
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of
existing products for an assembly oriented product family identification

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach.
© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

Keywords: Assembly; Design method; Family identification

1. Introduction

Due to the fast development in the domain of
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global
competition with competitors all over the world. This trend,
which is inducing the development from macro to micro
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1].
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find.

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical).

Classical methodologies considering mainly single products
or solitary, already existing product families analyze the
product structure on a physical level (components level) which
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this

Procedia CIRP 88 (2020) 25–30

2212-8271 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer review under the responsibility of the scientific committee of the 13th CIRP Conference on Intelligent Computation in Manufacturing
Engineering, 17-19 July 2019, Gulf of Naples, Italy.
10.1016/j.procir.2020.05.005

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer review under the responsibility of the scientific committee of the 13th CIRP Conference on Intelligent Computation in Manufacturing
Engineering, 17-19 July 2019, Gulf of Naples, Italy.

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2019) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2019 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 13th CIRP Conference on Intelligent Computation in Manufacturing Engineering.

13th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME ˈ19

Autonomous production control for matrix production
based on deep Q-learning

Constantin Hofmanna,*, Carmen Krahea, Nicole Strickera, Gisela Lanzaa

aKarlsruhe Insitute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany

* Corresponding author. Tel.: +49 152 39502583; fax: +49 721 608 - 45005. E-mail address: constantin.hofmann@kit.edu

Abstract

Matrix production refers to a highly flexible production system based on independent production cells that are linked by a flexible transportation
system. The production control system decides on the sequence of the production steps of each order and their allocation to specific time slots on
the available machines. This paper presents an approach based on deep Q-learning that is able to cope with the dynamic events of the system.
The performance of the machine learning-based production control is compared to a static rule-based approach. Additionally, the effects of
coordination between the independent agents on throughput time is shown.
© 2019 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 13th CIRP Conference on Intelligent Computation in Manufacturing
Engineering.

Keywords: Flexible manufacturing system (FMS); Scheduling; Adaptive control; Machine Learning; Neural network

1. Introduction

Producing companies operate in a market environment
constantly demanding state-of-the-art individualized or
regionally adapted products [1]. The results are an increased
number of variants in production and takt time losses due to
varying cycle times. In the course, matrix production as takt
time independent concept has received much attention both in
practice as well as in research. Matrix production relies on a
free material flow between work stations to exploit operation
and routing flexibility [2]. To benefit from these degrees of
freedom, an appropriate production control system is required.
To satisfy the demand for short calculation times, autonomous
multi-agent approaches have proven suitable [3]. Previous
simulation studies on the performance of a rule-based multi-
agent production control in scenarios of various degrees of
operational and routing flexibility have shown that a rule-based
approach cannot effectively exploit the given degrees of
freedom [4]. Thus, two working hypothesis can be derived:

H1: A production control system based on machine learning
adapts better to dynamic system states then the corresponding
rule-based approach.

H2: An increase in coordination between the agents reduces
the number of blocking states and reduces the throughput time
as a result.

To safely evaluate hypothesis H1 and H2, the discrete event
simulation model of a matrix production already introduced in
[4] is used as substitute for a real production system. Intelligent
product agents decide which process should be performed on
which machine based on a machine learning approach. It is
assumed that all necessary production resources, namely
personnel, materials and tools, are constantly available, that
machine break-downs only occur in-between production steps
and that cycle times are deterministic.

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2019) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2019 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 13th CIRP Conference on Intelligent Computation in Manufacturing Engineering.

13th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME ˈ19

Autonomous production control for matrix production
based on deep Q-learning

Constantin Hofmanna,*, Carmen Krahea, Nicole Strickera, Gisela Lanzaa

aKarlsruhe Insitute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany

* Corresponding author. Tel.: +49 152 39502583; fax: +49 721 608 - 45005. E-mail address: constantin.hofmann@kit.edu

Abstract

Matrix production refers to a highly flexible production system based on independent production cells that are linked by a flexible transportation
system. The production control system decides on the sequence of the production steps of each order and their allocation to specific time slots on
the available machines. This paper presents an approach based on deep Q-learning that is able to cope with the dynamic events of the system.
The performance of the machine learning-based production control is compared to a static rule-based approach. Additionally, the effects of
coordination between the independent agents on throughput time is shown.
© 2019 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 13th CIRP Conference on Intelligent Computation in Manufacturing
Engineering.

Keywords: Flexible manufacturing system (FMS); Scheduling; Adaptive control; Machine Learning; Neural network

1. Introduction

Producing companies operate in a market environment
constantly demanding state-of-the-art individualized or
regionally adapted products [1]. The results are an increased
number of variants in production and takt time losses due to
varying cycle times. In the course, matrix production as takt
time independent concept has received much attention both in
practice as well as in research. Matrix production relies on a
free material flow between work stations to exploit operation
and routing flexibility [2]. To benefit from these degrees of
freedom, an appropriate production control system is required.
To satisfy the demand for short calculation times, autonomous
multi-agent approaches have proven suitable [3]. Previous
simulation studies on the performance of a rule-based multi-
agent production control in scenarios of various degrees of
operational and routing flexibility have shown that a rule-based
approach cannot effectively exploit the given degrees of
freedom [4]. Thus, two working hypothesis can be derived:

H1: A production control system based on machine learning
adapts better to dynamic system states then the corresponding
rule-based approach.

