ist.
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1 Introduction

During the last years there have been tremendous advances in machine learning using Deep Neu-

ral Network (DNN) which also led to big advancements in autonomous driving systems. While

a lot of machine learning models are trained on a closed world assumption, which means the test

data is assumed to be drawn from the same distribution than the training data [87], this is not the

case in real world applications. In order for autonomous driving systems to be used in real-life

situations, they must be robust against unexpected safety critical situations. The field of Anomaly

Detection (AD) focuses on the detection of scenes for which the model was not sufficiently trained

for. These rare scenes can occur in an open world environment while not being represented in the

data used to train the model and therefore pose a threat to safety critical applications. While there

are multiple definitions of the term scene [57, 28], this thesis follows the one used by [77] where a

scene is defined as a snapshot of the environment which includes scenery, dynamic elements and

all actors, observers and self-representations together with the relationships among these entities.

A scenario by their definition, contains multiple scenes which are linked by actions and events.

Anomaly detection is relevant for a broad spectrum of applications like medicine, fraud detection,

detecting errors in production or autonomous driving. This work focuses on anomaly detection

in the case of autonomous driving, where it is highly relevant in order to deploy safe autonomous

systems in an open world scenario. In autonomous driving, anomaly detection can be performed

based on lidar, radar or camera data. Anomalies can be different things like error in the data, novel

situations, malfunctioning sensors or technical failure and can have dangerous consequences. This

work focuses on the camera based scenario where anomalies in the form of unknown objects

should be detected in image data. What makes it even more challenging is the fact that the same

item can be normal or anomalous depending on the context of the situation where it appears. A

tree standing next to the road is a common scenario and therefore normal but a tree lying on the

road is unusual and an anomaly which could create a possibly dangerous situation. Many of the

models used for tasks in autonomous driving are developed under the assumption that the test data

follows the same distribution as the training data [87]. In reality this cannot be guaranteed and cars

will inevitably encounter novel situations where they lack training. Especially in safety critical ap-

plications like autonomous driving, these autonomous systems need to be aware of the situations

for which they are not trained for in order to handle them with more care or flag them for human

intervention. In reality, though, they often fail when encountering these situations in an open world

environment and even worse, they often do that without any sings of failure and provide high con-

fidence predictions while being incorrect. As shown by Nguyen et al. (2015) [59] and Kumano et

al. (2022) [49], DNN models can classify unrecognizable images with near-certainty as member of

a specific class, while humans can clearly distinguish between these. Also small pixel distortions

which are barely visible to humans (adversarial images) can mislead most DNN [76, 32]. This
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1 Introduction

shows that there is still a large perception difference between computers and humans which leaves

room for errors in computer vision tasks.

Making mistakes with high confidence is not only a problem with high complexity datasets con-

taining traffic scenes, but even happens on simple datasets like MNIST[3]. As shown by [39],

even random noise fed into a classifier trained to differentiate between different handwritten dig-

its of the MNIST dataset gives a class probability of 91% which shows that even classifiers for

simple datasets fail to show when they are unsure about a prediction. A naive approach might

be to just train a model on anomalies to detect them. This fails due to the fact that the number

of possible anomalies is not limited, so there can always be new scenarios which are unknown to

the model. This makes it impossible to include all types of anomalies in a dataset. Furthermore,

simply training a model to detect fooling images doesn’t prevent it from misclassifying new ones

in the future [59]. This shows that there is still a long way to go in order for autonomous systems

to reliably detect anomalies, which is crucial for their deployment in a safety critical open world

setting.

Some recent approaches like VOS [25] use virtual outliers, sampled from low likelihood regions

of normal representations in the latent space to provide a decision boundary for detecting Out-

of-Distribution (OOD) data. Similar to this, the approach described in chapter 4, follows the

assumption that anomalies and normal data have a different representation in the latent space.

Therefore, the goal of this thesis is to create latent representations of image data and to evaluate if

it is possible to detect anomalous objects in real world driving scenes by clustering the latent space

of a VAE. In order to do that, the latent space needs to be structured in a way that anomalies are

separated from the normal data. To place more attention on small unknown objects on less on the

environment, discrepancy maps which highlight small unknown objects were used as additional

model input (see chapter 4.1). While there are many different definitions on what an anomaly is

(more in chapter 3.1), the focus of this work is to detect images containing unknown objects which

are not represented in the training data or appear in a different context. An example of such unseen

objects could be an image of a tiger if the training data has no tigers in it. A tree lying on the road

would also be considered anomalous, even if the normal data contains images of trees standing

next to the road, because it would appear in a different context than usual. These anomalous ob-

jects can appear in different sizes and different locations in the image. Such situations, just like

unknown objects, can be difficult to handle properly and therefore can pose a threat to autonomous

systems.
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2 Background

The approach described in this thesis focuses on detecting anomalies with the help of a VAE. To

better understand VAEs and why to use them for anomaly detection, the following chapter gives

a short introduction to variational autoencoders, what makes them special and what are the main

advantages for anomaly detection when compared to normal autoencoders (see Fig. 2.1).

2.0.1 Autoencoder

An autoencoder (AE) is a neural network which is trained in an unsupervised manner to reproduce

its input [30]. The model consists of two parts, the encoder and decoder. The encoder can be seen

as a function f (x) = z which compresses the input x to a much smaller fixed size latent vector z.

The decoder g(z) = x̂ then tries to reproduce the input from the latent representation z. To achieve

this goal, the encoder must learn a rich feature representation of the input and store as much

relevant information as possible in the compressed representation so that the decoder reproduction

is similar to the original input. Autoencoders are trained to minimize the objective

L(x,g( f (x))) [2.1]

where L is a loss function which penalizes g( f (x)) for being dissimilar from x, e.g., with the L2

norm of x and x̂. Given their ability to compress and reconstruct data, they can be used as com-

pression models, denoising models or feature extractors. As f and g are deterministic functions,

the whole model is deterministic and maps x to a specific z value. Unlike VAEs, AE are not suited

to generate new images. If the latent representation of an encoded image is passed through the

decoder, then the original image is reconstructed. But if a point close to this latent representation

is selected and decoded, the result is not necessarily similar to its latent neighbour and potentially

just random noise. This is because the AE just learns to map a given input to the latent space and

reconstruct it resulting in a unstructured latent space where a point close to another point doesn’t

need to have a similar input. Because of this, one can not select latent representations (e.g. via

sampling from a distribution like in VAEs) from which new meaningful images can be generated

and therefore autoencoders are not seen as generative models [30].

2.0.2 Variational Autoencoder

A variational autoencoder, compared to an autoencoder, is a generative probabilistic model [30].

It is based on the assumption that a data sample x is generated by some random process which

involves an unknown random variable z. z is generated from some prior distribution pθ (z) and the

value of the data x is generated by the conditional distribution pθ (x|z) while the true value of z and
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θ are unknown. The marginal distribution over the observed data pθ (x) is given by:

pθ (x) =
∫

pθ (x,z)dz =
∫

pθ (z)pθ (x|z)dz [2.2]

which is also called the marginal likelihood of the data. The problem is that the marginal likelihood

of the the data is typically intractable due to the integral. This makes the true posterior density

pθ (z|x) =
pθ (x|z)pθ (z)

pθ (x)
[2.3]

also intractable. A VAE provides an efficient way to tackle the problem of estimating the likelihood

and posterior in our data. In its original version, the VAE consists of two parts [46]. The first part

is a recognition model qφ (z|x), this can be seen as a probabilistic encoder that produces, for a given

input x, a distribution over possible values of z from which x was generated. It approximates the

intractable true posterior

qφ (z|x)≈ pθ (z|x) [2.4]

which can be used to optimize the marginal likelihood. The second part is the probabilistic decoder

pθ (x|z) which produces a distribution over possible values of x for a given z. The model parameters

φ ,θ are jointly learned. The VAE is trained to optimize the Evidence Lower Bound (ELBO), also

called variational lower bound. The marginal likelihood is given by:

log pθ (x) = Eqφ (z|x)[log pθ (x)] [2.5]

= Eqφ (z|x)[log pθ (x,z)− logqφ (z|x)]︸ ︷︷ ︸
Lθ ,φ (x)

+Eqφ (z|x)[logqφ (z|x)− log pθ (z|x)]︸ ︷︷ ︸
≥0

[2.6]

where the right term is the Kullbach-Leibler (KL) divergence. The KL divergence measures the

similarity between two distributions p(x) and q(x) and is defined as

DKL[p(x)||q(x)] = ∑
x∈X

p(x)ln
p(x)
q(x)

[2.7]

if x is a discrete random variable, and as

DKL[p(x)||q(x)] =
∫

∞

−∞

p(x)ln
p(x)
q(x)

dx [2.8]

if x is continuous. In the case of VAEs, it measures the difference between qφ (z|x) and pθ (z|x)
which is the similarity between the approximation and the true posterior which is unknown and

intractable. This term is equal to zero if qφ (z|x) equals the true posterior distribution. Note that the

KL divergence is not a true distance measure as it is asymmetrical with DKL(p||q) ̸= DKL(q||p).
Because the KL divergence is always non-negative, the first term denotes a lower bound and is

4



called the ELBO which can be written as:

Lθ ,φ (x) = Eqφ (z|x)[log pθ (x|z)]−DKL(qφ (z|x)||pθ (z|x)) [2.9]

The first part represents the expected reconstruction error and the second part acts as a regular-

izer which forces estimated posterior to be close to the prior which in most cases is a univariate

Gaussian. This regularization results in a more structured latent space compared to AE. From that

structured latent space we can sample and generate new data. The regularization and the resulting

structure in the latent space ensures that semantically similar images also have similar latent rep-

resentations. This is a huge advantage and one of the main reasons the VAE is better suited for

anomaly detection in the latent space. Because z is a random variable and we can not directly back-

propagate gradients through it, the authors of [46] proposed the so called reparameterization trick

which is shown in Fig.2.2. They express the random variable z∼ qφ (z|x) as a deterministic variable

z = gφ (ε,x) using another independent random variable ε . For a univariate Gaussian case where

z∼ p(z|x) =N(µ,σ2) the reparameterisation would result in z= µ+σε with ε ∼N(0,1) [46, 47].

