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Abstract: Flexibility combined with the ability to consider external constraints comprises the main
advantages of nonlinear model predictive control (NMPC). Applied as a motion controller, NMPC
enables applications in varying and disturbed environments, but requires time-consuming compu-
tations. Hence, given the full nonlinear multi-DOF robot model, a delay-free execution providing
short control horizons at appropriate prediction horizons for accurate motions is not applicable in
common use. This contribution introduces an approach that analyzes and decomposes the differential
kinematics similar to the inverse kinematics method to assign Cartesian boundary conditions to
specific systems of equations during the model building, reducing the online computational costs.
The resulting fully constrained NMPC realizes the translational obstacle avoidance during trajectory
tracking using a reduced model considering both joint and Cartesian constraints coupled with a
Jacobian transposed controller performing the end-effector’s orientation correction. Apart from a safe
distance from the obstacles, the presented approach does not lead to any limitations of the reachable
workspace, and all degrees of freedom (DOFs) of the robot are used. The simulative evaluation in
GAZEBO using the Stäubli TX2-90 commanded of ROS on a standard computer emphasizes the sig-
nificantly lower online computational costs, accuracy analysis, and extended adaptability in obstacle
avoidance, providing additional flexibility. An interpretation of the new concept is discussed for
further use and extensions.

Keywords: kinematic analysis; robotic differential model decomposition; nonlinear model predic-
tive control (NMPC); controller couplings; joint and Cartesian space constraints; computing time
reduction; accuracy analysis; trajectory tracking; obstacle avoidance

1. Introduction

Modern industry is in a constant state of change driven by the contemporary labor
market, the purchase demand, and the effective use of resources or machines [1]. Robots
are increasingly being used in process automation to carry out monotonous and strenuous
work, also reducing the operating costs [2,3]. In addition, efficient image recognition and
sensor fusion enable increasingly accurate recognition of the environment in the robot’s
workspace [4]. Thus, using appropriate algorithms, robots can also be deployed in varying
and disturbed environments to cover further fields of activity [5].

One sector undergoing a tremendous transformation is agriculture, which motivates
this paper, but does not limit the scope of the presented approach. On the one hand, farmers,
industry, and governments need to keep the costs moderate, even in high-wage countries,
and on the other hand, consumers appreciate a sustainable and regional production [6].
These requirements are not mutually exclusive, but this is a subject area that needs to be
developed, among other fields of application [7]. In particular, image recognition has been
improved and adapted to specific agricultural problems in the last decade, allowing high-
quality recognition with many features in widely disturbed environments [8–10]. Precision
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agriculture enables, e.g., mechanical weed removal without damaging the adjacent plants,
so that the use of pesticides can be reduced [11,12]. This usually requires equipment that is
dedicated to a specific application and is expensive to purchase and maintain. In contrast,
(industrial) robots are flexible and sustainable, as they are applicable for multiple applications
throughout the agricultural season, simply by using different end-effectors. However, for
the application in a distributed environment with multiple obstacles, trajectory planning
and control have to be accomplished almost delay-free. Achieving low computational costs
in optimal control using a robot with multiple degrees of freedom (DOFs) is addressed in
this work.

Motion control is used for the adaption of planned trajectories in the Cartesian or
joint space [13,14], which must subsequently be adjusted to a varying environment by means
of a closed control loop. In general, either a discrete or a continuous interpretation of the
workspace can be chosen. When choosing the discrete approach, the detected environment
is meshed [15], and the optimal path is planned along the resulting nodes and edges [16].
Here, the Dijkstra and A* algorithms [17], as well as sampling-based methods can be applied
with low computational cost to solve the planning task [18]. In general, inverse kinematics or
Jacobian inverse controllers with low computational costs are subsequently used for the
transformation into the joint space [19]. However, setting up the mesh is computational
expensive, so that a delay-free motion control is not possible in a highly varying environ-
ment [20,21]. Examples of continuous motion planning tools include CHOMP, STOMP,
and TrajOpt [22–24], which are commonly used. However, even though the computation
times are short, they are not optimized to be used iteratively for delay-free control [25].
In addition, learning-based methods are increasingly applied, especially to take the aging
of the robotic systems into account during motion control [26]. Using iterative learning
control [27], motions are repeated until the solution is within an acceptable range. However,
for motions in a varying environment, it is complicated to train these systems, as individual
movements have to be run several times with the same initial and terminal states [28]. If a
reference trajectory is known, the repetitive control approach can be added to be periodic
and address the initialization problem [29]. Furthermore, reinforcement learning is used to
improve the performance of the tracking controllers [30]. However, this paper presents a
model-based control scheme that adapts the motion based on the robot’s kinematic specifi-
cations. To realize a closed control loop, which iteratively considers varying environmental
constraints in the Cartesian space and robotic constraints in the joint space given by the
multi-DOF robot, nonlinear model predictive control (NMPC) is used [31]. As the dynamic
optimization has to be solved on a receding horizon, computational efficiency is an issue
for real-time application.

