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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract

Matrix production refers to a highly flexible production system based on independent production cells that are linked by a flexible transportation 
system. The production control system decides on the sequence of the production steps of each order and their allocation to specific time slots on 
the available machines. This paper presents an approach based on deep Q-learning that is able to cope with the dynamic events of the system. 
The performance of the machine learning-based production control is compared to a static rule-based approach. Additionally, the effects of 
coordination between the independent agents on throughput time is shown.
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1. Introduction

Producing companies operate in a market environment 
constantly demanding state-of-the-art individualized or 
regionally adapted products [1]. The results are an increased 
number of variants in production and takt time losses due to 
varying cycle times. In the course, matrix production as takt 
time independent concept has received much attention both in 
practice as well as in research. Matrix production relies on a 
free material flow between work stations to exploit operation 
and routing flexibility [2]. To benefit from these degrees of 
freedom, an appropriate production control system is required. 
To satisfy the demand for short calculation times, autonomous 
multi-agent approaches have proven suitable [3]. Previous 
simulation studies on the performance of a rule-based multi-
agent production control in scenarios of various degrees of 
operational and routing flexibility have shown that a rule-based 
approach cannot effectively exploit the given degrees of 
freedom [4]. Thus, two working hypothesis can be derived: 

H1: A production control system based on machine learning
adapts better to dynamic system states then the corresponding 
rule-based approach.

H2: An increase in coordination between the agents reduces 
the number of blocking states and reduces the throughput time 
as a result. 

To safely evaluate hypothesis H1 and H2, the discrete event 
simulation model of a matrix production already introduced in
[4] is used as substitute for a real production system. Intelligent 
product agents decide which process should be performed on 
which machine based on a machine learning approach. It is 
assumed that all necessary production resources, namely 
personnel, materials and tools, are constantly available, that 
machine break-downs only occur in-between production steps 
and that cycle times are deterministic.
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2. Related Work

The research conducted in the collaborative research center 
(SFB) 637 Autonomous Cooperation Logistic Processes 
explores the performance of various autonomous production 
control methods for a simplified matrix production layout 
limited to forward-directed material flow and a fixed process 
sequence. The simulation studies on both static decision rules 
[5] and bio-inspired control mechanisms [6] revealed that 
autonomous decision mechanism show good dynamic behavior
especially concerning unforeseen events. However, it could be 
concluded that no single decision mechanism is always 
dominant, instead the performance depends on the underlying 
system dynamics. Building on the findings of SFB 637, Echsler 
Minguillon and Lanza contributed a simulation study focusing 
on the choice of the best-performing priority rule depending on 
the current system state using reinforcement learning [7].
Stricker et al. examine a reinforcement learning approach using 
Q-learning for adaptive order dispatching in wafer fabrication. 
In contrast to the previous works of [7], this approach does not 
rely on priority rules [8]. Similar to their work, Stegherr 
considers reinforcement learning for order dispatching in a 
multi-agent setting [9]. The learning agents act simultaneously 
and implement a coordination mechanism. The research on the 
application of machine learning approaches, notably 
reinforcement learning for scheduling, shows that these 
production control mechanisms are well suited to cope with 
dynamic events. Mnih et al. introduced a Q-learning algorithm 
for Atari games capable of mastering advanced policies [10]. 
Their variant of the Q-learning algorithm relies on a neural 
network as non-linear function approximation procedure. In 
contrast to SFB 637, e.g. [6] or [11], in this paper a fully
connected matrix and variable process sequences are 
considered. Therefore the production control system needs to 
decide on the next process step as well as the machine where 
the production step should be performed.

3. Methodology

The scheduling problem can be modeled as finite Markov 
Decision Problem (MDP). Each product agent attempts to 
maximize its reward R by finding the optimal action a
depending on the state s of the environment. The environment 
responds to the agent's action by changing its state. A typical 
objective in the context of scheduling is to minimize 
throughput time. However, throughput time, as a result of a 
sequence of actions, can only be observed after the last process 
step. Therefore, a solution approach capable of handling this 
temporal difference is required. To test hypothesis H1, the 
dynamics of the system are increased by increasing the demand 
volatility. Demand is modelled using sinus-shaped curves, 
comparable to [5].

