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ABSTRACT

Droplets wetting and moving on fibers are omnipresent in both nature and industry. However, little is known on the local stresses the fiber
substrates experiences and, in turn, the local forces acting on those droplets while moving on vertical fiber strands. This work is concerned
with disclosing the influence of droplet volume, viscosity, and chemical substrate heterogeneity on droplet motion. For this purpose, we
pursue a computational simulation campaign by means of direct numerical simulations resolving all relevant spatial and temporal scales. On
the basis of local simulation data, we evaluate and analyze effective viscous dissipation rates as well as viscous and capillary forces. We also
assess the validity of an assumption, which is frequently used in correlations for droplets moving on single-fiber strands—neglecting the
capillary force. Our computational analysis allows to falsify/verify this assumption for different scenarios and reveals that such correlations
have to be applied with care, particularly when it comes to chemical heterogeneity of the fiber substrates.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0131032

I. INTRODUCTION

Droplets wetting and moving on fibers are omnipresent in both
nature and industry—from spider web arrangement to engineering
applications in the textile,1,2 filters,3,4 and the paper industry.

Plateau5 has been the first to study droplets spreading on
fibers. He has observed that only due to surface tension, a liquid
covering a fiber would turn into a string of beads, taking the shape
of unduloids. Following up on these studies, many physicists have
started investigating the flow of liquid films on threads, notably
Lord Rayleigh,6 who has studied liquid film instabilities for falling
cylindrical jets, which has been later expanded upon by Yarin
et al.7 and conversely studied by Kliakhandler,8 Craster,9 Duprat.10

The analytical solution to the unduloidal shape studied by Plateau
has been later derived by Carroll11–13 who has analyzed droplets,
which are molded by capillary forces. This analytical solution has
been validated in the same paper for various systems and has been
shown to be accurate for droplets that are not influenced by gravi-
tational forces, are axisymmetrical, and present a so-called “barrel
shape,” as opposed to a “clam-shell shape.”

The motion of single droplets on fibers has also been extensively
studied, where the droplet is set in motion due to gravitational
effects,14,15 asymmetric slug in a tube,16 temperature gradients,17 and

also due to radius gradients.18 However, to the best of the authors’
knowledge, no studies exist which investigate the transient droplet
motion on fibers by means of direct numerical simulations (DNS),
that is, resolving all relevant spatiotemporal scales. Thus far, numerical
studies have been concerned with the equilibrium shape of droplet at
fibers only. Venkateshan et al.19 have studied the 3D shape of water
droplets with different volumes on various fibrous structures, using
the finite element code Surface Evolver. Also, using the same
approach, Aziz et al.20–22 have investigated wetting of a liquid droplet
on a fiber and fibrous coatings. In particular, the authors have studied
the shape of a droplet deposited on a single fiber, and the effect of the
capillary force exerted on a fiber by a droplet and the volume residue
after the droplet detachment. Modern manufacturing techniques allow
now to produce fibers with controlled heterogeneous wettability,23

which are of interest for various applications including oil–water sepa-
ration24 and catalysis.25 The motion of a droplet on a fiber with con-
trolled heterogeneous wettability due to a chemically inhomogeneous
surface has not been studied numerically at all so far.

This contribution is concerned with a detailed numerical investi-
gation of the transient spreading and motion of three-dimensional
droplets on single fiber using direct numerical simulations. We aim to
analyze the contribution of the local forces acting on a sliding droplet
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on a chemically homogeneous as well as heterogeneous (patterned)
fiber strand. For this purpose, we deploy a phase-field method, which
has been shown to be particularly suited for accurately describing tran-
sient wetting processes with contact line dynamics,26–28 particularly
since the underlying diffuse interface model inherently allows for a
moving three-phase contact line in combination with the no-slip con-
dition at solid walls.29–31

Our diffuse interface phase-field solver is used—phaseFieldFoam,
implemented in OpenFOAM (FOAM-extend 4.0 and 4.1). The solver
phaseFieldFoam has been extensively validated for several cases of
static and dynamic wetting, on both simple and complex substrates,
such as chemically patterned surfaces.32–35 The objective of this work
is twofold, viz.

• to detail on crucial methodological aspects to devise a high-
fidelity simulation of wetting processes using the phase-field
approach and finite-volume discretization with particular focus
on non-planar substrates such as fibers,

• to provide local insight into the hydrodynamics of droplets
spreading and moving on single fibers, in particular on the influ-
ence of wettability of chemically homogeneous substrates as well
as of patterns of chemically heterogeneous substrates on local
stresses and forces.

II. MATHEMATICAL MODEL
A. Cahn–Hilliard Navier–Stokes equations

We assume two immiscible Newtonian fluid phases under iso-
choric and isothermal conditions. Then, the coupled Cahn–Hilliard
Navier–Stokes equations read in semi-closed formulation (see Ref. 36)

@tC þr � ðCuÞ ¼ �r � J; (1a)

r � u ¼ 0; (1b)

@t ðquÞ þr � ðquuÞ ¼ �r~p þr � s�r � ðuJÞ �UrCþ f b; (1c)

where C denotes the phase-field order parameter, and ~p is a modified
pressure, since parts of the known Korteweg tensor term accounting
for interfacial capillarity have been absorbed into the pressure gradient
term. Assuming a liquid of Newtonian fluid rheology, s ¼ 2ldevD,
where D is the rate-of-deformation (rate-of-strain) tensor, D ¼ 1

2 ½ru

þðruÞT�, and devD denotes the deviatoric, trace-free part [trðdevDÞ
¼ 0]. Moreover, q and l are the volumetric average density and
dynamic viscosity of the fluids, given from the phasic densities and
viscosities as q ¼ 1þC

2 q1 þ 1�C
2 q2 and l ¼ 1þC

2 l1 þ 1�C
2 l2, and

f b ¼ qg is the body force due to gravity. Note that herein we are using
the contrast of volumetric phase fractions as order parameter C that is
C 2 ½�1; 1�, opposed to concentrations in some other treatises.

With this, the set of governing equations (1) is closed—apart
from J, which denotes the phase-field flux. Following Landau and
Lifshitz,37 it is governed by generalizing Fick’s law as J ¼ �MrU,
where U is the chemical potential and M is the mobility. In other
words, under the above assumptions, the dynamics of the phase-field
system is fundamentally driven by the gradient in the local chemical
potential U. Note that the term r � ðuJÞ is required for thermody-
namic consistency.29,38

Within the diffuse-interface model framework, following Cahn
and Hilliard,39 the local chemical potential arises from the variational

derivative of the total free energy F (Helmholtz free energy), which is
considered as a functional of the order parameter C, viz.

U ¼ dFmðC;rCÞ
dC

; (2)

where Fm denotes the bulk (mixing) contribution to the total free
energy of the system

F ¼ Fm þ Fw ¼
ð

X
fmðC;rCÞ dx þ

ð
@X
fwðCÞ ds: (3)

Herein, X is the fluid domain and @X is its boundary, a solid surface
not permeable to fluids. The local mixing energy and the local wall
energy densities are denoted fm and fw, respectively. The mixing energy
density (Helmholtz free energy density)39 can be written as

fm ¼
1
2
kjrCj2 þ k

e2
WðCÞ: (4)

The first term on the right-hand side (RHS) of (4) is the gradient
energy, which represents the interfacial energy density describing non-
local interactions between the two components promoting complete
mixing of the fluids, while the second term is the so-called bulk energy
density, which models the counter tendency to separate.28

B. Wetting condition

The wall free energy density in (3) can be written as

fw ¼ rSL þ ðrSG � rSLÞWwðCÞ; (5)

where WwðCÞ obeys the bulk limits WwðC ¼ �1Þ ¼ 0 and
WwðC ¼ 1Þ ¼ 1, respectively.