Two different time horizons have to be considered during the implementation of
NMPC [32,33]. The prediction horizon specifies how far the movements in the disturbed
environment are predicted. Governed by the sample size and the DOFs, the number of
decision variables is set, which determines the computational costs to solve the optimal
control problem (OCP) online [34]. Secondly, the control horizon, which is shorter than the
prediction horizon, describes a kind of buffer along which the robot executes the movements
of the last valid OCP solution [35]. A delay-free implementation of NMPC is not possible
at the sampling rates of commonly used (robot) controllers, if an OCP for the prediction
horizon were to be solved in every iteration step [36]. Thus, the control is maintained for
subsequent samples along the control horizon, which is as accurate as the environment
has been captured. Hence, faster solving of the OCP results in a shorter control horizon,
and thus, rather optimal movements will be obtained [25]. A variety of approaches exist
that perform NMPC [37–39], also involving horizon adaptions [40–42] and system refor-
mulations [43,44]. However, in order to decrease the computational costs and, thus, the
number of the decision variables, either the three-dimensional (3D) Cartesian space is only
considered for the implementation of NMPC in robotics [45–47] or the number of actuated
robot joints is reduced and particularly powerful hardware or software is used for the
computations [25,48,49]. If only the Cartesian space is considered, the OCP neglects all
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nonlinearities of the robot model and does not take the reachable work and joint space into
account during the motion computations [50,51]. It must be ensured that the subsequent
joint space transformation is reachable; otherwise, the OCP must be solved again with a
different parameter set. Some approaches include the robotic constraints, but they limit the
robots’ DOFs to handle the computational expenses [52,53]. This complicates the general
application of multi-DOF robots in disturbed environments, where all six Cartesian DOFs
must be adjusted [54].

The approach introduced here analyzes the robot kinematics, thereby reducing the
number of decision variables of NMPC to reduce the computational costs. It preserves
the full robot workspace by adding an additional controller. Using kinematic analysis,
this contribution addresses the cause of the computational costs themselves, rather than
the symptoms, by means of adjustments in the implementation. Obstacle avoidance in
3D space is primarily performed by translational movements, i.e., evasion is achieved by
displacement. In general, tilting the end-effector can also avoid collisions. However, the
associated robotic joints provide a significantly smaller workspace, and simultaneously,
the tool cannot perform the desired task in the correct orientation [55]. Referring to the
agricultural context, manual weeding would have to be interrupted to avoid adjacent
plants, which is less effective. The approach introduced here decomposes the differential
kinematics analogously to the inverse kinematics method to partition the relevant equations
and joints, respectively [56]. The procedure is applied to an industrial robot, which can be
decomposed into the anthropomorphic arm and the spherical wrist, but it can be transferred
to all multi-DOF robot types, which can also be separated into a translational and rotational
part [57]. By splitting the problem, the constraints caused by external obstacles are assigned
a priori and, therefore, do not need to be assigned during the online processing. As a
result, two coupled controllers execute a constrained translational motion combined with
a rotational movement for accurate trajectory tracking in a disturbed environment. The
translational motion controller is realized as NMPC and considers both joint and Cartesian
constraints. Compared to the consideration of the complete robot model, a significant
reduction of the computational costs can be achieved due to the limited number of decision
variables in the OCP. In this way, the consideration of additional boundary conditions to
adjust the behavior of the robot still allows almost delay-free evaluations. Based on the
joint control for the translational motion avoiding obstacles, a Jacobian transpose controller
performs the rotation correction using the spherical wrist so that the end-effector maintains
the correct alignment [58].

The proposed method is suitable for applications in various fields including industrial
robots, where the dynamic parameters are typically unknown and can be realized even
when using standard computer hardware due to the reduction of the computing times in
the optimization. The approach can be used as well, e.g., for the online motion control
of welding processes [59] or in the context of collaboration [60,61], which are common
applications in industry requiring delay-free adaptation to a disturbed environment. For
standard industrial robots, typically not only the dynamic parameters are unknown, but it
is also advantageous to use only the kinematic specifications. In the case of model-based
controllers, model uncertainties lead to performance losses in operation and inaccuracies
due to the robot aging [62], for which the differential kinematics is taken into account in the
presented approach. Here, the standard industrial robot Stäubli TX2-90 [63] is used as an
example, which is simulated in GAZEBO [64]. The communication is performed by means
of ROS [65]. In the evaluation, the required computation times needed by the introduced
NMPC approach are compared with the consideration of the full robot model in different
setups. Further, the trajectory tracking accuracy is analyzed. Motivated by manual weed
removal, a scenario is set up where the robot must adjust its initially given trajectory online
to avoid damaging adjacent fixed and moving obstacles. Plants are abstracted as spheres
so that objects recognized by image recognition, such as cabbages, can be easily integrated
into a concrete application [66]. Weed removal itself is not shown, but the collision-free
movements with correct alignment demonstrate the applicability of the approach [54],
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which can be transferred to various industrial applications. Before the movement starts, a
polynomial planned trajectory is specified, which crosses the obstacles. The end-effector
must track this trajectory using NMPC and the Jacobian transpose controller. The NMPC
detects the respective obstacles only within its prediction horizon, to which the movements
must be adapted. The short evaluation times of the optimization allow the additional
limitation of the achievable Cartesian workspace in height, which leads the translational
motion to ground-level avoidance. In the context of the trajectory planning, an automatic
selection of the joint configurations is presented, which replaces a manual selection, as is
common for point-to-point movements in robotics, e.g., as utilized in [63,65,67,68].