Fig. 1. Precedence graph of both product families

3.1. Simulation model

The simulation model serves as environment to generate 
training data for the neural network approximating the Q 
function and to evaluate the performance of the developed 
production control, see Fig.2.

The production program consists of two product families 
with three variants each. Each product variant requires five 
process steps, see Fig. 1. Orders arrive with an normally 
distributed inter-arrival time of N(70,5).

The production system is defined by ten workstations of 
which some are capable of performing multiple processes. The 
proposed system represents a fully connected matrix 
production where all workstations are interlinked. Break-
downs occur only during idle times, for the mean time between
failures (MTBF) and mean time to repair (MTTR) values see 
Table 1. For each scenario, the results of ten simulation runs, 
representing a production period of six months, have been 
averaged.

Table 1. Simulation model

Parameter Value

Simulation period 6 months

Simulation runs 10

Cycle time [min.] 100

Inter-arrival time [min.] N(70,5)

MTTF [min.] 5000

MTTR [min.] N(5,1)

WIP level 10

Set-up same product same process [min.] 1

Set-up different product or  process [min.] 5

Set-up different product and  process [min.] 10

3.2. Markov decision problem (MDP)

The discussed scheduling problem can be reduced to a MDP 
represented by state, action and reward tuples. 

The state vector incorporates all information regarding the 
environment. To enable coordination between the 
independently acting agents, the state vector contains 
information about other already dispatched product agents as 
well. At time t, the state vector st consists of the expected end 
times for each requested process, the current throughput time 
and the remaining open processes. To improve coordination, 

Fig. 2. Interaction of the simulation and the neural network for Q-learning
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the vector additionally includes entries for all open processes 
for each dispatched agent. Among these are the expected end 
times of the current process steps and the expected total 
throughput times of the dispatched agent. The knowledge about 
the current throughput times in combination with the remaining 
process steps allows the agents to estimate whether their own 
actions potentially have an impact on other agents.

Each agent can choose between a set of actions composed 
of machine and process combinations. Additionally, an agent 
can decide to wait. This action is particularly useful if there is 
no machine offer (e.g. due to machine failure) or to give 
priority to another agent. The resulting action space is encoded 
using real numbers. Once an agent has chosen an action, it is 
executed and thus affects the transition to the subsequent state 
st+1. The subsequent state of a transition represents the start 
state for the next transition. 

Since the agents are conditioned to find an optimal behavior 
regarding throughput time, the rewards for their actions is 
calculated based on the achieved throughput time. The reward 
function is composed of two parts: an immediate reward for the 
selected action and a delayed reward for the achieved 
throughput time that is determined at the end of production. 
The objective of the immediate reward is to accelerate the 
learning process by rewarding possible actions and punishing 
blocking actions. A blocking state occurs when an agent having 
several options takes a decision that leaves another agent 
without options. These decisions are still part of the action 
space but lead to lower rewards as the reward is based on the 
overall throughput time of all agents.

Since the reward should be mapped to [-1,1], the throughput 
times need to be transformed. Taking into account the small 
rewards for feasible actions of 0.01 and a total of ten decisions, 
the upper bound of the remaining interval is 0.9. The lower
bound of the reward function R(s,a) needs to be limited to 0, 
otherwise the option waiting would represent a favorable
behavior to the agent.

Equation 1 shows the calculation for the throughput time 
(TPT) depended part of the reward function g(TPT).

𝑔𝑔𝑔𝑔(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) = 0.9 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)²
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)²

                            (1)

To test hypothesis H2, the level of coordination is increased. 
To enforce coordination between the agents, actions resulting 
in blocking state for other agents are punished and the reward 
is given for the sum of all throughput times.