A variational procedure, that is, variation in Fw and integration
by parts, reveals that

k@nC þ f 0wðCÞ ¼ 0; (6)

where k is the mixing energy coefficient and f 0wðCÞ ¼ ðrSG

�rSLÞW0wðCÞ denotes the derivative of the wall free energy density
with respect to the order parameter. Effectively (5) postulates that the
wall free energy density is a function only of the fluid composition
next to the wall.28 Equation (6) is commonly referred to as wetting
condition. It describes the diffusive relaxation process of the dynamic
contact angle locally constraining toward the equilibrium angle to
leading order.28,30

Now, choosing a particular double-well potential function WðCÞ
allows closure. Using the phenomenological double-well function
of polynomial form according Ginzburg and Landau, WðCÞ
¼ 1

4 ðC2 � 1Þ2, the equilibrium profile of the order parameter can be
derived by minimization of the free energy: requiring U :¼ dF

dC
¼ k

e2 W
0ðCÞ � kDC¼! 0, where U denotes the chemical potential and,

assuming a planar interface, leads to

CðnÞ ¼ tanh
nffiffiffi
2
p

e

� �
; (7)

where n denotes the coordinate normal to the interface, commonly
referred to as interfacial capillary width. Within 3=

ffiffiffi
2
p

e, the order
parameter C varies from about �0.9 to 0.9. Under these assumptions,
one can also show that the mixing energy coefficient k within the
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diffuse interface context can be related to the surface tension coeffi-
cient employed in sharp interface models by

k ¼ 3

2
ffiffiffi
2
p re: (8)

With this, we can exploit fundamental geometrical relations: if the
interface makes a contact angle h0 with a wall (see Fig. 1), using a coor-
dinate system, which holds the wall normal nw as one coordinate and
the wall tangent tw

n ¼ nw cos ðh0Þ þ tw sin ðh0Þ: (9)

Differentiating the equilibrium profile C(n) along the coordinate nor-
mal to the wall as

@nC ¼
@CðnÞ
@nw

¼ @CðnÞ
@n

dn
dnw

; (10)

allows us to recognize

@CðnÞ
@n

¼ 1ffiffiffi
2
p

e
1� tanh2

nffiffiffi
2
p

e

� �� �
¼ 1ffiffiffi

2
p

e
1� C2ðnÞ
� �

;

from (7) and

dn
dnw
¼ cos h0;

from a simple geometrical observation. Thus, we finally arrive at the
wetting boundary condition

@nC ¼
cos h0ffiffiffi

2
p

e
1� C2ðnÞ
� �

: (11)

Using the Young equation,40

ðrSG � rSLÞ ¼ rGL cos h0; (12)

it can be shown that (5) can be written in closed form as30

fw ¼ r cos h0
C C2 � 3ð Þ

4
þ rSL þ rSG

2
: (13)

Here, we have used the wetting condition (6), since WwðCÞ
¼ CðC2�3Þ�2

4 is a closure restoring (11), inserting k according to (8) and
ðrSG � rSLÞ according to (12) into (6). Note carefully how the particu-
lar choice of the double-well function WðCÞ according to Ginzburg
and Landau has allowed us to consistently close for the phase-field
transport equation and the wetting boundary condition. Both closures
are indeed connected. Moreover, zero flux across the wall requires for
the chemical potential that

@nU ¼ 0: (14)

C. No-slip condition

The Navier–Stokes equations are supplemented by the no-slip
wall boundary conditions on the solid substrate @Xw, viz.

ujw¼
!

uw; (15)

intuitively requiring that the velocity of the fluid at the wall ujw is equal
to the velocity of the wall uw. Equivalently, one can demand for the
normal velocity component that

_mw ¼ qðu� uwÞ � nw¼! 0; (16)

that is, to fulfill a no-penetration condition due to impermeability of
the wall, and for the tangential velocity component that

Pw � ðu� uwÞ ¼ 0; (17)

where Pw :¼ I � nwnw is the projection operator onto the tangent
plane of the boundary with outer unit normal nw, and I denotes the
identity or unit diagonal tensor. Moreover, it is

K � ðnw � KÞnw ¼ sw; (18)

where K denotes the wall-tangential contribution of the viscous
boundary force per unit area, K :¼ lðruþ ðruÞTÞnw, which
amounts to the viscous wall stress sw exerted to the wall.

III. NUMERICAL METHOD

In the following, we attempt to provide an overview of the numeri-
cal method of the phaseFieldFoam solver. One focus shall be on the dis-
cretization of the Cahn–Hilliard equation, since it is a non-linear fourth-
order partial differential equation (PDE) and thus challenging to treat
numerically in an accurate yet robust manner. Hence, special care must
be taken in the solution method as set out in the reminder. Moreover,
the Moving Reference Frame (MRF) technique and its implementation
are described, since it is crucial for an efficient deployment of computa-
tional resources by significantly reducing the required size of the com-
putation domain. Moreover, we detail on the requirement of a
consistent no-slip boundary condition at fiber walls, which is different
from the de facto standard Dirichlet boundary condition imposing a
zero velocity field at walls in the linear momentum equation.

A. Cahn–Hilliard equation discretization

The Cahn–Hilliard equation is a non-linear fourth-order PDE
and thus challenging to treat numerically in an accurate yet robust

FIG. 1. Contact line in the diffuse-interface setting: n is the inward normal to the
wall, ni is the normal to the interface in the direction of rC, and e is the capillary
width.
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manner. The difficulty originates from its right-hand side. Illustratively,
this can be seen by considering the mechanism of interfacial evolution,
which within the diffuse-interface model theory is governed by dissipa-
tion of the free energy functional according to (3) as41

@tC ¼ �
dF
dC

: (19)

Note that (19) is void of the advection term, which is not needed here
for making this point: in order to promote numerical stability, it is
desirable to employ a temporal discretization, which satisfies the dis-
crete energy stability condition, viz. the decay of energy with time as

FðCnÞ � FðCoÞ; (20)

where the superscripts n and o denote the new and old time levels,
respectively. It is a common practice to devise a splitting technique to
avoid implicit schemes, which come at the cost of solving a non-linear
non-convex problem, that is, to incorporate the RHS of (19) at the
new time level. While such schemes enjoy stability when solving the
inherently stiff phase-field equations, there are alternative schemes
offering a better performance. Depending on the approximation of the
potential terms in fmðCn; CoÞ and fwðCn; CoÞ, see (3), one arrives at
different schemes with distinct stability properties. One distinguishes
linear and non-linear approximations of the potential terms. We shall
continue to focus on linear schemes, since they do not suffer from the
significant computational overhead of non-linear schemes, which
require iterative methods. More particular, in the remainder we con-
sider the well-established linear Eyre approximation, dating back to
the work of Elliott and Stuart42 but named after Eyre,43 and the opti-
mal dissipation approximation.44 For the sake of brevity, we shall refer
to these schemes as stable and optimal, according to their properties,
namely, unconditional energy stability due the existence of numerical
dissipation, and conditional energy stability but optimal dissipation,
respectively. For an overview and detailed discussion, the reader is
referred to the work of Tierra and Guill�en-Gonz�alez.41 Since Ref. 41
details on the mixing energy potential fm term, we shall further restrict
ourselves in the remainder to the wall energy potential fw and its
numerical treatment in the boundary condition for the order parame-
ter. It is important to note that both terms have to be approximated
consistently, that is, using the same scheme, so as to simulate wetting
processes at high physical fidelity by phase-field methods.