The paper is organized as follows: Section 2 recalls the concept of the inverse kine-
matics for anthropomorphic robots and proceeds with the explanation of the differential
kinematics decomposition. Based on this, the OCP for the end-effector’s translational
movement including joint and Cartesian constraints is described in Section 3, which is
subsequently implemented as NMPC for online control. In addition, the Jacobian transpose
controller for the rotation correction in 3D space is applied and coupled with the NMPC. In
Section 4, the computation time savings of the approach, the trajectory tracking accuracy,
and the control in a disturbed and varying environment including fixed and moving obsta-
cles are demonstrated. A discussion of the results is provided in Section 5, and the final
remarks in Section 6 conclude this contribution.

2. Modeling and Mathematical Decomposition of the Manipulator

For the decomposition of the robotic model, a standard industrial manipulator with n
revolute joints q ∈ Rn and an anthropomorphic structure consisting of an anthropomorphic
arm and a spherical wrist was considered [69]; see Figure 1. A (non-)redundant robot with
n ≥ 6 was assumed, so that the workspace included all six Cartesian DOFs. Within the
reachable workspace, an end-effector’s pose is expressed by the homogeneous transfor-
mation matrix He

w(q) ∈ SE(3), which comprises the translation vector pe
w(q) ∈ R3 and

the rotation matrix Re
w(q) ∈ SO(3). The subscript clarifies the reference system, while the

superscript marks the body-fixed frame to be described therein. Thereby, the index w repre-
sents the fixed world frame. Additionally, the end-effector frame {e} describes the pose of
the tool’s point of interest mounted on the flange { f }. Based on the Denavit–Hartenberg
(DH) convention [70], the direct kinematics of the robot can be derived.

base

shoulder

elbow

wrist

end-effector

qm qo

pς
w flange

Figure 1. Manipulator with n = 6 revolute joints and an anthropomorphic structure consisting of an
anthropomorphic arm (I) and a spherical wrist (II).

2.1. Analysis of the Inverse Kinematics

The method of inverse kinematic analysis [69] is recalled briefly in order to provide a
better understanding and the motivation of the following sections. Inverse kinematics can
be used to determine the associated joint angle configuration q = [qT

m, qT
o ]

T given a desired
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end-effector pose He
w,des. For the manipulator, which is shown exemplarily in Figure 1, the

first m joints qm ∈ Rm are assigned to the red framed anthropomorphic arm (I) and the last
o joints qo ∈ Ro belong to the blue framed spherical wrist (II). We considered 3 ≤ m < n
and 3 ≤ o < n so that the n = m+ o robot DOFs are partitioned in such a way that any pose
can be achieved in the reachable workspace. To this end, the robotic model is decomposed
into the qm associated part for translational displacement and the qo relating system for
rotational alignment to reduce the number of variables in the equations describing both
associated models, respectively [21,71]. Thus, instead of evaluating the entire kinematic
chain, two reduced chains are considered. The connection of the two systems is defined
at the wrist frame {ς}, where the so-called wrist point pς

w = [pς
w,x, pς

w,y, pς
w,z]

T ∈ R3 is
located. The wrist point can be obtained by equating the traversed kinematic chains that
converge in {ς} starting in the {w} and the {e} frame, respectively. Starting at {e}, the
desired end-effector pose can be projected onto the flange by

H f
w =

[
R f

w p f
w

0T 1

]
= He

w,des
(

He
f
)−1

= He
w,des H f

e (1)

using the tool-specific transformation matrix He
f .

The orientation of the z f -axis of the flange is denoted by r f
w,z and can be obtained from

the third column of R f
w. The wrist point

pς
w = p f

w − d f r f
w,z ∈ R3 (2)

can be calculated based on (1) and the length d f of the last link ending at the flange.
Using (2) as the left-hand side and the position vector of the direct kinematics Hς

w(qm) as
the right-hand side, a system of equations can be set up to determine qm. When considering
a redundant robot with m > 3 and n > 6, additional constraints to the nullspace must be
introduced to solve the system uniquely [72]. Apart from the possible nullspace, there are
generally up to four valid solutions describing the shoulder left or right and elbow up or
down configurations [73]. The so-called rotation correction can be determined by

R f
m = (Rm

w)
T R f

w = Rw
m R f

w. (3)

Via the ZYZ-sequence [74], which is based on the joint structure of the spherical wrist, R f
m

can be implied for the joints qo. This in turn yields ambiguous solutions known as wrist
top and wrist bottom [73], respectively. This doubles the maximum number of possible
configurations mentioned above, so that up to eight solutions can exist for one desired pose
He

w,des. In this contribution, an automatic selection was introduced, which performs an
evaluation of the most-suitable joint configuration and selects it for the movement. Jumps
between the up to eight solutions are avoided, and the common boundaries are considered.

