
ReStore: In-Memory REplicated STORagE for Rapid
Recovery in Fault-Tolerant Algorithms

Lukas Hübner∗†‡, Demian Hespe∗†, Peter Sanders†, Alexandros Stamatakis†‡
∗ primary authors

† Karlsruhe Institute of Technology, Karlsruhe, Germany
Email: {hespe,huebner,sanders,stamatakis}@kit.edu

‡ Heidelberg Institute of Theoretical Studies, Heidelberg, Germany

Abstract—Fault-tolerant distributed applications require mech-
anisms to recover data lost via a process failure. On modern
cluster systems it is typically impractical to request replacement
resources after such a failure. Therefore, applications have to
continue working with the remaining resources. This requires
redistributing the workload and that the non-failed processes
reload data. We present an algorithmic framework and its
C++ library implementation ReStore for MPI programs that
enables recovery of data after process failures. By storing all
required data in memory via an appropriate data distribution and
replication, recovery is substantially faster than with standard
checkpointing schemes that rely on a parallel file system. As
the application developer can specify which data to load, we
also support shrinking recovery instead of recovery using spare
compute nodes. We evaluate ReStore in both controlled, isolated
environments and real applications. Our experiments show loading
times of lost input data in the range of milliseconds on up to
24 576 processors and a substantial speedup of the recovery time
for the fault-tolerant version of a widely used bioinformatics
application.

Index Terms—Fault-Tolerance, MPI, ULFM, HPC

I. INTRODUCTION

With the increasing number of processors in high perfor-
mance computing clusters, the probability that some proces-
sors fail during a computation rises. Handling such failures
constitutes a major challenge for future exascale systems [2].
For example ORNL’s Jaguar Titan Cray XK7 system had on
average 2.33 failures/day between August 2008 and 2010 [3].
In upcoming systems, we expect a hardware failure to occur
every 30 to 60 minutes [4]–[6]. To recover from such a failure,
an important step is to restore the lost data that the failed
processors were working on. To save the current state of a
program’s data, applications write checkpoints which can be
reloaded after a process failure. Checkpointing libraries usually
write their checkpoints to a parallel file system (PFS) [7]–
[10], implying slow recovery due to low disk access speeds
and because many processors simultaneously access the same
resources. Many checkpointing libraries also assume the nature
of the failures to leave the machine in a state where the process
can simply be started again, or they assume that enough spare
resources are kept idle to start a new process for replacing the
failed one [3], [7]–[15]. Under this assumption, a re-spawned
process can simply read exactly the data of the failed process.
In the case of the new process being located on the same

compute node as the failed one, the checkpoint can even be
read from a local disk. To the best of our knowledge there
exists no general purpose checkpointing solution that allows
for in-memory recovery without requiring spare resources.

Contribution and Structure.: We introduce ReStore, an in-
memory checkpointing library that is optimized for recovery
speed (in contrast to checkpoint creation speed). This is
especially important for data which the program never or rarely
changes but has to be redistributed after every failure. We do
not assume that spare resources are available. Instead, ReStore
enables recovery in an application that continues its execution
only with the processes that are still alive. While this approach
requires a more involved recovery mechanism and strategic data
distribution, it saves resources because all available processors
can participate in the application’s useful computations from
the beginning. Keeping the checkpoints in-memory avoids the
bottlenecks involved in a PFS and allows high scalability. The
remainder of this paper is structured as follows: We introduce
the concepts used in this paper in Section II and provide an
overview of existing checkpointing libraries and other related
work in Section III. We explain our general framework and
data distribution in Section IV. In Section V and VI we present
the implementation of our open source C++ library and the
experimental results, respectively. We conclude in Section VII
and outline future work.

II. PRELIMINARIES

In distributed memory parallel programs using the Message
Passing Interface (MPI), p processes (or processing elements
(PEs)) run on multiple machines (or nodes) and communi-
cate via messages sent over the network. We consider two
important factors for evaluating the running time of such
parallel algorithms: The bottleneck number of messages sent
and received, and the bottleneck communication volume. The
bottleneck number of messages sent and received describes the
maximum number of messages sent or received by a single
PE. This influences performance, as there is a startup overhead
(latency) for establishing a connection associated with each
message. As a result, sending or receiving data from one PE
to another in a single message is usually faster than splitting
that data into many parts and sending each part to a different
receiver. The bottleneck communication volume describes the

TABLE I
COMPARISON OF CHECKPOINTING LIBRARIES. See Section III for details. 1The program needs to allocate spare nodes, which participate in the computation
only in case of a failure. 2The program needs to allocate spare nodes and nodes used purely for checkpointing. 3The maintenance state unclear (Section III-A).

ftRMA [13] Fenix [3] SCR [12] Lu [14] GPI CP [15] ReStore

Features
in-memory checkpointing ✓ ✓ ✗ ✓ ✓ ✓

substituting recovery ✓ ✓ ✓ ✓ ✓ ✓

shrinking recovery ✗ ✗ ✗ ✗ ✗ ✓

all nodes participate in computation ✗2 (✓)1 (✓)1 ✗2 (✓)1 ✓

programming model MPI RDMA MPI MPI MPI PGAS/GPI MPI
Reproducibility

source-code available ✓ ✓ ✓ ✗ ✓ ✓

still maintained (2022) ✗ ?3 ✓ ✗ ✗ ✓

other reproducibility issues Cray-only author-provided requires libiverbs, GPI-2
examples segfault and passwordless ssh-login

on all compute nodes

maximum amount of data sent or received by a single PE and
represents a point on the critical path of the application.

As faults, we consider the case that one or multiple PEs
suddenly stop working and do not contribute to the computation
anymore (which we will refer to as failed). The upcoming MPI
4 standard will include fault-tolerance mechanisms and an
implementation called “ULFM” is available for OpenMPI [16].
Following a fault, the application has to redistribute the work
formerly performed by a failed PE using either the shrink or
the substitute strategy [17]. Under the substitute strategy, a
replacement PE takes over the work previously performed by
the failed PE. This circumvents the need for re-balancing the
workload and simplifies loading the required data. However,
reserving idle processors for this purpose constitutes a waste of
resources. In the shrink strategy, the program’s load balancer
(re)distributes the work performed by the failed PE among the
remaining (or surviving) PEs. This strategy does therefore not
require spare PEs but requires reloading fractions of the data
on many or even all PEs. While the number of failures an
algorithm can tolerate using the substitute strategy is limited
to the number of spare PEs; this limitation does not apply to
the shrink strategy [17].