In a variational autoencoder, the probabilistic encoder and decoder can be represented by a neural

network where the encoder approximates the parameters of a distribution which usually is a uni-

variate Gaussian with the parameters µ,σ . The choice for a Gaussian distribution is made because

it is assumed that the relationship between variables in the latent space is is way simpler than in the

original input space [8]. Compared to AE, the VAE calculates a reconstruction probability rather

than a reconstruction error and provides a theoretical foundation

Figure 2.1: Basic architecture of AE/ VAE. On the left is a VAE where the encoder pθ calculates the
parameters of a distribution from which the latent variable z gets sampled. The decoder qφ then
tries to reconstruct the input x. On the right is a AE where the encoder produces z directly. As
shown below, the latent space of a VAE is typically more meaningful and better structured when
compared to an AE.
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Figure 2.2: Illustration of the reparameterization trick. In the original form, calculating gradients for back-
propagation is not possible because of the random variable z. In the reparameterized form, ran-
domness is introduced with the help of an external node which makes backpropagation through
z possible. Reprinted from [47].

6



3 Related Work

In this chapter first provides an overview of different problem definitions and related terms in the

filed of anomaly detection. Furthermore a summary of different approaches and methods used

for anomaly detection ranging from non-deep learning to the current state of the art is provided.

While anomaly detection is performed in many different fields like lidar [83] or radar [17] this

section will mostly focus on camera based approaches and detecting anomalies in image or video

data. For that, this chapter provides a overview of different methods using neural networks and

at different approaches which use AE or VAE with reconstruction and latent space based methods

for anomaly detection.

3.1 Taxonomies in the Field of Anomaly Detection

The terms outlier, anomaly and corner case are often used synonymously [42, 19] and there is

no general definition for these terms. In literature [42, 69, 19, 87] one may find many different

names for similar tasks like AD, Novelty Detection (ND), One-Class Classification (OCC), OOD

detection, Corner Case Detection (CCD) or Open-Set Recognition (OSR). Chandola et al. [19]

define anomalies as patterns that are different from the learned ones and Bolte et al. [12] describe

a corner case as a "non-predictable relevant object/class in relevant location". Anomalies and

corner cases by these definitions both describe an image which deviates from the norm but corner

cases can also include other factors like the influence a situation has on the driving behavior.

More complex scenarios which become anomalous only in their entirety but not consists of any

anomalous objects can also be called corner case [37].

Breitenstein et al. [13] give a more structured overview by dividing corner cases into the cate-

gories:

Pixel level: errors in the data including local outliers(e.g. pixel errors, dirt on the camera) and

global outliers (e.g. blinded camera).

Domain level: large constant shift in appearance but not semantics (e.g. different locations or

weather conditions).

Object level: unknown objects (e.g. tiger on the street).

Scene level: unexpected patterns in a image. Includes collective anomalies with multiple known

objects but in unknown quantity (e.g. crowd of people on the street) and contextual anoma-

lies with a known object in a unknown location (e.g. tree lying on the street).

Scenario level: unexpected patterns observed over a image sequence and therefore requires a

temporal understanding (e.g. person suddenly crossing the street).

7



3 Related Work

Breitenstein et al. [13] followed the scene/scenario definition from [77]. Similar to their catego-

rization of corner cases, Heidecker et al. [37] divide anomalies into different categories like sensor

layer, content layer and temporal layer which each have different sub categories. Anomalies in the

sensor layer can be divided into hardware level anomalies like pixel errors or broken lenses and

physical level anomalies like dirt on the lens. Anomalies found in the image data itself can be very

diverse because of the high information content that is included in one image and are represented

by the content layer. The content layer includes the domain level (e.g. shifts between different

countries), the object level which includes unseen objects and the scene level which contains new

situations like a tree lying on the road. In the temporal layer, there are anomalies which are de-

tected in video sequences and therefore need a temporal component. A pedestrian crossing a read

light is an example for this category [37]. While there is no clear distinction between AD, OOD,

ND, OSR and Outlier Detection (OD) and they are often used in different ways.

Yang et al. [87] provide a unified framework (see Fig. 3.1) for of generalized OOD detection

which covers some of these terms and shows similarities and differences between them. By their

framework, anomaly detection is the task of detecting anomalous samples which deviates from a

pre-defined normality. They divide it into two subcategories depending on what causes the devi-

ation from the normality. The two subcategories are semantic AD where a semantic shift occurs,

like a object from a novel class and sensory AD which includes domain shift or style changes

with no semantic shift. Their framework divides novelty detection in one and multiclass novelty

detection. In one class novelty detection, normal In-Distribution (ID) images all belong to one

class while test images which for example include the appearance of a new class are considered

OOD. Multi-class ND differs from the one class case in the fact that ID belong to multiple classes.

In this definition, ND is identical to semantic anomaly detection. Similar to this, Salehi at al. [69]

looks at AD and ND as binary decision tasks where a given sample is classified either as normal

or anomalous. OSR is often defined as a special form of multi-class ND where also the labels of

the normal samples are taken into account. The difference between multi-class ND and OSR is

that in OSR also includes ID classification [69, 87]. Following the framework of Yang et al. [87]

OOD detection is similar to OSR but has a broader spectrum of learning tasks and solution space.

The term outlier detection describes a setting where the majority distribution is considered as ID

while outliers have distribution shifts from the majority. OD as defined in their framework doesn’t

follow a train-test scheme and all observations are provided [87].

The approach in this thesis follows the framework described by Yang et al. [87], and focus on

semantic AD/ multi-class ND because the goal is to just detect anomalies in a setting where ob-

jects of multiple classes are present without a classification of the normal instances. In addition to

this definition, already known objects were defined as anomalous if they appear in a completely

different semantic context like a tree lying on the road or a car lying on its back. This matches the

definition of corner cases on a object and scene level, provided by [13].

8



3.2 Outlier Detection

Figure 3.1: (a) shows sensory anomaly detection where images with covariate shift are considered OOD.
In one-class ND (b), all normal images belong to a single class and a image with a semantic
shift is considered anomalous. Multi-class ND (c) has ID images from multiple classes where
images which belong to a different class are seen as OOD. ND (b)/(c) in this framework is
identical to semantic anomaly detection. OSR (d) is similar to multi-class ND but with additional
classification of ID images. OOD describes the same task as OSR but has a broader spectrum
of learning tasks and solution space. In outlier detection (e), all observations are provided and
the majority class is considered ID while outliers have some distribution shift from the ID data.
Reprinted from [87]

3.2 Outlier Detection

The detection of outliers in data has been researched for many years and many different approaches

have been developed. This chapter describes some non deep learning based approaches which

focus on the detection of outliers. As described in the previous section, an outlier is an data point

which deviates from the majority of the data. These approaches can be used in the input data space

or in a lower dimensional space (e.g.created by Principal Component Analysis (PCA)/ latent space

of VAE) to identify data points which differ from the majority and could potentially be anomalous.

Popular approaches are for example statistical-based methods, distance-based methods or density-

based methods [80]. Distance-based approaches (e.g. [22]) classify a data point as an outlier based

on its distance (e.g. l2-norm) to other data points. Because the ability to discriminate between

the nearest and farthest point decreases with increasing dimensionality [48], distance gets less

meaningful as an outlier measurement for high dimensional data [9, 5]. Because of that, other

approaches use angle-based methods to find anomalies. In angle-based approaches variance of

vector angles from the point under investigation to all other datapoints are used as a indicator for

an outlier. Kriegel et al. [48] propose, that in order to find patterns in high dimensional data you

should look at angles between pairs of distance vectors in addition to distance. A low variance in

the angles of vectors from a certain data point is a sign for an anomaly. Density-based approaches

like Local Outlier Factor (LOF) [14] try to analyze how isolated a data point is with respect to its

neighbors. Local in this context means that only a restricted neighborhood of the object is taken

into account, or in other words its number of nearest neighbors. The authors of LOF propose

that being an outlier is not a binary property but more a degree to which an object is isolated

from its neighborhood. Other methods use decision trees for the task of outlier detection. A

decision tree splits a given dataset into smaller subsets with the goal of maximizing homogeneity

9
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within these subsets. Liu et al. [52] use the concept of decision trees for outlier detection. Their

approach, called isolation forest, build a ensemble of decision trees where outliers are those with

the shortest average paths. This means outliers are detected based on the number of splits required

to isolate a certain data point. This method has the ability to handle large amount of data with

high dimensionality and the advantage of linear time complexity and low memory requirement

compared to other methods which are based on distance or density measurements.

3.3 Anomaly detection using Neural Networks

With big advances in deep learning in the last few years, deep neural networks have been widely

used for a variety of different tasks. Because of their ability to extract rich and meaningful features

from images, they became a popular method for anomaly detection tasks in many fields like object

detection or classification. When thinking about anomaly detection with neural networks, a naive

approach would be to train a neural network as a binary classifier to detect anomalies. Ruff et

al. [68] follow an approach similar to this idea, they first transform the data using a neural net.

The training objective here is to learn meaningful feature representation together with a one-class

classification objective. The network is trained to map the input data to the output space with all

data points lying inside of a hypersphere with minimal volume. They assume that the majority of

the training data is from the one normal class, which is often the case for one-class classification

tasks. The anomaly score for new input data is then computed by calculating the distance between

the transformed representation and the center of the hypersphere, assuming anomalous data lies

further away from the center. While such one-class classification methods may be effective when

a single class is considered normal, they may fail in real world applications where the category of

normal data often consists of heterogeneous semantic labels [64].

The authors in [40] propose a new outlier exposure objective. They create an outlier dataset from

publicly available data and use it in addition to the normal data for model training. Applied to

classifiers which are used to detect anomalies, outlier exposure results in a uniform softmax dis-

tribution for anomalies. Given an outlier dataset, the model learns to predict if a given sample is

drawn from the inlier our outlier dataset. While some approaches like [39] use softmax confidence

to detect unknown objects, this is not well suited for anomaly detection because it can produce

high confidence scores for data far away from the training distribution. This is due to the fact that

softmax is an rapidly growing function, which means that low confidence predictions can quickly

become very high confidence predictions and the model is rarely unsure about a prediction. In [55]

the authors propose to use an energy score which they claim to be superior to softmax based meth-

ods as well as generative based methods and can replace softmax confidence in any pre-trained

network. The model maps each input to a scalar which indicates if its an OOD or ID object (low

for known data, high for unknown data). They show that in contrast to the softmax score, the

energy based one is theoretically aligned with the probability density of the input which means

samples with higher energy have a lower probability of occurrence. A set of energy values can

then be turned into a density function through the Gibbs distribution. Compared to outlier expo-
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sure [40], which forces a uniform softmax distribution for outliers, the energy score [55] optimizes

the energy gap between in and out of distribution directly, which results in better performance.