2.2. Decomposition of Differential Kinematics

Based on the method presented before, the robot model is decomposed for the follow-
ing control architecture. The separation into a translational and a rotational part allows
the consideration of external boundary conditions, e.g., for the avoidance of obstacles,
to be directly assigned to specific joints in the robot’s kinematic chain. Thus, the DOFs
considered in the optimization-based control approach are reduced by kinematic analysis,
reducing the computational costs. Differential kinematics rather than direct kinematics
was taken into account to avoid algebraic loops in the online computations [75] and for a
more straightforward restriction of the nullspace in the case of redundant robots [57,69].
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The transformation of joint velocities q̇ ∈ Rn into Cartesian velocities can be performed by
differential kinematics using [

ṗe
w

ωe
w

]
= Je

w(q) q̇ ∈ R6. (4)

The translational velocity of the end-effector with respect to the {w} system is described by
ṗe

w ∈ R3, while ωe
w ∈ R3 expresses the corresponding angular velocities [69]. The nonlinear

geometric Jacobian matrix:

Je
w(q) =

[
Jtrans
Jrot

]
=

[
Jtrans,1 Jtrans,2
Jrot,1 Jrot,2

]
∈ R6×n (5)

is introduced. From (5), it can be seen that the entire Jacobian consists of a translational
and a rotational part. Transferring the approach of Section 2.1 to the decomposition of the
manipulator, Jtrans,1 and Jrot,2 represent the associated terms in the differential kinematics,
and the submatrices Jtrans,2 and Jrot,1 denote cross-couplings, respectively. Instead of using
the entire transformation from (4), the differential kinematics is split as well. Based on the
decomposition analyzed in the inverse kinematics, translation is performed by the first m
and orientation by the last o robot joints [57]. According to the general matrix computation
as described in [69], the matrices Jς

w,trans(qm) ∈ R3×m and J f
m,rot(qo) ∈ R3×o are introduced

and used subsequently instead of (5). The DOFs due to the cross-couplings are eliminated
as a consequence in the transformation performed in (4) for the full robot system. This
means that the joints qm no longer have an active influence on the end-effector’s orientation
and qo cannot be used for the translational positioning of the {e} frame. Further, two
controllers for qm and qo were designed separately and then coupled.

One controller controls the positioning using Jς
w,trans(qm), and the other controller

adjusts the alignment with J f
m,rot(qo). Analogous to the evaluation of inverse kinematics in

Section 2.1, there is no loss of DOFs in the Cartesian space, and due to controller couplings,
the entire workspace is still reachable.

It should be emphasized that the translational part Jς
w,trans(qm) refers to the wrist point

pς
w, while the orientation of the {ς} system is irrelevant in this context. Using (1) and (2),

the desired wrist point is obtained from pe
w,des, and an orientation error follows from the

wrist positioning using the first m robot joints. In turn, the Jacobian J f
m,rot(qo) for the

rotational part refers to the {m} system localized in the robot’s elbow, the last joint of the
anthropomorphic arm, as shown in Figure 1. The link between the {m} and the {ς} system
exhibits a constant length and is aligned along the rotation axis of the first spherical wrist
joint. Thus, this DOF only changes the alignment and not the displacement between both
systems, and the two kinematic chains can be connected in this way.

3. Optimal Trajectory Control Using Decomposed Differential Kinematics

To implement fast online control, Section 3.1 presents a computationally effective
planning scheme involving all robot joints to generate an initial trajectory that does not take
external disturbances into account. It can be used when the workspace is not constrained
and serves as a reference in a warm start of the following optimization. An automatic
selection is introduced that identifies the most-suitable joint configuration for the desired
terminal pose. The up to eight possible solutions of the inverse kinematics are checked
for jumps for the planned pose transition, and the solution with the largest distance
to the joint boundaries is selected. In Section 3.2, the constrained OCP is formulated,
with the translational part of the decomposed system from Section 2.2 as the underlying
model. The OCP is evaluated on a receding time horizon, i.e., controlling the robot using
NMPC. Meanwhile, the orientation of the end-effector is considered separately using the
controller presented in Section 3.3. In Table 1, the main difficulties and characteristics of
the two controllers are listed as an overview. Special attention has to be paid to the wrist
position, which is iteratively placed by the NMPC and determines the starting pose for the
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orientation controller. The combination of the two controllers provides the overall control
of the robot, and both are calculated subsequently in each iteration. If the orientation
controller, based on the Jacobian transpose controller here, is also implemented as a second
NMPC, the controllers would have to be evaluated sequentially and, therefore, would
be time consuming because of the dependency with respect to the reference pose at the
{m} frame.

Table 1. Comparison of the difficulties and characteristics of the decomposed robot model illustrated
in Figure 1 for optimal trajectory control achieving low computation times in online calculations.

Properties I: Anthropomorphic arm II: Spherical Wrist

intended • translational movement • orientation control
use • avoiding obstacles in • alignment for

disturbed environment desired rotation

constraints • iterative solving • depending on
starting at fixed base wrist movement

• environmental, state • standard controller
and input constraints bounded to limits

• consideration of the • compensation of
distance between rotation correction
pς

w and end-effector

control • control of qm using • control of qo with
NMPC Jacobian controller

• optimization with • reaction based on
known reference wrist displacement

(from NMPC)

singularity • configuration bounded • Jacobian transpose
avoidance to objective function using no inversion

with regularization in calculations
• preselection of the • unit quaternions pre-

closest solution venting a Gimbal
lock [74]

Remark 1. Here, only a multi-DOF robot with an anthropomorphic structure and revolute joints
is discussed, so that an independent assignment of the joints to a translational and rotational motion
in the Cartesian space can be performed. This design as an open or closed kinematic chain is the
most common setup of standard industrial robots. A transfer of the approach to other manipulator
types can be applied if the robotic model admits a decomposition according to the specification.