H2: An increase in coordination between the agents reduces
the number of blocking states and reduces the throughput time
as a result.

To safely evaluate hypothesis H1 and H2, the discrete event
simulation model of a matrix production already introduced in
[4] is used as substitute for a real production system. Intelligent
product agents decide which process should be performed on
which machine based on a machine learning approach. It is
assumed that all necessary production resources, namely
personnel, materials and tools, are constantly available, that
machine break-downs only occur in-between production steps
and that cycle times are deterministic.

26	 Constantin Hofmann et al. / Procedia CIRP 88 (2020) 25–30
C. Hofmann et al. / Procedia CIRP 00 (2019) 000–000

2. Related Work

The research conducted in the collaborative research center
(SFB) 637 Autonomous Cooperation Logistic Processes
explores the performance of various autonomous production
control methods for a simplified matrix production layout
limited to forward-directed material flow and a fixed process
sequence. The simulation studies on both static decision rules
[5] and bio-inspired control mechanisms [6] revealed that
autonomous decision mechanism show good dynamic behavior
especially concerning unforeseen events. However, it could be
concluded that no single decision mechanism is always
dominant, instead the performance depends on the underlying
system dynamics. Building on the findings of SFB 637, Echsler
Minguillon and Lanza contributed a simulation study focusing
on the choice of the best-performing priority rule depending on
the current system state using reinforcement learning [7].
Stricker et al. examine a reinforcement learning approach using
Q-learning for adaptive order dispatching in wafer fabrication.
In contrast to the previous works of [7], this approach does not
rely on priority rules [8]. Similar to their work, Stegherr
considers reinforcement learning for order dispatching in a
multi-agent setting [9]. The learning agents act simultaneously
and implement a coordination mechanism. The research on the
application of machine learning approaches, notably
reinforcement learning for scheduling, shows that these
production control mechanisms are well suited to cope with
dynamic events. Mnih et al. introduced a Q-learning algorithm
for Atari games capable of mastering advanced policies [10].
Their variant of the Q-learning algorithm relies on a neural
network as non-linear function approximation procedure. In
contrast to SFB 637, e.g. [6] or [11], in this paper a fully
connected matrix and variable process sequences are
considered. Therefore the production control system needs to
decide on the next process step as well as the machine where
the production step should be performed.

3. Methodology

The scheduling problem can be modeled as finite Markov
Decision Problem (MDP). Each product agent attempts to
maximize its reward R by finding the optimal action a
depending on the state s of the environment. The environment
responds to the agent's action by changing its state. A typical
objective in the context of scheduling is to minimize
throughput time. However, throughput time, as a result of a
sequence of actions, can only be observed after the last process
step. Therefore, a solution approach capable of handling this
temporal difference is required. To test hypothesis H1, the
dynamics of the system are increased by increasing the demand
volatility. Demand is modelled using sinus-shaped curves,
comparable to [5].

Fig. 1. Precedence graph of both product families

3.1. Simulation model

The simulation model serves as environment to generate
training data for the neural network approximating the Q
function and to evaluate the performance of the developed
production control, see Fig.2.

The production program consists of two product families
with three variants each. Each product variant requires five
process steps, see Fig. 1. Orders arrive with an normally
distributed inter-arrival time of N(70,5).

The production system is defined by ten workstations of
which some are capable of performing multiple processes. The
proposed system represents a fully connected matrix
production where all workstations are interlinked. Break-
downs occur only during idle times, for the mean time between
failures (MTBF) and mean time to repair (MTTR) values see
Table 1. For each scenario, the results of ten simulation runs,
representing a production period of six months, have been
averaged.

Table 1. Simulation model

Parameter Value

Simulation period 6 months

Simulation runs 10

Cycle time [min.] 100

Inter-arrival time [min.] N(70,5)

MTTF [min.] 5000

MTTR [min.] N(5,1)

WIP level 10

Set-up same product same process [min.] 1

Set-up different product or process [min.] 5

Set-up different product and process [min.] 10

3.2. Markov decision problem (MDP)

The discussed scheduling problem can be reduced to a MDP
represented by state, action and reward tuples.

The state vector incorporates all information regarding the
environment. To enable coordination between the
independently acting agents, the state vector contains
information about other already dispatched product agents as
well. At time t, the state vector st consists of the expected end
times for each requested process, the current throughput time
and the remaining open processes. To improve coordination,

Fig. 2. Interaction of the simulation and the neural network for Q-learning

C. Hofmann et al. / Procedia CIRP 00 (2019) 000–000 3

the vector additionally includes entries for all open processes
for each dispatched agent. Among these are the expected end
times of the current process steps and the expected total
throughput times of the dispatched agent. The knowledge about
the current throughput times in combination with the remaining
process steps allows the agents to estimate whether their own
actions potentially have an impact on other agents.

Each agent can choose between a set of actions composed
of machine and process combinations. Additionally, an agent
can decide to wait. This action is particularly useful if there is
no machine offer (e.g. due to machine failure) or to give
priority to another agent. The resulting action space is encoded
using real numbers. Once an agent has chosen an action, it is
executed and thus affects the transition to the subsequent state
st+1. The subsequent state of a transition represents the start
state for the next transition.

