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Topological Josephson Junction in Transverse Magnetic Field
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We consider Majorana zero modes in a Josephson junction on top of a topological insulator in transverse
magnetic field. Majorana zero modes reside at periodically located nodes of Josephson vortices. We find that
hybridization of these modes is prohibited by symmetries of the problem at vanishing chemical potential, which
ensures better protection of zero modes and yields methods to control the tunnel coupling between Majorana
modes for quantum information processing applications.
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Topologically-protected quantum manipulations
with Majorana zero modes (MZM’s) are extensively
studied theoretically and experimentally due to
their exotic properties, including exchange statistics,
and their possible use in platforms for topological
quantum computation [1–3]. In particular, hybrid
superconductor-topological insulator structures were
discussed. Fu and Kane analyzed a topological Joseph-
son junction between superconductor films on top of
a topological insulator [4, 5] and demonstrated the
appearance of Majorana edge states. Here we consider
a setup where Majorana bound states are point-like
structures bound to Josephson vortices in an external
magnetic field perpendicular to the surface [6]. Such
devices were discussed as a platform for topological
quantum computation with the possibility of manip-
ulation and braiding of Majorana bound states [7].
We analyze the tunnel coupling between the MZM’s
and find that this coupling vanishes at zero chemical
potential. This should be taken into account in the de-
sign of experiments with MZM’s on Josephson vortices
and also suggests that coupling and hybridization of
various MZM’s may be controlled, in particular, via the
chemical potential. Note similar observations for a 2D
vortex lattice [8].

Model Hamiltonian. We consider an S-TI-S
Josephson junction between two s-wave superconduct-
ing (S) electrodes on top of a topological-insulator
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Fig. 1. (Color online) S-TI-S Josephson junction in a trans-
verse magnetic field ‖ ẑ. Blue and orange spots indicate
location of Majorana bound states

(TI) material, Fig. 1. Due to proximity effect, su-
perconducting correlations are induced in the surface
layer of the topological insulator. The states in this
layer can be described by the Bogolyubov–de-Gennes
(BdG) Hamiltonian H = 1

2

∫
dxdyΨ†hΨ, where Ψ =

= [ψ↑, ψ↓, ψ
†
↓,−ψ†

↑]
T .

The single particle BdG Hamiltonian reads

h = v
(
σx [−i� ∂x] + σy

[
−i� ∂y + e

c
Ay(x)τz

])
τz +

+Δ(x, y)τ+ +Δ∗(x, y)τ− − μτz, (1)

where the Pauli matrices σ and τ refer to the spin degree
of freedom and to the Bogolyubov–Nambu particle-hole
space (τ± = (τx ± iτy)/2), respectively.
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The vector potential A describes the distribution of
the transverse magnetic field H = Hẑ around the gap
of width W between the superconducting electrodes:

H =

{
H0 exp

[
− |x|−W/2

λL

]
, |x| > W/2 ,

H0, −W/2 < x < W/2.
(2)

We choose the gauge with Δ = Δ0e
iφ(y)/2 in one su-

perconductor, x > W/2, and Δ = Δ0e
−iφ(y)/2 for

x < −W/2, while Δ = 0 in the gap |x| < W/2. The vec-
tor potential in this gauge has direction y and is given
by

Ay(x) =

⎧
⎪⎪⎨

⎪⎪⎩

−H0x, |x| < W/2,

λLH0e
− x−W/2

λL − 2λL+W
2 H0, x > W/2,

−Ay(−x) , x < 0.

(3)

The phase is chosen as φ(y) = (2λL +W )H0
2π
Φ0
y

with Φ0 = hc/2e being the superconducting flux quan-
tum. We assume a not too strong field so that the cor-
responding magnetic length lB = [(2λL +W )H0/Φ0]

−1

exceeds the relevant coherence length ξ = �v/Δ0, lB �
� ξ.

Although in a realistic setup the system may be in
the Pearl regime [9] with two-dimensional magnetostat-
ics, we consider here the London regime [10]. While real-
istic situations may require further analysis, we expect
on symmetry grounds that its basic properties will be
the same.

Symmetries. Properties of the solutions are to
large extent determined by symmetries of the Hamilto-
nian, which we discuss here. First, as usual for the BdG
Hamiltonian, the charge conjugation or particle-hole
symmetry C = σyτyK inverts energies: C−1hC = −h.