3.1. Polynomial Trajectory Planning

An initial planning for all n robot joints is performed before the online controlled robot
movements start. To generate a reference trajectory, a polynomial approach in the joint
space is utilized to connect the initial end-effector pose represented by the homogeneous
transformation He

w(q(t0)) at time t0 ∈ R≥0 with the desired terminal pose He
w,des at time

t1 = t0 + T, obtaining a continuously differentiable trajectory. The transition time T ∈ R>0
must be chosen so that the dynamic joint limits of the robot are not violated. To check
whether He

w,des is an admissible pose with the mounted end-effector according to the given
bounds in the robot’s data sheet, (2) can be used to validate the wrist point. As mentioned
in Section 2.1, up to eight possible joint configurations can be determined for the given
pose at t1. From the set of possible solutions of the inverse kinematics, the configurations
that are not included in the reachable joint space:

Q := {q ∈ Rn | qmin ≤ q ≤ qmax} (6)
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are excluded. To connect the initial joint setup q(t0) and the remaining β ≤ 8 terminal
configurations Qβ(t1) = [q1(t1), . . . , qβ(t1)] ∈ Rn×β, the polynomial:

γ(t) =
7

∑
j=0

λj tj ∈ Rn (7)

is introduced. The eight unknowns λj, j ∈ {0, . . . , 7} for each of the n joints can be
determined, respectively, from the eight boundary conditions:

γ
(j)
i (t0) = q(j)(t0), γ

(j)
i (t1) = q(j)

i (t1), j ∈ {0, . . . , 3}, i ∈ {1, . . . , β} (8)

for each configuration i. In (8), γi(t) = γ
(0)
i (t) applies, and the derivatives are given by

γ
(j)
i (t), which describe the associated velocity, acceleration, and jerk, respectively. The

velocity bounds can be measured or formed by the inverse evaluation of (4). Without loss
of generality, the acceleration and jerk are chosen to be zero at the beginning and at the end
of the transition. The acceleration bounds can alternatively be transformed by introducing
the time derivative of the Jacobian in (5) [69]. In order to drop the solutions that contain an
unnecessary change at the shoulder, elbow, or wrist of the robot, all β transitions connecting
q(t0) with the configurations in Qβ(t1) are sampled by tγ ∈ R>0 and examined for jumps.
From the remaining r ≤ β possibilities that do not involve jumps, the configurations that
are furthest away from the joint boundaries with the corresponding joints are selected from

max
ρ

{
min

i

{
qi,ρ(tγ)− qi,min, qi,max − qi,ρ(tγ)

}}
, ρ ∈ {1, . . . , r}, i ∈ {1, . . . , n}. (9)

Each joint i is evaluated individually at each sample step tγ. If several joint configu-
rations exhibit the same distances to the bounds, the maximum operator in (9) is used to
select the configuration that maintains the greatest distance from the boundaries qmin and
qmax, considering all sampling steps tγ. If the coupling of the two checks were reversed, a
joint that is far from its bound could compensate a joint close to its respective bound in the
evaluation. Since the planning is implemented in the joint space, no consideration of the
Euler angles [74] in Cartesian space is necessary, which prevents representation singularities.
Using the introduced procedure in (9), an automatic selection method of the most appro-
priate kinematic configuration is introduced, eliminating the need for a manual selection,
required by most of the inverse kinematics tools [63,65,67,68].

3.2. Optimization-Based Translational Trajectory Control

For the translational motion in the robot’s workspace considering obstacles, a con-
strained optimization problem with a fixed end time τ1 = τ0 + N ∈ R>0 is introduced.
The prediction horizon of the OCP is defined by N ∈ R>0 and is starting at τ0 = tδ.
Thereby, tδ ∈ R≥0 describes the current sampling step. With the underlying model of the
decomposed differential kinematics from Section 2.2, the joint velocities:

U := {u ∈ Rm | − q̇m,max ≤ u(τ) ≤ q̇m,max} (10a)

are chosen as fictitious inputs of the OCP. As can be seen from (10a), only the first m joints of
the robot are taken into account for the displacement of the wrist point pς

w. The end-effector
orientation is adjusted subsequently by means of qo. Standard industrial robots are usually
controlled using joint position controllers [63,65] so that the joint angles qm to command
the translational motion of the robot can be obtained by solving q̇m = u. Furthermore,
the OCP:

min
u∈U

F(u) =
∫ τ1

τ0

l
(
u, pς

w(qm), q̈m, µ
)

dτ (10b)
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is considered by minimizing the running cost:

l
(
u, pς

w(qm), q̈m, µ
)
= µu uTu + µq̈ q̈T

m q̈m + µp
(

pς
w,des−pς

w(qm)
)T(pς

w,des−pς
w(qm)

)
(10c)

over the time interval τ ∈ [τ0, τ1]. The elements from µ = [µu, µq̈, µp]T ∈ R3 can be used
to weight the individual terms in (10c). The desired wrist position pς

w,des is derived from
the desired end-effector pose using (2). If a reference trajectory is specified, e.g., with the
procedure introduced in Section 3.1, using MoveIt for task-level motion planning [76] or
based on the techniques summarized in [14], the Lagrange function shown in (10c) aims for
trajectory tracking. Alternatively, only the terminal position could be passed to (10c) as a
reference, which is called a local motion planning problem [35]. By considering the input u
in (10c), the agility can be influenced, and the relating part also represents a regularization
term, to prevent singular arcs [43]. In order to further prevent singularities, it is possible
to include the manipulability measure into the running cost as well [77]. In practice, the
integral listed in (10b) is discretized by a sum over k ∈ N>0 temporal grid points for the
numerical implementation. Enabling an influence on the rate change, q̈m is also included
in (10c). The acceleration q̈m and the jerk ...q m result from the discrete differentiation of the
input u, respectively. Based on the system formulation:

d
dτ

[
pς

w
qm

]
=

[
Jς
w,trans(qm) u

u

]
, τ > τ0 with

[
pς

w(τ0)
qm(τ0)