Since the agents are conditioned to find an optimal behavior
regarding throughput time, the rewards for their actions is
calculated based on the achieved throughput time. The reward
function is composed of two parts: an immediate reward for the
selected action and a delayed reward for the achieved
throughput time that is determined at the end of production.
The objective of the immediate reward is to accelerate the
learning process by rewarding possible actions and punishing
blocking actions. A blocking state occurs when an agent having
several options takes a decision that leaves another agent
without options. These decisions are still part of the action
space but lead to lower rewards as the reward is based on the
overall throughput time of all agents.

Since the reward should be mapped to [-1,1], the throughput
times need to be transformed. Taking into account the small
rewards for feasible actions of 0.01 and a total of ten decisions,
the upper bound of the remaining interval is 0.9. The lower
bound of the reward function R(s,a) needs to be limited to 0,
otherwise the option waiting would represent a favorable
behavior to the agent.

Equation 1 shows the calculation for the throughput time
(TPT) depended part of the reward function g(TPT).

𝑔𝑔𝑔𝑔(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) = 0.9 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)²
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)²

 (1)

To test hypothesis H2, the level of coordination is increased.
To enforce coordination between the agents, actions resulting
in blocking state for other agents are punished and the reward
is given for the sum of all throughput times.

3.3. Q-Learning

A major difficulty when dealing with throughput time as
objective is that the effect of a single action cannot be evaluated
immediately. Therefore temporal difference (TD) Learning has
to be used, e.g. Q-learning. Bootstrapping refers to the property
of these methods to rely on estimates instead of the actual final
outcomes [12]. The behavior strategy of an agent in a MDP is
fully defined by a policy π that only depends on the current state
st. The action-value function (q-function) qπ(s,a) describes the
expected return starting from state s, taking action a, assuming
a certain policy π for all future actions.

𝑞𝑞𝑞𝑞𝜋𝜋𝜋𝜋(𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎) = ∑ [∑ 𝛾𝛾𝛾𝛾𝑘𝑘𝑘𝑘𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡+𝑘𝑘𝑘𝑘|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑠𝑠𝑠𝑠,𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡 = 𝑎𝑎𝑎𝑎∞
𝑘𝑘𝑘𝑘=0]𝜋𝜋𝜋𝜋 (2)

Thereby γ describes the discount factor for future rewards
Rt+k+1 with γ → 1 for farsighted and γ → 0 for myopic
evaluation. In the evaluated scenario, it is set to 0.99. k
represents the number of considered future actions.

One possibility to solve an MDP is to find the optimal q-
function q*, i.e. the q-function of an optimal policy qπ*. An
optimal policy satisfies the Bellman optimality equation:

𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚
𝜋𝜋𝜋𝜋

𝑞𝑞𝑞𝑞𝜋𝜋𝜋𝜋(𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎) = ∑ �𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 + 𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚
𝑎𝑎𝑎𝑎′

 𝑞𝑞𝑞𝑞∗(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡+1,𝑎𝑎𝑎𝑎′)|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑠𝑠𝑠𝑠,𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡 = 𝑎𝑎𝑎𝑎�𝜋𝜋𝜋𝜋

 (3)

Hence, the optimal q-value q* of a state-action pair describes
the highest expected return for a given state s, taking action a
and following an optimal policy π* from there on. To solve the
Bellman equation and to find the optimal q-function, iterative
methods such as Q-learning can be used. Q-learning is model-
free. Therefore the q-value for each state-action-pair is
estimated from experience that agents gain by interacting with
the environment. No model of the environment has to be known
[12]. In the following, the estimated q-function is noted by Q.
Since Q-learning is a temporal difference method, the value of
a state is approximated by the immediate reward Rt and the
estimated future return from state St+1 on. The Q-learning
update rule minimizes the difference of the actual and
estimated Q-value, called temporal difference error.

𝑄𝑄𝑄𝑄(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ,𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡) ← 𝑄𝑄𝑄𝑄(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ,𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡) + 𝛼𝛼𝛼𝛼 ∗ �𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 + 𝛾𝛾𝛾𝛾 ∗ 𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚
𝑎𝑎𝑎𝑎′

 𝑄𝑄𝑄𝑄(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡+1,𝑎𝑎𝑎𝑎′) −

𝑄𝑄𝑄𝑄(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ,𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡)� (4)

Q-learning learns off-policy. That means that the policy to
choose the next action (behavior policy) is different to the
policy for which the Q-values are learned for (target policy).
To ensure sufficient exploration during the learning phase, the
behavior policy is explorative ε-greedy.

In case of a large number of possible state-action pairs, the
q-function cannot be expressed explicitly and thus has to be
approximated [12]. Neural networks with weights θ are
common non-linear approximators for this task. In this paper,
Q-learning is used in combination with a fully connected feed
forward neural network. Even though multiple product agents
act simultaneously in the production system, there is only one
neural network with weights θ that is trained to approximate
the q-function for all different product types. The input of the
network is given by the respective state vector st. This
information is processed by the neural network and mapped to
a corresponding, estimated Q-value of all actions in the given
state.

The initial weights θ of the neural network are updated with
a variant of stochastic gradient descent (Adam-optimizer).
Hereby a sequence of loss functions Lθi is minimized in each
iteration i see equation 5.

𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖(𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖) = ∑ = [(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑄𝑄𝑄𝑄(𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎,𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖))²]𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎 ~𝜌𝜌𝜌𝜌(∙) (5)

	 Constantin Hofmann et al. / Procedia CIRP 88 (2020) 25–30� 27
C. Hofmann et al. / Procedia CIRP 00 (2019) 000–000

2. Related Work

The research conducted in the collaborative research center
(SFB) 637 Autonomous Cooperation Logistic Processes
explores the performance of various autonomous production
control methods for a simplified matrix production layout
limited to forward-directed material flow and a fixed process
sequence. The simulation studies on both static decision rules
[5] and bio-inspired control mechanisms [6] revealed that
autonomous decision mechanism show good dynamic behavior
especially concerning unforeseen events. However, it could be
concluded that no single decision mechanism is always
dominant, instead the performance depends on the underlying
system dynamics. Building on the findings of SFB 637, Echsler
Minguillon and Lanza contributed a simulation study focusing
on the choice of the best-performing priority rule depending on
the current system state using reinforcement learning [7].
Stricker et al. examine a reinforcement learning approach using
Q-learning for adaptive order dispatching in wafer fabrication.
In contrast to the previous works of [7], this approach does not
rely on priority rules [8]. Similar to their work, Stegherr
considers reinforcement learning for order dispatching in a
multi-agent setting [9]. The learning agents act simultaneously
and implement a coordination mechanism. The research on the
application of machine learning approaches, notably
reinforcement learning for scheduling, shows that these
production control mechanisms are well suited to cope with
dynamic events. Mnih et al. introduced a Q-learning algorithm
for Atari games capable of mastering advanced policies [10].
Their variant of the Q-learning algorithm relies on a neural
network as non-linear function approximation procedure. In
contrast to SFB 637, e.g. [6] or [11], in this paper a fully
connected matrix and variable process sequences are
considered. Therefore the production control system needs to
decide on the next process step as well as the machine where
the production step should be performed.

3. Methodology

The scheduling problem can be modeled as finite Markov
Decision Problem (MDP). Each product agent attempts to
maximize its reward R by finding the optimal action a
depending on the state s of the environment. The environment
responds to the agent's action by changing its state. A typical
objective in the context of scheduling is to minimize
throughput time. However, throughput time, as a result of a
sequence of actions, can only be observed after the last process
step. Therefore, a solution approach capable of handling this
temporal difference is required. To test hypothesis H1, the
dynamics of the system are increased by increasing the demand
volatility. Demand is modelled using sinus-shaped curves,
comparable to [5].

Fig. 1. Precedence graph of both product families

3.1. Simulation model

The simulation model serves as environment to generate
training data for the neural network approximating the Q
function and to evaluate the performance of the developed
production control, see Fig.2.

The production program consists of two product families
with three variants each. Each product variant requires five
process steps, see Fig. 1. Orders arrive with an normally
distributed inter-arrival time of N(70,5).

The production system is defined by ten workstations of
which some are capable of performing multiple processes. The
proposed system represents a fully connected matrix
production where all workstations are interlinked. Break-
downs occur only during idle times, for the mean time between
failures (MTBF) and mean time to repair (MTTR) values see
Table 1. For each scenario, the results of ten simulation runs,
representing a production period of six months, have been
averaged.

Table 1. Simulation model

Parameter Value

Simulation period 6 months

Simulation runs 10

Cycle time [min.] 100

Inter-arrival time [min.] N(70,5)

MTTF [min.] 5000

MTTR [min.] N(5,1)

WIP level 10

Set-up same product same process [min.] 1

Set-up different product or process [min.] 5

Set-up different product and process [min.] 10

3.2. Markov decision problem (MDP)

The discussed scheduling problem can be reduced to a MDP
represented by state, action and reward tuples.

The state vector incorporates all information regarding the
environment. To enable coordination between the
independently acting agents, the state vector contains
information about other already dispatched product agents as
well. At time t, the state vector st consists of the expected end
times for each requested process, the current throughput time
and the remaining open processes. To improve coordination,

Fig. 2. Interaction of the simulation and the neural network for Q-learning

C. Hofmann et al. / Procedia CIRP 00 (2019) 000–000 3

the vector additionally includes entries for all open processes
for each dispatched agent. Among these are the expected end
times of the current process steps and the expected total
throughput times of the dispatched agent. The knowledge about
the current throughput times in combination with the remaining
process steps allows the agents to estimate whether their own
actions potentially have an impact on other agents.

Each agent can choose between a set of actions composed
of machine and process combinations. Additionally, an agent
can decide to wait. This action is particularly useful if there is
no machine offer (e.g. due to machine failure) or to give
priority to another agent. The resulting action space is encoded
using real numbers. Once an agent has chosen an action, it is
executed and thus affects the transition to the subsequent state
st+1. The subsequent state of a transition represents the start
state for the next transition.

Since the agents are conditioned to find an optimal behavior
regarding throughput time, the rewards for their actions is
calculated based on the achieved throughput time. The reward
function is composed of two parts: an immediate reward for the
selected action and a delayed reward for the achieved
throughput time that is determined at the end of production.
The objective of the immediate reward is to accelerate the
learning process by rewarding possible actions and punishing
blocking actions. A blocking state occurs when an agent having
several options takes a decision that leaves another agent
without options. These decisions are still part of the action
space but lead to lower rewards as the reward is based on the
overall throughput time of all agents.