3.3. Q-Learning

A major difficulty when dealing with throughput time as 
objective is that the effect of a single action cannot be evaluated 
immediately. Therefore temporal difference (TD) Learning has
to be used, e.g. Q-learning. Bootstrapping refers to the property 
of these methods to rely on estimates instead of the actual final 
outcomes [12]. The behavior strategy of an agent in a MDP is 
fully defined by a policy π that only depends on the current state 
st. The action-value function (q-function) qπ(s,a) describes the 
expected return starting from state s, taking action a, assuming 
a certain policy π  for all future actions.

𝑞𝑞𝑞𝑞𝜋𝜋𝜋𝜋(𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎) = ∑ [∑ 𝛾𝛾𝛾𝛾𝑘𝑘𝑘𝑘𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡+𝑘𝑘𝑘𝑘|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑠𝑠𝑠𝑠,𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡 = 𝑎𝑎𝑎𝑎∞
𝑘𝑘𝑘𝑘=0 ]𝜋𝜋𝜋𝜋                       (2)

Thereby γ describes the discount factor for future rewards 
Rt+k+1 with γ → 1 for farsighted and γ → 0 for myopic 
evaluation. In the evaluated scenario, it is set to 0.99. k
represents the number of considered future actions.

One possibility to solve an MDP is to find the optimal q-
function q*, i.e. the q-function of an optimal policy qπ*. An 
optimal policy satisfies the Bellman optimality equation:

𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚
𝜋𝜋𝜋𝜋

𝑞𝑞𝑞𝑞𝜋𝜋𝜋𝜋(𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎) = ∑ �𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 + 𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚
𝑎𝑎𝑎𝑎′

 𝑞𝑞𝑞𝑞∗(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡+1,𝑎𝑎𝑎𝑎′)|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑠𝑠𝑠𝑠,𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡 = 𝑎𝑎𝑎𝑎�𝜋𝜋𝜋𝜋

                              (3)

Hence, the optimal q-value q* of a state-action pair describes 
the highest expected return for a given state s, taking action a
and following an optimal policy π* from there on. To solve the 
Bellman equation and to find the optimal q-function, iterative 
methods such as Q-learning can be used. Q-learning is model-
free. Therefore the q-value for each state-action-pair is 
estimated from experience that agents gain by interacting with 
the environment. No model of the environment has to be known 
[12]. In the following, the estimated q-function is noted by Q. 
Since Q-learning is a temporal difference method, the value of 
a state is approximated by the immediate reward Rt and the 
estimated future return from state St+1 on. The Q-learning
update rule minimizes the difference of the actual and 
estimated Q-value, called temporal difference error.

𝑄𝑄𝑄𝑄(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ,𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡) ← 𝑄𝑄𝑄𝑄(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ,𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡) + 𝛼𝛼𝛼𝛼 ∗ �𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 + 𝛾𝛾𝛾𝛾 ∗ 𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚
𝑎𝑎𝑎𝑎′

 𝑄𝑄𝑄𝑄(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡+1,𝑎𝑎𝑎𝑎′) −

𝑄𝑄𝑄𝑄(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ,𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡)�                             (4)

Q-learning learns off-policy. That means that the policy to 
choose the next action (behavior policy) is different to the 
policy for which the Q-values are learned for (target policy). 
To ensure sufficient exploration during the learning phase, the 
behavior policy is explorative ε-greedy. 

In case of a large number of possible state-action pairs, the 
q-function cannot be expressed explicitly and thus has to be 
approximated [12]. Neural networks with weights θ are 
common non-linear approximators for this task. In this paper, 
Q-learning is used in combination with a fully connected feed 
forward neural network. Even though multiple product agents 
act simultaneously in the production system, there is only one 
neural network with weights θ that is trained to approximate 
the q-function for all different product types. The input of the 
network is given by the respective state vector st. This 
information is processed by the neural network and mapped to 
a corresponding, estimated Q-value of all actions in the given 
state. 

The initial weights θ of the neural network are updated with 
a variant of stochastic gradient descent (Adam-optimizer). 
Hereby a sequence of loss functions Lθi is minimized in each 
iteration i see equation 5.

𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖(𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖) = ∑ = [(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑄𝑄𝑄𝑄(𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎,𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖))²]𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎 ~𝜌𝜌𝜌𝜌(∙)                       (5)
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The production program consists of two product families 
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process steps, see Fig. 1. Orders arrive with an normally 
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The production system is defined by ten workstations of 
which some are capable of performing multiple processes. The 
proposed system represents a fully connected matrix 
production where all workstations are interlinked. Break-
downs occur only during idle times, for the mean time between
failures (MTBF) and mean time to repair (MTTR) values see 
Table 1. For each scenario, the results of ten simulation runs, 
representing a production period of six months, have been 
averaged.

Table 1. Simulation model

Parameter Value

Simulation period 6 months

Simulation runs 10

Cycle time [min.] 100

Inter-arrival time [min.] N(70,5)

MTTF [min.] 5000

MTTR [min.] N(5,1)

WIP level 10

Set-up same product same process [min.] 1

Set-up different product or  process [min.] 5

Set-up different product and  process [min.] 10

3.2. Markov decision problem (MDP)

The discussed scheduling problem can be reduced to a MDP 
represented by state, action and reward tuples. 

The state vector incorporates all information regarding the 
environment. To enable coordination between the 
independently acting agents, the state vector contains 
information about other already dispatched product agents as 
well. At time t, the state vector st consists of the expected end 
times for each requested process, the current throughput time 
and the remaining open processes. To improve coordination, 

Fig. 2. Interaction of the simulation and the neural network for Q-learning
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the vector additionally includes entries for all open processes 
for each dispatched agent. Among these are the expected end 
times of the current process steps and the expected total 
throughput times of the dispatched agent. The knowledge about 
the current throughput times in combination with the remaining 
process steps allows the agents to estimate whether their own 
actions potentially have an impact on other agents.

Each agent can choose between a set of actions composed 
of machine and process combinations. Additionally, an agent 
can decide to wait. This action is particularly useful if there is 
no machine offer (e.g. due to machine failure) or to give 
priority to another agent. The resulting action space is encoded 
using real numbers. Once an agent has chosen an action, it is 
executed and thus affects the transition to the subsequent state 
st+1. The subsequent state of a transition represents the start 
state for the next transition. 

Since the agents are conditioned to find an optimal behavior 
regarding throughput time, the rewards for their actions is 
calculated based on the achieved throughput time. The reward 
function is composed of two parts: an immediate reward for the 
selected action and a delayed reward for the achieved 
throughput time that is determined at the end of production. 
The objective of the immediate reward is to accelerate the 
learning process by rewarding possible actions and punishing 
blocking actions. A blocking state occurs when an agent having 
several options takes a decision that leaves another agent 
without options. These decisions are still part of the action 
space but lead to lower rewards as the reward is based on the 
overall throughput time of all agents.

Since the reward should be mapped to [-1,1], the throughput 
times need to be transformed. Taking into account the small 
rewards for feasible actions of 0.01 and a total of ten decisions, 
the upper bound of the remaining interval is 0.9. The lower
bound of the reward function R(s,a) needs to be limited to 0, 
otherwise the option waiting would represent a favorable
behavior to the agent.

Equation 1 shows the calculation for the throughput time 
(TPT) depended part of the reward function g(TPT).

𝑔𝑔𝑔𝑔(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) = 0.9 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)²
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)²

                            (1)

To test hypothesis H2, the level of coordination is increased. 
To enforce coordination between the agents, actions resulting 
in blocking state for other agents are punished and the reward 
is given for the sum of all throughput times.

3.3. Q-Learning

A major difficulty when dealing with throughput time as 
objective is that the effect of a single action cannot be evaluated 
immediately. Therefore temporal difference (TD) Learning has
to be used, e.g. Q-learning. Bootstrapping refers to the property 
of these methods to rely on estimates instead of the actual final 
outcomes [12]. The behavior strategy of an agent in a MDP is 
fully defined by a policy π that only depends on the current state 
st. The action-value function (q-function) qπ(s,a) describes the 
expected return starting from state s, taking action a, assuming 
a certain policy π  for all future actions.