III. RELATED WORK

Scientific applications are increasingly implemented to
tolerate faults. Examples include a numeric linear equation
and partial equation solver [18], a plasma simulation [19], a
molecular dynamics simulations [20], a Fast Fourier Transfor-
mation [21], and an algorithm for phylogenetic inference [22].
The three main techniques for implementing fault-tolerant
algorithms are Algorithm-Based Fault-Tolerance [23], [24],
restarting failed sub-jobs [25], and checkpointing/restart [22],
[26]. Checkpointing/restart can be further subdivided into
coordinated and uncoordinated checkpointing. In coordinated
checkpointing, the program synchronizes before creating the
checkpoint in a distributed-manner. This ensures that there
are no messages in-flight and the program’s state is therefore
well-defined. Gavaskar and Subbarao recommend coordinated

checkpointing for the high-bandwidth, low-latency interconnec-
tions of modern HPC systems [27]. Checkpointing libraries can
save their checkpoint either to a (possibly network attached)
disk or to the compute node’s main memory (“diskless”) [28].
Checkpointing libraries which save their checkpoints to disk
include, for example, the algorithm presented by Agarwal et
al. [7], FTI [8], CRAFT [9], SCR [12], and VeloC [10]. As
the number of nodes per parallel program execution continues
to grow, the congestion on the PFS increases – resulting in
a bottleneck and reduced checkpointing performance [29],
[30]. Examples for in-memory checkpointing libraries include
ftRMA [13], Fenix [3], GPI CP [15], and the algorithm
described by Lu [14] (Table I). All of these employ the
substitute strategy and therefore rely on the availability of
replacement nodes, if we want to continue the computation
in case of node failure. This implies that some nodes are
allocated to the job but not available for computation. Some
algorithms additionally designate some compute nodes as pure
checkpointing nodes, which are neither participating in the
computation nor available as spares. Ashraf et al. [17] describe
an implementation of a fault-tolerance mechanism for a specific
application which is able to checkpoint to memory and recover
in a shrinking setting. This is, however, not a general-purpose
checkpointing library but application-specific. Erasure codes
are often used to reduce the file-size or memory footprint of
checkpoints [8], [13], [14].

Other areas where replication approaches similar to the one
presented in this paper are used are distributed fault-tolerant
file systems like early versions of the Hadoop Distributed File
System [31] or distributed processing frameworks like Apache
Spark [32]. However, these target very different use cases and
sometimes only support very basic replication like storing each
PEs data on a single partner PE.

A. Reproducibility Study

In the following, we describe our attempts to replicate the
results of competing tools. We provide a visual summary of
these in Table I.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

PE 0 PE 1 PE 2 PE 3

1 2 3 4 5 6 78 9 10 11 12 13 14 15 0

copy 1

copy 2

Fig. 1. Example showing the data distribution of the copies stored with ReStore for p = 4 PEs, n = 16 data blocks, and r = 2 copies.

The ftRMA [13] tool has not been maintained since 2014
and relies on the Cray-only foMPI library which has also not
been further maintained since 2014. The authors confirmed
(pers. comm. 30. June 2022) that the current code exclusively
works on Cray systems and is no longer being actively
maintained. Although the authors suggested that ftRMA could
– in principle – be ported to a non-Cray system, taking into
account the unmaintained code base comprising 513 calls to
foMPI functions, this would incur a prohibitive programming
effort with uncertain outcomes. Further, as ULFM currently
provides “little support for fault tolerance” with respect to
RMA calls [33], deploying ftRMA would be bound to fail
using a current fault-tolerant MPI implementation.

With respect to the Fenix tool, there has only been a single
commit to its repository within the past six months. In addition,
the author’s automated testing on GitHub failed for this commit.
We thus denote Fenix’s maintenance status as being “unclear”
(✓) in Table I. The author-provided Fenix examples [3] fail
with a segmentation fault. As Fenix does currently not support
restoring the data that was checkpointed on a different rank,
setting up an experimental comparison is challenging. The
authors did not respond to our e-mail requesting assistance.

SCR [12] has > 50 commits on 20 distinct days during
the past six months. Hence, we consider that it is still being
maintained. SCR supports caching checkpoints on a RAM-
disk. These checkpoints, however, have to be transferred to
the parallel file system such as to become available upon rank
failure. We therefore do not consider SCR to be an in-memory
checkpointing library in the context of node failures.

The source code of Lu [14] is not available, and the author
can not be contacted, as they did not provide a contact e-mail
address on their publications.

The git repository of GPI CP [15] has only a single commit
from six years ago; we thus also consider that it is no longer
being maintained. As we do not have access to an HPC system
where GPI-2 (a library for the Partitioned Global Address Space
(PGAS) programming model) is supported, and its dependency
libiverbs has to be installed by a system administrator, we
are unable to compare GPI CP against ReStore.

IV. IN-MEMORY REPLICA FOR FAST RECOVERY

ReStore allows application developers to store redundant
copies of their data in-memory. In case of a failure, the
surviving PEs can invoke a recovery routine to load all or
parts of the data lost during the failure.

The remainder of this section is structured as follows: In
Section IV-A we introduce our general framework for maintain-
ing redundant copies of the user-supplied data in memory as
well as the algorithm used for recovery. Section IV-B expands

on the distribution of copies by adding random permutations
that accelerate the recovery algorithm. We analyze the memory
usage of our proposed data distribution in Section IV-C and
the probability of irrecoverable data loss in Section IV-D. In
Section IV-E we describe a currently unimplemented approach
to restore the level of redundancy after a failure.

A. General Framework

The main idea of ReStore is to store r copies of the data
on different nodes. By storing them such that it is unlikely
for all copies of one data element to fail at once, there will
most likely (Section IV-D and Section VI-B1) be copies left to
recover from. The application programmer can store data into
ReStore using the submit and retrieve data form ReStore using
the load function. To make the data addressable, we divide it
into blocks where each block has a unique identifier.

Let n be the number of data blocks. In its most basic form
(Figure 1), for k ∈ [0, r) we store the block with ID x on
PEs L(x, k) =

⌊
xp
n

⌋
+ k · p

r mod p. Under this distribution,
we expect the copies of a block to not be stored on the same
physical node/case/rack in most cluster setups. This decreases
the probability of loosing all copies of a block, as failures of
PEs in the same node/case/rack are more likely to occur than a
simultaneous failure of unrelated PEs [8]. In Section IV-B we
explore a change to this basic distribution scheme that allows
for faster recovery.

During recovery, when PE i requests to load block j, we
choose one of the surviving PEs that hold block j at random
to serve the request. If the user requests multiple successive
blocks which are stored on the same set of PEs, we choose one
PE to serve all requests. This strategy minimizes the bottleneck
number of messages received. Next, we distribute the requested
data using a custom sparse all-to-all communication.

B. Breaking Up Access Patterns for Faster Recovery

The goal of distributing data copies as described in Sec-
tion IV-A is primarily to preserve the ability to recover
from a fault. In the following, we explore how to adapt the
data distribution such that it accelerates data recovery while
preserving the level of failure resilience.

Assume a failed PE i which worked on data blocks[
inp , (i+ 1)np

)
, where n is the total number of data blocks

submitted to ReStore. If the application redistributes the lost
data evenly to all surviving PEs, we would ideally want
a dedicated sending PE for each receiver, resulting in a
bottleneck communication volume of n

p2 and a bottleneck
number of messages received of 1. With the data distribution
from Section IV-A, only the surviving subset of the r ≪ p
PEs that hold copies of these blocks act as sources, resulting

7 12 13 4 5 0 1 14 15 2 3 10 11 8 96

PE 0 PE 1 PE 2 PE 3

copy 1
copy 2 14 15 2 3 10 11 8 9 7 12 13 4 5 0 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150application data

submit

PE 0 failedload

requested data

R
eS

to
re

E 0 1 2 3

Fig. 2. Example showing the submit and load operations as well as the data distribution of the copies with a random permutation for p = 4 PEs, n = 16 data
blocks, r = 2 copies, and spr = 2 blocks per permutation range. The first row shows the data submitted by the application. As an example, the orange and
green arrows show the data ReStore sends from PE 1 to the target PEs which hold copies of the received data. After PE 0 fails, the application requests the
data shown in the last row (dark red in all occurrences) which is served by ReStore as shown with the black arrows.