Further, for μ = 0, the case of our special interest
below, in addition there is a (quasi) time-reversal sym-
metry T = σxτxK, which commutes with the Hamil-
tonian, T−1hT = h, and T 2 = 1. Thus, for μ = 0, as
usual, the product of C and T is the chiral symmetry
S = σzτz. This set of symmetries describes the BDI
symmetry class [11, 12].

Finally, we note that there is an extra symmetry op-
erator,

F = σxτxIx, (4)

where the operator of x inversion acts as Ixψ(x, y) =

= ψ(−x, y), I−1
x Ay(x)Ix = Ay(−x).

1D slices. We split the Hamiltonian into h = h0 +

+ h1, where

h0(y) = −i�v σx τz∂x + [Δ(x, y)τ+ + h.c.]− μτz (5)

and
h1 = v σy

[
−i�∂y + e

c
Ay(x)τz

]
τz. (6)

The Hamiltonian h0 depends on y as a parameter
via Δ since its phase φ is proportional to y. Hence we
can diagonalize it separately for each y and then take
into account h1, which glues these 1D states into 2D
wave functions. Thus we look for eigensolutions of

ĥ0(y) |ν〉y = εν(y) |ν〉y (7)

or equivalently, ĥ0(φ) |ν〉φ = εν(φ) |ν〉φ, where y is a
parameter and |ν〉y represents a wave function fνy(x).

The resulting energies depend on system parameters,
with examples shown in Figs. 2 and 3. The eigenstates

Fig. 2. (Color online) Eigenenergies εn(φ) of h0 for W =

= 2.5ξ

Fig. 3. (Color online) Eigenenergies εn(φ) of h0 for W =

= 6.0ξ

can be classified by the eigenvalues ±1 of the symmetry
operator F (as indicated with the blue, F = 1, and or-
ange, F = −1, color in the figures) and σx (a symmetry
of h0, see below).

The spectrum εν depends on φ (or y), and has zero
modes [4] at φ = π + 2πn: here the gap is purely imag-
inary Δ(x) = i(−1)nΔ0signx, and

h0 = −ivσxτz∂x − (−1)nΔ0τysignx (8)
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has two zero modes, which are eigenstates of F = σxτxIx
with F = (−1)n (F = 1 at φ = · · · − 3π, π, 5π . . . and
F = −1 at φ = · · · − π, 3π, 7π . . . ):

⎛

⎜
⎜
⎜
⎜
⎝

1

σx

σxF

F

⎞

⎟
⎟
⎟
⎟
⎠

· e−
∫ |x|
0 |Δ(x′)|dx′

(9)

(note another gauge used in [4]).
It is convenient to mark an eigenstate εν(y) of h0

with the sign of its slope (± = −σx) and an integer n,
where its energy crosses zero, εν(φ = π + 2πn) = 0, so
that ν = (n,±).

We observe that the spectrum is 2π-periodic, εν(φ+
+ 2π) = εν′(φ), however the wave functions are 4π-
periodic, fν(φ + 4π) = fν′′(φ). This is another mani-
festation of the symmetry F .

Construction of 2D wave functions. Having ob-
tained the eigenvectors |ν〉y (7) of h0 for each y, we use
them as a basis to construct solutions

ψ(x, y) =
∑

ν

αν(y)fνy(x), (10)

of the 2D BdG equation

(h0 + h1)ψ = Eψ. (11)

Rewriting the BdG equation as (E − h0)ψ = h1ψ, we
find

(E − ελ(y))αλ(y) =
∑

ν

(hλνkin∂y + h̃λν1 )αν(y), (12)

hλνkin = (−i�v) y〈λ|σyτz |ν〉y , (13)

h̃λν1 = (−i�v) y〈λ|σyτz
(

∂y +
ie

�c
Ay(x)τz

)

|ν〉y . (14)

We note that Fu and Kane [4] used a different, y-
independent basis |ν〉y=yλ

, suitable at y ≈ yλ for low-
energy states near a node ελ(yλ) = 0. Since we consider
also ranges away from nodes, we chose |ν〉y above. This
brings a new term h̃1 compared to [4], which we will
treat perturbatively.

Additional symmetries of h0 at μ = 0. h0 has
an extra symmetry

[h0, σx] = 0, (15)

which at μ = 0 allows one to use an alternative time
reversal Θ = τxK = σxT and an alternative chiral
symmetry P = σyτz ∝ σxS. Note that Θ and P are
not symmetries of the full Hamiltonian h0 + h1: in-
deed, {h1,Θ} = 0 whereas [h0,Θ] = 0, also [h1, P ] = 0

whereas {h0, P} = 0.