For the discretization of the temporal term (ddtSchemes), a
first-order accurate Euler scheme is employed. Regarding the advec-
tion term discretization (divSchemes), for the divergence term of the
scalar transport of the order parameter a high-resolution scheme
(Gamma) is used, while the convection term of the momentum equation
is discretized using limitedLinearV scheme, which is second-order
accurate. The gradient term (gradSchemes) is discretized with the
second-order accurate (linear) scheme and the Laplacian term
(laplacianSchemes) with (linear corrected).

1. Discretization of the wetting condition

The wetting boundary condition (11) for the phase-field evolu-
tion equation can be also stated in general notation as so-called con-
vective boundary condition (or boundary condition of third kind), viz.

k@n/þ hð/� /ref Þ ¼ 0: (21)

For implementation, we cast this as Robin or mixed-type boundary
condition, viz.

/b ¼ xb/ref þ ð1� xbÞð/P þ gref � dnÞ; (22)

where /b refers to the boundary patch value (i.e., the value on the
boundary face b) and /P is the internal cell value adjacent to the
boundary face, cp. Fig. 2. Moreover, xb 2 ½0; 1� are weights, dn is face-
normal component of the distance vector between the boundary face
center and the adjacent cell center, and/ref and gref denote a reference
value and reference gradient, respectively. To deploy a Robin (mixed)
boundary condition, appropriate values for /ref ; gref , and xb must be
found. For this, (21) is linearized as

k
/b � /P

jdnj
þ hð/b � /ref Þ ¼ 0: (23)

With this, we obtain

/b ¼
h

k
jdnj
þ h

/ref þ

k
jdnj
k
jdnj
þ h

/P: (24)

From comparison with (22), we find xb ¼ h
k=jdnjþh and gref ¼ 0. It

remains to determine k, h, and /ref as well as /P from comparing with
(6). Immediately, one identifies k ¼ k. To take advantage from a semi-
implicit discretization in a linear scheme, we note that /b ¼ Cn

b , where
n denotes the new time level. Moreover, with the wall free energy den-
sity, cf. (5), which is repeated here for convenience,

fw ¼ rSL þ ðrSG � rSLÞWwðCÞ;

where the non-linear wall potential is WwðCÞ ¼ C3�3C
4 for the chosen

phenomenological Ginzburg–Landau potential, and where
rSG � rSL ¼ r cos h0 [cf. (12)], the first derivative of fwðCÞ with
respect to the order parameter C can be written as

f 0wðCÞ ¼ �
3
4
r cos h0ð1� C2Þ: (25)

Adding dissipation to this yields the stable scheme, which is of first
order in time,

FIG. 2. Finite volume notation for equation discretization on unstructured meshes.
(a) Polyhedral control volume and (b) boundary control volume.
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f 0wðCn;CoÞ ¼ b
3
4
r cos h0 C

n � 3
4
r cos h0ð1� bCo � ðCoÞ2Þ; (26)

and choosing the parameter b ¼ Co leads to the optimal scheme, a
second order in time scheme,

f 0wðCn;CoÞ ¼ � 3
4
r cos h0ð1� CoCnÞ: (27)

Comparison between (6) and (21) then allows to eventually determine
h and /ref . The parameters are summarized in Table I. It is notewor-
thy that these parameters are valid only for the chosen phenomenolog-
ical Ginzburg–Landau potential and must be changed upon choice of
other potentials.

Tierra and Guill�en-Gonz�alez41 have noted that the energy
stability condition is only satisfied for appropriate values of b, viz.
b � ð3ðCnÞ2 � 1Þ=2. With such a condition, a value of b can be deter-
mined large enough to assure that the scheme is energy-stable.
However, this has limits: it has been shown in Ref. 44 that wrong equi-
librium solutions can be the consequence of introducing too much
numerical dissipation.

B. No-slip boundary condition

From Sec. IIC, it is evident that special attention has to be
devoted when discretizing the viscous stress term in the momentum
equation. In particular, (18) must be enforced on discrete level.

For Newtonian fluids, the viscous stress tensor can be closed as
s ¼ lðruþ ðruÞTÞ. Then, deploying the finite volume methodð

Vp

r � s dx ¼
ð
Vp

r � lðruþ ðruÞTÞ
h i

dx

¼
Xnf ;i
f ;i¼1

lf Sf � ðruÞf þ
Xnf ;b
f ;b¼1

lf Sf � ðruÞf

þ ðruÞ � rl½ �Vp; (28)

where i and b denote inner and boundary faces, respectively. Here, we
have used thatr � ðlðruÞTÞ ¼ ðruÞ � rlþ lrðr � uÞ. For a single
boundary face b, finite volume discretization yields

lbSb � ðruÞb ¼ lbjSbj
ub � uP

jdnj

¼ lbjSbj
1
jdnj

ub þ lbjSbj
�1
jdnj

uP; (29)

where the last identity shows the split into explicit contribution to the
source vector (first term) and the implicit contribution to the system
matrix (second term), respectively.

However, while this is accurate for orthogonal Cartesian bound-
ary cells, for non-planar boundary patches (skewed meshes) one must
ensure that the applied boundary condition guarantees that the wall
shear stress sw is tangent to the wall along with uw,

45 cp. (18),

lbSb � ðruÞb ¼ lbjSbj
ðub � uPÞk
jdnj

¼ lbjSbj
ðub � uPÞ � ðub � uPÞ � nb½ �nb

jdnj

¼ lbjSbj
Pwðub � uPÞ
jdnj

: (30)

C. Moving reference frame technique

In order to reduce computational costs, a Moving Reference
Frame (MRF) technique has been employed. Following the droplet’s
center of mass during the simulation, such a technique allows to signif-
icantly reduce the computational domain size.

Here, we are dealing with a non-inertial non-rotating reference
frame. This method has been successfully used in rising bubble simula-
tions46,47 and is convenient to implement due to its simplicity.

Figure 3 depicts the situation for a droplet sliding on the surface
of a vertically aligned fiber: the droplet slides with respect to the iner-
tial reference frame (x, y, z) but remains centered within the computa-
tional domain in the non-inertial frame of reference ðx̂; ŷ; ẑÞ.

For this, we add the frame acceleration aF to the momentum
equation (1) as

@ðquFÞ
@t

þ qaF þr � ðquF � uFÞ ¼ �r~p þr � sþ UrC þ f b:

(31)

The acceleration aF and velocity uF of the moving reference frame rel-
ative to the inertial reference frame are given by

aF ¼
duF

dt
and uF ¼

dxF

dt
: (32)

Herein, xF is the droplet center of mass relative to the moving refer-
ence frame.

TABLE I. Splitting scheme parameters for wetting boundary condition.