𝑞𝑞𝑞𝑞𝜋𝜋𝜋𝜋(𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎) = ∑ [∑ 𝛾𝛾𝛾𝛾𝑘𝑘𝑘𝑘𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡+𝑘𝑘𝑘𝑘|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑠𝑠𝑠𝑠,𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡 = 𝑎𝑎𝑎𝑎∞
𝑘𝑘𝑘𝑘=0 ]𝜋𝜋𝜋𝜋                       (2)

Thereby γ describes the discount factor for future rewards 
Rt+k+1 with γ → 1 for farsighted and γ → 0 for myopic 
evaluation. In the evaluated scenario, it is set to 0.99. k
represents the number of considered future actions.

One possibility to solve an MDP is to find the optimal q-
function q*, i.e. the q-function of an optimal policy qπ*. An 
optimal policy satisfies the Bellman optimality equation:

𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚
𝜋𝜋𝜋𝜋

𝑞𝑞𝑞𝑞𝜋𝜋𝜋𝜋(𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎) = ∑ �𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 + 𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚
𝑎𝑎𝑎𝑎′

 𝑞𝑞𝑞𝑞∗(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡+1,𝑎𝑎𝑎𝑎′)|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑠𝑠𝑠𝑠,𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡 = 𝑎𝑎𝑎𝑎�𝜋𝜋𝜋𝜋

                              (3)

Hence, the optimal q-value q* of a state-action pair describes 
the highest expected return for a given state s, taking action a
and following an optimal policy π* from there on. To solve the 
Bellman equation and to find the optimal q-function, iterative 
methods such as Q-learning can be used. Q-learning is model-
free. Therefore the q-value for each state-action-pair is 
estimated from experience that agents gain by interacting with 
the environment. No model of the environment has to be known 
[12]. In the following, the estimated q-function is noted by Q. 
Since Q-learning is a temporal difference method, the value of 
a state is approximated by the immediate reward Rt and the 
estimated future return from state St+1 on. The Q-learning
update rule minimizes the difference of the actual and 
estimated Q-value, called temporal difference error.

𝑄𝑄𝑄𝑄(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ,𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡) ← 𝑄𝑄𝑄𝑄(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ,𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡) + 𝛼𝛼𝛼𝛼 ∗ �𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 + 𝛾𝛾𝛾𝛾 ∗ 𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚
𝑎𝑎𝑎𝑎′

 𝑄𝑄𝑄𝑄(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡+1,𝑎𝑎𝑎𝑎′) −

𝑄𝑄𝑄𝑄(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ,𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡)�                             (4)

Q-learning learns off-policy. That means that the policy to 
choose the next action (behavior policy) is different to the 
policy for which the Q-values are learned for (target policy). 
To ensure sufficient exploration during the learning phase, the 
behavior policy is explorative ε-greedy. 

In case of a large number of possible state-action pairs, the 
q-function cannot be expressed explicitly and thus has to be 
approximated [12]. Neural networks with weights θ are 
common non-linear approximators for this task. In this paper, 
Q-learning is used in combination with a fully connected feed 
forward neural network. Even though multiple product agents 
act simultaneously in the production system, there is only one 
neural network with weights θ that is trained to approximate 
the q-function for all different product types. The input of the 
network is given by the respective state vector st. This 
information is processed by the neural network and mapped to 
a corresponding, estimated Q-value of all actions in the given 
state. 

The initial weights θ of the neural network are updated with 
a variant of stochastic gradient descent (Adam-optimizer). 
Hereby a sequence of loss functions Lθi is minimized in each 
iteration i see equation 5.

𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖(𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖) = ∑ = [(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑄𝑄𝑄𝑄(𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎,𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖))²]𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎 ~𝜌𝜌𝜌𝜌(∙)                       (5)
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Equation 6 describes the target for iteration i, ρ(s,a) the 
probability distribution over sequences s and actions a and 
therefore the behavior of an agent in the environment Ε.