in a bottleneck communication volume of n
pr . We can alleviate

this issue by evenly distributing the copies of data blocks[
inp , (i+ 1)np

)
among multiple PEs by randomly permuting

the block identifiers. For a random permutation π and k ∈ [0, r),
the block x is stored on PEs

L(x, k) =

⌊
π(x) · p

n

⌋
+ k · p

r
mod p

If the user requests blocks
[
inp , (i+ 1)np

)
, more PEs have

parts of the data and can send them to the requesting PE. This
approach, however, can lead to a large bottleneck number of
messages being sent and received: If a PE requests n

p2 data
blocks, these blocks can reside on up to min(n

p2 , p) different
PEs. To mitigate this, we group the data into permutation
ranges of size spr. We then apply a random permutation to
these permutation ranges instead of individual data blocks
(Figure 2). If by a fault on PE i, data blocks

[
inp , (i+ 1)np

)
need to be redistributed, these correspond to permutation ranges
[i·n/pspr

, (i+1)·n/p
spr

). If we request the data to be evenly distributed
among the p− 1 surviving PEs such that PE j receives blocks
[inp +j n

p·(p−1) , i
n
p +(j+1) n

p·(p−1)), only n/(p·(p−1))
spr

PEs send
to every receiving PE.

The best choice of spr and whether to use permutations at all
depends on the data distribution, the expected amount of data
lost by a fault, and the application’s recovery strategy, but also
on the frequency of checkpoint creation as submitting data with
permutations enabled results in a more dense communication
pattern. Section VI-B1 shows how we experimentally chose a
good value for spr .

Note that with this data distribution, we always have sets of
n

sprp
permutation ranges that are stored together for all r copies

(e.g., blocks 6, 5, 12, 13 in Figure 2 are always stored together –
once on PE 0 and once on PE 2). This means that for all copies
of any permutation range whose first copy is stored on PE i to
become lost, exactly the set of r PEs i+k · pr , k ∈ [0, r) has to
fail. One could also opt for a different approach – for example,
using a distinct permutation for each copy. In this case, no
sets of permutation ranges will always be stored together. So
in order for any permutation range whose first copy resides on
PE i to be lost, it is sufficient if any of the n

sprp
sets of PEs of

size r fail that hold the copies of one of the permutation ranges.
In Section IV-D we analyze the probability of irrecoverable
data loss under our proposed data distribution.

C. Memory Usage

Other fault-tolerance libraries [8], [13], [14] often use erasure
coding – for example the Reed-Solomon code [34] – to reduce
their memory footprint. This works for example by not storing
the replicas A′ and B′ of two blocks A and B but rather
the XOR of these blocks A ⊕ B. We decide against using
erasure coding as a means to reduce the memory footprint
of our checkpoints, as this would incur additional messages
upon checkpoint creation and recovery as well as a substantial
computational overhead [35]. We therefore trade reduced
communication overhead for increased memory consumption.

As in Section IV-A, let n be the number of data blocks, r
be the number of replicas and p be the number of processes.
On each PE ReStore requires main-memory to store rn

p data
blocks for the replicated storage. The memory requirement is
doubled during submission as we require additional space for
the send and receive buffers. During recovery, an additional
copy of all data being sent and received is stored on each PE.
We verified these formulas empirically (data not shown). A
plethora of applications exist for which the amount of memory
for the input data and the data that need to be checkpointed
fit in memory r times. Examples include RAxML-NG [22],
[36], k-means, and page-rank.1 For example, RAxML-NG is
memory bandwidth bound [37]. Hence, using additional cores
with their associated larger cache memory capacity can even
yield super-linear speedups due to increased cache-efficiency.
Such applications can therefore substantially benefit from the
reduced communication and computational overhead to create
and restore a checkpoint without erasure codes.

D. Probability of Irrecoverable Data Loss.

Let r be the replication level and p be the number of PEs. In
this analysis, we assume that r|p (r divides p). This constitutes
a reasonable assumption for current two socket systems that
exhibit an even number of cores per socket and r = 4. If

1We implemented fault-tolerant version for all three of these using ReStore
and show running times for RAxML-NG and k-means in Section VI-C.

r|p, the PEs are divided into g = p
r groups, with all PEs in a

respective group storing the same data. Thus, if and only if all
r PEs in a specific group fail, we will not be able to recover
a part of the data. We denote such an event as Irrecoverable
Data Loss (IDL). Let f be the number of failed PEs. There is
exactly one possibility to draw r out of r PEs belonging to a
single group. The number of possibilities to draw the remaining
f − r failed PEs among the remaining PEs such that they do
not belong to the given group is

(
p−r
f−r

)
. The overall number of

possibilities to draw f PEs from the p PEs that are still alive
at program start is

(
p
f

)
. The probability that, given f failures,

all processes of a given group fail is thus 1 ·
(
p−r
f−r

)
/
(
p
f

)
. When

generalizing this equation to the probability of all processors
of at least one group failing, we have to apply the inclusion-
exclusion principle to avoid counting the same combination
multiple times. We thus obtain the following equation for the
probability of an IDL at failure f or any failure before:

P≤
IDL(f) =

g∑
j=1

(−1)
j+1

(
g

j

)(
p−jr
f−jr

)(
p
f

)
The probability of an IDL at exactly failure f is thus:

P=
IDL(f) = P≤

IDL(f)− P≤
IDL(f − 1)

The expected number of failures until an IDL occurs is:

E[Failures until IDL] =
p∑

f=r

P=
IDL(f) · f

For small f , the approximate probability of all PEs of any
group failing is given by P approx.

IDL (f) = g · (f/p)r. Solving for
the fraction of PEs that fail f/p such that P approx.

ID = 1 yields
f/p = (r/p)(1/r) ∈ O(p−1/r) for a fixed r.

In Section VI-B1 we simulate node failures using the actual
data distribution to verify these formulas.

E. Recovering Lost Replicas After a Node Failure
To further increase the resilience of our framework, we

introduce an approach to restore replicas that were lost upon a
failure while keeping all other replicas in place. That is, we do
not need to redistribute any replicas that reside on surviving
nodes. As in the previous sections, let n be the number of data
blocks, r be the number of replicas per block, and p be the
number of nodes.

We draw a different random permutation ρx of [0, p − 1]
(or long, non-repeating random sequences of nodes) for each
block x and place the replicas of x on the first r alive
nodes of that permutation. When a node dies, we copy all
replicas that this node held to the next node in each replicas
permutation. We can refine this approach to attain a perfectly
balanced initial data distribution and reduce the probability
of an IDL (Section IV-B): We initially place the first r
replicas (L(x, 0), L(x, 1), . . . , L(x, r− 1)) deterministically as
described in Section IV-A. That is, the data distribution is
given by

L(x, k) =

{
as described in Section IV-A, if k < r

ρx(k), else

See the Appendix for different options to draw such a sequence
of nodes. Following this data distribution, we can compute the
ranks on which we store a given block in O(r + f) time and
O(1) space where r is the number of replicas per block and
f is the number of node failures. In order to keep recovery
fast, we can apply this technique on a permutation-range-level
rather than on individual blocks as explained in Section IV-B.