Liang et al. [50] use a different method to detect outliers which enhances performance and can be

implemented without retraining the network. The input images are pre-processed by adding noise

to them which increases the performance of the network because it has a stronger effect on the

in distribution data then on the outliers which makes them more easily separable. Anomalies are

detected by calculating the softmax score and compare it to a certain threshold which indicates if

an image is a outlier or not. The softmax score is calculated as usual but with a temperature scal-

ing parameter added to it. They claim a sufficiently large temperature parameter results in better

detection. Papadopoulos et al. [62] adopt the idea of outlier exposure and achieve superior results.

They use two regularisation terms, the first one minimizes total variation distance, in contrast to

other methods using KL divergence [40], between the output distribution (given by softmax) and

a uniform distribution. The second term minimizes the euclidean distance between the training

accuracy of a neural network and its average confidence of its predictions. This leads to the model

making average confidence predictions for known samples and highly uncertain ones for OOD

samples. The drawback of some of the described approaches using outlier exposure is the need

for a auxiliary dataset which needs to be diverse to cover as many cases as possible while making

sure to not overlap with the ID-dataset. To tackle this issue, [25] synthesize virtual outliers in

order to perform OOD detection for classification and object detection. To avoid the requirement

of an outlier dataset, they assume the feature representations of the input images form a class con-

ditional multivariate Gaussian distribution and sample outliers from low likelihood regions of this

distribution. Generating virtual outliers from feature space is way more practicable than from the

pixel space because of its lower dimensionality. A classifier is then trained to produce a higher

uncertainty for the virtual outliers than for normal samples. The same approach can be used for

object detection by replacing image uncertainty with object uncertainty.

A common problem for the approaches described here is that they produce high false positive rates.

Even though VOS [25] reduced was able improve on this, it still remains an issue. Similar to VOS,

Nitsch et al. [60] also make use of generated OOD training data but use a Generative Adversarial

Network (GAN)[31] based method to generate it. Their approach therefore needs no anomalies

for training and has low computational cost which makes it practicable for online scenarios. They

use an auxiliary GAN to produce out-of-distribution training samples in order to train a classifier

to assign low confidence predictions on these samples. In their setup the generator was trained

using an additional loss component which forces him to produce outputs on the decision boundary

of the classifier. The generator therefore tries not only to fool the discriminator but also forces the

classifier to assign low confidence predictions to samples on, or outside the decision boundary. In

addition to that they propose a post hoc component in which they compute the parameters of a

class conditioned Gaussian distribution over the loggits of the classifier. During deployment, the

distance (cosine similarity) to the Gaussian which is most likely, according to the softmax output,

is used as an anomaly measurement. Generating synthetic anomalies can also be achieved using

normalizing flows. Grcic et al. [33] claim that, compared to GANs, normalizing flows are better

suited for anomaly detection because of better distribution coverage and more sable training. They
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use a normalizing flow to generate negative patches of random size which then get pasted atop an

in distribution training image. The training objective is for the discriminator to generate a uniform

distribution on the generated samples and for the normalizing flow to maximize the likelihood of

inlier patches. While the first objective moves the the generative distribution away from the in-

liers, the second one moves it towards them. This results in negative samples at the boundary of

the training distribution. Synthetic anomalies can contain parts which look similar to scenes in

normal images and therefore produce confident predictions by the discriminator. Because these

predictions get penalized by the kl-divergence, the discriminator learns to lower its confidence on

inlier pixels. To prevent this, the authors propose to use the Jensen-Shannon divergence which only

mildly penalizes high confidence predictions. This approach outperforms several other techniques

on different benchmarks and has state of the art performance in image anomaly detection [11].

Due to the advances in semantic segmentation networks and their usage in safety critical ap-

plications like autonomous driving [27], it becomes more important for these models to detect

anomalies in order to prevent the model from making wrong predictions with high confidence.

Classical semantic segmentation networks consist of a feature extractor and a classifier to assign

a class to every pixel. Closed set semantic segmentation models are based on the assumption

that all classes are included in the training data which in reality is not the case [15]. Because the

classifier has no class for unknown objects [15] developed a different approach using a segmenta-

tion system which detects objects of all kinds and gradually incorporates unknown objects to its

knowledge base. They state that using a feature extractor and a classifier is problematic because

the classifier can only assign known labels. They instead train the feature extractor to map the in-

put to a feature vector which has the same euclidean length as their prototype representation. This

prototype is from a given set where each class has a prototype representation. The euclidean dis-

tance between the feature representation of the input and the prototype representations is used as

a classification method. Their open world semantic segmentation module consists of a closed-set

segmentation module which assigns in-distribution labels to all pixels, and an anomaly segmenta-

tion module responsible for detecting OOD pixels. The anomaly segmentation module uses two

criteria to identify anomalous pixels, the euclidean distance between the feature vector of the input

and the prototype representations and a metric-based maximum softmax probability. During in-

ference, samples are pulled towards prototypes of their own class (if existing) and get repelled by

prototypes of different classes which leads to clusters of similar data around their prototype rep-

resentation. Objects which are detected as anomalies are then learned by a incremental few shot

learning module. Di Biase et al. [23] combine model uncertainty with image re-synthesis in order

to prevent semantic segmentation models from not detecting or wrongly classifying an unknown

object. The first component of their model, the segmentation network, creates a semantic map for

a given input image and calculates softmax entropy and softmax distance for each pixel. The Syn-

thesis module, which is trained as a conditional GAN (cGAN) then tries to reconstruct the input

image from the semantic map. Because the semantic map doesn’t provide any information about

color or appearance of the individual objects, the perceptual difference, which focuses more on the

semantic similarity, of the original image and the re-synthesized one is used to detect differences
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instead of a pixel by pixel comparison. The last part, the dissimilarity module then takes the orig-

inal image, the semantic map, the re-synthesized one and the uncertainty maps (softmax entropy/

distance, perceptual difference) as input to detect anomalies. The dissimilarity module consists

of an encoder to extract features from the inputs, a fusion module to guide the network to focus

on high probability areas and decoder to produce the anomaly map in which unknown objects are

highlighted. This approach doesn’t constrain the segmentation network and can therefore be used

with state-of-the-art semantic segmentation models.

Golan at al. [29] propose to detect anomalies using different geometric transformations. They train

a multi-class neural classifier over a self labeled dataset. This dataset is created by performing dif-

ferent types of geometric transformations on normal data. The goal here is that for each image,

the model can predict which transformation was applied to it. For test images all the transforma-

tions are applied and the classifier outputs a softmax response for each of the resulting images.

Comparing the combined log-likelihood of these vectors to the distribution of softmax vectors

from normal data results in the final anomaly score. Differentiating between different geometric

transformations should encourage the model to detect new geometrical features in the input image

which often represent unknown objects.

This section showed that there is wide variety of different approaches which try to detect anoma-

lies using deep learning methods. While there have been significant improvements over the last

years, the existing methods are far from perfect. The next chapters will focus on methods using

AE/ VAE to perform anomaly detection

3.4 Anomaly detection using AE/ VAE

A popular tool for anomaly detection are autoencoder or variational autoencoder. While there are

many different approaches which use these kinds of models for anomaly detection, most methods

can be categorized in reconstruction-based or latent space-based methods. Reconstruction-based

methods rely on the assumption that if a model is trained on normal data only, it only learns to

reconstruct normal data and fails to do so for data not represented in the training data. These

methods therefore use the difference between the original image x and its reconstruction x̂ as an

indicator for anomalies. Latent space based methods try to detect outliers in the latent space

of the model. These methods assume that the latent representation z of an image contains all

necessary information displayed by the image and therefore anomalies should have a different

latent representation than normal instances. Although the boundary between these two methods is

not always clear, with some approaches using latent representations and reconstruction ability, the

following chapters are intended to provide an overview of different approaches using these two

methods.

3.4.1 Reconstruction-based

In order to detect anomalies using reconstruction error, Vu et al. [79] developed a GAN-based

method in which the generator and discriminator both are made up of AE. They define the training
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objective as the pixel-wise error between the reconstruction of the data produced by the generator

and the generated image produced by the discriminator. This forces the discriminator to produce

bad reconstructions with a high pixel-wise error if it thinks the data doesn’t belong to the original

data distribution. To furthermore improve training stability they model the learning rates of gen-

erator and discriminator after a sigmoid centered around zero which allows the weaker model to

catch up to the better performing one. The goal of the network is for the discriminator to accurately

reconstruct data, sampled from the original distribution, and fail to do so for out of distribution data

which results in a higher reconstruction error. An et al. [8] claim that for VAEs anomaly detection

using reconstruction probability Eqφ (z|x)[logpθ (x|z)], which takes the variability of the distribution

of variables into account, is more suitable compared to methods using reconstruction error (e.g.

∥x− x̂∥). Somepalli et al. [74] also claim, metrics like the l2-norm are not suitable for anomaly

detection with AE via reconstruction error because it only compares pixel level errors but doesn’t

capture high level structures in the image. Some works [58] try to solve this issue by introducing

adversarial loss which is capable of capturing high level details. This fixes the problem of blurry

reconstructions in low diverse settings like faces but remains poor for more diverse datasets like

CIFAR-10 [1]. The authors of [74] posit that this issue arises because some loss functions with ad-

versarial loss compare distributions for batches of samples but not individual samples themselves.

They instead propose to minimize the wasserstein distance between the distributionsPx,x andPx,x̂.

Furthermore they propose latent space regularization by performing Simplex interpolation of nor-

mal samples in the latent space and by sampling synthetic negatives and optimizing the latent

space to be far away from them. Negative examples are sampled from an atypical set of the latent

space distribution. Based on the assumption that in a d-dimensional space a typical set, which is a

set where the information content of the elements is similar to the expected information, lies with

high probability at a distance of
√

d from the origin [74]. They propose to sample negative outliers

from the region between
√

d and
√

d ±δ . In their experiments they showed that regularization on

the convex combination of latent codes of training samples works better if some negative examples

are also provided. With these negative examples the model can be trained to reconstruct normal

data while making sure that anomalies are reconstructed poorly.

Anomaly detection using reconstruction error can also be applied to online scenarios. Bolte et

al. [12] perform online corner case detection utilizing semantic segmentation and video-based pre-

diction error. Their detection method is based on predictability and the assumption that a situation,

even if it is novel or abnormal, which is technically predictable poses no threat to an autonomous

driving system. Their method consists of 3 parts. The first part is a prediction module which

consists of an AE that outputs the prediction error (based on Mean Squared Error (MSE)) for each

new frame based on the previous frames. In the second part, a semantic segmentation module

detects and classifies objects. Lastly a detection module processes the information output by the

other two parts. Because only moving objects are considered relevant, the prediction error for non

moving classes is set to zero and errors are weighted based on their distance to the bottom of the

image (objects at the bottom are assumed to be closer and therefore more relevant) and summed

up. The final error score is normalized and based on a threshold t, classification into corner cases
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or normal data can be performed.