To soften problems with correlated data and non-stationary 
distributions an experience replay mechanism is used similar to 
[10] which randomly samples previous transitions. Moreover, 
to improve the capacity of generalization, batch learning is 
applied using mini-batches of data for updates.

3.4. Learning Framework

Fig. 2 illustrates the interaction of the simulation model with 
the Q-learning based production control system. The 
simulation model generates the data for the learning process 
and serves as environment for evaluation. The product agents 
engage in a sequential decision process until all process steps 
have been performed. 

To learn, the neural network is fed with data sets containing 
information about the state, action, reward and successor state. 
Since batch learning with experience replay has been 
implemented, a randomly chosen batch of 32 past data sets is 
used to update the neural network, see Fig.2.

To determine a well-suited network topology, the effects of the 
number of nodes per layer, the drop-out ratio as well as linear, 
broken-rational and parabolic reward functions have been 
tested. Fig. 4. illustrates the topology of the fully-connected 
neural network that has been retained. The best results were 
obtained without dropout and with a parabolic reward function.

4. Results

In this section, the learning performance is presented 
followed by a comparison of the rule-based and the deep Q-
learning approach in terms of throughput time. Additionally, 
the results concerning hypothesis H1 and H2 are shown.

4.1. Learning Performance

Fig.4. and Fig. 6. visualize the learning curve of the Q-
learning framework. 

During the first million iterations the agent's behavior is 
dominated by trial and error leading to poor rewards and high 
throughput times. During the course of the next two million 
iterations, the learning process accelerates, the agents take 
better decisions and therefore improve the throughput time. 
During the subsequent phase, the performance stabilizes.

The effect of overfitting can be seen in Fig. 6. After 13 
million iterations the model has difficulties to generalize and 
the throughput time increases again.

4.2. Performance compared to rule-based approach

In the following, the performance of the Q-learning 
production control is compared to a rule-based approach also 
minimizing throughput time, discussed in [4]. The applied 
priority rule is similar to the queue length estimator introduced 
by [13].

Table 2 compares the results in terms of throughput time, 

Fig. 3. Neural Network topology

Fig. 4. Throughput evolution during training

Fig. 5. Throughput time evolution and overfitting

C. Hofmann et al. / Procedia CIRP 00 (2019) 000–000 5

output, utilization and tardiness of the two production 
control approaches. The Q-learning approach outperforms the 
rule-based approach regarding throughput time by 4.4%. The 
Q-learning approach prevents actions that lead to blocking 
states for other orders. These actions only occur to 0.06% while 
the rule-based approach takes these decisions to 8.4%. Overall, 
the Q-learning production control takes the same decisions as
the rule-based approach in 66%. Utilization is also slightly 
improved due reduced setup times.

Table 2. Comparison of Q learning to rule-based production control for the 
scenario with break-downs (value Q-learning, value rule-based)

Throughput 
time [min.]

Output [pieces] Utilization 
[%]

Relative 
tardiness [%]

μ (614.1, 642.6) (2951.6, 2950.1) (74.54, 75.38) (-77.95, -76.27)

σ (4.76, 4.4) (6.42, 3.41) (0.12, 0.08) (0.34, 0.54)

max (621.6, 650.1) (2966, 2956) (74.8, 75.5) (-77.5, -75.5)

min (606.9, 637.4) (2944, 2946) (74.4, 75.3) (-78.5, -76.9)

Fig. 7. shows the throughput time achieved by the rule-based 
approach and the deep Q-learning control. In the scenario with 
break-downs the variance of the throughput times increases. It 
could also be shown that in this case, the Q-learning approach 
is more sensitive to break-downs, even though the overall 
performance is still significantly better.

4.3. Hypothesis H1 - machine learning based approach 
copes better with an increase in dynamic

To model volatile customer demand, the inter-arrival time 
of the orders has been manipulated. The inter-arrival time of 
N(70,5) is substituted by a sinus-shaped inter-arrival time of 95 
minutes with an amplitude of 30 minutes and a wave length of 
one month.