Since the reward should be mapped to [-1,1], the throughput
times need to be transformed. Taking into account the small
rewards for feasible actions of 0.01 and a total of ten decisions,
the upper bound of the remaining interval is 0.9. The lower
bound of the reward function R(s,a) needs to be limited to 0,
otherwise the option waiting would represent a favorable
behavior to the agent.

Equation 1 shows the calculation for the throughput time
(TPT) depended part of the reward function g(TPT).

𝑔𝑔𝑔𝑔(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) = 0.9 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)²
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)²

 (1)

To test hypothesis H2, the level of coordination is increased.
To enforce coordination between the agents, actions resulting
in blocking state for other agents are punished and the reward
is given for the sum of all throughput times.

3.3. Q-Learning

A major difficulty when dealing with throughput time as
objective is that the effect of a single action cannot be evaluated
immediately. Therefore temporal difference (TD) Learning has
to be used, e.g. Q-learning. Bootstrapping refers to the property
of these methods to rely on estimates instead of the actual final
outcomes [12]. The behavior strategy of an agent in a MDP is
fully defined by a policy π that only depends on the current state
st. The action-value function (q-function) qπ(s,a) describes the
expected return starting from state s, taking action a, assuming
a certain policy π for all future actions.

𝑞𝑞𝑞𝑞𝜋𝜋𝜋𝜋(𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎) = ∑ [∑ 𝛾𝛾𝛾𝛾𝑘𝑘𝑘𝑘𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡+𝑘𝑘𝑘𝑘|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑠𝑠𝑠𝑠,𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡 = 𝑎𝑎𝑎𝑎∞
𝑘𝑘𝑘𝑘=0]𝜋𝜋𝜋𝜋 (2)

Thereby γ describes the discount factor for future rewards
Rt+k+1 with γ → 1 for farsighted and γ → 0 for myopic
evaluation. In the evaluated scenario, it is set to 0.99. k
represents the number of considered future actions.

One possibility to solve an MDP is to find the optimal q-
function q*, i.e. the q-function of an optimal policy qπ*. An
optimal policy satisfies the Bellman optimality equation:

𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚
𝜋𝜋𝜋𝜋

𝑞𝑞𝑞𝑞𝜋𝜋𝜋𝜋(𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎) = ∑ �𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 + 𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚
𝑎𝑎𝑎𝑎′

 𝑞𝑞𝑞𝑞∗(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡+1,𝑎𝑎𝑎𝑎′)|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑠𝑠𝑠𝑠,𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡 = 𝑎𝑎𝑎𝑎�𝜋𝜋𝜋𝜋

 (3)

Hence, the optimal q-value q* of a state-action pair describes
the highest expected return for a given state s, taking action a
and following an optimal policy π* from there on. To solve the
Bellman equation and to find the optimal q-function, iterative
methods such as Q-learning can be used. Q-learning is model-
free. Therefore the q-value for each state-action-pair is
estimated from experience that agents gain by interacting with
the environment. No model of the environment has to be known
[12]. In the following, the estimated q-function is noted by Q.
Since Q-learning is a temporal difference method, the value of
a state is approximated by the immediate reward Rt and the
estimated future return from state St+1 on. The Q-learning
update rule minimizes the difference of the actual and
estimated Q-value, called temporal difference error.

𝑄𝑄𝑄𝑄(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ,𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡) ← 𝑄𝑄𝑄𝑄(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ,𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡) + 𝛼𝛼𝛼𝛼 ∗ �𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 + 𝛾𝛾𝛾𝛾 ∗ 𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚
𝑎𝑎𝑎𝑎′

 𝑄𝑄𝑄𝑄(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡+1,𝑎𝑎𝑎𝑎′) −

𝑄𝑄𝑄𝑄(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ,𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡)� (4)

Q-learning learns off-policy. That means that the policy to
choose the next action (behavior policy) is different to the
policy for which the Q-values are learned for (target policy).
To ensure sufficient exploration during the learning phase, the
behavior policy is explorative ε-greedy.

In case of a large number of possible state-action pairs, the
q-function cannot be expressed explicitly and thus has to be
approximated [12]. Neural networks with weights θ are
common non-linear approximators for this task. In this paper,
Q-learning is used in combination with a fully connected feed
forward neural network. Even though multiple product agents
act simultaneously in the production system, there is only one
neural network with weights θ that is trained to approximate
the q-function for all different product types. The input of the
network is given by the respective state vector st. This
information is processed by the neural network and mapped to
a corresponding, estimated Q-value of all actions in the given
state.

The initial weights θ of the neural network are updated with
a variant of stochastic gradient descent (Adam-optimizer).
Hereby a sequence of loss functions Lθi is minimized in each
iteration i see equation 5.

𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖(𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖) = ∑ = [(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑄𝑄𝑄𝑄(𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎,𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖))²]𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎 ~𝜌𝜌𝜌𝜌(∙) (5)

28	 Constantin Hofmann et al. / Procedia CIRP 88 (2020) 25–30
C. Hofmann et al. / Procedia CIRP 00 (2019) 000–000

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 = ∑ �𝑟𝑟𝑟𝑟 + 𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚
𝑎𝑎𝑎𝑎′

𝑄𝑄𝑄𝑄(𝑠𝑠𝑠𝑠′, 𝑎𝑎𝑎𝑎′, 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖−1)|𝑠𝑠𝑠𝑠, 𝑎𝑎𝑎𝑎�𝑠𝑠𝑠𝑠′~𝜀𝜀𝜀𝜀 (6)

Equation 6 describes the target for iteration i, ρ(s,a) the
probability distribution over sequences s and actions a and
therefore the behavior of an agent in the environment Ε.

To soften problems with correlated data and non-stationary
distributions an experience replay mechanism is used similar to
[10] which randomly samples previous transitions. Moreover,
to improve the capacity of generalization, batch learning is
applied using mini-batches of data for updates.

3.4. Learning Framework

Fig. 2 illustrates the interaction of the simulation model with
the Q-learning based production control system. The
simulation model generates the data for the learning process
and serves as environment for evaluation. The product agents
engage in a sequential decision process until all process steps
have been performed.

To learn, the neural network is fed with data sets containing
information about the state, action, reward and successor state.
Since batch learning with experience replay has been
implemented, a randomly chosen batch of 32 past data sets is
used to update the neural network, see Fig.2.

To determine a well-suited network topology, the effects of the
number of nodes per layer, the drop-out ratio as well as linear,
broken-rational and parabolic reward functions have been
tested. Fig. 4. illustrates the topology of the fully-connected
neural network that has been retained. The best results were
obtained without dropout and with a parabolic reward function.

4. Results

In this section, the learning performance is presented
followed by a comparison of the rule-based and the deep Q-
learning approach in terms of throughput time. Additionally,
the results concerning hypothesis H1 and H2 are shown.

4.1. Learning Performance

Fig.4. and Fig. 6. visualize the learning curve of the Q-
learning framework.

During the first million iterations the agent's behavior is
dominated by trial and error leading to poor rewards and high
throughput times. During the course of the next two million
iterations, the learning process accelerates, the agents take
better decisions and therefore improve the throughput time.
During the subsequent phase, the performance stabilizes.

The effect of overfitting can be seen in Fig. 6. After 13
million iterations the model has difficulties to generalize and
the throughput time increases again.

4.2. Performance compared to rule-based approach

In the following, the performance of the Q-learning
production control is compared to a rule-based approach also
minimizing throughput time, discussed in [4]. The applied
priority rule is similar to the queue length estimator introduced
by [13].

Table 2 compares the results in terms of throughput time,

Fig. 3. Neural Network topology

Fig. 4. Throughput evolution during training

Fig. 5. Throughput time evolution and overfitting

C. Hofmann et al. / Procedia CIRP 00 (2019) 000–000 5

output, utilization and tardiness of the two production
control approaches. The Q-learning approach outperforms the
rule-based approach regarding throughput time by 4.4%. The
Q-learning approach prevents actions that lead to blocking
states for other orders. These actions only occur to 0.06% while
the rule-based approach takes these decisions to 8.4%. Overall,
the Q-learning production control takes the same decisions as
the rule-based approach in 66%. Utilization is also slightly
improved due reduced setup times.

Table 2. Comparison of Q learning to rule-based production control for the
scenario with break-downs (value Q-learning, value rule-based)

Throughput
time [min.]

Output [pieces] Utilization
[%]

Relative
tardiness [%]

μ (614.1, 642.6) (2951.6, 2950.1) (74.54, 75.38) (-77.95, -76.27)

σ (4.76, 4.4) (6.42, 3.41) (0.12, 0.08) (0.34, 0.54)

max (621.6, 650.1) (2966, 2956) (74.8, 75.5) (-77.5, -75.5)

min (606.9, 637.4) (2944, 2946) (74.4, 75.3) (-78.5, -76.9)

Fig. 7. shows the throughput time achieved by the rule-based
approach and the deep Q-learning control. In the scenario with
break-downs the variance of the throughput times increases. It
could also be shown that in this case, the Q-learning approach
is more sensitive to break-downs, even though the overall
performance is still significantly better.

4.3. Hypothesis H1 - machine learning based approach
copes better with an increase in dynamic

To model volatile customer demand, the inter-arrival time
of the orders has been manipulated. The inter-arrival time of
N(70,5) is substituted by a sinus-shaped inter-arrival time of 95
minutes with an amplitude of 30 minutes and a wave length of
one month.

In phases of high customer demand, modelled by a short
inter-arrival time, the level of work in progress rises in the
production. Alternative product routings and redundant
machines can be used to soften the effects of these customer
demand peaks. The deep Q-learning approach has been trained
using the inter-arrival time pattern of N(70,5) and is applied in
the scenario of increased dynamics.

The rule-based production control shows proportional peaks
in the throughput time. In contrast, the machine learning based
production control approach is able to soften the impact of the
varying inter-arrival times better than the rule-based approach,
see Fig.7. and Fig. 9. The average throughput time is also about
3% lower. Due to the longer throughput time of the rule-based
production control, the valleys between the peaks are narrower.