Some approaches like [7] focus on an end to end autonomous driving scenario where in addition

to the anomaly detection task, the model is trained to output a steering command. The steering

command is generated from the latent space of a VAE. In contrast to a standard VAE they explic-

itly supervise a single dimension of the latent space, which represents the steering output and gets

trained using ground truth human data. For the detection of novel images, a pixel wise uncertainty

estimation between the input x and its reconstruction x̂ is performed. Based on a threshold for this

loss, they classify an image as normal or anomalous. Furthermore they perform model debasing

during training in which they sub-sample the dataset to reduce over represented samples which

show faster and more data efficient training.

Other approaches [4, 81] combine reconstruction based detection methods with latent space anal-

ysis. Based on how "surprised" a model is for a given input, Abati et al. [4] try to detect anomalies

using an autoregressive model in addition to encoder and decoder. Autoregressive models are

generative models which perform sequential predictions where every prediction is based on the

previous observations [30]. The latent space is generated by the AE which was trained to recon-

struct anomalous free data. Besides the reconstruction error they try to minimize how surprising

the produced latent representation is (low for normal data). This is done by the autoregressive

model which learns the distribution of the latent vectors by maximum likelihood principals. For

an anomaly, besides a higher reconstruction error, the model should produce uncommon latent fea-

tures which are detected by the autoregressive model due to their lower log likelihood. These two

measurements are combined into an anomaly score. Similar to this [81] uses a Vector Quantized

- Variational Autoencoder (VQ-VAE) which is a special network architecture designed for image

compression with a discrete latent space. The model gets trained on anomaly free data. With the

use of an autoregressive model (PixelSNAIL [20]) the distribution of all the latent representations

is learned in a second step. If an anomaly is passed through the network during the prediction

stage, the latent code is out of the distribution learned by the network PixelSNAIL. PixelSnail then

performs re-sampling on the latent code and passes it through the decoder to generate an image

from it. The image which got reconstructed using the latent code generated by the encoder is then

compared to the image which got generated from the re-sampled latent variables generated by

PixelSnail. The difference in these two images is used as a anomaly score.

Another approach which combines feature representation and reconstruction is proposed by [63]

who developed a memory module where items in the memory represent prototypical patterns of

normal data. They assume that there is no single prototypical feature which represents all normal

instances and try to capture the diversity of normal patterns through the memory module which

gets updated during training on normal video frames. To reduce intra-class variance, they train

the model to map a given input as close as possible to its nearest item in the memory. To prevent

a degenerate solution, where all items are mapped closely to one memory item, they include the

objective of minimizing the distance between a feature and its nearest item while maximizing the
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distance to its second nearest. This ensures diversity in the memory. The model mainly consists of

an encoder, decoder and memory module with a overall loss consisting of reconstruction, feature

compactness and feature separateness loss. The abnormality score for an input of video frames

is given by the l2 distance between the input and the nearest item in the memory and the recon-

struction of the video frame using the memory items. Motivated by the idea of using vehicular

trajectories rather than video frames, Santhosh et al. [71] extract a color gradient representation of

these trajectories from video sequences recorded by a stationary camera in order to detect anoma-

lies in traffic scenes. They obtain trajectories by a tracking algorithm, cluster them to identify

different patterns and map them into a color gradient form. Their approach consists of a VAE to

identify anomalies and a Convolutional Neural Network (CNN) to classify trajectories. The CNN

predicts the class of a given trajectory and the VAE detects anomalies based on the resulting re-

construction error. The classification of trajectories is necessary because in a given traffic scene a

set of flows can be allowed to happen at the same time but other movements, which by it self are

normal and can occur at a different time, are anomalous in this specific scenario. The VAE which

is trained on normal data then fails to detect this movement because it is unknown.

3.4.2 Latent space-based

Detecting unknown or untested scenarios is crucial for scenario based testing. Because infrastruc-

ture is a big component of a scenario, [84] tries to find traffic scenes which are different than the

ones already known to an autonomous driving model. In their approach they use a triplet based AE

which maps road infrastructure to the latent space where novelty detection is performed. Triplet

learning enforces similarity in the latent space based on data triplets. Because of that, neigh-

boring points in the latent space have visually similar inputs. In order to measure the similarity

of road infrastructure, a connectivity graph is generated for each scenario which is then used to

compare different scenes. Similar to this approach, Harmening et al. [34] uses the latent space rep-

resentation of traffic scenes in order to cluster the latent space and find different scenarios. They

developed two approaches to generate the latent space. The first one consists of an AE which gets

a 4-dimensional grid as input. This grid represents the 2 image axis with the color channel and a

time axis. In the second method, each frame of the scenario is described by a set which contains

features (e.g. position, velocity) of all traffic participants. Each element of a set gets encoded to

an embedding vector which gets fed into an RNN-based AE where the resulting latent space is

clustered. Because many real world datsets have multiple labels assigned to each image, Sundar et

al. [75] propose to synthesize a multi-label dataset into smaller partitions who each have labels of

one generative factor fixed while labels of the other factors can change. In their approach they train

a β -VAE on each partition to generate the latent space. The VAE is trained as one class classifier

to learn information about the fixed factor. During testing, each β -VAE should identify changes in

the generative factor it was trained on. They deploy a chain of detectors with each detector using

only a single latent variable which is the one that shows highest sensitivity to variations in the

assigned factor. This VAE chain can then be used for online detection.
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While many approaches focus on comparing original and reconstructed images to identify anoma-

lies, Akcay et al. [6] propose a different method which compares the latent representation of the

original image with the one from a reconstructed image. For that, they train an AE in an adversar-

ial setting. The network contains two encoders, a decoder and a discriminator. First the encoder

decoder pair are trained in a classical autoencoder setup and learn to reconstruct the input image.

In this setup the AE takes the role of the generator. The reconstructed image is then passed to

another encoder to generate its feature representation and a discriminator who decides between

real or generated. The intuition behind this approach is, that if the model is trained only on normal

samples, the AE has problems to reproduce anomalies. The anomalous input x gets compressed to

its latent representation z and reconstructed to x̂ which misses the anomalous parts of the image.

It is then compressed by the second encoder to ẑ. The dissimilarity between z and ẑ is used to

classify images as normal or anomalous. Chalapathy at al. [16] follow a similar approach to the

one class classification network proposed by [68] with the additional use of encoder as feature ex-

tractor. They integrate a one-class-Support Vector Machine (SVM) equivalent object into a neural

network architecture. This combines the ability of Neural Networks to learn meaningful represen-

tations of the data with the one class classification objective which separates in distribution data

from out of distribution data. For that, they use a SVM like loss function for training the neural

network. In the first step they train a deep AE to learn the features of the input image. After that,

the encoder of this pre-trained network is used to generate the latent space of the input image. This

representation of the original data is then passed through a simple feed forward network with one

hidden layer and a scalar output which classifies the input data as normal or anomaly. The en-

coder and classifier weights are learned simultaneously in this second step. This differs from other

methods which use an anomaly detector on generic features produced by an AE without training

the model to produce features which are especially well suited for anomaly detection tasks [26].

These approaches train the feature extractor and anomaly detector independently from another

which results in a less accurate performance in anomaly detection tasks.

Park et al. [65] look at VAEs from the perspective of rate-distortion theory and show that VAEs can

be explained with the trade-off between the rate and the distortion. They propose that using only

the encoder to calculate the marginal log-likelihood of the data is more effective and simpler than

to use the reconstruction loss of a VAE to calculate the anomaly score. They follow the standard

VAE architecture with a Gaussian N(0, 1) as prior and let the encoder output the mean and stan-

dard deviation of a multivariate Gaussian but without the use of a decoder. The network basically

learns to approximate the prior without the additional reconstruction task. Their prior generating

network (PGN) generalizes methods like [68] described earlier.

Liu et al. [53] propose a method which creates an attention map using the latent representation of

the data directly and therefore not needing an extra classification module. For every element zi

in the latent vector z an attention map Mi is generated by performing backpropagation to the last

convolutional feature map. In detail Mi is computed by performing ReLU on ∑
n
k=1 αkAk where

Ak is the k’th feature channel and αk is a scalar value given by performing global average pooling

on ( ∂ zi
∂Ak

). For an d-dimensional latent space, this results in d attention maps with the mean of
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them resulting in a single overall attention map. For a anomalous input they sample z from the

normal difference distribution given by the overall µ and σ which represent all normal images

and the µ , σ inferred from the anomalous sample and calculate the anomaly attention map for

this z. The resulting attention map highlights anomalous parts in the input image. The results can

be improved by adding attention disentanglement loss which forces the high response regions of

two attention maps generated from z to be as separable as possible. Another method similar to

the one used in this thesis was proposed by [24]. They combine Gaussian Mixture Model (GMM)

with VAEs to form the latent space. The Gaussian Mixture Variational Autoencoder (GMVAE)

uses a mixture of Gaussians as a prior. Their method is based on the assumption that the data is

generated by multiple distributions. The Gaussian mixture prior results in a latent space in which

multiple classes are more clearly separated from each other and therefore improves classification.

The main difference between this and the approach used in this thesis is that in the GMVAE there

is no conditioning on a predefined data label (normal/anomaly).
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This section explains the approach that was used to in this thesis to detect anomalies in real world

driving scenarios. For that, a VAE was trained on normal data and anomalies. The anomaly

detection is then performed through clustering in the latent space of the VAE. The clustering

assigns a binary label to every data point in the latent space and classifies it either as anomalous

or normal. This approach looks at real world cases where the input data consist of many different

objects from different classes

4.1 Discrepancy Images

This section will explain the generation of the discrepancy maps that were used as an additional

input together with the RGB-images. This method was proposed by Lis et al. [51] and generates

images where unknown objects are supposed to be highlighted by the model. The resulting image

is added to the original one as a 4th color channel and passed through the VAE. This should train

the model to better detect anomalies by providing some additional information about the relevant

parts of the image. The idea behind this is, to encourage the model to pay more attention to

the highlighted regions in the image and especially the objects behind these regions. The goal

is that the VAE learns that the objects behind the marked regions are of interest and should be

labeled as anomalous if not known. By training on normal and anomalous images, the model

should learn to differentiate between normal and anomalous images even if some normal parts

are highlighted. It therefore should learn that not the marking is the relevant factor for a image

to be classified as anomaly but the novelty of the object behind it. These discrepancy maps are

created by the process used in [51]. The pipeline for creating these discrepancy maps consists of

three parts. First a semantic segmentation network, second an image resynthesis module and a

module for anomaly detection. As shown in figure 4.1, the pipeline first creates a semantic mask

of the original input image. Then the resynthesis module tries to recreate the original image from

the semantic mask. Because the semantic segmentation network is only trained on normal data

it cannot classify anomalies correctly which leads to a wrong reconstruction by the resynthesis

module. The anomaly detection part of the model then tries to pick up differences in the original

and the resynthesized version of the image. The separate parts of the model will now be explained

in more detail.

