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Abstract—Great progress has been achieved in the community
of autonomous driving in the past few years. As a safety-critical
problem, however, anomaly detection is a huge hurdle towards
a large-scale deployment of autonomous vehicles in the real
world. While many approaches, such as uncertainty estimation or
segmentation-based image resynthesis, are extremely promising,
there is more to be explored. Especially inspired by works on
anomaly detection based on image resynthesis, we propose a
novel approach for anomaly detection through style transfer. We
leverage generative models to map an image from its original style
domain of road traffic to an arbitrary one and back to generate
pixelwise anomaly scores. However, our experiments have proven
our hypothesis wrong, and we were unable to produce significant
results. Nevertheless, we want to share our findings, so that others
can learn from our experiments.

Index Terms—autonomous driving, anomaly detection, style
transfer, generative models

I. INTRODUCTION

Driven by the technology of deep neural networks for
computer vision, tremendous advances have been seen in
the field of autonomous driving. For instance, various deep
learning models [1] are nowadays able to provide outstanding
performances for the task of object detection. However, in
order to achieve effective deployment for real-world scenarios,
reliability issues must be overcome. That is to say, under rare
or unknown conditions, an autonomous vehicle is required
not only to be able to identify the object classes from the
training dataset, but also to detect atypical objects that have
not been included in the training set. Anomaly detection,
therefore, is an active topic in the research field of autonomous
driving. As shown in [2], there are five main strategies to
detect anomalies: Confidence scores, reconstructions, gener-
ative approaches, feature extraction methods and prediction
errors. The approach presented here falls into the category
of reconstructive methods, in which an attempt is made to
produce a reconstruction of an original image via a certain
process, with which, differences from the original image can
be classified as anomalies.

Inspired by approaches in this category, we came up with
the idea to use generative models for style transfer based
reconstructions, as shown in Figure 1. We have formulated our
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Fig. 1. Overview of the novel anomaly detection approach. An image with
anomalies is transferred into a stylized version of it with a forward style
transfer, based on a target domain of choice. The resulting image is then
transformed back to its original domain. Finally, a difference map between
the original and the re-created image is computed, which can be interpreted
as a map of pixel-wise anomaly scores.

hypothesis as follows: Transferring an image from the road
traffic domain, which includes anomalies, such as unknown
objects, to another domain and back to the original domain,
will lead to a resulting image that is similar to the original in
the domain-typical aspects and deviates from it in the anoma-
lous regions, which allows for the detection of anomalies. This
hypothesis was made under the assumption that anomalies
might disappear or get distorted through two successive style
changes, which would allow for the detection of such. This
hypothesis to detect anomalies is based on an assumption
with respect to reconstruction errors with generative models,
where “. . . normal samples are located on a manifold and all
anomalous samples are located outside.” [3].

For the experiments, we used the KITTI [4] and
Cityscapes [5] datasets, and qualitatively evaluated the de-
tection of anomalies with the Fishyscapes [6] and Lost and
Found [7] datasets. However, our experiments have proven our
hypothesis wrong and have shown that the concept as we have
implemented it does not seem suitable for anomaly detection.
To share this finding with the scientific community, we present
our hypothesis, experiments, and negative results, as is often
suggested [8]–[13], but rarely practiced.
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II. RELATED WORK

Most of the current research in anomaly detection for
autonomous driving focuses on camera-based approaches [2],
which we will present in more detail in the following section.
Subsequently, we will give an overview of style transfer
methods.