V. IMPLEMENTATION

We implement ReStore as a C++ library2 using the User
Level Failure Mitigation (ULFM) proposal implementation [16].
Application programmers submit their data to ReStore by
writing their serialized data blocks to a memory location
supplied by the library or using ReStore’s interface for already
serialized data. After a failure, they can request data blocks by
passing a list of ranges of block identifiers to ReStore. This
can be done in two ways: Either by providing the full list
of requested block IDs on all PEs or by providing exactly
those ID ranges each individual PE needs on exactly that PE.
By using the first approach, no communication is required
to determine which PE serves which request. When using
the second approach, the receiving PE will determine which
PE should send each requested data block. Then, a sparse
all-to-all communication is performed to issue the requests
to the sending PEs. Preliminary experiments showed that the
latter method performs substantially better because the full
list of requests usually scales with the number of PEs in the
application, slowing down the first approach. Thus, for all
experiments in Section VI, we employ the second approach.
As ReStore’s implementation currently focuses on fast recovery,
it provides only an interface for submitting data once and thus
is currently not suitable for repeatedly checkpointing changing
data. This is sufficient for many fault-tolerant applications –
two of which are demonstrated in Section VI-C.

VI. EXPERIMENTAL EVALUATION

In this section we present the results of our experimen-
tal evaluation. We present the experimental environment in
Section VI-A. In Section VI-B we evaluate ReStore’s fault
resilience and performance in isolation. In Section VI-C we
show how ReStore performs when used in two fault-tolerant
applications: A simple k-means algorithm and a complex
bioinformatics application used by thousands of researchers.
Finally, in Section VI-D we compare ReStore to reading from
a parallel file system (PFS) – which represents a lower bound
for checkpointing libraries using the PFS as storage – as well
as the reported running times by other checkpointing libraries.

A. Environment and Experimental Setup

We run our experiments on the SuperMUC-NG super
computer.3 Each node consists of two Intel Skylake Xeon
Platinum 8174 processors with 24 cores and 96 GB of memory
each, connected via an OmniPath network with a bandwidth
of 100 Gbit/s. The operating system is SUSE Linux Enterprise

2https://github.com/ReStoreCpp/ReStore
3https://doku.lrz.de/display/PUBLIC/SuperMUC-NG

(a) Simulation (Section VI-B1) (b) Theory (Section IV-D)

Fig. 3. Percentage of failed PEs until all redundant copies of one data block are lost. (a) Simulation of the data distribution described in Section IV-A. We
continue simulating the failure of random PEs until there is at least one data block with no remaining copies on the surviving PEs. (b) Comparison of the
probability given by the equations in Section IV-D and the simulated values from (a).

Server 15 SP1 running Linux Kernel version 4.12.14-197.78.
We compile our benchmark applications using gcc version
10.2.0 with full optimizations enabled (-O3) and all assertions
disabled. Unless otherwise stated, we communicate using
OpenMPI version 4.0.4. We verify that our implementation does
work if nodes actually fail and communication is recovered
with ULFM as part of our fully automated unit tests. The
current version of ULFM, however, is not stable enough to
conduct reliable performance benchmark experiments. For
example, processes may be reported incorrectly as failed or
recovery may result in two separate groups of nodes that
each assume that the other group has failed. We reported
this behavior on the ULFM mailing list and the authors of
ULFM reproduced and confirmed the bug.4 Additionally, most
communication and fault tolerance mechanisms are currently
slow (see Hübner et al. [22] for details). We expect these issues
in ULFM to be fixed once fault-tolerance is part of the MPI
standard and more resources are allocated to implementing
these features. In our performance benchmarks, we thus use
OpenMPI and simulate failures by removing processes from
the calculation using MPI_Comm_split and replacing other
required fault recovery steps by functionally similar ones (e.g.,
replacing MPIX_Comm_agree with MPI_Barriers). As
ReStore currently only supports submitting data once, all
experiments shown in this section submit only their input data.
This is a restriction in the API, not the underlying algorithm,
and will be removed in future work.

All plots show results for 10 repetitions per experiment.

4George Bosilca. Post pbSToy94RhI/xUrFBx_1DAAJ on the ULFM
mailing list.

Plots depict the mean with error bars for the 10th and 90th
percentile.

B. Isolated Evaluation

In this section we explore ReStore in isolation. We first
choose the number of redundant copies (Section IV-A). Next,
we analyze ReStore’s performance and experimentally optimize
the size of permutation ranges (Section IV-B).

1) Number of Redundant Copies.: Figure 3a shows the result
of a simulation of our data distribution: We continue simulating
the failure of random PEs until at least for one data block no
copies remain on the surviving PEs. We can see that even for
225 PEs, more than 1% of all PEs have to fail until we can
no longer recover all data when using r = 4 redundant copies.
Even in the event of an irrecoverable data loss, the program
will not crash, but will have to merely reload the input data
from disk. For applications running on fewer PEs, an even
smaller number r of redundant copies is sufficient to yield
data loss unlikely. For all further experiments we therefore set
the number of redundant copies to r := 4. We compare the
values obtained by applying the formula in Section IV-D with
the values obtained by simulation in Figure 3b showing that
our theoretical formula matches the simulation very closely.

2) Performance.: For all experiments in this section we use
data blocks of size 64B and 16MiB of data per PE. We show
results for three different operations: In the submit operation
we pass 16MiB on all PEs to ReStore’s submit function. In
load 1% data we load the data submitted by 1% of the
PEs with contiguous data block IDs evenly across all PEs.
So for n total data blocks, we pick a random starting PE i
and request data blocks i · n/p to (i + 0.01 · p) · n/p. This

(a) Optimizing the number of bytes per permutation range

(b) Randomized vs consecutive IDs

Fig. 4. (a) Influence of the number of bytes per permutation range on the running time of submitting to and loading from ReStore. (b) Weak scaling
experiment (16MiB per PE) of our three benchmark operations with and without ID randomization. We copy all data over the network – i.e., no rank holds a
copy of its requested data in its local part of the ReStore storage.

simulates the requests expected if 1% of PEs fail at once. In
load all data we load all data stored in ReStore evenly
distributed across all PEs in a way that no PE loads the same
data it originally submitted.

By decreasing the size of permutation ranges (Section IV-B)
we can control how many PEs can participate in sending
requested data: When using smaller permutation ranges, more
PEs are able to serve parts of the requested data to the
requesting PEs. Small permutation ranges, on the other hand,
lead to fragmentation of the data and therefore induce many
small messages. In Figure 4a we show the number of bytes
per permutation range on the x-axis and the running times of
submit and load 1% data on the y-axis for different
numbers of PEs. We do not show results for load all
data because permutations even have a negative effect on
performance here (Figure 4b). We therefore recommend turning
them off when using a recovery mechanism which loads
all data stored in ReStore. We observe that for few bytes
per permutation range, both submit and load 1% data
are slower by up to an order of magnitude than the fastest
configuration because of a high bottleneck number of messages.
Approaching 16MiB of data per permutation range, fewer PEs
can participate in sending data. Between these two extremes,
there is a range of permutation range sizes which yield
fast running times. For all further experiments, we thus fix
the amount of data per permutation range to 256KiB (0.65

to 2.27ms for load 1% data on 48 to 6144PEs). For
16MiB of data per PE, every PE receives approximately
164KiB in load 1% data which results in an average of
two PEs requesting the same permutation range and therefore
induces a sparse communication pattern. On the sending side,
this implies that the data submitted by a single PE is distributed
among 64 permutations ranges. With r = 4 redundant copies
this results in up to 64 ·4 = 256 PEs that participate in serving
this part of the data.

