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Abstract—Autonomous driving is a key technology towards a
brighter, more sustainable future. To enable such a future, it
is necessary to utilize autonomous vehicles in shared mobility
models. However, to evaluate, whether two or more route
requests have the potential for a shared ride, is a compute-
intensive task, if done by rerouting. In this work, we propose the
Dynamic Longest Common Subsequences algorithm for fast and
cost-efficient comparison of two routes for their compatibility,
dynamically only incorporating parts of the routes which are
suited for a shared trip. Based on this, one can also estimate,
how many autonomous vehicles might be necessary to fulfill the
local mobility demands. This can help providers to estimate the
necessary fleet sizes, policymakers to better understand mobility
patterns and cities to scale necessary infrastructure.

Index Terms—autonomous driving, route matching, carpools,
ride-hailing, ride-sharing, shared mobility

I. INTRODUCTION

Autonomous vehicles in the field of public transport will
most likely operate in shared mobility models in the future [1],
[2]. This enables a sustainable usage of this groundbreaking
technology. Therefore, it is necessary to match the desired
routes of two or more passengers for compatibility. While
solutions exist to determine the compatibility between two
routes by computing the exact detour that occurs when a
second route is considered [3], [4], this represents a multistep,
computationally intensive procedure that requires recomputa-
tion of routes with a routing engine. Given multiple routes,
it is desirable to determine a similarity score to determine
whether any two routes are suitable for a joint trip. For
this purpose, in this work we propose the Dynamic Longest
Common Subsequences (DLCSS) algorithm to dynamically
find the longest common subsequences of two routes and
based on this, determine a compatibility for a common trip
with a similarity metric smDLCSS . This work is also a step
towards determining realistic estimates for traffic volumes in
a future with autonomous vehicles. This can help guide the
progress of autonomous vehicles, e.g., by using such estimates
to properly size necessary network infrastructure [5], [6].
The presented concept was already developed in [7] as an
unpublished thesis of the first author. With this publication,
we extend the state-of-the-art research with current literature,
provide the DLCSS algorithm in pseudocode and aim to make
the concept available to a broad, international audience.

Fig. 1. Scenario overview of how two people can share a ride. In [1,1] they
share the whole route. In [1,2], the start coordinate of the second passenger
is on the route of the first. In [1,3], the second passenger gets to a meeting
point on or near the route of the first passenger by other means of transport
or by foot. In [2,1], the destination of the second rider is on the route of the
first rider. In [2,2], the second person’s route is a partial route of the first. In
[2,3], the second person comes to a meeting point and has their destination on
the route of the first. [3,1] shows a common starting point, while the second
person reaches their destination differently from a separation point. [3,2] is
similar, but the starting point of rider 2 is on the route of rider 1. In the most
complex scenario [3,3], rider 2 joins via a meeting point and continues their
journey after a separation point. Adapted from [7].

A. Contribution

With this work, on a high level, we aim to contribute to
the Sustainable Development Goals (SDG) [8]. The vision
of tomorrow’s shared, autonomous mobility can contribute to
numerous SDGs, and our work is a building block towards that
vision. Based on the analyses provided by [9], [10], the SDGs
1, 5, and 8 – 13 can be supported by shared mobility providers:
No poverty; Gender Equality; Decent Work and Economic
Growth; Industry, Innovation and Infrastructure; Reduced In-
equalities; Sustainable Cities and Communities; Responsible
Consumption and Production; and Climate Action. On a more
technical level, we contribute to the general field of route and
trajectory matching, which can also find application outside
the field of autonomous driving. While existing methods
often lack temporal components of trajectories or work in a
static, parameter-based fashion, our proposed algorithm is a
dynamic, parameter-free approach to evaluate two routes for
their suitability of a shared trip.
In Section II, we provide an overview of route comparison
approaches. Section III describes our proposed algorithm.
Here, we go into detail with a pseudocode implementation and
visualize the underlying principle. In Section IV, we perform
a series of experiments and evaluate the algorithm. Finally,
Section V provides a summary and outlook.
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II. RELATED WORK

For the comparison of two routes, numerous metrics exist
in the literature. For this survey, we focus on sophisticated
methods for route similarity measures. These either evaluate
spatial-temporal similarity or only spatial similarity. In [11], a
detailed analysis of twelve published metrics was performed.
To evaluate routes based on their partial overlap, the Fréchet
metric [12], dynamic time warping (DTW), edit distance,
and longest common subsequence (LCSS) methods [13] are
available. In LCSS, the length of the partial overlap is used
as the metric. In [14], the traditional dynamic time warping
(DTW) algorithm is used and incorporates several distance
factors such as point-segments, consideration of temporal dis-
tance factors by converting to spatial distances, and segment-
segment distances. However, using only the length of partial
overlap as a static threshold for evaluation may lead to non-
identification of potential matches [11]. All other methods
compare two routes completely with each other, which only
leads to usable results for scenario [1,1] shown in Figure 1,
which leads to disadvantages in other valid scenarios. Addi-
tional methods of the same type can be found in [15] and [16].
Cruz et al. [16] cluster discrete points of trajectories, similar to
[17], in order to find a common point on several trajectories.
Aydin et al. [18] encounter partial route matching using
the Needleman-Wunsch-Algorithm [19]. Based on distance
parameters, in [20] and [21], partial routes are supported,
but not the formation of meeting points. Likewise, in [22],
meeting points are considered, but only under the condition
of pedestrian accessibility by passengers. In [23], additionally,
a detour of the driver with a similar travel time as of the
passenger walking is included. In [24], [25], and [26], meeting
points with multimodal accessibility are considered, but path
similarity between them are not taken into account. Yao and
Bekhor [27] use a dynamic tree algorithm to match similar
routes.