4.4. Hypothesis H2 - Increased coordination improves
throughput time

To test whether coordination improves the throughput time,
hypothesis H2, two neural networks have been designed and

Fig. 6. Boxplot of throughput time for rule-based and deep Q-learning
control

Fig.7. Evolution of inter-arrival time (IAT) and throughput time (TPT) for
rule-based control

Fig. 8. Evolution of inter-arrival time (IAT) and throughput time (TPT)
for deep Q-learning control

	 Constantin Hofmann et al. / Procedia CIRP 88 (2020) 25–30� 29
C. Hofmann et al. / Procedia CIRP 00 (2019) 000–000

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 = ∑ �𝑟𝑟𝑟𝑟 + 𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚
𝑎𝑎𝑎𝑎′

𝑄𝑄𝑄𝑄(𝑠𝑠𝑠𝑠′, 𝑎𝑎𝑎𝑎′, 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖−1)|𝑠𝑠𝑠𝑠, 𝑎𝑎𝑎𝑎�𝑠𝑠𝑠𝑠′~𝜀𝜀𝜀𝜀 (6)

Equation 6 describes the target for iteration i, ρ(s,a) the
probability distribution over sequences s and actions a and
therefore the behavior of an agent in the environment Ε.

To soften problems with correlated data and non-stationary
distributions an experience replay mechanism is used similar to
[10] which randomly samples previous transitions. Moreover,
to improve the capacity of generalization, batch learning is
applied using mini-batches of data for updates.

3.4. Learning Framework

Fig. 2 illustrates the interaction of the simulation model with
the Q-learning based production control system. The
simulation model generates the data for the learning process
and serves as environment for evaluation. The product agents
engage in a sequential decision process until all process steps
have been performed.

To learn, the neural network is fed with data sets containing
information about the state, action, reward and successor state.
Since batch learning with experience replay has been
implemented, a randomly chosen batch of 32 past data sets is
used to update the neural network, see Fig.2.

To determine a well-suited network topology, the effects of the
number of nodes per layer, the drop-out ratio as well as linear,
broken-rational and parabolic reward functions have been
tested. Fig. 4. illustrates the topology of the fully-connected
neural network that has been retained. The best results were
obtained without dropout and with a parabolic reward function.

4. Results

In this section, the learning performance is presented
followed by a comparison of the rule-based and the deep Q-
learning approach in terms of throughput time. Additionally,
the results concerning hypothesis H1 and H2 are shown.

4.1. Learning Performance

Fig.4. and Fig. 6. visualize the learning curve of the Q-
learning framework.

During the first million iterations the agent's behavior is
dominated by trial and error leading to poor rewards and high
throughput times. During the course of the next two million
iterations, the learning process accelerates, the agents take
better decisions and therefore improve the throughput time.
During the subsequent phase, the performance stabilizes.

The effect of overfitting can be seen in Fig. 6. After 13
million iterations the model has difficulties to generalize and
the throughput time increases again.

4.2. Performance compared to rule-based approach

In the following, the performance of the Q-learning
production control is compared to a rule-based approach also
minimizing throughput time, discussed in [4]. The applied
priority rule is similar to the queue length estimator introduced
by [13].

Table 2 compares the results in terms of throughput time,

Fig. 3. Neural Network topology

Fig. 4. Throughput evolution during training

Fig. 5. Throughput time evolution and overfitting

C. Hofmann et al. / Procedia CIRP 00 (2019) 000–000 5

output, utilization and tardiness of the two production
control approaches. The Q-learning approach outperforms the
rule-based approach regarding throughput time by 4.4%. The
Q-learning approach prevents actions that lead to blocking
states for other orders. These actions only occur to 0.06% while
the rule-based approach takes these decisions to 8.4%. Overall,
the Q-learning production control takes the same decisions as
the rule-based approach in 66%. Utilization is also slightly
improved due reduced setup times.

Table 2. Comparison of Q learning to rule-based production control for the
scenario with break-downs (value Q-learning, value rule-based)

Throughput
time [min.]

Output [pieces] Utilization
[%]

Relative
tardiness [%]

μ (614.1, 642.6) (2951.6, 2950.1) (74.54, 75.38) (-77.95, -76.27)

σ (4.76, 4.4) (6.42, 3.41) (0.12, 0.08) (0.34, 0.54)

max (621.6, 650.1) (2966, 2956) (74.8, 75.5) (-77.5, -75.5)

min (606.9, 637.4) (2944, 2946) (74.4, 75.3) (-78.5, -76.9)

Fig. 7. shows the throughput time achieved by the rule-based
approach and the deep Q-learning control. In the scenario with
break-downs the variance of the throughput times increases. It
could also be shown that in this case, the Q-learning approach
is more sensitive to break-downs, even though the overall
performance is still significantly better.

4.3. Hypothesis H1 - machine learning based approach
copes better with an increase in dynamic

To model volatile customer demand, the inter-arrival time
of the orders has been manipulated. The inter-arrival time of
N(70,5) is substituted by a sinus-shaped inter-arrival time of 95
minutes with an amplitude of 30 minutes and a wave length of
one month.

In phases of high customer demand, modelled by a short
inter-arrival time, the level of work in progress rises in the
production. Alternative product routings and redundant
machines can be used to soften the effects of these customer
demand peaks. The deep Q-learning approach has been trained
using the inter-arrival time pattern of N(70,5) and is applied in
the scenario of increased dynamics.