A. Camera-based Anomaly Detection

Modern anomaly detection methods that work on cam-
era data can be split into generative, reconstructive, and
confidence-based approaches [2]. The latter detect anoma-
lies by thresholding a derived uncertainty measure of the
model [14], [15]. Moreover, Du et al. [16] focus on the calibra-
tion of the neural network’s confidence score to differentiate
in- and outliers more thoroughly. For this purpose, they shape
the decision boundary via virtual outliers sampled from a
learned feature distribution [16]. Reconstructive approaches on
the other hand try to resynthesize the normality of a driving
scene. Here, normality can be understood as what a model
learned, given certain training data. Anomalous objects or
events are then detected by comparing the real and recon-
structed scene, resulting in a reconstruction error. However,
modern generative adversarial networks (GANs) have shown
outstanding reconstruction performance even on unseen data
[17]. In order to predict normality in autonomous driving,
various machine learning algorithms are being used [2], like
restricted Boltzmann machines [18], autoencoder architec-
tures [19] [20], or normalizing flows [21]. The NFlowJS model
proposed by Grcić et al. [22], however, uses normalizing
flow to synthesize outliers during training and to sensitize the
model for potential anomalies. Other generative approaches
use GANs to resynthesize the input image [23] [24] and
detect anomalous objects on the road, e.g., by the perceptual
loss [25]. While there also exist methods that are based on
feature extraction [2], these are typically older, which is why
we excluded them from this overview.

B. Image-to-Image Style Transfer

Benefiting from the powerful feature extraction abilities of
deep neural networks, image style transfer has been an active
research area in image translation. Specifically, the aim of style
transfer is to render an input image into a new image, which
has a similar style and texture as a style image from a target
domain. As pioneers of style transforms, Gatys et al. [26]
firstly proposed their method Neural Style Transfer (NST)
to synthesize an image to match the style of a painting
by an artist. Notably, separate control of the content and
style of the picture is achieved by introducing content and
style loss functions. However, due to its application to single
image pairs, this approach cannot be used for large-scale style
conversions. Motivated by Neural Style Transfer, another style
transfer model, introduced by Johnson et al. [27], performs
much more efficiently by optimizing an image transform net.

In addition to ordinary neural network models, the emer-
gence of GANs [28], [29] opens up more possibilities in the
area of style transfer. As the name suggests, the core idea of

GANs is to create desired images by simultaneously training
two opposing neural networks. While a generator is responsi-
ble for synthesizing more realistic images under the guidance
of a discriminator, the discriminator is trained to distinguish
fake images from real images more accurately. Specifically,
there are two well-known generative models for the task of
image translation. With the help of adversarial and perceptual
losses, the framework Pix2Pix [30] learns the mapping from a
source domain to the target domain by training a model with
paired training data. Differently, CycleGAN [31] employs a
cycle consistency loss [32], as also applied by DualGAN [33],
to conduct image-to-image translation under the unsupervised
setting, making style transfers more flexible. Similar works
include DiscoGAN [34], GANimorph [35], ACL-GAN [36],
and AttentionGAN [37]. Besides, Park et al. [38] firstly
applied contrastive learning [39] for unpaired image-to-image
translation. Interestingly, the model is trained to learn the
invariance between the patch of the generated image and its
corresponding patch in the input image by using the InfoNCE
loss [40].

III. APPROACH

Our hypothesis to detect anomalies is based on an assump-
tion in respect to reconstruction errors with generative models,
where “. . . normal samples are located on a manifold and all
anomalous samples are located outside. Since the manifold
can be learned only where the training data lie. . . ” [3], we
were curious if generative models for style transfers might
perform worse in areas of data points outside of their learned
distribution. Thus, the core idea of our approach is to perform
anomaly detection by leveraging the impact of successive style
transformations, as visualized in Figure 1. The forward style
transfer is responsible for the conversion of an input image
into a stylized version of it. The backward style transfer is
then tasked to transform the image back to its original style
domain. Finally, a pixel level comparison between the input
and re-constructed image is conducted to recognize anomalies
in the input image.

Forward Style Transfer By forward style transfer, we refer
to the process of transferring an input image to an arbitrary
style domain. Thereby, the input image will be rendered in the
style of the target image, while preserving its content.

Backward Style Transfer The aim of backward style
transfer is to transform the stylized image, which is the output
from the forward style transfer, back to the original style of
the input image.

Pixelwise Anomaly Detection Finally, a pixel-by-pixel
comparison is made between the input image and the newly
synthesized image. Based on our hypothesis, we expected
to detect anomalies in the input image through comparison.
While we are aware that such a direct comparison between
the re-synthesized image and the original is not sufficient for
anomaly detection due to noise [41], spikes in such difference
maps are a sufficient indicator for the general suitability of the
approach.