Scheme xb k h /ref gref

Stable h
k
jdnj
þ h

k
b
3
4
r cos h0

1
b
ð1þ bCo � ðCoÞ2Þ 0

Optimal h
k
jdnj
þ h

k 3
4
r cos h0C

o 1
Co

0

No splitting 0 – – –
ffiffiffi
2
p

2
cos h0

e
ð1� ðCoÞ2Þ
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The velocity of the moving reference frame is adjusted at the
beginning of each time step so as to keep the droplet barycenter at a
fixed location within the computational domain. This is done by
applying a velocity correction DuF for each time step. This correction
is computed using a PID controller where the control variable is the
droplet’s center position vector. This vector is compared to a given
constant target position. The applied velocity correction is

DuF ¼ KP eF þ KI

ðt
0

eF dt þ KD
eF � eoF

dt

 !
1
Dt
; (33)

where

eF ¼ xF � xo
F : (34)

Following the proposal in Ref. 46, a PID controller suffers significantly
less from oscillations compared to a PD controller, which has been
used in Ref. 47.

At every time step, the frame velocity field is then updated

uF ¼ uo
F þ DuF ; (35)

and used according to (32) for the calculation of the reference frame
acceleration.

Since there also exists a solid wall in contact with the droplet, we
impose a wall velocity, which is equal in value to the frame velocity
but opposite in sign, viz.

uw ¼ �uF : (36)

Effectively, this ensures that the droplet barycenter is kept in place.

IV. VALIDATION

Note that our phase-field solver has been previously subject to
significant validation efforts regarding wetting and de-wetting pro-
cesses48 and applied to different complex wetting physics.32,49 Here,
we focus on three-dimensional cases relevant to droplets wetting on
fibers such as the evolution of the spreading diameter and equilibrium
shape of a droplet on flat and particularly spherical surfaces,50 as well
as the spreading of a droplet on single fiber strand, where the dimen-
sions of the equilibrium shape of an axisymmetric droplet on a cylin-
der are compared with literature-known reference data.15,51,52

For model calibration, we have initially pursued a parameter
study based on the first case (see Sec. IVA) in order to determine free
model parameters of the phase-field method, which have been then
fixed for all further simulations in this study. Because all the cases

examined are capillary-dominated transient flows with low Reynolds
numbers, we use an adaptive time step criteria, where the time steps
are adjusted based on the maximum Brackbill–Kothe–Zemach (BKZ)

criterion DtBKZmax ¼ 1þ
ffiffi
5
p

2

ffiffiffiffiffiffiffiq
r h

3
p

, as proposed in Ref. 53. In this work, we
set CFLBKZ ¼ 1. For time accuracy, we further restrict the maximum
time step size computed according this BKZ criterion and require
Dtmax ¼ 2� 10�6s.

A. Droplet spreading on a flat surface

1. Computational setup and physical properties

The equilibrium shape of an oil droplet in water on a flat surface
with static contact angle, h0, is investigated. A schematic representa-
tion of the initial and equilibrium shapes of the droplet on a flat sur-
face with static contact angle is shown in Fig. 4. Table II lists the
physical properties of the system.50

For initialization, a droplet with radius R0 ¼ 1� 10�3m is
placed on a smooth flat surface such that its center is at the distance of
the initial droplet radius R0 from the surface. The computational
domain is of size 0:004� 0:004� 0:004m3. Since the initial contact
angle is different from the equilibrium contact angle, the droplet will

FIG. 3. Sketch of the Moving Reference
Frame (MRF) technique.

FIG. 4. Schematic representation of the initial (left) and equilibrium (right) shapes of
a droplet on a flat surface with static contact angle h0, in the absence of gravity.

TABLE II. Physical properties.

Property Oil Water

Density (kg=m3) 950 1000
Kinematic viscosity (m2=s) 2 � 10�5 1 � 10�6

Surface tension (N=m) 0.02
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start spreading until it reaches its equilibrium shape. Due to absence of
gravity in this case, the E€otv€os number, which describes the ratio
between gravitational and capillary forces, is zero, Eo :¼ Dq gR2

0=r
¼ 0. The no-slip boundary condition is applied at the bottom bound-
ary with free-slip boundary conditions being applied on every other
boundary.

2. Model calibration

In order to calibrate the underlying diffuse-interface model for all
subsequent simulations, we determine the minimum number of cells
NC :¼ 4 e

dx
(where dx is the cell size at the interface) required to suffi-

ciently resolve the diffuse interface and the highest Cahn number
Cn :¼ e

D0
, which relates the capillary width to reference length scale,

that correctly models interface dynamics. Here, the spreading diameter
is investigated for various values of the above-mentioned parameters.

Too low numbers of cells NC to resolve the diffuse interface result
with nonphysical interface evolution, and consequently wrong spread-
ing diameters as can be seen in Fig. 5. We show the evolution of
the dimensionless spreading diameter S=D0 as a function of the
dimensionless time t=s with s :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qR3

0=r
p

, where r is the surface ten-
sion coefficient, for a contact angle h0 ¼ 60	 and Cn ¼ 0:02, with
varying NC.

From this, we conclude that at least six cells are required to
resolve the interface sufficiently, which is in accordance our previous
study48 where simulations of a rising bubble were performed.

Fixing NC¼ 6, the effect of the Cahn number can be studied. We
have varied the Cahn number as Cn 2 f0:01; 0:02; 0:04g. Results are
shown in Fig. 6. As the Cahn number decreases, the simulations start to
converge. More specifically, Yue30 showed that for Cn � 0:02, the sim-
ulated results are independent of Cn. Thus, we choose Cn ¼ 0:02 to
calculate the value of the capillary width e that is used in simulations.

Fixing Cn ¼ 0:02, the final parameter to be determined is the
scalar mobility M, cp. (1). Yue et al.30 have shown that the mobility
should be adjusted by a scaling formula. The mobility used in our sim-
ulations can be calculated based on Cn ¼ 4S ¼ 4

ffiffiffiffiffiffiffiffiffi
Mle
p

=D0, where
le ¼

ffiffiffiffiffiffiffiffiffiffi
l1l2
p

is the effective viscosity, which is used due to the highly

dissimilar viscosities. Here, S reflects the diffusion length scale at the
contact line.30

3. Spreading dynamics

The spreading of a droplet has two stages—an initial stage where
inertial–capillary forces are controlling droplet motion and a second
stage where spreading is dominated by viscous forces. It has been
observed that the spreading radius follows a power-law scaling in
time54

S
D
¼ c ðt=sÞn; (37)

where S is the spreading diameter, c is a scaling factor, which depends
on equilibrium contact angle, and n is a scaling exponent, which has
been observed by Winkels et al.55 to not be influenced by wetting
properties. Other authors54,56 have seen that the contact angle does
influence the scaling exponent, and report that it decreases with
increasing contact angle. Das et al.57 have noted that this discrepancy
may be due to the fact that system’s properties are different, and as
such, the contribution of the viscous forces is changed with each study.

We investigate the variation of the normalized spreading diame-
ter for five values of equilibrium contact angles, h0 2 f30	; 60	; 90	;
120	; 150	g. The equivalent spreading diameter S/D is displayed in
Fig. 7(a). Figure 7(b) shows the variation of n and c when changing
the equilibrium contact angle.