As expected, enabling random permutations speeds up load
1% data and slows down load all data, especially for
runs on many PEs (Figure 4b). This is because in load all
data, even without permutations, every PE sends some part
of the data. By enabling permutations, the data requested by
a PE is distributed among more sending PEs, resulting in a
denser communication pattern. We can tolerate an increase in
running time of submit as it is called only once in the case
of only submitting input data. In contrast, a load is issued after
every failure.

C. Applications

To demonstrate realistic use cases of ReStore we use it
to restore lost data in two different real-world applications.
Figure 5 shows running times for a small example application

●
●

● ● ● ● ● ● ● ● ● ●● ● ● ● ●

● ● ●
● ●

●

●

● ●
●

●

●

●

●

Fig. 5. Running time of the k-means clustering algorithm with and without
failures on 16MiB of data per PE. k-means loop: time spent for the core
clustering algorithm. Restore overhead: time spent in ReStore’s functions.
Overall running time also includes additional work required for attaining
fault-tolerance, such as a load balancer to determine how to redistribute data
and MPI functions for identifying the failed PEs.

that computes a k-means clustering [38].5 Each PE holds
65 536 points in a 32-dimensional space as input with 8 byte
double precision floating point values per dimension resulting
in 16MiB of input data. All PEs start with the same 20 random
starting centers. Iteratively, each PE assigns the nearest center
to each of its local points and all PEs collaboratively calculate
new centers positions using an all-reduce-operation over k
elements. If a PE fails, the remaining PEs divide the dead PE’s
data points evenly among them using ReStore and continue
with the calculation. We perform 500 iterations of the algorithm
and simulate an expected failure of 1% of all nodes distributed
uniformly at random during these iterations. This is done by
determining a suitable probability for each PE to fail in each
iteration of the algorithm.6 We find that ReStore accounts for
only 1.6% (median) of the overall running time on up to
24 576 PEs with up to 262 PEs failing. Note that the overall
running time increases by more than ReStore’s overhead for
large PE counts mainly due to MPI operations used to restore
a functioning communicator after a PE failure.

Next, we demonstrate ReStore’s performance for the fault-
tolerant version of the highly complex and widely used

5We ran these experiments with IntelMPI, because its Group_*-functions –
which we use to determine which PEs failed – perform better than OpenMPI’s.

6Using a discrete exponential decay with 1% of failed PEs after 500
iterations.

phylogenetic tree inference software RAxML-NG [36] – called
FT-RAxML-NG [22]7 – using the same empirical datasets as
in [22] (Figure 6a). Additionally, we use a 19.1GiB synthetic
dataset [39] for scaling experiments (Figure 6b). FT-RAxML-
NG redistributes its input data among all surviving PEs. We
therefore deactivate permutation ranges for this application.
We compare ReStore’s performance against FT-RAxML-NG’s
currently implemented recovery mechanism: Loading the data
from the PFS using RAxML-NG’s dedicated binary file format
(RBA) which enables rapidly reading only the required subset of
the input matrix. We distinguish between the input files being
uncached by the file system (in the first read) and being cached
by previous reads. Both, submitting data to ReStore and loading
data after a failure, is faster than the original method of loading
the data from files – often by more than an order of magnitude.
On the synthetic data set, for low PE counts, submitting to
ReStore is slower than reloading from a file. However, this
is negligible because an actual phylogenetic inference on this
dataset requires terabytes of memory for likelihood calculations
and would therefore never run on this few nodes. We also want
to emphasize that submitting to ReStore has to be done only
once in FT-RAxML-NG, while loading has to be conducted
after every failure.

D. Comparison with Other Approaches

We now evaluate ReStore’s performance in comparison to
other checkpointing approaches. As shown in Section III, most
checkpointing libraries store checkpoints on the PFS. Most
on-disk and all in-memory checkpointing libraries support only
substituting recovery, i.e., no shrinking recovery, yielding a
comparison with ReStore challenging. Additionally, as detailed
in Section III-A, to the best of our knowledge, there exists no
in-memory checkpointing library which is still maintained and
working to compare ReStore to.

1) Comparing to Disk-Based Approaches: We compare
ReStore against loading a copy of the data stored on the PFS
(Figure 7). We create this file such that reading is a single
consecutive read and therefore as fast as possible. We show
running times for reading a separate file for each reading PE
using C++’s ifstream and reading a single file for all PEs
with MPI_File_read_at_all (MPI I/O in the plot). This
is a lower bound for all checkpointing libraries that have to
read their data from disk. ReStore outperforms disk access
(ifstream) on 24 576 PEs by a factor of 206 (1% of data;
median) and 55 (all data) respectively.

2) Comparing to Reported Measurements: Gamell et al. [3]
measure approximately 115ms to write a checkpoint with
14.8MB per rank on 1000 ranks using Fenix. Fenix implements
a replication level of r = 1. This means, that there exists a
single copy of the data in addition to the data the ranks are
actively working on. According to our definition (Section IV-D),
a single rank failure will cause irrecoverable data loss. This
works in practice, as long as the data which resided on the failed
rank(s) does not need to be restored. To serialize and store

7https://github.com/lukashuebner/ft-raxml-ng/tree/restore-paper

●●●●●●●●●●●●●●●

●●●●●
●●●●●●●

●
●

●

●
●●

●
●●

●
●●

●
●●●●

●

●●

●

●

●
●

●●●

●●●●●●●●
●

●●●●●●●●●●

●

●

●

●

●
●

●●●

●●●

●

●

●

●●
●
●

●●

●

●●
●
●
●

●●●●●●●●●

●
●●●●●●●●●

●●●●●●●
●
●●●●●

●●●●●●
●●●●●●●

●
●●

●●●

●
●

●

●

●
●

(a) Real world datasets

●
●

●●
●

●
●

● ●

●●

●
●●

●
●

●

●

●

●●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

●

●

●

● ●

● ●

(b) 19.1GiB synthetic dataset

Fig. 6. Performance of data loading after a fault in FT-RAxML-NG. In subplot (a), labels on the x-axis show the name of the data set, the number of PEs
used for that data set, and the corresponding amount of input data per PE.

16MiB per rank on 1536 ranks (32 nodes) with a replication
level of r = 1 and using consecutive IDs, ReStore needs
126±3ms (µ±σ, 10 repeats). Gamell et al. [3] expect Fenix’s
recovery time to be the same as its checkpointing time but
do not provide experimental results for that claim. ReStore
restores the data of a single rank to another single rank in
our experiments in 21± 2ms. ReStore additionally offers to
restore the data of a single rank scattered to all surviving ranks.
This operation requires 20± 5ms in our experiments. In the
case that one expects more than one recovery per checkpoint
ReStore offers ID permutations to speed up recovery at the
cost of slower checkpoint creation (Section IV-B). This would
for example be the case for static input data, of which multiple
ranks need different but small fractions after getting assigned
new work following a rank failure. With ID permutations
enabled, saving the data to ReStore takes 215± 9ms in our
experiments. Restoring the data takes 15 ± 3ms if restoring
all the data to a single rank and 0.9± 0.2ms if restoring the
data scattered across the surviving ranks. As the latter evenly
distributes the data across the surviving ranks, we expect it
to become the more common scenario when working in a
shrinking setting.