IV. EVALUATION

In this section, we present qualitative results of our ap-
proach. We performed three different sets of experiments and
show the resulting pixelwise anomaly scores for multiple input
images. As we performed the experiments as a first step to
determine whether the methodology is suitable for anomaly
detection, we omitted a quantitative analysis afterwards.

A. Data Selection

Since the training data should reflect normality in road
traffic, we first chose to utilize the well established KITTI [4]
dataset and also performed experiments with the much larger
Cityscapes dataset [5]. For the following evaluation, datasets
with anomalies were necessary. While there exist many
datasets in the field of autonomous driving [42], only a few of
them are suited for the task of anomaly detection. We utilize
data samples from the Fishyscapes [6] and Lost and Found [7]
datasets to include both real and augmented anomalies. As
the Lost and Found dataset is part of the Fishyscapes suite,
we might refer to both as Fishyscapes. Both provide ground-
truth labels for out-of-domain pixels, which we consider
anomalies. In autonomous driving, these are also often called
corner cases [43] in the category unknown object [44]. These
unknown objects can typically also be seen clearly in the
images directly. Figure 2 shows a selection of animals and
small objects. For the art styles used for the forward passes,
we selected a wide variety of styles, including art from Van
Gogh, Giles and pieces in the Ukiyo-e style.

B. Model Selection

We have performed experiments with two different image
style transfer methods. First, we used CycleGAN [31], which
is an established framework for unpaired image translations.
For model-based style transfers, it is important to choose a
model that can be trained with unpaired images as training
data, contrary to approaches such as Pix2Pix [30], where
paired images are necessary. Among those, CycleGAN [31]
is the most prominent representative. While there are newer
models, CycleGAN is optimal for experiments, since high
quality open-source code [45] is available and many works
have used it already, making it a mature method.

Second, we utilized the Neural Style Transfer approach [26],
which is regarded as one of the early milestones in the field
of style transformations. While CycleGAN is able to generate
stylized images with a high quality, we have no dynamic
control over how much an image should be transformed. This
becomes possible with NST, so that we were able to examine
the influence of conversion degrees. Based on convolutional
neural networks (CNN), the Neural Style Transfer Algorithm
is able to render a random input image in the style of a
target image by leveraging the VGG19 model [46], which
has been widely used for feature extraction in various tasks.
Moreover, the highlight of the algorithm is controlling the
transfer degrees through two weight parameters of the loss
functions: content weight and style weight. On the one hand,

a content image would be always compared with the generated
image, in order to make sure the semantic content is retained
in the process of stylization. Specifically, the content structure
can be preserved through minimizing the mean squared error
of feature maps between a content image and the input image.
On the other hand, through computation of the Gram matrix,
a style image in the target domain would be always compared
with the generated image, such that the synthesized image
will have a similar style as the given style image. Thus, it is a
tradeoff problem for the task of combining the content image
with another style image, where it is impossible to meet the
two constraints perfectly at the same time. For instance, the
output image could have the texture of the style image, but
lose some content when a larger style weight is set. On the
contrary, a much larger content weight would result in that the
synthesized image is further away from the target style.

C. Style Transfer with CycleGAN

In this first experiment, we have utilized CycleGan for both
the forward and backward style transfers. First, we will give
an overview of the details of the forward style transfer.

1) Forward Style Transfer: For this experiment, instead of
training a CycleGAN model from scratch, a pre-trained model
was directly used for the forward style transfer. Although the
pre-trained CycleGAN model [45] was trained on paintings
by Van Gogh as the target domain and ordinary photos as
the source domain, it has shown to have good generalization
capabilities on various datasets, such as KITTI, Cityscapes, as
well as Fishyscapes and Lost and Found.

2) Backward Style Transfer: For the backward style transfer
direction, however, the observed performance of the pre-
trained GAN was not sufficient. Therefore, we chose to train
the model from scratch. Notably, in order to perform the
task of style transfer with a CycleGAN model successfully,
images from both the source and target domain are required
to be fed into the model for training. Specifically, paintings
by famous artists are commonly used as source images and
ordinary photos are taken for the target domain. For achieving
better performance of the backward transfer, we trained our
model on several data sources, which are presented in Table I.