By fitting Eq. (37) to the monotonic regime of data points
obtained used in Fig. 7(a), the values of wetting pre-factor c and the
scaling exponent n have been computed for the various contact angles,
both of which are influenced by the changes in equilibrium contact
angle h0, shown in Fig. 7(b).

We have found that n decreases linearly with increasing h0,
except for contact angles lower than 90	, where the exponent’s value
stabilizes at n 
 1=2. This agrees with the observations by Biance
et al.,51 who conducted experiments of water droplets spreading on
treated glass plates. Bird et al.54 observed a similar behavior, whereFIG. 5. Influence of the interface resolution on the droplet spreading diameter.

FIG. 6. Influence of the Cahn number on the droplet spreading diameter.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 35, 012110 (2023); doi: 10.1063/5.0131032 35, 012110-7

VC Author(s) 2023

https://scitation.org/journal/phf


they have seen the scaling exponent monotonically decreases with
increasing equilibrium contact angle.

Despite this, the results obtained by us and the previously men-
tioned authors do not agree with the observation made by Legendre
et al.56 where numerical simulations of spreading droplets were per-
formed and Das et al.57 who investigated the spreading behavior of
droplets over a bundle of fibers: they found that n is independent of h0.

Das et al.57 have used the Laplace number La :¼ rqR0=l2, where
l is the dynamic viscosity of the oil droplet, which relates the inertial
and surface tension forces to viscous forces, to explain these discrepan-
cies. They have adopted the hypothesis that for La � 101 and lower,
the effect of the contact angle on the spreading dynamics was negligi-
ble. Legendre et al.56 showed that n varies from 2/3 to 1/2 when La
varies from 100 to 104, for a contact angle of 65	.

For our simulation setup, La � 102, which could indicate that for
these Laplace numbers and for non-wetting liquids (h0 < 90	), the
scaling exponent value is close to 1/2, as it is seen in Fig. 7(b).

Moreover, in the studies of Bird et al.,54 it was observed the scal-
ing exponent gives values close to 1/2 for La � 102, much like the
results we obtain.

Regarding the pre-factor c, it demonstrated that it also decreases
with increasing contact angle, which was also noted in Refs. 54–57.

One should note that the droplet’s spreading diameter is not zero
upon initialization. This is due to grid resolution in our numerical sim-
ulation, causing an overlap between the droplet and the surface. This
can be fixed by simply increasing the grid resolution such that
S=Dðt=s ¼ 0Þ tends to zero. Nevertheless, we have shown that our
simulated results agree with experimental observations, by capturing
the scaling S=D � sn where n varies from �1=2 to �1=4, across the
various equilibrium contact angles chosen.

4. Equilibrium shapes

The equilibrium shape of the droplet spreading in the absence of
gravity can be derived analytically, where the equilibrium contact
radius rf, curvature radius Rf, and droplet height hf are calculated
from50

XL ¼
4
3
pR3

0 ¼ pR3
f

2
3
� cos ðh0Þ þ

1
3
cos3ðh0Þ

� �
; (38a)

rf ¼ Rf sin ðh0Þ; (38b)

hf ¼ Rf 1� cos ðh0Þð Þ: (38c)

Figure 8 displays the characteristic radii and heights of the droplets
from simulations against the ones obtained analytically, for the same
equilibrium contact angles. The results show a very good agreement
between simulated and analytical results, also substantiating that the
parameter values for NC, Cn, andM are appropriate.

B. Droplet spreading on a spherical surface

For further validation, we consider a case of particular relevance
for spreading on non-planar substrates such as fibers: we perform sim-
ulations to study the equilibrium shapes of droplets spreading on a
spherical surface.

As shown in Fig. 9, a solid sphere with a radius equal to the drop-
let radius is introduced in the center of the previous computational
domain. The droplet is initialized in such a way that its center is at a
distance equal to R0 from the spherical surface, just touching it. Since
the initial contact angle is different from the static contact angle, the

FIG. 7. Evolution of the equivalent spread-
ing diameter (left) and the variation of the
pre-factor c and exponent n (right) for vari-
ous equilibrium contact angles.

FIG. 8. Comparison between analytical and simulated equilibrium shape of a droplet
spreading on a flat surface, for contact angles of 30	; 60	; 90	; 120	, and 150	.
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droplet will spread until it reaches equilibrium. Physical properties of
the system are the same as in Sec. IV.

The equilibrium shapes of droplets on spherical surfaces can be
obtained by solving the following non-linear system:50

aþ b ¼ 180� h0; (39a)

4
3
pR3

0 ¼
pR3

f

3
1þ cos ðbÞð Þ2 2� cos ðbÞð Þ

þ pR3
0

3
1þ cos ðaÞð Þ2 2� cos ðaÞð Þ � 4

3
pR3

0; (39b)

r ¼ Rf sin ðbÞ ¼ R0 sin ðaÞ; (39c)

h ¼ Rf 1þ cos ðbÞð Þ � R0 1� cos ðaÞð Þ: (39d)

For the five contact angles considered, the simulated results of the
characteristic dimensions of the spreading droplet are compared with
the ones obtained analytically, as shown in Fig. 10. Simulation results
are in very good agreement with analytical results.

C. Droplet spreading on fiber strands

In a final validation study, we investigate the equilibrium shape
of droplets spreading on a fiber. The unduloidal shape of a wetting
droplet on a fiber cannot be described with simple analytical equa-
tions. Despite this, looking at the asymptotic regimes of very large
droplets (X� d3v ) and very small ones (X d3v ), where X is the
droplet volume and dv is the fiber diameter, one can derive analytical
results of the full transition region between these two cases.15,52

Large droplets tend to keep their spherical shape when they are
placed on a fiber, thus W 
 R0, with W being the system width and
R0 the deposited droplet diameter. For small droplet sizes, the droplet
spreads on the fiber in such a way that the curvature of its interface is
only slightly lower than the fiber curvature 2=dv , for which a shape
approximates to that of a cylinder. Gilet et al.15 have derived asymp-
totics for these two scenarios, which are succinctly shown in Table III.
Herein, X is the total length of the droplet.

With the asymptotics from Table III, the dimensions of both
large and small droplets on a vertical fiber can be assessed quantita-
tively. Gilet et al.14 have demonstrated an excellent agreement between
the theoretical and experimental results for various X=d3v .

We perform simulations of droplets spreading on fibers for vari-
ous X=dv , where both the width W and extension X are compared to
the asymptotic solutions—see Fig. 11, for a contact angle of 15	. It can
be seen that the simulations results are in very good agreement with
the theoretical predictions, substantiating the capability of our solver
to predict the equilibrium shapes of large and small droplets spreading
on a fiber.

V. MOTION OF DROPLETS ON A VERTICAL FIBER
STRAND

Varying the droplet’s volume and viscosity, we study the terminal
velocities of droplets moving on a vertical fiber strand, their accelera-
tions, and also the viscous energy dissipation rates during the early
stages of motion. Table IV lists the physical properties of the oil–air
system.

The computational setup for the present problem is shown in
Fig. 12, where a droplet is placed onto a fiber. The same boundary con-
ditions have been used for the sides of the domain, and for the fiber, a
no-slip boundary condition is employed, as shown in Fig. 12. We con-
sider droplets placed on smooth, chemically homogeneous and

FIG. 10. Comparison between analytical and simulated equilibrium shape of a drop-
let spreading on a spherical surface, for contact angles of 30	; 60	; 90	; 120	,
and 150	.