]
=

[
pς

w,0
qm,0

]
, (10d)

the variables in (10b) can be determined. Here, pς
w,0 describes the initial wrist position and

qm,0 the initial joint angles at time τ0. Using the inequality constraints:

qm,min ≤ qm ≤ qm,max

−q(j)
m,max ≤ q(j)

m ≤ q(j)
m,max, j ∈ {2, 3},

(10e)

the system (10d) is constrained to the reachable joint space, since the selected joint angles qm
must be inside the valid bounds of (6). Applying the constraints in (10e) to the acceleration
q̈m and jerk ...q m, non-adjustable changes can be avoided. The respective bounds are usually
known for standard industrial robots and can be taken from the appropriate data sheet,
e.g., given by [63].

Obstacles are subsequently modeled as spheres to illustrate the approach [78], but can
also be described by using sophisticated techniques as, e.g., by the evaluation of tetrahedral
meshes or polyhedra [21,79,80]. Let ν denote the number of obstacles in the Cartesian space.
These are assumed moveable and centered at pν

w,i(τ) ∈ R3, i ∈ {1, . . . , ν}, imposing the
inequality constraints:

ri + d f +
√
(ae)2 + (de)2 < |pς

w − pν
w,i(τ)|, ∀i = 1, . . . , ν. (10f)

Due to the decomposition of the robot model, the resulting orientation of the end-effector
during motion is not known in the optimization. Therefore, the length of the spherical
wrist plus the DH parameters ae ∈ R and de ∈ R of the end-effector are also defined as
a sphere around the wrist point. This is added to the radius ri ∈ R>0 of each obstacle to
obtain a safe distance.

For example, to perform horizontal motion only or to prevent touching the ground,
the height:

pς
w,z,min ≤ pς

w,z ≤ pς
w,z,max (10g)

of the robot’s workspace can also be optionally bounded. Constraining of the OCP (10)
by adding (10g) usually increases the computational times significantly, which will be
demonstrated in Section 4.1. However, by reducing the robot model in (10d), it is possible
to include further constraints influencing the robot’s behavior.
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NMPC can be applied by solving the presented OCP on a receding horizon with a
suitable prediction length N. Both the initial wrist position and the joint angles can be
obtained from the measured joint angles of the robot. Direct multiple shooting is used for
the numerical evaluations, which considers an initial value problem in each time interval
[τκ−1, τκ ], κ ∈ {1, . . . , k} [81]. Hence, k initial value problems have to be solved in total.
Since the subintervals can be solved independently, parallelization can be used. To ensure
a continuous transition between intervals, boundary conditions must be imposed so that
the boundary values of the adjacent intervals are identical [82]. For a warm start, the initial
estimates of the optimization variables and the input can be set for each step τκ by the
procedure presented in Section 3.1. According to [81], an approach is used here that first
discretizes and then optimizes, converging to local or global minima depending on the
solver settings and the weightings chosen in the quadratic objective function (10b).

3.3. Jacobian Transpose Controller Achieving Desired Orientation

To achieve the desired orientation, a controller is presented to track the last joints qo of
the robot’s kinematic chain accordingly. For this purpose, the Jacobian transpose controller
is used and applied to the problem formulation [57]. This implies less computational effort
compared to the Jacobian inverse controller commonly used in robotics and can be utilized
to cross kinematic singularities [69]. When solving the NMPC formulated in Section 3.2,
a joint configuration qm(tδ) for the first m robot joints of the kinematic chain is obtained
for each iteration step. These define the orientation of the {m} frame at the robot’s elbow,
which results in the rotation matrix Rm

w(qm). This matrix can be used in (3) to determine the
deviation matrix R f

m(qm) between the desired end-effector orientation, transformed to the
flange { f } and the current wrist orientation governed by qm. Therefore, the corresponding
unit quaternions [η

f
m(qm), (ζ

f
m(qm))

T]T can be derived [83,84]. They specify the desired
unit quaternions with respect to the {m} frame depending on the displacement of the
{ς} system at the wrist point performed by the NMPC. From the joint angles qo(tδ) at
sampling step tδ, the current [η f

m(qo), (ζ
f
m(qo))

T]T unit quaternions can be calculated. The
orientation error:

ẽ f
m = η

f
m(qo) ζ

f
m(qm)− η

f
m(qm) ζ

f
m(qo)− S

(
ζ

f
m(qm)

)
ζ

f
m(qo) ∈ R3 (11)

between these unit quaternions can be inferred, where the skew symmetric operator [85] reads

S(s1, s2, s3) =

 0 −s3 s2
s3 0 −s1
−s2 s1 0

 ∈ R3×3. (12)