4.1.1 Semantic segmentation module

The semantic segmentation network used to create the semantic masks is the pyramid scene parsing

network (PSPNet) [89]. The model architecture is shown in figure 4.2. For a given input, this

model uses a pre-trained ResNet [35] model as a feature extractor. The resulting feature map
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Figure 4.1: Overview of the pipeline which creates the discrepancy maps. The original image gets passed
through a semantic segmentation module to create a semantic mask. From this a GAN tries to
reconstruct the original image. The discrepancy map gets generated by comparing the original
image to the reconstructed one.

has 1/8 the size of the input image and gets passed to a pyramid pooling module. This pooling

module is used to gather information on different subregion representations and get global context

information. It consists of four different levels, each pooling at different sizes in order to capture

different portions of the image. The coarsest level is global pooling and generates a single output

for each feature map. The lower level pooling modules focus on different subregions of the feature

map and generate pooled outputs for different locations. For every level of the pyramid, a 1 x 1

convolution is performed to reduce the depth and get a 2 dimensional output. The low dimensional

feature maps are then upsampled, in order to make them the same size as the original feature map.

All these upsampled feature maps are then concatenated with the original feature map output by

the ResNet feature extractor. This combination, which fuses features collected at different scales

to better capture the overall context of the image, is then passed to another convolutional layer to

generate the final class prediction for each pixel.

Figure 4.2: Overview of the PSPNet architecture. Reprinted from [89]
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4.1.2 Resynthesis module

For image resynthesis the pix2pixHD [82] model was used. This model is a conditional GAN

which can create a RGB image out of a semantic map. The objective of the generator G in this

case is to produce a real looking image from a semantic map while the discriminator D tries to

distinguish real image from the synthesized ones. The generator in this network consists of two

sub-networks, a global generator G1 and a local enhancer G2 (see Fig. 4.3). The global generator

consists of a convolutional front-end followed by a set of residual blocks and a transposed con-

volutional back-end. It gets a semantic map as input and produces an output image of the same

size. The local enhancer network has the same architecture as the global generator but in- and

output is twice the size in each image dimension. The input to the residual blocks of the local

enhancer G2 is not the output of the convolutional front-end like in the global generator G1 but a

element wise sum of its convolutional front-end output and the last feature map of the back-end of

G1 which integrates global information from G1 to G2. During training first the global generator

gets trained and after that the local enhancer is appended to it and trained simultaneously. Because

high resolution image synthesis is challenging for the discriminator and would require a larger

network or larger convolutional kernels, which brings problems of memory usage and overfitting,

the authors of [82] propose a multi-scale discriminator. They use three discriminators (D1,D2,D3)

with identical network structures and use them on different image scales. The real and synthesized

image gets down scaled by a factor of 2 and 4 to get images of 3 different sizes for the discrimina-

tors. They then try to distinguish between the real and the synthesized version while the coarsest

one focuses more on global features and the finest more on the details of the image. The multiple

discriminators transform the typical GAN objective

min
G

max
D

LGAN(G,D) [4.1]

with LGAN(G,D) = E(s,x)[logD(s,x)]+Es[log(1−D(s,G(s))] to a multi-task learning problem

min
G

max
D1,D2,D3

∑
k=1,2,3

LGAN(G,Dk). [4.2]

In addition to this, the authors propose a feature matching loss which is added to the GAN loss in

order to stabilize training and improve the generation quality. For this loss, features from different

layers of the discriminator were extracted and features from real and fake images compared. This

results in the final objective

min
G

(( max
D1,D2,D3

∑
k=1,2,3

LGAN(G,Dk))+λ ∑
k=1,2,3

LFM(G,Dk)) [4.3]

where LFM denotes the feature matching loss and λ balances both terms.
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Figure 4.3: Pix2PixHD architecture. The residual network G1 gets trained on images with lower resolution.
Later, another residual network gets appended and the networks are trained together while the
input of the second part of G2 is the sum of the last feature map from G1 and the feature map
from G2. Reprinted from [82]

4.1.3 Discrepancy module

The discrepancy module introduced by Lis et al. [51] detects anomalies by comparing the synthe-

sized image to the original one. If unknown objects are not recognized or wrongly classified by

the semantic segmentation network, the resynthesized version should be semantically different in

these parts of the image. A simple pixel by pixel comparison would not give any information about

anomalies and can therefore not be used as an anomaly detection measurement. The reason for this

is that the segmentation module only captures the semantics of individual objects, it doesn’t give

any information on features like color or texture, so the resynthesized version will not match the

original one in these aspects and therefore can have large pixel value differences even if the object

is detected and classified correctly. The discrepancy network is build upon a three stream architec-

ture (see Fig. 4.4). A pre-trained VGG network is used to extract features from the original image

and the resynthesized version of it. A custom CNN is used to process the predicted semantic labels

produced by the segmentation module. At each level of the feature pyramid the features from the

3 images are concatenated and combined by a 1 x 1 convolution. In addition, point wise correla-

tions between the features obtained from the original and the resynthesized image are calculated.

These pointwise correlations and concatenated features are then passed to to a upconvolutional

pyramid which returns the final discrepancy map. In order to train this network the the authors

used a synthetic anomaly dataset. This makes it possible to train the network without the need of

real anomalies. The synthetic training set mimics the occurrence of unknown objects which get

classified incorrectly by the segmentation network. For that, they propose to replace the label of

a randomly-chosen object instance with a different random label. This process is shown in figure

4.5. By passing these modified semantic maps to the image resynthesis module reconstructs these

objects according to the new label. This results in pairs of real images and fake images to train the

discrepancy network. By using this method to create a synthetic anomaly dataset, no anomalies

are necessary for training. The problem with this method of creating synthetic anomalies is that

it chooses a random class to replace to selected object, without considering how often this class

is seen normally in the dataset. Because not all classes have the same likelihood of appearing in

an image, this leads to some rarer classes appearing more often as a replacement (which should
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be detected as anomalous) than as normal instances. This results in the model associating these

rare classes with anomalies and learning to classify them as such because it encounters them more

often as a replacement class, which symbolizes an anomaly, than as a normal instance. To avoid

this problem, the process of creating the synthetic anomaly dataset was modified. For a selected

object, the replacement class is not chosen randomly but according to its probability of appearing

in the dataset. This means that rare classes are chosen less often as a replacement then common

ones, which prevents the model from learning to classify less frequent classes as anomalies and

helps it to differentiate between rare and unknown objects.

Figure 4.4: Architecture of the discrepancy module [51]. The VGG and CNN extract features from the
three input images. Features and correlations are passed to a decoder which generates the final
discrepancy map. Reprinted from [51]

4.1.4 Training

For the semantic segmentation module and the image resynthesis part of the model we used the

weights provided in the implementation of [51]. They use the Cityscapes dataset as the "normal"

dataset without anomalies. For the semantic segmentation module they used the BDD100k [88]

dataset for training because of its high diversity and large number of training samples. The

BDD100k dataset has the the same classes as the Cityscapes [21] dataset which represents the

"normal" data for the discrepancy detector. The segmentation network therefore can only assign

objects to the known classes and wrongly classifies objects from unknown classes. The image

resynthesis module was trained on Cityscapes in order to learn how to reconstruct normal data.

For the discrepancy module, the model had to be retrained on the new synthetic anomaly dataset

which was generated from Cityscapes, while the rest of the training was kept like in the original
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Figure 4.5: Creation of the training data for the discrepancy network as proposed by [51]. The left image
shows the ground truth labels of a Cityscapes image. For some objects, the labels are replaced
by labels from a different class which simulates that an object gets classified incorrectly. This is
shown by the image in the middle. The image on the right shows the objects with wrong labels
which should be detected by the discrepancy network.

implementation from [51]. For the both, the resynthesis and the discrepancy module the training

images were down scaled to 1024 x 512 while the original version of Cityscapes has 2048 x 1024

images.

4.2 Latent Space Conditioning

A lot of anomaly detection methods focus on the reconstruction error/ reconstruction probability

using AE/ VAE. This has some limitations because powerful models which can generalize well

are able to reconstruct anomalous data just as good as normal one with no significant difference

in the reconstruction error [54]. This is especially true if a majority of the anomalous image is

normal [63]. This is often the case in traffic scenes where one unknown object alongside many

known ones already can cause a scene to be anomalous. This method doesn’t use reconstruction

quality as an indicator of anomalies but focuses on anomaly detection in the latent space of a VAE.

Because of the regularization term (most of the time kl-divergence), the latent space of VAEs can

be more structured compared to the basic AE. This makes VAEs better suited for this approach

and is the reason they were chosen. As already mentioned, VAEs are generative models using

latent variables from which they reconstruct data or generate new data. In order to reconstruct a

image from its latent variables, they need to store the relevant information contained in the image.

The latent space of a VAE typically has way less dimensions than the input data. This means that

not all information in the input data is relevant for capturing the overall semantic of the image.

The idea is that in this compressed space some latent representations of anomalies differ from

the ones produced by normal data. In order to create and structured latent space which makes it

easier to detect outliers in it, anomalies and normal data need to be separated as much as possible.