Bartsch et al. [15] report GPI CP to require approximately
1 s to initialize, 200ms to create a checkpoint and 15ms to
restore data from a checkpoint.

Fenix’s performance was measured on a Cray XK7 system
with 16 cores per node and a 160GB s−1 network [40].
GPI CP’s performance was measured on an unnamed system
with 16 cores per node and a QDR Infiniband network. We
measured ReStore’s performance on the SuperMUC-NG, which
has 48 cores per node and an OmniPath interconnection with
100Gbit s−1 (Section VI-A). We choose our experiments such
that data is always copied between different nodes and never
between two processes running on the same node. Thus, all 48
processes on a single node have to share the same interconnect.
Considering that we evaluate ReStore on a slower network

than Fenix, we expect an even more favourable comparison
when having access to a similar HPC system.

Lu [14] reports checkpoint creation times of 8 to 20 s for
157 to 182MB on 448 ranks. They report restoration times of
20 to 48 s. Thus, assuming linear scaling, we expect checkpoint
creation times of approximately 1 s and restoration times of
approximately 2 s for 16MiB of data. Lu’s algorithm is thus
an order of magnitude slower than ReStore and Fenix. We
assume this is due to the fact, that Lu’s algorithm uses erasure
codes (Section IV-C).

To summarize, ReStore can be configured to create and
restore from checkpoints in the same manner and approximately
the same time as existing checkpointing solutions. ReStore
additionally has functionality to (a) increase the replication
level (b) restore the data in a scattered manner to multiple
ranks instead of to one rank and (c) enable ID permutations
to decrease time to restore the data by an order of magnitude
while doubling the time taken to create a checkpoint. The latter
option is for example useful when creating a replicated storage
for the input data of a program, which has to be partially reload
after a failure.

VII. CONCLUSION AND FUTURE WORK

We show that by using a suitable data distribution strategy,
recovery of lost data after a failure is possible in tens to
hundreds of milliseconds, depending on the amount of data
loaded. We achieve this by using a distribution scheme for
redundant copies that ensures a low probability of data loss
and a rapid recovery of the data. We also provide the – to the
best of our knowledge – first in-memory checkpointing library
which supports shrinking recovery, that is ReStore is able to
restore the data of the failed PEs scattered to multiple or all
surviving ranks instead of to a single respawned or spare PE.
This alleviates the need for the application to allocate spare
nodes which participate in the computation only in case of a
node failure, thus increasing computation efficiency. We supply
an analysis of the probability of irrecovable data loss and

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

Fig. 7. Loading performance of ReStore vs. loading from files on the clusters
parallel file system, representing the approach of most checkpointing libraries.

propose a data distribution to easily restore lost replicas after a
failure. Experimental and theoretical evaluation of the proposed
data redistribution after a node failure constitutes part of future
work. This further decreases the probability to lose all copies
of any data. With our C++ library, we were able to improve
recovery performance of FT-RAxML-NG [22], [36] by up to
two orders of magnitude. By using the proposal implementation
of the fault-tolerance mechanisms included in the new MPI
4.0 standard, our library can be used by applications on HPC
systems once the new standard is implemented. We also plan
on evaluating ReStore for checkpointing of dynamic program
state and extend its API for different data formats (e.g. 2D
data).

ACKNOWLEDGMENTS

The authors gratefully acknowledge the Gauss Centre for
Supercomputing e.V. (www.gauss-centre.eu) for funding this
project by providing computing time on the GCS Super-
computer SuperMUC-NG at Leibniz Supercomputing Centre
(www.lrz.de). Part of this work was funded by the Klaus
Tschira foundation. This work was supported by a grant from
the Ministry of Science, Research and the Arts of Baden-
Württemberg (Az: 33-7533.-9-10/20/2) to Peter Sanders and
Alexandros Stamatakis. This project has received funding from
the European Research Council (ERC)8 under the European
Union’s Horizon 2020 research and innovation program (grant
agreement No. 882500). We thank an anonymous reviewer for
pointing out that the simple approximation of the irrecoverable
data loss given in Section IV-D is very accurate for small f .

8

Let r = 3 and p = 500 with prime factors 2 and 5.
The first hash function evaluates to f(x) = f(y) = 1.
Further hs(x) = 3 3 (coprime to p)
and hs(y) = 20 E (not coprime to p), hs′ (y) = 7 3

PE f(x) + 0 · hs(x) = 1 3
PE f(x) + 1 · hs(x) = 4 3
PE f(x) + 2 · hs(x) = 7 3

PE f(y) + 0 · h′
s(y) = 1 3

PE f(y) + 1 · h′
s(y) = 8 E

PE f(y) + 2 · h′
s(y) = 15 3

PE f(y) + 3 · h′
s(y) = 22 3

Block x is stored on

3 PE is alive; E PE failed

Block y is stored on

Fig. 8. A modified data distribution enabling easy recovery of replicas (Data
Distribution A). r denotes the number of replicas, p the number of nodes, f
and h are hash functions.

APPENDIX
CHOOSING A RANDOM PERMUTATION IN SECTION IV-E
1) Data Distribution A: Let f and hs be fast-to-compute

hash functions that avoid collisions, where s is a seed used
to parametrize hs. We compute the nodes where a block x
is located by evaluating ρx(k) = (f(x) + k · hs(x)) mod p
for k = 0, 1, . . . until we find r nodes that are still alive
(Figure 8). This scheme is analogous to collision resolution
in hash tables using open addressing and double hashing. The
probing sequences ρx and ρy are likely to be different for two
blocks x and y, even if ρx(0) = ρy(0).

If L(x, k) = L(x, j) for k < j < p, the entire sequence will
repeat from that point on, yielding recovery of lost replicas
impossible after more than j failures. We can avoid this by
requiring the seeded hash function hs to only yield integers
that are coprime to p. We archive this by trying different seeds
s for hs until hs(x) is coprime to p. For this purpose, we draw
a sequence of seeds at program startup. The probability of two
random integers being coprime is 6/π2 [41]. For a random9 p,
the expected number of differently seeded hash function we
have to evaluate is thus

1 +
∞∑

n=1

(
1− 6

π2

)n

=
7

6

(
π2 − 6

)
≈ 1.65

To check if hs(x) is coprime to p, we divide hs(x) by every
prime factor of p, which we factorize once during program
startup. The Erdős-Kac theorem [42] states that the number
of distinct prime factors m of a random number below p̂
approximately follows the normal distribution with a mean and
variance of log log p̂. For example, a node count of p < 109,
has on average m = 3 ± 1.7 prime factors. For node counts
p < 109 (m = 3) we therefore expect < m ·1.65 = 5 divisions
to check for coprimality each time we need to compute on
which nodes to store a block.

2) Data Distribution B: Alternatively, we can deploy a
classical seeded pseudorandom permutation ρs on [0, p− 1] to
generate an independent probing sequence for each element x.
Let f be a collision avoiding hash function. We then use f(x)
as the seed for ρ. As ρ we could for example use a Feistel
Network-based permutation with f(x) as the seed and cycle
walking for values of p which are not a power of two.

9Though realistically, we cannot expect p to be random.