To the best of our knowledge, the literature provides no
algorithm that compares two routes in a parameter-free way,
incorporating temporal aspects of it. Accordingly, a new
algorithmic development is carried out within the scope of
this work. For this purpose, the LCSS approach is developed
into a parameter-free, dynamic variant.

III. METHOD

To check if a route request for an autonomous vehicle is
applicable for a shared ride, it needs to be compared with all
other planned or existing rides. Depending on the complexity
of the underlying matching system, this enables ridesharing
with two or more participants. As the evaluation of a match,
based on rerouting, is an expensive operation, a lightweight
method that provides a similarity metric is desirable. As shown
in Figure 1, there exist many different scenarios, which need
to be taken into account for such a method. Partial overlaps
occur particularly often. Generally speaking, it is insufficient
to only consider the start and target coordinates for such a
comparison, as there may be desired stops along the route or

general preferences, e.g., choosing between a highway or a
country road.

Algorithm 1: Computation of DLCSS line segments
Data: RouteAutonomous[I] and RouteRequest[J ]

with I, J ≥ 2 points
Result: LineSegmentsDLCSS containing 3-tuples

[DistanceDLCSS, pi, pj ]
1 LineSegmentsDLCSS[];
2 DistanceMatrix[I][J ]← −1;
3 foreach point pj ∈ RouteRequest do
4 MinDistances[];
5 foreach point pi ∈ RouteAutonomous do
6 MinDistances← [distance(pi, pj), i]
7 end
8 Sort MinDistances;
9 RefI = MinDistances[0][1];

10 DistanceMatrix[RefI][j] =
MinDistances[0][0]

11 end
12 StartJ ← 0;
13 foreach point pi ∈ RouteAutonomous do
14 MinDistances[];
15 for j ← StartJ ∈ RouteRequest, j ≥ RefJ do
16 if DistanceMatrix[i][j] 6= −1 then
17 MinDistances←

[DistanceMatrix[i][j], i, j]
18 end
19 end
20 Sort MinDistances;
21 StartJ ←MinDistances[0][2];
22 LineSegmentsDLCSS ←MinDistances[0];
23 end

Given a route A from an autonomous vehicle and a re-
quested route R from a potential second passenger, we want
to rate the spatio-temporal similarity of the routes based on
the partial overlap, but also the distance between these routes
within the overlapping section. The proposed DLCSS method,
see Algorithm 1, allows for a dynamic, yet parameter-free
computation of such a score and is visualized in Figure 2.
In a two-stage minimization approach, first, for each coor-
dinate of R, the coordinate of A with the shortest distance
is identified. In Algorithm 1, this is done in lines 2 − 11.
At first, however, in line 1, the result vector is defined.
In line 2, the DistanceMatrix is initialized, which can
store the distances between any two points of the routes as
an intermediate representation. The following computations
can be found in lines 3 − 11. Then, for each coordinate
reached, the shortest line segment is selected, incorporating the
temporal route directions. This is done in lines 12 − 23. The
StartJ variable from line 12 is responsible for the temporal
component, ensuring that the comparison along R only takes
points into account which lie ahead a previously found line
segment or the first coordinate, ignoring the past. Then, in lines



Fig. 2. Computation of DLCSS line segments. First, for each coordinate Rj of a requested route (blue), the coordinate Ai of the route of an autonomous
vehicle (white) with the shortest distance is identified (left, green lines). Then, for each Ai, the shortest line segment is selected, incorporating the temporal
route directions (right, orange lines). These DLCSS closed line segments lsDLCSS(Ai,Rj)

characterize the similarity of the routes. Adapted from [7].