Group Source Domain Target Domain

A Paintings by Van Gogh KITTI
B Paintings by Van Gogh KITTI + photos
C Ukiyo-e style paintings KITTI
D Ukiyo-e style paintings KITTI + photos
E Van Gogh stylized KITTI KITTI
F Van Gogh stylized Cityscapes Cityscapes

TABLE I
DATA SOURCES USED FOR THE TRAINING OF CYCLEGAN MODELS

We firstly conducted four sets of trainings, shown as groups
A to group D. Paintings by Van Gogh were adopted as the
source domain images in both groups A and B. In group A,
we used images from the KITTI dataset as the target domain,
whereas a combination of KITTI data and ordinary photos



served as target style images in group B. Additionally, we
employed the Japanese painting style Ukiyo-e [47] as the
source style in group C and D. For the target domain, group C
used KITTI data as done for group A, and group D combined
KITTI with ordinary photos as in group D. However, this set
of experiments did not perform well, even though we observed
slightly better results when using Van Gogh style images and
KITTI data. Here, two problems occurred. On the one hand,
some noise was constantly present, which we attribute to the
special texture of Van Gogh paintings. On the other hand,
the performance of the model was erratic, resulting in the
occasional lack of much difference between transformations
and the corresponding input images. After this analysis, we
found two directions to resolve the problem. Firstly, rather
than directly using paintings from artists, we took stylized
images, which were the output from the forward style transfer
network, to train our model with more domain-specific data.
Secondly, there were too few images from the source domain
for training. With the newly selected data source, we were
able to increase the number of stylized images significantly
and performed another two trainings, as shown in groups E
and F. In group E, Van Gogh stylized KITTI samples were
used for the source domain, and KITTI samples were used for
the target domain. In group F, we followed the same approach,
but used Cityscapes data.

3) Pixelwise Anomaly Detection: For the evaluation, an
input image chosen from the Fishyscapes dataset was used
as the input. With the final approach as shown in group F of
Table I, we were able to generate images with the backward
style transfer pass that were consistently close to the original
ones, as shown in Figure 2.

Fig. 2. Evaluation results of the model trained with Van Gogh stylized
Cityscapes images as the source domain and Cityscapes samples as the target
domain. Four different types of anomalies are included in the Fishyscapes
scenes, which are highlighted in red.

This observed performance improvement on the Fishyscapes
dataset is largely due to the fact, that Fishyscapes is an
extension of the original Cityscapes datasets, so the general
domain remains unchanged. After the conversion of the input
into a stylized version of it, based on the forward style transfer,
we reconstructed the input image based on the backward style
transfer. The re-synthesized images are generally very close
to the original ones, which was a wanted effect. However, as

visible in the last column, we did not observe any deformations
in the area of the anomaly.

D. Style Transfer with NST

For the second experiment, we used the Neural Style Trans-
fer method for both the forward and backward style transfor-
mations. In the CycleGAN framework, weight parameters are
updated iteratively, until the model converges. Contrary, with
NST, it is a single image that is optimized in the training
process. Thus, only two images are necessary for the process:
a content image and a style image. Therefore, we directly
utilize Fishyscapes data samples for the style transfers.

1) Forward Style Transfer: For the forward style transfer,
a sample from Fishyscapes is used as the content image, and
a painting from Van Gogh is taken as the style image in
the optimization process. Content weight and style weight
are two important parameters, that can be set to control
how much the image will be stylized. As recommended by
reference implementations, [48] [49], the content weight is
kept unchanged at 1e5, such that the process of style transfer
can be easily controlled by only changing the style weight.

Fig. 3. Style transfers with NST with a scene from the Fishyscapes dataset
with lost cargo as anomalies. Each column represents a different style and
each row a different style weight.