It should be emphasized that η = 1 holds true for the real part of the unit quaternions
when the orientation is aligned, and thus, the orientation error in (11) can be expressed as a
3D quantity [86]. Using

q̇o =
(

J f
m,rot

)TK ẽ f
m, (13)

the feedback is imposed, including the positive definite matrix K ∈ Ro×3 and the Jacobian
determined in Section 2.2. The weighting matrix K is bounded to the sample time and
influences the speed of convergence. The required joint angles qo to control the robot
are obtained by the integration of (13). In order to analyze the stability of the orientation
controller, the Lyapunov function:

V =
(
η

f
m(qm)− η

f
m(qo)

)2
+
(
ζ

f
m(qm)− ζ

f
m(qo)

)T(
ζ

f
m(qm)− ζ

f
m(qo)

)
(14a)

is considered. After substituting the propagation equations for quaternions [86] into the
rate of change:

V̇ = −
(
ẽ f

m
)TK ẽ f

m (14b)
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of (14a), the asymptotic stability of the orientation controller can be concluded. Thus, the
controller converges to the desired orientation and is able to cross singularities, whereas, in
contrast to the Jacobian inverse, it may deviate during the transition phase [58,69].

4. Simulation Results and Evaluation

To show that standard computer hardware is sufficient for the online calculations of
the introduced NMPC for the translational motion including Cartesian and joint constraints
coupled with the Jacobian transpose controller for the orientation correction, a standard
computer with 16GB RAM and an Intel Core i7-8550U processor running Linux Ubuntu
18.04 was utilized. The iterative solution of the OCP is calculated using the MATLAB-
interface [87] from CASADI [88] with the interior-point (IPOPT) algorithm [89]. As can be
seen in Figure 2, the standard industrial 6-DOF robot Stäubli TX2-90 with a black rod as
the end-effector and the DH parameters from Table 2 was used to present the introduced
approach. Based on the decomposition performed in Section 2.2, both controllers consider
different kinematic chains, respectively. Thus, the associated DH parameters to the {m}
system and the wrist point pς

w are also listed in the table. The n = 6 revolute joints are
equally partitioned with m = 3 and o = 3 for the translational and rotational controllers.

Table 2. Denavit–Hartenberg (DH) parameters of the considered 6-DOF industrial Stäubli TX2-90
manipulator.

i ai (mm) αi (rad) di (mm) θi (rad)

w 0 0 −478 0

1 50 −π/2 478 q1

2 425 0 0 q2 − π/2

3/m 0 π/2 50 q3 + π/2

ς 425 0 50 q3

4 0 −π/2 425 q4

5 0 π/2 0 q5

f 0 0 100 q6

e 0 0 150 0

ym

zm
xm

{m}

Iν

shoulderelbow

wrist

y0
z0

x0

{0}

yw

zw

xw

{w}

ye

ze

xe

{e}

pς
w

Figure 2. Standard industrial 6-DOF manipulator Stäubli TX2-90 [63] with an end-effector, visualized
in GAZEBO [64,90]. The exemplary movement starts at the blue marker and ends at the red one. The
green obstacles are only considered in Sections 4.3 and 4.4, but are not present in Section 4.2.

The evaluation consisted of four different demonstrations to highlight the perfor-
mance of the NMPC approach based on the decomposed robot model. In Section 4.1, the
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computation times of the introduced approach are evaluated and compared to an NMPC
considering the full robot system. This highlights the significant difference in the computa-
tional costs between those approaches. Despite the decomposition of the model and the
controller couplings, no losses in the applicability by the approach occur, which is shown in
the following three evaluations. The trajectory tracking accuracy in the undisturbed case is
discussed in Section 4.2 to show that the method can be used as an online motion controller.
Subsequently, in Section 4.3, obstacles are placed in the environment. In the presented
scenario, the end-effector must be guided between them without causing collisions. The
obstacles are not taken into account for the trajectory planning described in Section 3.1, but
will be avoided by the online controller introduced in Section 3.2, which perceives them
only within its predictive horizon. Finally, in Section 4.4, moving obstacles are considered
and the collision-free guidance of the end-effector in this setup is investigated.

4.1. Quantitative Analysis of the Computation Times

In the analysis of the reduction in the computation times, the presented approach was
compared to an NMPC that considers the full robotic model. Using the Stäubli TX2-90,
the NMPC based on the full system utilizes n = 6 joints as decision variables in each
optimization step and incorporates both translation and orientation by Je

w(q) from (5). On
the contrary, the decomposed system requires only m = 3 decision variables in its OCP
and controls the orientation in parallel with the remaining three DOFs using the coupled
Jacobian transpose controller. It should be emphasized that (10c) must be extended in the
NMPC of the full system to include orientation as well. The objective functions of the two
systems differ, but each was designed for the quantitative comparison. As listed in Table 3,
three different scenarios consisting of no obstacle, one obstacle, and one obstacle including
height constraints were compared to analyze the computation times. Additionally, two
different prediction horizons N1 = 100 ms and N2 = 200 ms partitioned with k1 = 10 and
k2 = 20 grid points were considered, achieving discrete intervals with a length of 10 ms,
respectively. The discretization of the inputs to be determined corresponds to the update
rate of the robot controller. Various converging point-to-point (PTP) movements covering
the entire workspace of the robot were run multiple times, and the average computation
time t̄ per optimization step was recorded. This time and the standard deviation σ, which
expresses the fluctuation of t̄ required for one OCP, denotes the online capability of the
NMPC. Note that the optimization was carried out until an optimal solution was found,
but could be further shortened by limiting the maximum iterations, as done in [91]. Here,
the stop condition for the objective function (10b) was set to a tolerance of 10−8, and if
below this limit, the value did not change more than 10−6, indicating a minimum.