REFERENCES

[1] L. Hübner, D. Hespe, P. Sanders, and A. Stamatakis, “Restore:
In-memory replicated storage for rapid recovery in fault-tolerant
algorithms,” in 2022 IEEE/ACM 12th Workshop on Fault Tolerance for
HPC at eXtreme Scale (FTXS), 2022, pp. 24–35. [Online]. Available:
https://doi.org/10.1109/FTXS56515.2022.00008

[2] J. Shalf, S. S. Dosanjh, and J. Morrison, “Exascale computing technology
challenges,” in High Performance Computing for Computational Science
- VECPAR 2010 - 9th International conference, Berkeley, CA, USA, June
22-25, 2010, Revised Selected Papers, ser. Lecture Notes in Computer
Science, J. M. L. M. Palma, M. J. Daydé, O. Marques, and J. C.
Lopes, Eds., vol. 6449. Springer, 2010, pp. 1–25. [Online]. Available:
https://doi.org/10.1007/978-3-642-19328-6 1

[3] M. Gamell, D. S. Katz, H. Kolla, J. Chen, S. Klasky, and M. Parashar,
“Exploring automatic, online failure recovery for scientific applications
at extreme scales,” in International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2014, New Orleans,
LA, USA, November 16-21, 2014, T. Damkroger and J. J. Dongarra,
Eds. IEEE Computer Society, 2014, pp. 895–906. [Online]. Available:
https://doi.org/10.1109/SC.2014.78

[4] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and
M. Snir, “Toward exascale resilience: 2014 update,” Supercomput.
Front. Innov., vol. 1, no. 1, pp. 5–28, 2014. [Online]. Available:
https://doi.org/10.14529/jsfi140101

[5] J. Dongarra, T. Herault, and Y. Robert1, Fault-Tolerance Techniques
for High-Performance Computing, ser. Computer Communications and
Networks. Springer, Cham, 2015, no. 1.

[6] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. F. Belak, P. Bose, F. Cappello, B. Carlson, A. A. Chien,
P. Coteus, N. DeBardeleben, P. C. Diniz, C. Engelmann, M. Erez,
S. Fazzari, A. Geist, R. Gupta, F. Johnson, S. Krishnamoorthy, S. Leyffer,
D. Liberty, S. Mitra, T. S. Munson, R. Schreiber, J. Stearley, and E. V.
Hensbergen, “Addressing failures in exascale computing,” Int. J. High
Perform. Comput. Appl., vol. 28, no. 2, pp. 129–173, 2014. [Online].
Available: https://doi.org/10.1177/1094342014522573

[7] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira, “Adaptive
incremental checkpointing for massively parallel systems,” in Proceedings
of the 18th Annual International Conference on Supercomputing, ICS
2004, Saint Malo, France, June 26 - July 01, 2004, P. Feautrier, J. R.
Goodman, and A. Seznec, Eds. ACM, 2004, pp. 277–286. [Online].
Available: https://doi.org/10.1145/1006209.1006248

[8] L. A. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
N. Maruyama, and S. Matsuoka, “FTI: high performance fault tolerance
interface for hybrid systems,” in Conference on High Performance
Computing Networking, Storage and Analysis, SC 2011, Seattle,
WA, USA, November 12-18, 2011, S. A. Lathrop, J. Costa, and
W. Kramer, Eds. ACM, 2011, pp. 32:1–32:32. [Online]. Available:
https://doi.org/10.1145/2063384.2063427

[9] F. Shahzad, J. Thies, M. Kreutzer, T. Zeiser, G. Hager, and G. Wellein,
“CRAFT: A library for easier application-level checkpoint/restart
and automatic fault tolerance,” IEEE Trans. Parallel Distributed
Syst., vol. 30, no. 3, pp. 501–514, 2019. [Online]. Available:
https://doi.org/10.1109/TPDS.2018.2866794

[10] B. Nicolae, A. Moody, E. Gonsiorowski, K. Mohror, and F. Cappello,
“Veloc: Towards high performance adaptive asynchronous checkpointing
at large scale,” in 2019 IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2019, Rio de Janeiro, Brazil, May
20-24, 2019. IEEE, 2019, pp. 911–920. [Online]. Available:
https://doi.org/10.1109/IPDPS.2019.00099

[11] K. Teranishi and M. A. Heroux, “Toward local failure local recovery
resilience model using MPI-ULFM,” in 21st European MPI Users’
Group Meeting, EuroMPI/ASIA ’14, Kyoto, Japan - September 09 - 12,
2014, J. J. Dongarra, Y. Ishikawa, and A. Hori, Eds. ACM, 2014,
p. 51. [Online]. Available: https://doi.org/10.1145/2642769.2642774

[12] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “Design,
modeling, and evaluation of a scalable multi-level checkpointing system,”
in Conference on High Performance Computing Networking, Storage and
Analysis, SC 2010, New Orleans, LA, USA, November 13-19, 2010. IEEE,
2010, pp. 1–11. [Online]. Available: https://doi.org/10.1109/SC.2010.18

[13] M. Besta and T. Hoefler, “Fault tolerance for remote memory access
programming models,” in The 23rd International Symposium on
High-Performance Parallel and Distributed Computing, HPDC’14,
Vancouver, BC, Canada - June 23 - 27, 2014, B. Plale, M. Ripeanu,

F. Cappello, and D. Xu, Eds. ACM, 2014, pp. 37–48. [Online].
Available: https://doi.org/10.1145/2600212.2600224

[14] C.-D. Lu, “Scalable diskless checkpointing for large parallel systems,”
phdthesis, University of Illinois at Urbana-Champaign, 2005.

[15] V. Bartsch, R. Machado, D. Merten, M. Rahn, and F. Pfreundt,
“GASPI/GPI in-memory checkpointing library,” in Euro-Par 2017:
Parallel Processing - 23rd International Conference on Parallel and
Distributed Computing, Santiago de Compostela, Spain, August 28
- September 1, 2017, Proceedings, ser. Lecture Notes in Computer
Science, F. F. Rivera, T. F. Pena, and J. C. Cabaleiro, Eds.,
vol. 10417. Springer, 2017, pp. 497–508. [Online]. Available:
https://doi.org/10.1007/978-3-319-64203-1 36

[16] W. Bland, A. Bouteiller, T. Hérault, G. Bosilca, and J. J. Dongarra, “Post-
failure recovery of MPI communication capability: Design and rationale,”
Int. J. High Perform. Comput. Appl., vol. 27, no. 3, pp. 244–254, 2013.
[Online]. Available: https://doi.org/10.1177/1094342013488238

[17] R. A. Ashraf, S. Hukerikar, and C. Engelmann, “Shrink or substitute:
Handling process failures in HPC systems using in-situ recovery,” in
26th Euromicro International Conference on Parallel, Distributed and
Network-based Processing, PDP 2018, Cambridge, United Kingdom,
March 21-23, 2018, I. Merelli, P. Liò, and I. V. Kotenko, Eds.
IEEE Computer Society, 2018, pp. 178–185. [Online]. Available:
https://doi.org/10.1109/PDP2018.2018.00032

[18] M. M. Ali, P. E. Strazdins, B. Harding, and M. Hegland,
“Complex scientific applications made fault-tolerant with the sparse
grid combination technique,” Int. J. High Perform. Comput. Appl.,
vol. 30, no. 3, pp. 335–359, 2016. [Online]. Available: https:
//doi.org/10.1177/1094342015628056