In phases of high customer demand, modelled by a short 
inter-arrival time, the level of work in progress rises in the 
production. Alternative product routings and redundant 
machines can be used to soften the effects of these customer 
demand peaks. The deep Q-learning approach has been trained 
using the inter-arrival time pattern of N(70,5) and is applied in 
the scenario of increased dynamics. 

The rule-based production control shows proportional peaks 
in the throughput time. In contrast, the machine learning based 
production control approach is able to soften the impact of the 
varying inter-arrival times better than the rule-based approach, 
see Fig.7. and Fig. 9. The average throughput time is also about 
3% lower. Due to the longer throughput time of the rule-based 
production control, the valleys between the peaks are narrower.

4.4. Hypothesis H2 - Increased coordination improves
throughput time

To test whether coordination improves the throughput time, 
hypothesis H2, two neural networks have been designed and 

Fig. 6. Boxplot of throughput time for rule-based and deep Q-learning 
control

Fig.7. Evolution of inter-arrival time (IAT) and throughput time (TPT) for 
rule-based control

Fig. 8. Evolution of inter-arrival time (IAT) and throughput time (TPT) 
for deep Q-learning control
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Equation 6 describes the target for iteration i, ρ(s,a) the 
probability distribution over sequences s and actions a and 
therefore the behavior of an agent in the environment Ε.

To soften problems with correlated data and non-stationary 
distributions an experience replay mechanism is used similar to 
[10] which randomly samples previous transitions. Moreover, 
to improve the capacity of generalization, batch learning is 
applied using mini-batches of data for updates.

3.4. Learning Framework

Fig. 2 illustrates the interaction of the simulation model with 
the Q-learning based production control system. The 
simulation model generates the data for the learning process 
and serves as environment for evaluation. The product agents 
engage in a sequential decision process until all process steps 
have been performed. 

To learn, the neural network is fed with data sets containing 
information about the state, action, reward and successor state. 
Since batch learning with experience replay has been 
implemented, a randomly chosen batch of 32 past data sets is 
used to update the neural network, see Fig.2.

To determine a well-suited network topology, the effects of the 
number of nodes per layer, the drop-out ratio as well as linear, 
broken-rational and parabolic reward functions have been 
tested. Fig. 4. illustrates the topology of the fully-connected 
neural network that has been retained. The best results were 
obtained without dropout and with a parabolic reward function.

4. Results

In this section, the learning performance is presented 
followed by a comparison of the rule-based and the deep Q-
learning approach in terms of throughput time. Additionally, 
the results concerning hypothesis H1 and H2 are shown.

4.1. Learning Performance

Fig.4. and Fig. 6. visualize the learning curve of the Q-
learning framework. 

During the first million iterations the agent's behavior is 
dominated by trial and error leading to poor rewards and high 
throughput times. During the course of the next two million 
iterations, the learning process accelerates, the agents take 
better decisions and therefore improve the throughput time. 
During the subsequent phase, the performance stabilizes.

The effect of overfitting can be seen in Fig. 6. After 13 
million iterations the model has difficulties to generalize and 
the throughput time increases again.

4.2. Performance compared to rule-based approach

In the following, the performance of the Q-learning 
production control is compared to a rule-based approach also 
minimizing throughput time, discussed in [4]. The applied 
priority rule is similar to the queue length estimator introduced 
by [13].

Table 2 compares the results in terms of throughput time, 
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output, utilization and tardiness of the two production 
control approaches. The Q-learning approach outperforms the 
rule-based approach regarding throughput time by 4.4%. The 
Q-learning approach prevents actions that lead to blocking 
states for other orders. These actions only occur to 0.06% while 
the rule-based approach takes these decisions to 8.4%. Overall, 
the Q-learning production control takes the same decisions as
the rule-based approach in 66%. Utilization is also slightly 
improved due reduced setup times.