To achieve this, the model used in this thesis, uses a method proposed by Norlander et al. [61]

which conditions the latent space on class labels, in this case anomaly and normal. Compared

to a standard VAE which typically forces the latent space to be similar to a Gaussian prior the

Conditioned Latent Space Variational Autoencoder (CL-VAE) [61] uses one Gaussian per class

label. By using the additional information which is given by the labels, it is possible to more

accurately express the data with several Gaussians. The CL-VAE assigns a distribution to every

data point in the latent space. This makes it different from other approaches which use GMM

for training a VAE. Similar methods using GMM like [24] don’t condition the latent space on
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a specific pre-defined label but use Monte Carlo methods to estimate the prior distribution. The

CL-VAE assumes that not all data can be mapped to the same Gaussian and therefore uses one for

each class. This should lead anomalous inputs to gather around a different Gaussian than normal

images which makes it easier to separate them later. The VAE basically acts as a preprocessing step

to transform the data into a shape where anomalies can easily be separated from normal data using

clustering. Similar to a normal VAE, this variant tries to estimate pθ (x) with a Gaussian in the

latent space. But unlike the normal VAE the Gaussian gets conditionally chosen depending on the

kind of data (normal/anomaly). This follows the idea of some other approaches (e.g. [40]) which

showed that providing some outliers during training can help to train the model to differentiate

better between normal and anomalous data. For the CL-VAE [61], the ELBO becomes

LELBO(θ ,φ ;x) = Ezφ (z|x)[log pθ (x|z)]−βDKL(qφ (z|x,y)||pθ (z|y)) [4.4]

with a weight parameter β to balance the 2 terms. Because y is discrete the KL-divergence can be

expressed as

DKL(qφ (z|x,y)||pθ (z|y)) = Ez|y[log
qφ (z|x,y)
pθ (z|y)

] =
N

∑
y=1

pφ (z|y) log
qφ (z|x)
pθ (z|y)

[4.5]

to produce a closed form solution of this, [61] used qφ (z|x) as a Gaussian conditioned on x and

pθ (z|y) as Gaussian with µy and variance of 1

qφ (z|x) =
exp{−0.5|| z−µ(x)

σ(x) ||2}

∏
d
i=1

√
2πσ2

i (x)
, [4.6]

pθ (z|y) =
exp{−0.5||z−µy}

(2π)d/2 [4.7]

together with the reparameterization trick to simplify the expression above to

log
qφ (z|x)
pθ (z|y)

=−0.5
d

∑
i=1

logσ
2
i (x)+

1
2
||z−µy||2. [4.8]

This form of the KL-divergence is used in the CL-VAE to condition the latent space to form multi-

ple clusters around the assigned Gaussians. As shown in [61], the CL-VAE is capable of producing

a latent space where the data forms multiple clusters, depending on the class label. For the recon-

struction part of the ELBO, the MSE between the input x and its reconstruction x̂ was used. This

is given by taking the mean of the squared l2-distance between x and x̂.
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MSE =
1
N

l(x, x̂) [4.9]

l(x, x̂) = {l1, ..., lN}, ln = (xn − x̂n)
2. [4.10]

The variational autoencoder used in the implementation of the CL-VAE unfortunately only consists

of one hidden fully connected layer for encoder and decoder and one layer for the parameters µ

and σ . While such an architecture may be enough for small 28 X 28 grey-scale images like MNIST

it is not suited for larger more complex images. The next chapter will go into more detail about

the VAE architecture used in this thesis.

4.3 VAE Architecture

For the VAE, multiple architectures have been tried out. While models with discrete latent space

like VQ-VAE [78, 67] show good reconstruction and compression capabilities, they are based on

a uniform prior distribution over the discrete latent codes, this results in a constant kl-divergence

which therefore doesn’t play a role in the loss function. Because the kl-divergence in this approach

is the part which conditions the latent space to form separate clusters, a VAE as proposed by [46]

without a qunatized latent space was chosen. For the VAE i tried out multiple architectures and

decided to use one with residual blocks for the encoder and decoder. As shown in previous works,

residual networks are easier to train and optimize especially if the network gets deeper [36]. The

encoder/ decoder architecture consists of multiple residual blocks which reduce the dimensionality

of the input and extract features from it. In comparison to other network architectures, which often

use a series of convolutional layers followed by batch-normalization and an activation function

(most of the time ReLU), residual networks have shortcut connections in their individual building

blocks. These shortcut connections connect the input to the output of the residual block and

therefore skip the layers in between. A residual block can be formally defined as

y = F(x,{Wi})+ x [4.11]

where x is the input and y the output of the block. F(x,{Wi}) describes the residual mapping to be

learned and F+x describes the shortcut connection with element wise addition which means their

dimensions must be equal. If the input and output dimension are not equal, there needs to be a

transformation in the shortcut to make sure x and F(x,{Wi} have the same number of dimensions

in order to perform element wise addition of the two resulting feature maps [36].

y = F(x,{Wi})+Wsx [4.12]

The residual blocks in the encoder are made out of a 2D convolutional layer, batch-normalization

layer, randomized leaky ReLU, an average pooling layer and another 2D convolutional layer fol-

lowed by batch-normalization. After these layers the skip connection gets added to the output
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and a final randomized leaky ReLU is applied (see figure 4.6). Because of the pooling layer, the

skip connection also passes through a convolution and average pooling layer in order to reduce its

dimensions to perform the addition. The convolutional layers have a 3 x 3 kernel with stride 1 and

padding 1 and are used to extract features from the image. The batch-normalization layer normal-

izes the activation values which speed up training and makes it more stable [44]. The randomized

leaky ReLU is a special version of the normal ReLU which for a given input x is defined as x if

x ≥ 0 and 0 otherwise. The randomized leaky ReLU for a input x is defined as x if x ≥ 0 and ax

otherwise where a is sampled from a uniform distribution. This version can have some advantages

over the standard ReLU [85]. The decoder architecture is similar to the encoder with the difference

that the pooling layers are replaced by upsamling layers. Because the input data is in the range

between 0 and 1, the decoder output is passed through a final 3 x 3 convolution followed by a

sigmoid activation function to generate outputs that are also in the range 0-1. For generation of

the bottleneck parameters µ and σ , a 2 x 2 convolution with stride 2 was used for each parameter.

Compared to fully connected layers, convolutional layers in the bottleneck resulted in a better re-

construction which indicates that more information is stored in the latent variables. Furthermore,

using fully connected layers to generate the distribution parameters makes it harder to increase the

number of latent variables due to the huge amount of parameters that comes with them. This can

cause memory problems if the latent space gets too large and therefore also limits the information

which can be stored in it. From the µ and σ feature maps, the latent space z gets sampled using

the reparametrization trick described earlier. The encoder consists of five residual blocks where

every block doubles the number of channels and the resulting feature map is passed to the 2 con-

volutional layers which generate the distribution parameters. The decoder consists of six residual

blocks followed by the final output layer (conv + sigmoid). The model has 2 more parameters µ1

and µ2 which are the means of the two prior distributions for the normal and anomaly data. These

two learnable parameters are initialized random and lie in the interval [0,1). The basic structure of

the VAE, like the residual blocks, was taken from the implementation provided by [2].

Figure 4.6: The left image shows the overall architecture of the VAE used in this thesis. The image on the
right shows the components of the ResBlock.

To furthermore increase the separation of normal and anomalous data, experiments with two addi-
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tional loss terms were carried out.

The first one is a distance loss Ldistance which is used to maximize the distance between the two

mean parameters in order to push the clusters away from each other. The negative l1-norm

Ldistance =−∥µ1,µ2∥1 =−|µ1 −µ2| [4.13]

is therefore added to the loss function. If the mean values of the two distributions are further

away from each other clustering the latent space into normal and anomalous data should be easier.

The second term is similar to the method proposed by Yang et al. [86]. They propose an opti-

mization criterion for DNN based dimensionality reduction which trains the model to produce a

clustering-friendly latent representation. They include a term in their loss function which mini-

mizes the distance between every data point and its assigned cluster centroid given by the k-means

algorithm. Because the mean parameters of the prior distribution can already be seen as the clus-

ter centroids, using k-means to generate the centroids and cluster assignments is not necessary

for the method used in this thesis. To generate a clustering friendly latent space, the term was

added to the loss function which trains the model to minimize the squared l2-distance between

each point in the latent space and the mean of its assigned distribution which is given by its label

(normal/anomalous). For every point zi in the latent space, the loss is defined as

Li = (µi − zi)
2 [4.14]

where zi is the latent representation of the data and µi the mean from its corresponding distribution.

The overall loss is given by

Lcluster =
1
n

n

∑
i=1

Li [4.15]

and added to the loss function of the VAE. The effects of these two terms on the anomaly detection

task are examined later in the evaluation chapter.

4.4 Feature Loss

As mentioned by others [74, 43], measuring the reconstruction of an image by the pixel-wise error

between the original and the reconstructed image (e.g. MSE-loss) is not an ideal measurement for

reconstruction capability. The reason for this is that only pixel errors are detected but the overall

structure of the image is not taken into account. The results of such reconstruction measurements

are extremely blurry reconstructions. To deal with this problem, Hou et al. [43] propose a special

feature loss for training VAEs which was also used in this thesis in addition to the CL-VAE ob-

jective. For the experiments in this thesis, an implementation of the feature loss provided by [2]

was used. Hou et al. [43] claim that the perception of an image is more important than a pixel-

wise error to measure reconstruction quality because the same image offset by a few pixels has

little perceptual difference to a human but can have a high pixel-wise error [43]. Even though the

reconstruction of the image is not used as an anomaly measurement, it is important that the VAE
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is capable to reconstruct the input image. The ability to reconstruct the input data assures that

enough relevant information is captured by the latent variables. Because CNNs are able to capture

rich feature representations of images they can be used to mimic human perception and are used

to calculate the perception loss between two images. The authors in [43] propose to use a VG-

GNet [73] which was pre-trained on the ImageNet dataset for classification. The VGGNet consists

of multiple blocks of convolutionnal layers with a ReLU activation function which are followed by

a max pooling operation as shown in figure 4.8. The goal of these operations is to extract features

from the image which are then passed to a series of fully connected layers with ReLU activation

functions and a sigmoid at the end to perform the classification task. For the feature loss however,

only the convolutional layers are useful to generate feature maps and there is no need for classi-

fication. Because of this, only the first part of the VGGNet without the fully connected layers at

the end was used. The idea behind this method is to compare the hidden representations from the

VGGNet given two images. Because the hidden representations can capture features like spatial

correlations, small differences between the hidden representations of two images can show similar

perception. The feature loss between two images x and x̂ is defined as the squared Euclidean dis-

tance between the feature representations of each layer (see Fig. 4.7). For the lth layer the feature

loss Ll
f eat is given by

Ll
f eat =

1
2ClW lH l

Cl

∑
c=1

W l

∑
w=1

H l

∑
h=1

(Φ(x)l
c,w,h −Φ(x̂)l

c,w,h)
2 [4.16]

where Φ(x)l
c,w,h is the representation of the lth layer generated from image x and Cl,W l,H l repre-

sent the number of filters, the height and the width of the feature map produced by the lth layer.

The overall feature loss is then given by combining the loss of the individual layers.