TABLE III. Scaling laws for the equilibrium shape of very large and very small drop-
lets spreading on a fiber.

Length Width

Droplet size (large) X ¼ 2W
W ¼ dv

3X
4pd3v

� �1=3

(small) X ¼ dvp W ¼ dv
8X

p2d3v

FIG. 9. Schematic representation of the initial (left) and equilibrium (right) shapes of
the droplet on a curved surface with static contact angle, in the absence of gravity.
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heterogeneous fibers of diameter dv ¼ 200lm. Local insights are
gained by evaluating the volumetric energy densities in particular,
regarding viscous dissipation. To reduce the computational effort, the
solver has also been enhanced to use the moving reference-frame tech-
nique as described in Sec. III C. Furthermore, an adaptive mesh refine-
ment technique has been employed, where we use refinement criteria
based on the order parameter so as to dynamically refine the mesh at
the interface and inside the liquid phase.

A. Motion on homogeneous fibers

The motion of droplets is governed by viscous and capillary
forces (neglecting charge effects here), where the viscous force Fv

arises due to viscous fluid flow inside the droplet and the capillary

forces Fc originates due to the capillarity of the interface and the differ-
ence of its advancing and receding contact angles at the contact line.
With this, one can analyze the equation of motion of a sliding droplet.
On a vertical fiber strand, the motion of a droplet with volume X and
density qL is driven by the gravitational force Fg ¼ Fg êg of constant
magnitude Fg ¼ qLXg, where êg is the unit vector in direction of grav-
ity and g ¼ kgk ¼ 9:81ms2 is the magnitude of the gravitational
acceleration. The component of the full equation of motion in direc-
tion of gravity is

qLX
dUp

dt
¼ qLXg � Fv þ Fc: (40)

Here, Fv ¼ �Fv � êg and Fc ¼ Fc � êg are components of the viscous
and capillary forces, respectively. Note that the sign of the viscous
force in Eq. (40) is taken negative by convention as this force is
expected to act opposite to the direction of droplet motion and
gravity. The sign of the capillary force Fc can be positive or negative,
as the capillary force may act along or against the direction of
gravity.

To gain further insight, we investigate the rate at which work is
done on a fluid element in the droplet while moving on the fiber
strand changing its shape and volume. In general,

FIG. 11. Equilibrium shape of an axisym-
metrical droplet spreading on a smooth
fiber, for various droplet sizes smaller than
the capillary length (
1:5 mm): (a) dimen-
sionless length and (b) dimensionless
width. The dashed lines represent the
asymptotic solutions, see Table III. The
solid lines refer to the approximate solu-
tion corresponding to an unduloid droplet
shape.15

TABLE IV. Physical properties of fluids.

Property Oil Air

Density (kg=m3) 950 1
Kinematic viscosity (m2=s) 1 � 10�5, 2 � 10�5 1.5 � 10�6

Surface tension (N=m) 0.02

FIG. 12. Computational domain and adaptive mesh refinement.
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r : ru ¼ �pr � uþ s : ru; (41)

where r ¼ �pI þ s with p ¼ � 1
3 trr denotes the total stress tensor,

with p being the mechanical pressure. Since we assume isochoric flow,
r � u � 0, we are left with the so-called dissipation function

/ :¼ s : ru: (42)

Assuming a liquid of Newtonian fluid rheology, we can compute the
total dissipation rate within the moving droplet, viz.

e/ ¼
ð

X
/ dV : (43)

With this, the viscous force in (40) can be approximated as

Fv ¼
e/

Up
; (44)

whereUp is the droplet barycenter velocity.
The capillary force Fc in (40) is computed from

Fc ¼
ð
@X

k@nCrC dS; (45)

that is, the force the diffuse interface exerts on the substrate surface
@X due to its capillarity.58

1. Droplet velocity

Due to the small size of the fiber (and thus small contact line
perimeter), the effect of capillary force is assumed to be negligible and
the droplet motion is controlled by the effect of viscous forces. Based
on this, Gilet et al.15 have proposed a correlation for the droplet’s
velocity as a function of the normalized volume, for a highly wetting
liquid, viz.

Up ¼
1

apC�

gd3v
�

W
X

X
d3v
; (46)

where C� is a proportionality factor that accounts for the effect of sur-
face tension. For a liquid spreading on a dry surface, Hoffman59

showed that a¼ 15, which is used here to predict the droplets’ termi-
nal velocity. One should note that despite the complex dependence of
W/X with X=d3v , for sufficiently large ratios of X=d3v , one finds that
W=X ! 0:5.52

Simulation results of the terminal droplet velocities are shown to
be in very good agreement with the correlation (46), for all considered
droplet volumes and viscosities, as seen in Fig. 13 (error bars indicate
10% deviation). For our simulations, the equilibrium contact angle has
been set to h0 ¼ 15	.

Figure 14 displays the temporal evolution of the droplets’ bary-
center velocities. Overshoots in velocities are observed at t � 1ms,
after which the velocities decrease and reach quasi-steady-state values.

The times it takes for droplets to reach their respective quasi-
steady-state velocities have also been evaluated. Gilet et al. have pro-
posed that the terminal velocity can be estimated using (46), where
ts�s � Up=g. Our results show that the actual times to achieve steady-
state velocities are higher: we observe that ts�s � ðUp=gÞn, with n

 0:7 resulting in a much better agreement with simulated results.
This discrepancy may be caused by the way the droplet is initially

placed onto the fiber in experiments compared to how it is initialized
for simulations. Moreover, the equilibrium contact angle used in simu-
lations may not the same as the one observed experimentally, which
would affect the time to reach quasi-steady-state motion.

2. Viscous dissipation and viscous force

Gilet’s assumption proposes that the droplet motion is governed
by viscous forces, making it vital to study the viscous dissipation pro-
cesses during the droplets’ motion at the fiber strands in more detail.
Several correlations to calculate the viscous force have been proposed
in Refs. 15, 52, 60, and 61. We decide to use the one by Ref. 15 due to
its simplicity

FIG. 13. Comparison between correlation (46) and results from simulations regard-
ing the terminal velocity of a droplet sliding on a smooth fiber for various droplet vol-
umes and viscosities.

FIG. 14. Velocity profiles of a droplet moving on a smooth substrate, for various
droplet volumes and viscosities. Full lines represent the high viscosity case of 20
cSt, dashed ones the low viscosity case of 10 cSt.
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Fv ¼
1

apC�
ldv

X
W

Up; (47)

whereUp is the droplets’ terminal velocity.
Figure 15 shows the viscous force as processed from simulation

results over the droplets’ velocities for kinematic viscosities of 10cSt
and 20cSt, comparing it with the values obtained from (47), with the
error bars indicating relative deviations of 10%.

A good agreement is observed. However, for the higher droplet
velocities and for the lower viscosities, the simulation results start to
deviate slightly from the expected values.

To identify the processes which govern dynamic wetting of drop-
lets on fibers, the viscous dissipation rate has been compared between
simulations. Here, the dissipation arising from contact line relaxation
is neglected.62 Figure 16 shows the rate of dissipation for a droplet
moving on a fiber strand with an equilibrium contact angle h0 ¼ 15	,
for a dynamic viscosity of 10cSt and 20cSt.