[19] M. Obersteiner, A. Parra-Hinojosa, M. Heene, H. Bungartz, and
D. Pflüger, “A highly scalable, algorithm-based fault-tolerant solver for
gyrokinetic plasma simulations,” in Proceedings of the 8th Workshop
on Latest Advances in Scalable Algorithms for Large-Scale Systems,
ScalA@SC 2017, Denver, CO, USA, November 13, 2017, V. N.
Alexandrov, A. Geist, and J. J. Dongarra, Eds. ACM, 2017, pp. 2:1–2:8.
[Online]. Available: https://doi.org/10.1145/3148226.3148229

[20] I. Laguna, D. F. Richards, T. Gamblin, M. Schulz, B. R. de Supinski,
K. Mohror, and H. Pritchard, “Evaluating and extending user-level
fault tolerance in MPI applications,” Int. J. High Perform. Comput.
Appl., vol. 30, no. 3, pp. 305–319, 2016. [Online]. Available:
https://doi.org/10.1177/1094342015623623

[21] C. Engelmann and A. Geist, “A diskless checkpointing algorithm
for super-scale architectures applied to the fast fourier transform,” in
1st International Workshop on Challenges of Large Applications in
Distributed Environments, CLADE@HPDC 2003, Seattle, WA, USA,
June 21, 2003. IEEE Computer Society, 2003, p. 47. [Online].
Available: https://doi.org/10.1109/CLADE.2003.1209999

[22] L. Hübner, A. M. Kozlov, D. Hespe, P. Sanders, and A. Stamatakis,
“Exploring parallel MPI fault tolerance mechanisms for phylogenetic
inference with RAxML-NG,” Bioinformatics, vol. 37, no. 22, pp. 4056–
4063, 2021.

[23] M. Vijay and R. Mittal, “Algorithm-based fault tolerance: a review,”
Microprocess. Microsystems, vol. 21, no. 3, pp. 151–161, 1997. [Online].
Available: https://doi.org/10.1016/S0141-9331(97)00029-X

[24] G. Bosilca, R. Delmas, J. J. Dongarra, and J. Langou, “Algorithmic
based fault tolerance applied to high performance computing,” CoRR, vol.
abs/0806.3121, 2008. [Online]. Available: http://arxiv.org/abs/0806.3121

[25] B. Memishi, S. Ibrahim, M. S. Pérez, and G. Antoniu, “Fault tolerance
in MapReduce: A survey,” in Resource Management for Big Data
Platforms - Algorithms, Modelling, and High-Performance Computing
Techniques, ser. Computer Communications and Networks, F. Pop,
J. Kolodziej, and B. D. Martino, Eds. Springer, 2016, pp. 205–240.
[Online]. Available: https://doi.org/10.1007/978-3-319-44881-7 11

[26] N. Kohl, J. Hötzer, F. Schornbaum, M. Bauer, C. Godenschwager,
H. Köstler, B. Nestler, and U. Rüde, “A scalable and extensible
checkpointing scheme for massively parallel simulations,” Int. J. High
Perform. Comput. Appl., vol. 33, no. 4, 2019. [Online]. Available:
https://doi.org/10.1177/1094342018767736

[27] S. P. Gavaskar and C. D. V. Subbarao, “A survey of distributed fault
tolerance strategies,” International Journal of Advanced Research in
Computer and Communication Engineering, vol. 2, no. 11, Nov. 2013.

[28] J. S. Plank, K. Li, and M. A. Puening, “Diskless checkpointing,” IEEE
Trans. Parallel Distributed Syst., vol. 9, no. 10, pp. 972–986, 1998.
[Online]. Available: https://doi.org/10.1109/71.730527

[29] M. J. Gossman, B. Nicolae, J. C. Calhoun, F. Cappello, and M. C.
Smith, “Towards aggregated asynchronous checkpointing,” CoRR, vol.
abs/2112.02289, 2021. [Online]. Available: https://arxiv.org/abs/2112.
02289

[30] T. Hérault, Y. Robert, A. Bouteiller, D. C. Arnold, K. B.
Ferreira, G. Bosilca, and J. J. Dongarra, “Checkpointing strategies
for shared high-performance computing platforms,” Int. J. Netw.
Comput., vol. 9, no. 1, pp. 28–52, 2019. [Online]. Available:
http://www.ijnc.org/index.php/ijnc/article/view/195

[31] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in 2010 IEEE 26th symposium on mass storage
systems and technologies (MSST). Ieee, 2010, pp. 1–10.

[32] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in
Proceedings of the 9th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2012, San Jose, CA, USA, April
25-27, 2012, S. D. Gribble and D. Katabi, Eds. USENIX Association,
2012, pp. 15–28. [Online]. Available: https://www.usenix.org/conference/
nsdi12/technical-sessions/presentation/zaharia

[33] A. Bouteiller, “ULFM 4.0.2u1 release notes,” online, Nov. 2019.
[Online]. Available: https://fault-tolerance.org/2019/11/18/ulfm-4-0-2u1/

[34] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the Society for Industrial and Applied Mathematics, vol. 8,
no. 2, pp. 300–304, jun 1960.

[35] T. Chiueh and P. Deng, “Evaluation of checkpoint mechanisms for

massively parallel machines,” in Digest of Papers: FTCS-26, The Twenty-
Sixth Annual International Symposium on Fault-Tolerant Computing,
Sendai, Japan, June 25-27, 1996. IEEE Computer Society, 1996, pp.
370–379. [Online]. Available: https://doi.org/10.1109/FTCS.1996.534622

[36] A. M. Kozlov, D. Darriba, T. Flouri, B. Morel, and A. Stamatakis,
“Raxml-ng: a fast, scalable and user-friendly tool for maximum likelihood
phylogenetic inference,” Bioinform., vol. 35, no. 21, pp. 4453–4455,
2019. [Online]. Available: https://doi.org/10.1093/bioinformatics/btz305

[37] A. Kozlov, “Models, optimizations, and tools forlarge-scale phylogenetic
inference,handling sequence uncertainty,and taxonomic validation,” Ph.D.
dissertation, Karlsruher Institut für Technologie (KIT), Jan. 2018.

[38] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” in Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, vol. 1. Oakland, CA, USA,
1967, pp. 281–297.

[39] A. J. Aberer, K. Kobert, and A. Stamatakis, “ExaBayes: massively parallel
Bayesian tree inference for the whole-genome era,” Molecular biology
and evolution, vol. 31, no. 10, pp. 2553–2556, 2014.

[40] Cray, “Cray xk7 specifications,” online, Jan. 2013. [Online].
Available: https://web.archive.org/web/20130106091417/http://www.cray.
com/Products/Computing/XK7/Specifications.aspx

[41] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers.
At the Clarendon Press, 1960.

[42] P. Erdos and M. Kac, “The gaussian law of errors in the theory of
additive number theoretic functions,” American Journal of Mathematics,
vol. 62, no. 1/4, p. 738, 1940.

	Introduction
	Preliminaries
	Related Work
	Reproducibility Study

	In-Memory Replica for Fast Recovery
	General Framework
	Breaking Up Access Patterns for Faster Recovery
	Memory Usage
	Probability of Irrecoverable Data Loss.
	Recovering Lost Replicas After a Node Failure

	Implementation
	Experimental Evaluation
	Environment and Experimental Setup
	Isolated Evaluation
	Number of Redundant Copies.
	Performance.

	Applications
	Comparison with Other Approaches
	Comparing to Disk-Based Approaches
	Comparing to Reported Measurements

	Conclusion and Future Work
	Appendix: Choosing a Random Permutation in sec:restoreredundancy
	Data Distribution A
	Data Distribution B

	References