Table 2. Comparison of Q learning to rule-based production control for the 
scenario with break-downs (value Q-learning, value rule-based)

Throughput 
time [min.]

Output [pieces] Utilization 
[%]

Relative 
tardiness [%]

μ (614.1, 642.6) (2951.6, 2950.1) (74.54, 75.38) (-77.95, -76.27)

σ (4.76, 4.4) (6.42, 3.41) (0.12, 0.08) (0.34, 0.54)

max (621.6, 650.1) (2966, 2956) (74.8, 75.5) (-77.5, -75.5)

min (606.9, 637.4) (2944, 2946) (74.4, 75.3) (-78.5, -76.9)

Fig. 7. shows the throughput time achieved by the rule-based 
approach and the deep Q-learning control. In the scenario with 
break-downs the variance of the throughput times increases. It 
could also be shown that in this case, the Q-learning approach 
is more sensitive to break-downs, even though the overall 
performance is still significantly better.

4.3. Hypothesis H1 - machine learning based approach 
copes better with an increase in dynamic

To model volatile customer demand, the inter-arrival time 
of the orders has been manipulated. The inter-arrival time of 
N(70,5) is substituted by a sinus-shaped inter-arrival time of 95 
minutes with an amplitude of 30 minutes and a wave length of 
one month.

In phases of high customer demand, modelled by a short 
inter-arrival time, the level of work in progress rises in the 
production. Alternative product routings and redundant 
machines can be used to soften the effects of these customer 
demand peaks. The deep Q-learning approach has been trained 
using the inter-arrival time pattern of N(70,5) and is applied in 
the scenario of increased dynamics. 

The rule-based production control shows proportional peaks 
in the throughput time. In contrast, the machine learning based 
production control approach is able to soften the impact of the 
varying inter-arrival times better than the rule-based approach, 
see Fig.7. and Fig. 9. The average throughput time is also about 
3% lower. Due to the longer throughput time of the rule-based 
production control, the valleys between the peaks are narrower.

4.4. Hypothesis H2 - Increased coordination improves
throughput time

To test whether coordination improves the throughput time, 
hypothesis H2, two neural networks have been designed and 

Fig. 6. Boxplot of throughput time for rule-based and deep Q-learning 
control

Fig.7. Evolution of inter-arrival time (IAT) and throughput time (TPT) for 
rule-based control

Fig. 8. Evolution of inter-arrival time (IAT) and throughput time (TPT) 
for deep Q-learning control
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trained. The state vector for the approach without 
coordination does not contain information about other 
dispatched agents, as 

described in section 3.2. The reward is calculated solely 
based on the own throughput time. Fig.9. summarizes the 
results achieved with and without break-downs. 

In both scenarios, it can be seen that coordination lowers the 
throughput time and improves the variance. In the scenario 
with breakdowns, the coordination between the agents also 
lowers the occurrence of blocking states that lead to long 
throughput time losses for the blocked agent.

In case the throughput time of the deciding agent is already 
much higher than the average overall throughput time, the 
choice of the self-centered action causing a blocking state for 
another agent can be beneficial.

5. Conclusion

In this paper, two production control approaches minimizing 
throughput time have been compared using a simulation model 
of a fully-connected, forward directed matrix production with 
machine breakdowns. The comparison of a rule-based 
approach using a priority rule similar to the queue length 
estimator and the deep Q-learning approach revealed that the 
deep Q-learning approach outperforms the rule-based control. 

It could be shown that the choices of the deep Q-learning 
control mechanism differed in about 34% of the cases from the 
priority rule. Moreover, it could be demonstrated that the 
performance increases further if information about other 
dispatched orders is fed to the neural network. The resulting 
coordination reduces decisions leading to blocking states for 
other orders and improves the overall throughput time. An 
increase in dynamic in terms of volatile customer demand 
volume has been modeled using sinus-shaped demand patterns. 
The production system relying on the proposed deep Q-
learning model was able to soften the effect of the changing 
production volume better preventing long waiting times.
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