L f eat = ∑
l
Ll

f eat [4.17]

Because the VGGNet was pretrained on RGB-images, only the three RGB-channels of the out-

put image, without the discrepancy image, were used to calculate the feature loss. The overall

objective of the model is to minimize LVAE , which is given by:

LVAE = LELBO +L f eature [4.18]

4.5 Data Selection

In order to select the right data to train and evaluate this approach normal and anomaly data is

necessary. The anomaly set has to contain anomalous objects which are not included in the normal

data. Lately there have been some datasets using synthetic data like StreetHazards [38] which

consists of normal training data and test data where anomalous objects are placed in the generated

environment. Unfortunately StreetHazards lacks image quality and synthetic datasets are often
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Figure 4.7: Overview of the feature loss. The feature loss gets calculated after every layer of the CNN
(VGGNet) by taking the squared distance between the feature maps generated from the input
and the reconstructed image. Reprinted from [43]

simplified versions of real live driving environments. While there are many datasets with real

traffic images for autonomous driving, the Cityscapes dataset [21] offers a large collection of im-

ages with high diversity and was therefore used as the normal data in this thesis. The Cityscapes

datasets consist of 5000 images which are recorded in 27 different cities. The dataset contains

2048 x 1024 images recorded from the ego perspective of a car driving in a mostly urban environ-

ment. The scenes were recorded in different cities at different time (month and daytime) and with

different weather conditions to ensure a high variety in the data. While there are different weather

conditions in the dataset, it doesn’t contain extreme weather conditions like heavy rain or snow

because as claimed by the authors such scenarios require special techniques and datasets. These

images were manually selected to ensure a high diversity and capture real live driving scenarios

with a high variety of background, objects and lighting and overall scene layout which makes it

well suited to represent the normal class of data in this approach. The data is divided in a train,

validation and test set. The data wasn’t split randomly but based on criteria such as balanced

distribution of location and population size as well as time of the year to ensure that every split

captures a wide variety of different scenarios. The train, validation and test sets contain 2975, 500

and 1525 images and are kept in this split during the training procedure. Because Cityscapes has a

wide variety of images from real life driving scenarios and doesn’t contain any unusual situations

or objects it is well suited to represent the normal data in this approach.

Because the method used in this thesis requires some outliers during training in order to condition

the latent space of the VAE, some anomaly datastes were used in addition to Cityscapes. These

anomaly datasets should contain images with objects different to the ones in Ciyscapes or images

where the appearance of the scene differs from the normal images. The first anomaly dataset cho-

sen is the LostAndFound dataset [66]. LostAndFound contains images from 13 different street

scenes with different road obstacles. The obstacles vary in size and type and are placed in the

driving corridor of the vehicle. The objects are considered anomalous and so an image contain-

ing these should be classified as anomaly. Because the images are individual frames from video

sequences, there are frames where the anomalous object is very far away and barely or not at all
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Figure 4.8: Architecture of the VGGNet to calculate the feature loss of a 256 x 256 rgb-image. The weights
were taken from a network which was pre-trained on ImageNet and the the feature loss gets
calculated after every convolution + ReLU block

visible. To ensure that each image has an anomalous object in it which can be detected, the dataset

gets filtered and only images where the amount of anomalous pixels is greater than 3000 are used

for training, validation and testing. Because the dataset contains multiple images from the same

environment where only the anomalous object changes, i further manually filtered the dataset so

that it contains only a few images with different anomalies from every environment. This is done

in order to prevent the model from overfitting to the environment which stays the same in multiple

images. This could lead to the model just recognizing the surroundings without paying attention

to the anomalous objects in the image. In the LostAndFound dataset children crossing the road

or bicycles lying on the road are also considered anomalous. The scenes where children are the

anomalies were removed because they are also present in Cityscapes and considered normal. The

scenes with bicycles are kept as anomalous even though there are also bicycles in Cityscapes. The

reason for this is that a person riding a bicycle is common in real world driving scenes but a bicycle

lying on the street is unusual and is therefore considered anomalous because it appears in a dif-

ferent context than in the normal Cityscapes images. After manually selecting only a few images

from every scene the dataset contains a total of 172, 99 and 64 images for the train, validation

and test set. To assure that the model does not only learn a certain type of anomaly or recognize

the environment of the anomaly dataset it is important to provide a wide variety of anomalies and

scenes in the training data to prevent overfitting.
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To get more diversity, the RoadAnomaly21 from the SegmentMeIfYouCan benchmark [18] was

used in addition to LostAndFound as anomaly data. RoadAnomaly21 contains 110 images of

resolution 2048 x 1024 or 1280 x 720. Each of these images contains at least one anomalous

object like an unknown vehicle or animal which is not present in the normal data (Cityscapes).

These anomalous objects can appear everywhere in the image and vary in size. Because these

images were selected from web sources, they contain a wide variety of environments making it

more diverse and less likely that the model just learns to recognize a certain environment from the

anomaly data. The combination of LostAndFound and RoadAnomaly21 provides a wide variety

of objects which are not included in the Cityscapes dataset and therefore considered anomalous.

The RoadAnomaly21 dataset is split into a train validation and test set with the train set containing

70%, the validation set 20% and the test set 10% of the images. The LostAndFound dataset has a

train and test split which is predefined. The train split is used for training and the half of the test

images are used for testing and the other half for the evaluation set.

4.6 Model Training

For the training of the VAE, the generated discrepancy images were used together with the rgb-

images. The model was trained on the training data described in chapter 4.5 for 100 epochs and

evaluated on the validation set. The model weights with the lowest validation loss were saved for

later evaluation. For training a batch size of 12 was used and the images were down scaled to

256 x 256 in order to avoid memory problems. The VAE training was performed on a NVIDIA

GeForce RTX 3090. I experimented with different learning rates and used a learning rate of 1e-4

with the ADAM [45] optimizer. Higher learning rates resulted in exploding gradients and a kl-

divergence which is increasing rapidly to infinity. While different methods like gradient clipping

were tried out, choosing a lower learning rate between 1e-4 and 1e-5, depending on the size of the

model and the number of parameters, solved this issue. During the training, the learning rate was

decreased linearly to allow the optimizer to make smaller steps later in the training and converge

to a minimum. Furthermore this reduces the risk of exploding gradients later in the training.
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In this chapter, the approach described in chapter 4 will be evaluated. For that, a description of

the evaluation data is provided as well as an evaluation of the VAE, discrepancy module and the

ability to detect anomalies in the latent space of the VAE.

5.1 Test Data

A diverse collection of anomalous images is necessary to test the capability of the model to detect

anomalies in real world driving driving scenes. For testing, the test data from the dataset intro-

duced in section 4.5 was used. This data consists of parts of the LostAndFound dataset [66] and

the RoadAnomaly21 dataset from the SegmentMeIfYouCan benchmark [18]. These images all

contain an anomalous object and should therefore be detected and classified as anomaly. Images

from these datasets are also used in the model training as anomalies which could lead to the model

just memorizing the overall scenery of the different datasets and not the anomalous object in them.

While the RoadAnomaly21 dataset has a lot of different images and environments due to the im-

ages in it being collected from the web and therefore not having a specific environment where

all images are recorded, the images still look a little bit different than the normal Cityscapes [21]

images. A similar issue arises for the LostAndFound dataset where the images are frames from a

video and show different anomalous objects but in similar environments. Compared to Cityscapes,

which consists of metropolitan images, the images in LostAndFound are recorded in more rural

areas. This could lead the model to just learn to detecting the domain shift and not the anomalies

itself.

To evaluate the detection of unknown objects, the publicly available FS Static images from the

Fishyscapes dataset [10] were used in addition to the two other datasets. These images are based

on the Cityscapes validation set and therefore have the same environment as the normal data which

prevents the detection of a distribution shift. These images are created by inserting novel objects.

These objects are from classes that cannot be found in Cityscapes like airplane, boat or dog. The

objects are randomly sized and positioned in the image. The positioning is dependent on the class

of the object, while mammal classes have a higher probability of appearing on the lower half of

the image, classes like birds have a higher chance to be placed in the upper half. In order for the

objects to match the characteristics of their environment the authors of [10] used several process-

ing steps to e.g. adapt shadows and lighting. Furthermore they used different degrees of blending,

which makes the objects slightly transparent, to make the detection harder and provide some nor-

mal images where objects from known classes are inserted in order to check if the model just

detects the insertion mechanism. Unfortunately the publicly available evaluation set only consists
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of 30 images where 20 are anomalies and 10 are normal. The small size of the dataset makes it not

suitable for training and it therefore was only used for testing (see 5.1 for example images from

the datasets).

Figure 5.1: Example images from the different datasets

5.2 New Discrepancy Variant

This section examines the effect the newly created synthetic anomaly dataset has on the discrep-

ancy module proposed by [51]. The discrepancy module was trained on this new dataset and used

to create the discrepancy maps which were used together with the RGB-image as input to the

VAE. As described in chapter 4.1.3, in the original version of the synthetic anomaly dataset the

class labels of randomly selected objects are replaced by a random class which leads to the model

detecting rare classes as anomalies. In the new version of the dataset the replacement class is not

selected randomly but depending on the number of images in the Cityscapes dataset which contain

this class. If a class appears in only a few images it has a lower chance of being selected as the

replacement class than a class which appears in more images. The discrepancy module trained on

the new dataset is compared with the version used in [51]. For comparison, the provided weights of

the original version are used. For the discrepancy module Cityscapes is used as normal data where

the model should not detect anything. The model generates a per pixel anomaly score which lies

between 0 and 1 for a gray scale discrepancy map. If the model works perfectly all images from

the normal dataset Cityscapes should have the value 0 for every pixel. To compare the new model

to the original one, discrepancy maps from the Cityscapes test set were created and the mean pixel

value of every image was calculated. Figure 5.2 shows that the average pixel value decreases for

the variant trained on the new synthetic dataset which shows that less pixels are wrongly detected

as anomaly. Figure 5.3 shows the effect the new synthetic anomaly training set has on rare classes

like "Bus". Choosing the new variant, results in lower anomaly scores for rare but normal classes

in the Cityscapes dataset.

The evaluation on the anomaly datasets LostAndFound and RoadAnomaly was kept like described

in [51]. For the LostAndFound test set the evaluation was performed on downscaled images

(1024x512) where the ego vehicle was excluded from evaluation. As shown in figure 5.4, the new
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5.2 New Discrepancy Variant

Figure 5.2: Box plot of the mean pixel value for every discrepancy map generated from the Cityscapes test
set. The median decreases from 0.0346 to 0.0239 for the new variant which shows that less
pixels are wrongly detected as anomaly. A perfect model should have the value zero for all
images.