Initially, the droplets experience very rapid spreading over the
fiber, driven by the difference between the equilibrium and its initial
contact angle. In this initial stage, the viscous dissipation increases
very rapidly due to the formation of a small cusp at the contact line,
which has been also observed for the case of droplet spreading on flat
substrates.63 Here, we confirm the same phenomena extend to
cylinder-shaped surfaces. One can also see that this behavior is quite
similar for the various droplet volumes studied, only changing when
the viscosity is also varied, which may indicate that the cusp formation
is not significantly affected by the droplet volume as it happens over a
very short span of time and it may be only influenced by the physical
properties of the fluid and equilibrium contact angle.

After the initial spreading stage, the dissipation rate will increase
up to a maximum and then decreases to a lower constant value, when
the droplet reaches quasi-steady-state. We observe that the dissipation
rate is larger the larger the droplets, which is expected due to their
larger terminal velocities. Interestingly, simulations with the higher

viscous oil (20cSt) exhibit lower dissipation rates. This is because vis-
cosity influences the fluid velocity [cp. (46)], and a more viscous fluid
will have a lower velocity in average, leading to lower dissipation rates
at the bulk and wedge. Furthermore, this lower velocity promotes
lower X/W ratios, which also contributes to the lower dissipation rate.

3. Capillary force

To verify or falsify the assumption, the capillary force was negligi-
ble when compared to the viscous force, we compute the capillary
force according to (45). Figure 17 shows the capillary force that has
been computed from our simulation results using (45), for all cases
previously studied.

Looking at the capillary force, it is several orders of magnitude
smaller than the viscous force, and thus, its contribution to the overall
droplet motion is indeed negligible, as assumed by Gilet et al.
Certainly, this is because the contact line perimeter is small, which is
then reflected on the capillary force.

Since the perimeter of the contact line is kept the same, because
the fiber diameter is also the same throughout simulations, the
observed changes in the capillary force are only due to the difference
in the advancing and receding contact angles, which increases with
increasing droplet volume (and thus velocities), leading to higher
capillary forces.64 We also observe that lower viscosities in general lead
to higher capillary forces.

B. Motion on chemically heterogeneous fibers

The focus of this study is to investigate the influence that locally
varying wettability and also stripe periodicity have on the droplets’
velocity profile, dissipation rate, viscous force and capillary force
(which is assumed to be negligible compared to the viscous force), and
quasi-steady-state motion.

To investigate the motion of droplets on chemically heteroge-
neous fibers, the same computational domain is used as depicted in
Fig. 12. However, instead of applying a homogeneous wetting bound-
ary condition with one equilibrium contact angle, the fiber’s substrate
is considered patterned with stripes of alternating wettability, where
the equilibrium contact angle values have been locally varied between
h0 ¼ 55	 and h0 ¼ 105	, respectively, as shown in Fig. 18. For the
simulations, a droplet with volume X ¼ 2:1ll and �L ¼ 10cSt is
chosen.

Figure 19 shows the velocity and dissipation rate profiles over
time, as well as the gravitational, viscous, and capillary forces. Figure 20
shows the evolution of the dissipation rate density and velocity vectors
in the moving reference frame for the case with h0 2 f55	; 105	g.

Comparing the dissipation rates depicted in Fig. 19 with the ones
from Fig. 16, they are similar in the early stages of droplet motion—
one observes a rapid increase in the dissipation rate due to the forma-
tion of a cusp during the initial spreading stage. The dissipation rate is
biased when the transition from philic to phobic surfaces (and vice
versa) happens. Here, the capillary force may contribute to both drop-
let acceleration and deceleration, depending on the local contact angle
and droplet shape at the contact line.

Initially, the droplet is moving exclusively on a phobic stripe,
where an overshoot of the velocity and dissipation rate can be seen, at
around t=s ¼ 1. The change in the viscous force, being a function of
the dissipation rate and velocity, will be similar. The capillary force at

FIG. 15. Comparison between viscous forces obtained from correlation (47) and
from simulation data, for various terminal velocities and viscosities.
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this stage is orders of magnitude smaller than the viscous force.
Following this overshoot, the droplet velocity will decrease until
t=s ¼ 4, where the front of the droplet passes through a philic stripe,
forcing the front edge of the droplet to spread further. This can be
seen as a rapid increase in both the velocity and dissipation rate as well
as the viscous and capillary force. The magnitude of the capillary force
is now much larger than before due to the deformation of the contact
line. Since the front and rear of the droplet now have very different
contact angles, contributions from the capillary force are larger. This
increase in capillary force acts in the direction of the gravitational
force, accelerating the droplet. At around t=s ¼ 6:5, the rear edge of
the droplet finally approaches the philic region. Since the spreading
occurs in the direction that is opposite to the droplet motion, the drop-
let decelerates, which also leads to a decrease in the dissipation rate
and viscous force. The capillary force will also decrease since the
“hysteresis” effect is now much smaller than before, reaching values
that are once again much smaller than the viscous force. At this stage,

the capillary force contributes to the deceleration of the droplet, as the
trailing edge is pulled in the direction opposite of gravity. At around
t=s ¼ 18:5, the front of the droplet will pass through a phobic region
forcing the contact line region to bend, further decreasing the droplet’s
velocity and dissipation rate and increasing the capillary force due the
increasingly different contact angles at the rear and front edges. The
capillary force has contributed to the deceleration of the droplet.

This process repeats as the droplet is moving over the stripped
patterns. Thus, its velocity will oscillate around its mean quasi-steady-
state value. Thus, when compared to the homogeneous cases, the
influence of the capillary force is indeed not negligible. Local deforma-
tions at the contact line as well as the difference in rear and front con-
tact angles lead to larger values of the capillary force, which
significantly affects the overall motion of the droplet.

To further investigate under which conditions the capillary force
acts with or against the gravitational force, we decompose the contri-
bution of the capillary force as

FIG. 16. Dissipation rates of a droplet moving
on a fiber strand, for various droplet volumes
and viscosities. A semi-logarithmic plot is used
to include the evolution of the dissipation rate
at the early stage of droplet motion.
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Fc ¼ Fa
c þ Fr

c ; (48)

where Fa
c ¼ Fa

c � êg and Fr
c ¼ Fr

c � êg are the capillary force contribu-
tions at the advancing and receding edge of the droplet. Figure 21
shows the time evolution of both contributions to the capillary force.
As the front edge passes to a philic region, the capillary force at the
advancing and receding edges increases, which leads to a positive
contribution to the capillary force in the direction of the droplet
motion—accelerating the droplet. As the trailing edge of the droplet is
also passing the philic region, starting at around t=s ¼ 6, the receding
contact line will move in the direction opposite of the droplet motion,
leading to the decrease in the receding capillary force. This leads to a
decrease in the capillary force and thus the droplet decelerates, until it
reaches a quasi-steady state. At t=s ¼ 18:5, the front edge passes to
the phobic region. The decrease in the advancing capillary force decel-
erates the droplet once more.

We can infer that the value of the capillary force will be positive
when the contact line accelerates in the direction of motion, making
the droplet accelerate, and negative for a contact line that accelerates
opposite to the direction of motion, decelerating the droplet.
Moreover, one can see that since the droplet is initialized in the phobic
region, the contribution of the capillary force at the front of the droplet
is negative, and the capillary force at the rear is positive—this is the
opposite in the philic region.