The rule-based production control shows proportional peaks
in the throughput time. In contrast, the machine learning based
production control approach is able to soften the impact of the
varying inter-arrival times better than the rule-based approach,
see Fig.7. and Fig. 9. The average throughput time is also about
3% lower. Due to the longer throughput time of the rule-based
production control, the valleys between the peaks are narrower.

4.4. Hypothesis H2 - Increased coordination improves
throughput time

To test whether coordination improves the throughput time,
hypothesis H2, two neural networks have been designed and

Fig. 6. Boxplot of throughput time for rule-based and deep Q-learning
control

Fig.7. Evolution of inter-arrival time (IAT) and throughput time (TPT) for
rule-based control

Fig. 8. Evolution of inter-arrival time (IAT) and throughput time (TPT)
for deep Q-learning control

30	 Constantin Hofmann et al. / Procedia CIRP 88 (2020) 25–30
C. Hofmann et al. / Procedia CIRP 00 (2019) 000–000

trained. The state vector for the approach without
coordination does not contain information about other
dispatched agents, as

described in section 3.2. The reward is calculated solely
based on the own throughput time. Fig.9. summarizes the
results achieved with and without break-downs.

In both scenarios, it can be seen that coordination lowers the
throughput time and improves the variance. In the scenario
with breakdowns, the coordination between the agents also
lowers the occurrence of blocking states that lead to long
throughput time losses for the blocked agent.

In case the throughput time of the deciding agent is already
much higher than the average overall throughput time, the
choice of the self-centered action causing a blocking state for
another agent can be beneficial.

5. Conclusion

In this paper, two production control approaches minimizing
throughput time have been compared using a simulation model
of a fully-connected, forward directed matrix production with
machine breakdowns. The comparison of a rule-based
approach using a priority rule similar to the queue length
estimator and the deep Q-learning approach revealed that the
deep Q-learning approach outperforms the rule-based control.

It could be shown that the choices of the deep Q-learning
control mechanism differed in about 34% of the cases from the
priority rule. Moreover, it could be demonstrated that the
performance increases further if information about other
dispatched orders is fed to the neural network. The resulting
coordination reduces decisions leading to blocking states for
other orders and improves the overall throughput time. An
increase in dynamic in terms of volatile customer demand
volume has been modeled using sinus-shaped demand patterns.
The production system relying on the proposed deep Q-
learning model was able to soften the effect of the changing
production volume better preventing long waiting times.

References

[1] Hochdörffer J, Berndt CV, Lanza G. Resource-based Reconfiguration of
Manufacturing Networks Using a Product-to-plant Allocation
Methodology, in: Proc. 6th Int. Conf. Compet. Manuf, 2016: pp. 511–516.

[2] Schönemann M, Herrmann C, Greschke P, Thiede S. Simulation of matrix-
structured manufacturing systems, J. Manuf. Syst. 37 (2015) 104–112.

[3] Scholz-Reiter B, Höhns H. Selbststeuerung logistischer Prozesse mit
Agentensystemen, in: Produktionsplan. Und-Steuerung, Springer, 2006:
pp. 745–780.

[4] Hofmann C, Brakemeier N, Krahe C, Stricker N, Lanza G. The Impact of
Routing and Operation Flexibility on the Performance of Matrix
Production Compared to a Production Line, in: R. Schmitt, G. Schuh
(Eds.), Adv. Prod. Res., Springer International Publishing, Cham, 2019:
pp. 155–165.

[5] Scholz-Reiter B, Freitag M, de Beer C, Jagalski T. Modelling Dynamics
of Autonomous Logistic Processes: Discrete-event versus Continuous
Approaches, Ann. CIRP. 55 (2005) 413–417.

[6] Scholz-Reiter B, Beer CD, Freitag M, Jagalski T. Bio-inspired and
pheromone-based shop-floor control, Int. J. Comput. Integr. Manuf. 21
(2008) 201–205. doi:10.1080/09511920701607840.

[7] Minguillon FE, Lanza G. Maschinelles Lernen in der PPS, Wt
Werkstatttechnik Online. 107 (2017) 630–634.

[8] Stricker N, Kuhnle A, Sturm R, Friess S. Reinforcement learning for
adaptive order dispatching in the semiconductor industry, CIRP Ann.
(2018).

[9] Stegherr F. Reinforcement-Learning zur dispositiven Auftragssteuerung in
der Variantenreihenproduktion, Utz, Wiss., 2000.
https://books.google.de/books?id=quNCJqWyPeUC.

[10]Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D,
Riedmiller M. Playing Atari with Deep Reinforcement Learning, (2013).
http://arxiv.org/abs/1312.5602.

[11]Scholz-Reiter B, Rekersbrink H, Görges M. Dynamic Flexible Flow Shop
Problems - Scheduling Heuristics vs. Autonomous Control, CIRP Ann. -
Manuf. Technol. 59 (2010) 465–468.

[12]Sutton RS, Barto AG. Reinforcement Learning: An Introduction, MIT
Press, 1998. http://www.cs.ualberta.ca/~sutton/book/the-book.html.

[13]Scholz-Reiter B, Freitag M, De Beer C, Jagalski T. Modelling and
Analysis of Autonomous Shop Floor Control, in: 2005.

Fig. 9. Boxplot for throughput time with and without coordination