Figure 5.3: A: original image from a dataset where "Bus" is a rare class, B: discrepancy map with a model
trained on a synthetic anomaly dataset with random replacement class, C: discrepancy map with
a model trained on a synthetic anomaly dataset where the replacement class is selected based on
its rarity.

version of the discrepancy module has similar performance in the anomaly detection task as the

original version. On the LostAndFound test set it shows improved anomaly detection capabilities

while the detection of anomalies on the RoadAnomaly dataset slightly decreases.
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Figure 5.4: ROC curves for the LostAndFound test set (left) and the RoadAnomaly datset (right).

5.3 VAE

This section covers the evaluation of the VAE and looks at the influence of specific parameters on

the overall model performance. Important parameters of the model are the latent space size and

the β weight for the kl divergence. The size of the latent space limits the amount of information

that can be stored in it. If the model has only a few latent variables, it stores only the most rele-

vant information about the input image and small details can be lost. This results in less accurate

reconstructions the smaller the latent space gets (see Fig.5.5). To evaluate the reconstruction ca-

pabilities the Fréchet Inception Distance (FID) [41] was used. FID is used to evaluate the quality

of generated samples by calculating the Fréchet distance between two Gaussians of the real and

generated data. First, the feature representations of the data are generated. The Gaussians for

the real and generated data are obtained by estimating the mean and covariance of these feature

representations. This score is more consistent with human judgment compared to other metrics

like the Inception Score [70] and therefore used in the evaluation [56]. It is worth noting that in

the experiments described in this thesis, the PyTorch implementation [72] of the Fréchet Inception

Distance (FID) score was used which has slightly different results than the original tensorflow im-

plementation. A lower FID score means the images are closer to the real ones.

Figure 5.5: Reconstructions of Cityscapes test images. The latent feature map has the size z∗4∗4. Below
each image, the FID score and the average MSE for the Cityscapes test dataset are given (lower
means better).
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5.3 VAE

The weight of the kl-divergence also plays an important role. A larger weight leads to less accurate

reconstructions as more focus is put on the regularization part of the loss function. The effects, the

β -factor of the kl-divergence (see equation 4.4) on the reconstruction capabilities of the VAE are

shown in figure 5.6.

The effects that these parameters have on the latent space and the anomaly detection task in it are

Figure 5.6: Reconstructions of Cityscapes test images. The latent feature map has the size 512 ∗ 4 ∗ 4. β

denotes the factor that is used to up- or downscale the kl-divergence. Below each image, the
FID score and the average MSE for the Cityscapes test dataset are given.

examined in the next chapter.

In order to ensure that the VAE encodes all relevant information about the image in the latent vari-

ables, the VAE needs to be able to reconstruct the input data from the latent space. The feature loss

explained in chapter 4.4 was therefore chosen to create a more accurate reconstruction of the input

image. As mentioned by others [74, 43], a pixel by pixel loss between input and output data is not

suitable for measuring perceptual difference and often results in extremely blurry reconstructions.

As shown in figure 5.7 the VAE, trained with an additional feature loss term, produces sharper and

higher quality images than a VAE trained with only the MSE as a reconstruction loss.

Figure 5.7: Reconstruction from a VAE trained with (right) and without (left) the feature loss. The VAE
used for these images has a latent space size of 512*4*4 and a β value of 0.01

The images in figure 4.7 were created from the Cityscapes test data and have a FID score of

263.9314 for the VAE without, and 65.8637 for the one with feature loss. Even though the right

image in figure 5.7 is noticeable sharper and closer to the original one based on a human percep-

tion, the left one still has a slightly better average MSE compared to the right one (left: 61.0244,

right: 65.8637). This shows that the MSE is less suited to evaluate the perceptual quality of gen-

erated images.
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5.4 Anomaly Detection

This chapter looks at the effects the individual model parameters have on the latent space and

the ability to detect anomalies in it. In order to classify a point in the latent space as anomalous

or normal the k-means algorithm was used for clustering. All the latent space visualizations in

this chapter are created by using PCA to reduce the number of dimensions to two. As already

mentioned, a larger latent space can store more information and therefore results in a more accurate

reconstruction. The size of the latent space also has influence on the anomaly detection capabilities

in it. Experiments with different sizes of the latent space showed that not only the reconstruction

capabilities improve but the separation of normal and anomalous data also increases and makes

clustering more feasible. During most of the experiments, the latent feature map has the size

512 ∗ 4 ∗ 4 as it gave better results compared to small ones like 64 ∗ 4 ∗ 4 (see Fig. 5.9). Because

k-means is a distance based algorithm and distance measurements get less meaningful in higher

dimensions [9, 5], reducing the number of dimensions by applying PCA improved the detection

of anomalies when using a larger latent space (2 dimensions for the experiments shown below).

As shown in figure 5.9 this approach was able to detect most of the data from the anomaly dataset.

For a VAE with a latent space size of 512 ∗ 4 ∗ 4 and a β factor of 1, clustering the latent space

resulted in 93 true positives (TP), 1 false negative (FN).

Figure 5.8: The left image shows the latent space of a VAE with a latent feature map of size 64∗4∗4. This
latent space is significantly less suited to detect anomalies by clustering compared to the one
in the middle which is produced by a VAE where the latent space has the size 512 ∗ 4 ∗ 4. The
image on the right shows the latent space from the middle after clustering.

even though the anomalous data points can be detected by clustering, it also produces 665 false

positives (FP) and 870 true negatives (TN). When looking at the β factor which is the weight of

the kl-divergence, different values gave slightly different results. A Kl-weight smaller than 0 (e.g.

0.01) resulted in a slightly lower false positive rate.

β 1 0.1 0.01 0.001

FPR 0,4332 0,3231 0,3557 0,4065

TPR 0,9894 0,9681 1 1

Adding other terms like the described cluster loss (see equation 4.15) did not reliably reduce

the number of false positives. This could be due to the fact that the cluster loss minimizes the

squared Euclidean distance between every point in the latent space and the mean of the prior
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5.4 Anomaly Detection

Figure 5.9: Latent space of a VAE with β of 0.01. The left image shows the true labels of the data and
the middle one the cluster assignments. The image on the right shows to which dataset the
individual points belong

Gaussian to which it belongs. Because of the high number of dimensions this distance can become

more meaningless which reduces the effectiveness of this term. When looking at the effect of the

distance loss (see equation 4.13), it increased the distance between the two clusters to an extend

where most of the anomaly data is closer to the normal cluster than to the anomalous. As shown in

figure 5.10 the distance between the clusters has drastically increased but this structure of the latent

space is not suited when trying to form an anomaly and a normal cluster. As seen in the figure, only

the images from the RaodAnomaly dataset would be classified correctly while the Fishyscapes and

LostAndFound data is closer to the normal cluster. This is probably due to the fact that images

from LostAndFound and especially Fishyscapes are visually closer to Cityscapes images than the

ones from the RoadAnomaly dataset and therefore get mapped closer to the Cityscapes data if the

means of the two Gaussians are that far apart. Because of that, including that loss is not suited for

detecting anomalous objects in images.

A lot of normal images which have to many highlighted regions in their discrepancy maps could

Figure 5.10: Latent space of of a VAE trained with additional distance loss

be an explanation for a high false positive rate. In order to evaluate the influence of the discrepancy

maps, the mean pixel value for all images can be calculated and compared. A higher value means

that more pixels are classified as anomalous by the discrepancy module. High false positive rates

could be explained by poor results of the discrepancy module, if false positives have a higher

mean pixel value than true negatives. When comparing the average mean pixel value, it turns
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out that there is no significant difference between false positives and true negatives which means

that their misclassification is probably not caused by the discrepancy maps. In fact, when trying

out experiments without the discrepancy maps as additional VAE input, it showed that they have

little influence on the anomaly detection task and the structure of the latent space, even though the

average mean pixel value of the anomaly data is significantly higher than from the normal data.
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6 Conclusion and Outlook

As shown, the approach described in this thesis is able to detect anomalous images in the latent

space of a VAE. By clustering the latent space most anomalous images were detected even from

datasets like Fishyscapes without a distribution shift. Similar to other approaches[25] this method

produces high false positive rates. Additional model components like the distance or cluster loss

did not reliably improve the anomaly detection capabilities in the latent space. The same goes for

the discrepancy maps which made little difference in my experiments. In safety critical applica-

tions like autonomous driving, detecting as many anomalies as possible is far more important then

receiving a low FPR because an anomalous sample which is classified as normal can have more

dangerous consequences as a normal sample classified as anomalous. Because nearly all anoma-

lies of the test data could be detected, this approach can be used to pre-select possible anomalies

which then have to be further checked by human experts to sort out the false positive. Even though

the anomaly data, which was selected for testing and training, has multiple anomalous objects ap-

pearing in different environments, only the data from the Fishyscapes dataset can ensure that the

model detects the anomalous object itself and not the distribution shift. Because the publicly avail-

able Fishyscapes dataset is quite small, more research needs to be done on larger anomaly datasets

without distribution shifts to further evaluate the generalization and anomaly detection capabili-

ties of this model. Possible next steps to improve this approach could be to generate synthetic

anomalies like in [25] to train the model or to use a method like the one used to train the discrep-

ancy module to generate a synthetic anomaly dataset. This could eliminate the need for anomaly

training data and could be a big improvement because it leaves more of the often rarely available

anomaly data for testing the model. Furthermore more powerful VAE architectures can be tried

out to improve the generation of the latent space and the detection capabilities in it. Because the

discrepancy network makes little difference in the approach described above, a possible improve-

ment could be to replace individual parts like the semantic segmentation network or the image

resynthesis network with more powerful models. This could improve the highlighting of anoma-

lous objects and decrease the highlighting of other image parts. By this, the discrepancy maps

could potentially reduce the number of false positives while improving the detection capabilities

if it can reliably only mark objects which are truly anomalous. In summary, anomaly detection

is still a challenging filed where more research needs to be done to reliably detect anomalies in

image data which is crucial for the safe deployment of autonomous vehicles
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Acronyms

DNN Deep Neural Network

AD Anomaly Detection

CCD Corner Case Detection

ND Novelty Detection

OD Outlier Detection

OCC One-Class Classification

OSR Open-Set Recognition

OOD Out-of-Distribution

ID In-Distribution

CNN Convolutional Neural Network

AE Autoencoder

VAE Variational Autoencoder

VQ-VAE Vector Quantized - Variational Autoencoder

GAN Generative Adversarial Network

ELBO Evidence Lower Bound

PCA Principal Component Analysis

MSE Mean Squared Error

SVM Support Vector Machine

GMM Gaussian Mixture Model

GMVAE Gaussian Mixture Variational Autoencoder

CL-VAE Conditioned Latent Space Variational Autoencoder

FID Fréchet Inception Distance
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A List of Figures
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feature map from G1 and the feature map from G2. Reprinted from [82] . . . . . 22
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