To determine, which degree of style transfer is most likely
to lead to distortions of the content, especially anomalies,
during the forward style transfer, we performed a set of small
experiments with the style weight. As visualized in Figure 3,
we performed experiments with four different styles [50]–[53],
and four different style weights. The larger the style weight,
the better the generated image matches the style image. Since
a style weight of 1e8 often led to a nearly complete loss of the
content information, we utilized a value of 1e5 for the further
experiment to maximize the effect of the style transfer, while
retaining the content.

2) Backward Style Transfer: To convert the stylized
Fishyscapes images back to their original style of a regular
street scenario, we chose an image from the Cityscapes dataset
as the style image. Importantly, this image from Cityscapes
does not contain any anomalies, such that it only works as



a style guidance, avoiding an unexpected influence on the
content part.

3) Pixelwise Anomaly Detection: Illustrative results of the
second experiment are shown in Figure 4. Here, we utilized the
same styles as introduced in Figure 3. To highlight the effects
of the different styles on the reconstruction and anomaly
detections, we show only one scene from the Fishyscapes
dataset.

Fig. 4. Evaluation of Neural Style Transfer with a content weight and a style
weight of 1e5 each. A sample scene from the Fishyscapes dataset is used as
the input. Each row shows the process with a different style. Anomalies are
highlighted in red.

Here, it becomes visible that the results of the backwards
style transfers differ less than the differences of the stylized
images might suggest. Again, the anomalies remain well
visible in the reconstruction. The anomaly map in the last
column shows no spikes in these regions, but shows a high
level of difference values in general.

E. Hybrid Style Transfer

For the third and final experiment, we combined both
approaches. Here, we performed the forward style transfer
with the Neural Style Transfer method, while we used our
CycleGAN model, trained with Cityscapes data, for the back-
ward style transfer. For this experiment, we followed the
intuition that the NST allows for a better stylization control
for the forward pass, while the CycleGAN enables higher
quality results for the backward pass. As we have explained
both passes in the previous Sections IV-C and IV-D, here we
describe only the results, which are visualized in Figure 5.
It can be seen, that with such a variety of styles, the GAN,
which was only trained with one style, was not capable to
perform the backward style transfer properly. Here, a leakage
of the applied style to the reconstruction occurs with styles,
which were not used for the training of the GAN. Regarding
the anomaly detections, we observe a similar behavior as in
the previous experiments. The amount of noise is, compared
to the other two experiments, in a medium range.

With this presented set of three comprehensive experi-
ments, we examined the influence of training data, style data,
anomaly data, style weights, and style transfer models for
the purpose of anomaly detection based on successive style

Fig. 5. Evaluation of the hybrid approach with a sample scene from the
Fishyscapes dataset. Here, NST is responsible for the forward style transfer.
The backward style transfer was carried out by our CycleGAN model. Each
row represents a different style. Anomalies are highlighted in red.

transfers. While the results showed high-quality reconstruc-
tions, the style transfers unfortunately reconstructed the areas
with anomalies similarly to the rest of the images. Thus, the
difference maps showed primarily noise, which makes the
detection of anomalies with this method unlikely. Specifically,
our experiments have placed a focus on the comparison of
CycleGAN, Neural Style Transfer, and a hybrid combination
of both for the Forward and Backward Style Transfers parts.
The results differed in the value distribution of the difference
maps and the amount of noise, but showed no sufficient
differences for the pixels of the anomalies.

V. CONCLUSION

The aim of our work was to investigate whether our
proposed approach of successive style transfers is suitable
as a novel method for anomaly detection in the domain of
autonomous driving. Therefore, we performed a set of three
extensive experiments. Within these, we transferred images
from the road traffic domain to multiple art domains with a
set of forward style transfer methods and then transferred the
results back to the original domain. We compared these re-
constructions with the original images to calculate a pixelwise
anomaly score. Our experiments revealed, that anomalies were
still consistently visible in the reconstructed image, which
did not lead to high anomaly scores in the difference maps
within the areas of the anomalies. Based on our analysis vi-
sualizations, these negative results should serve as inspiration
and knowledge to support following research in the field of
anomaly detection in autonomous driving.
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