The chiral symmetry P maps between |n±〉 and
squares to unity, P 2 = 1. Our choice (9) of the basis
implies that P |n+〉 = i |n−〉 and P |n−〉 = −i |n+〉.

Zero modes. Let us first omit the h̃1 term in
Eq. (12). As the symmetries above show, hkin couples
only the levels within each charge conjugate pair n±,
and Eq. (12) factorizes into 2× 2 equations:

E

(
αn+(y)

αn−(y)

)

= heff

(
αn+(y)

αn−(y)

)

, (16)

where
heff = −ivρy∂y + εn(y)ρz . (17)

Here ρ are a new set of Pauli matrices in the basis n±.
The energy εn vanishes at coordinates y = yn with

phase φ(yn) = π + 2πn. Around this point we linearize
εn(y) = α (y − yn) and obtain an exactly solvable [6, 7]

heff = −ivρy∂y + α (y − yn)ρz (18)

with α ∝ ∂yφ. This equation has a zero mode local-
ized near yn and a set of “Landau levels”, cf. Fig. 4. In
the regime we consider, lB � ξ, many Landau levels fit
below the gap Δ0.

Fig. 4. (Color online) Schematic drawing of energy levels
near a single node

Coupling and hybridization of Majorana zero
modes. Taking into account the h̃1 terms in Eq. (12)
may tunnel-couple zero modes at different nodes φ =

= π + 2πn, pushing them away from zero energy. We
show that this is not the case, and at μ = 0 the modes
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remain at zero energy, forming a flat band. This obser-
vation is similar to that of [8] for a 2D system with a
vortex lattice.

Indeed, from Eq. (18) one observes that the zero
mode at each node, |n+〉 + S |n−〉, is chiral with the
same chirality S = σzτz = −signα for all nodes. We
show that adding h̃1 does not alter this property.

We note first that effects of h̃1 on the energies of the
zero modes are weak and can be treated perturbatively,
and hence the zero modes may acquire only a weak ad-
mixture of other, non-zero states. On the other hand,
the chiral symmetry implies that all zero-energy solu-
tions have full chirality, while all nonzero-energy solu-
tions are equal-weight superpositions of two chiralities.
Since without h̃1 all zero modes have the same chirali-
ties, a weak perturbation cannot push them away from
zero.

For a sufficiently wide contact W � ξ the spec-
trum εν(y) is below Δ0 and linear in a wide range of
phases, so that the zero mode wave functions can be
found explicitly in the range of interest. Then one ob-
serves the vanishing tunnel coupling explicitly. The zero
states, for instance, in two neighboring orange nodes
φ = −π and φ = 3π are both ∝ (1, 0, 0, 1)T , and the
matrix element of the Hamiltonian between them van-
ishes, 〈ψ−π|h|ψ3π〉 = 0 as follows from its matrix struc-
ture (and is a consequence of the fact that h changes
chirality).

While the zero modes remain decoupled, other levels
near a certain node can be perturbed due to coupling
to other nodes. This is schematically indicated in Fig. 4
by a finite width of the corresponding Landau level.

Our result is in agreement with the general classifi-
cation of zero modes [13], which implies that the number
of MZM’s is topologically protected (note the same chi-
rality of all MZM’s) and given by the total phase drop
accumulated around the defects within the Josephson
junction.

Discussion. We note that coupling between the
MZM’s in this setting was suggested as a method to
braid them [7], which would allow for topologically-
protected quantum operations [14, 15]. While the cou-
pling vanishes at μ = 0, a finite coupling may be
achieved for μ �= 0 (in fact, reaching μ = 0 may be
experimentally challenging), which also permits control-
ling its strength.

As we have discussed above, at low magnetic fields
and large intervortex distance, Majorana zero modes are
topologically protected [13]. Unlike the Andreev bound
states in conventional Josephson junctions [16], which
are sensitive to normal scattering and spin-orbit cou-
pling, the MZM’s are protected due to topological heli-

cal nature of the surface states [6]. Potential disorder in
the junction may affect the MZM’s, weak effect can be
expected for correlation lengths below lB, while influ-
ence of longer correlations on the MZM’s needs further
analysis.

Furthermore, finite coupling can be realized if two
MZM’s have different chiralities. Since the chirality
depends on the sign of the magnetic field (signα in
Eq. (18)), this can be effected with a nonuniform mag-
netic field distribution: for instance, with a “domain
wall” of H(y) = H0sign y or an oscillatory H(y).
The corresponding structures would allow for controlled
quantum operations with Majorana modes.
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