In order to also assess the accuracy of our force computation
from DNS data, the right-hand side (RHS) and left-hand side (LHS) of
(40) are calculated and compared—see Fig. 22. A good agreement
between the terms in the RHS and LHS of (40) is observed, substanti-
ating that the computation of the forces from DNS is reliable. A maxi-
mum deviation of about 38% occurs at the very early stages of motion,
at around t=s ¼ 0:15—this can be attributed to the initialization
setup, where an un-physical pressure field is initially used (assumed to
be uniform and with a value of zero) and so the diffuse interface must
first relax, which leads to a larger error at the onset of motion. Despite
this, one more notable deviation occurs at t=s ¼ 4, when the front
edge of the droplet passes to the philic stripe. This deviation between

FIG. 19. Simulation of a droplet moving on a chemically patterned fiber: (a) barycenter velocity, dissipation rate, and (b) viscous and capillary forces profiles, as well as the
gravitational force and the acceleration term, calculated using (40).

FIG. 17. Magnitude of the capillary force obtained for the various droplet volumes
and viscosities.

FIG. 18. Sketch of case setup, for an oil droplet sliding on a chemically patterned
fiber in ambient air.
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the acceleration term and the sum of the forces can be attributed to
the deviation from the tangent hyperbolic profile of the phase field:
as the front edge of the droplet passes to the philic stripe, the profile
of the diffuse interface is deteriorated. Therefore, the interfacial profile
can no longer be assumed to be of equilibrium tangent–hyperbolic
shape. However, our analysis using Eq. (45) is based on this

assumption. This explains the deviation in Fig. 22 to be largest at the
point where the contact line passes the wettability step on the fiber sur-
face. The faster this transition happens the more the deterioration of
the equilibrium profile, and the greater the deviation. This is substanti-
ated by the later droplet transition, at time t=s ¼ 18, where the droplet
velocity is lower and so is the deviation between LHS and RHS.

FIG. 20. Dissipation energy density and velocity vectors in the moving reference frame for the case with h0 2 f55	; 105	g, at various dimensionless times: (a) t=s ¼ 2:80,
(b) t=s ¼ 4:05, (c) t=s ¼ 4:40, (d) t=s ¼ 8:05, (e) t=s ¼ 12:80, (f) t=s ¼ 18:65.
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Certainly, one could use the new relaxation model accounting for
highly dynamic diffuse interface deformations,36 but this is not within
the scope of this work and shall be subject to future research.

Since the focus here is to study the influence that chemical heter-
ogeneities have on the droplet motion and the forces acting on the
droplet, another case with h0 2 f65	; 95	g has been investigated, for
the same stripe length in order to disclose the influence of the wettabil-
ity range. Moreover, the periodicity of the stripes has been doubled, to
investigate its effect on motion. Figure 23 shows the sliding velocity
and dissipation rate profiles during the simulation. Both the magni-
tude of the capillary force and viscous dissipation force profiles are
shown.

From Fig. 23, it is evident that changing the wettability range
influences sliding velocity, dissipation rate, and the forces acting on
the droplet significantly. For the case with h0 2 f65	; 95	g, it can be
seen that the profile of the plots resembles the ones for the case of
h0 2 f55	; 105	g. Because the wettability range is now smaller when
compared to the case with h0 2 f55	; 105	g, the spreading motion of

the droplet as it passes through the philic stripe is not as intense and
the increase in sliding velocity is not as large. Conversely, this also
leads to lower contact angle hysteresis and so the capillary force is
slightly smaller as well. Since the contact angle of the philic region is
larger as well, the droplet velocity becomes larger for the case with
h0 2 f65	; 95	g, which becomes noticeable at around t=s ¼ 8. Thus,
the front edge of the droplet will also reach the phobic region faster for
the case of h0 2 f65	; 95	g, at around t=s ¼ 17. After this, the capil-
lary force will once again increase to the values seen before (since the
difference in contact angles is almost the same), although slower than
previously because the contact line is also moving slower.

Another case where the same wetting range is used, but the peri-
odicity of the stripes is doubled (by halving their length) is investi-
gated. Initially, the rear and front edges of the droplet are in different
regions, and the capillary force is initially large and has the same value
as for the case initially described. Hence, the initial overshoot of the
sliding velocity is smaller. The front of the droplet quickly encounters
a philic stripe, forcing the advancing edge of the droplet to spread in

FIG. 20. (Continued).
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the same way as for the case with the regular periodicity, just at a
shorter time. Around the time the droplet velocity starts decreasing,
the front edge passes through a phobic region, a decrease in velocity,
dissipation energy, and viscous force is observed. The capillary force
steadily increases as the front edge slowly passes from the philic to the
phobic region. Thus, the terminal droplet velocity is lower when
compared to the other cases. Since the droplet velocity is so low,

the viscous force will be smaller than the capillary force, which oppo-
site to the assumption by Gilet et al.14 This showcases that the choice
of surface chemistry can greatly affect the droplet’s motion and shape
and correlations must be applied with care.

VI. SUMMARY AND OUTLOOK

We discuss the motion of droplets moving along vertically
arranged, chemically homogeneous and heterogeneous fibers based on
local insights gained by direct numerical simulations. For this, we have
utilized a diffuse interface phase-field method implemented in our in-
house solver, phaseFieldFoam, in OpenFOAM (FOAM-extend 4.0/
4.1). For validation, we compare (inter alia) the equilibrium shapes of
droplets spreading on fibers with results obtained from analytical
expressions, for various volume-to-fiber-diameter ratios.

For the homogeneous fibers, we compare our simulation results
regarding the terminal velocity and the viscous force with existing cor-
relations. We observe that simulation results are in very good agree-
ment with these correlations. Moreover, we study the motion until the
droplets have reached terminal velocities, where we observe an over-
shoot in the droplet velocity in the beginning for all situations. From
our computational analysis, we could improve a correlation by Gilet
et al.15 for the time until the droplets reach their terminal velocities.
We further investigate the effect that the capillary force has on the
overall droplet motion, and confirm the assumption made by Gilet
et al. for cases of chemically homogeneous surfaces—that its influence
is negligible when compared to the viscous dissipation. Eventually, the
dissipation rates during the droplets’ motion have been studied in
detail. We observe a rapid increase in the dissipation rates, due to the
formation of a cusp at the contact line. This observation holds for all
volumes. For the less viscous liquid, the dissipation rate is found to be
larger than for the more viscous liquid.

For the heterogeneous fibers, we investigate the evolution of the
dissipation rates, droplet velocities and viscous and capillary forces as

FIG. 21. Contribution of the capillary force at the leading and trailing edge during
droplet motion.

FIG. 22. Comparison between the RHS and LHS terms of Eq. (40) (left) and the deviation associated (right), for the case with h0 2 f55	; 105	g.
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the droplet slides through the phobic and philic regions. Here, surface
chemistry has a significant influence on both the droplet’s velocity and
shape, as well as the forces that act on the droplet. Notably, we
observed that the capillary force, which we showed to be negligible
when compared to the viscous force for a droplet moving on a chemi-
cally homogeneous fiber, can reach values that are at the same order of
magnitude, and in some cases larger than, as the viscous force. Thus,
correlations must be applied with care in cases of chemically heteroge-
neous fiber substrates.
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