13−23, for each distance stored in the DistanceMatrix, the
shortest one for each point on A is determined and stored in
LineSegmentsDLCSS. These DLCSS closed line segments
lsDLCSS(Ai,Rj) characterize the similarity of the routes. This
way, any combination of two routes can be compared. The
algorithm dynamically determines the longest common sub-
sequences for both routes (A,R) and computes a set of closed
line segments, which describe the similarity of the routes
within these subsequences. Based on this, there are many
options available to compute a single metric, quantifying the
similarity of two routes. One option we propose is to compute
a single similarity metric smDLCSS , which incorporates the
percentage overlap of the routes from the point of view of
route A as well as the sum of the computed DLCSS closed
line segments lsDLCSS(Ai,Rj), see Equation 1.

smDLCSS =
1

(
lSubA

lA
)
∗
∑

lsDLCSS (1)

Here, high overlaps and small aggregated line segments lead
to a small and thus better similarity metric, while especially
high aggregated line segments lead to a high, and thus worse,
value. An exemplary distribution is visualized in Figure 3.

A. Application: Meeting Points

For the five scenarios [*,3] and [3,*] shown in Figure 1,
a meeting or departure point is necessary for a shared au-
tonomous journey. Computing the potential for a shared ride
with a meeting point can be done, when the initial smDLCSS

value for two given routes is too high for a direct shared ride,
meaning the detour of the autonomous vehicle would become
too large. Based on new routes including a set of meeting
points, the smDLCSS values for each combination can be
computed to determine if one of the meeting points might
enable a shared ride.

Fig. 3. Distribution of smDLCSS values for a range of line segment sums.

In Figure 4, an exemplary case for this is shown. For every
two routes, that show a slightly too large smDLCSS value for a
direct match, the potential of a shared ride with a meeting point
can be computed. First, a dataset of potential meeting points
was assembled for the Aachen Area in Germany, based on
publicly available data [28]–[30]. Here, on the left, a potential
shared route with a high smDLCSS value is shown, which is
not suitable. On the right, a meaningful meeting point could
be identified.

IV. EVALUATION

To discuss, to which extent the smDLCSS metric, based
on the DLCSS algorithm, is suitable to discard irrelevant
route pairs, a quantitative analysis was performed. First, it
was necessary to determine a suitable threshold. For that
purpose, a dataset with 180 routes in the Aachen area in



Fig. 4. Application of DLCSS to determine if a route can be facilitated with
a common meeting point. On the left, the theoretical scenario [1,1] is shown
for two routes. On the right, The scenario [1,3] is shown based on a common
meeting point. Adapted from [7].

Germany [31] was used. Then, the correlation between the
computed smDLCSS metric and the actual required detour
for a shared ride was analyzed, leading to a smDLCSS value
of 20k as a suitable threshold, given the assumption, that
an autonomous vehicle will only accept detours with up to
50% the length of its original route. With this, the DLCSS
algorithm was able to reject 87.2% of the entries from the
dataset. Here, the comparison with the actual detour showed,
that the results contained 47.82% true positives, while having
no false negatives. This overly cautious threshold combines
two ideal settings: First, no potential matches are being left
out. Second, expensive, routing-based comparisons need only
to be made for 12.8% of the data. Exemplary results are shown
in Figure 5. For this analysis, no meeting points were included.

Fig. 5. Application of DLCSS to a dataset in the Aachen area [31]. The
left row shows the whole artificially generated datasets. In the center row,
the selection based on the DLCSS algorithm is shown. The right row shows
the final result, based on a computationally expensive routing-based matching
algorithm. Adapted from [7].

V. CONCLUSION

In this work, we provided a literature overview of route
matching algorithms for the scenario of shared mobility mod-
els for autonomous driving. After proving a holistic scenario

matrix for all possible cases, the Dynamic Longest Common
Subsequences (DLCSS) algorithm is introduced, which is a
dynamic, parameter-free improvement of the LCSS algorithm.
In a second step, we introduced the smDLCSS metric, which
is a way of assigning a numeric value to a pair of routes,
describing their similarity. Both the proposed algorithm and
the metric can be used by operators to improve their fleet
operations and can be a starting point for further analysis.
This can help providers to estimate the necessary fleet sizes,
policymakers to better understand mobility patterns and cities
to scale necessary infrastructure.

In future work, the applicability of the approach for more
than two passengers shall be examined. First steps with a
greedy merge approach [7] show promising results. Also, the
DLCSS raw data can be used to design further metrics, which
might lead to improvements in respect to the stability of the
similarity metric.

VI. ACKNOWLEDGMENT

This work results partly from the KIGLIS project supported
by the German Federal Ministry of Education and Research
(BMBF), grant number 16KIS1231.

REFERENCES

[1] Uber, “UberX Share,” https://www.uber.com/us/en/ride/uberx-share/,
2022, accessed: 2022-05-02.

[2] Lyft, “Lyft Shared rides for riders,” https://help.lyft.com/hc/e/articles/
115013078848-Lyft-Shared-rides-for-riders, 2022, accessed: 2022-05-
02.

[3] Google, “Google Maps Platform Documentation,” https:
//developers.google.com/maps/documentation, 2022, accessed: 2022-
05-02.

[4] Mapbox, “Web Services APIs,” https://docs.mapbox.com/api/overview/,
2022, accessed: 2022-05-02.
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