Table 3. Comparison of the averaged computation times t̄ with the standard deviation σ per opti-
mization step of the respective NMPC.

Point-to-Point Decomp. System Full System
Movement t̄ ± σ (ms) t̄ ± σ (ms)

without obstacles
N1 26± 1 130± 12

N2 30± 2 216± 21

with obstacle
N1 27± 2 153± 53

N2 33± 2 209± 9

with obstacle N1 29± 2 230± 136

and height constraints N2 36± 6 284± 112

From Table 3, the comparison between the decomposed and the full system shows
that the decomposed system requires only 10 % to 20 % of t̄ to achieve an optimal solution
and possesses lower deviations σ, independent of the scenario or the prediction horizon.
Both t̄ and σ are important factors to be considered using NMPC in varying environments.
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The Jacobian transpose controller evaluates the orientation error in each iteration and is
only constrained to the gain matrix K.

It can be seen that the average computation times t̄ for the full system increased signif-
icantly with the complexity of the scenario. This effect did not occur with the decomposed
model, as the full system involves more nonlinearities, which must be taken into account
to solve the OCP. On the one hand, higher computational costs yield lower possible update
rates of the NMPC, which restricts the ability to act in rapidly varying environments. On
the other hand, it is evident from Table 3 that N2 increased the computation times for the
full system by up to 67 %, in contrast to t̄, when N1 was chosen. This means that the choice
of the prediction horizon limits the online capabilities. Using the decomposed robot model
approach, the evaluation times increased by a maximum of 24 % using N2 instead of N1.
Thus, the comparison of both the absolute and the relative computation times revealed a
significantly higher performance of the presented decomposition-based method.

A second important factor is σ, which is a measure of the reliability to achieve t̄.
Smaller standard deviations, even between different scenarios, indicate that t̄ is more likely
to be achieved. In contrast to the NMPC considering the full system, the lower σ of the
decomposed system also allows for easier applicability to different tasks, since the NMPC
does not converge for an unexpectedly long time in a more complex scenario. The choice of
the control horizon is determined by the length of expected calculation times and should be
kept as short as possible. Referring to Table 3, the control horizon can be set more reliably
using the decomposed approach. The NMPC controller remains capable in online operation
without delaying the robot’s motion, resulting in t̄ being larger than the set control horizon
in the implementation.

4.2. Trajectory Tracking Accuracy of the Controller

In Section 4.1, the significant reduction of the computational costs is presented. Fur-
thermore, it is shown that this did not lead to any restrictions in the motion behavior of the
robot. The simulative setup for evaluating the introduced approach involving the NMPC
and the orientation controller was built in GAZEBO [64]. The joint position controlled robot
shown in Figure 2 is commanded by means of ROS [65,90]. The prediction horizon was
chosen as N = 100 ms with k = 10 grid points per iteration, while the control horizon
involved four discretization steps of 10 ms each. This means that, for all four consecu-
tive updates of the robot commands, the solution from the buffer was used before being
updated. Considering the average computation times from the previous subsection, this
allows for online calculations without delaying the robot’s motion due to the too long
computations solving the OCP. Finally, the gain matrix for the orientation control was set
to K = diag(20, 20, 20), and the weights of the NMPC’s running costs in (10c) were chosen
to be µ = [104, 102, 104]T.

We omit the comparison with the full system in the following evaluations, on the
one hand, for the sake of readability and, on the other hand, to avoid having an unfair
comparison realized. As shown in Section 4.1, no delay-free execution can be realized for
the chosen N using the full system, which distorts the comparison. Depending on the
controller settings, we observed only minor to no deviations between the results in internal
comparisons, depending on the scenario.

As shown in Figure 2, the end-effector has to move from the blue marker with
pe

w,0 = [110, −350, −405]Tmm at t0 to the red marker with pe
w,des = [780, 390, −405]Tmm

at t1. None of the green obstacles are considered in this subsection when performing the
trajectory tracking analysis, and they are only drawn in preparation for the next scenario.
The desired orientation was set to Re

w,des = diag(−1, 1,−1), meaning that the end-effector
has to point vertically downwards. However, all other orientations reachable in the ma-
nipulator’s workspace can also be realized. As explained in Section 3.3, the Jacobian
transpose controller is asymptotically stable and does not induce singularities in individual
joint configurations, e.g., compared to the Jacobian inverse controller. As illustrated in
Figure 3b with dashed lines, the set point change of the desired position using the polyno-
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mial approach from Section 3.1 starts at t0 = 0.5 s and ends at t1 = 2 s. The demonstration
scenario involving a short transition time T = 1.5 s and a long path is representative for
movements between all reachable poses in the workspace of the manipulator. If T is not set,
the desired terminal pose He

w,des, will be approached by minimizing the objective function
within the NMPC, just bounded to the given OCP constraints.

0 1 t1 3 4
−500

0

500

t0

pe w
[m

m
]

x xdes
y ydes
z zdes

(a)

0 1 t1 3 4
−30

0

30

t0

p̃e w
[m

m
] x

y
z
‖ · ‖

(b)

0 1 t1 3
0

0.03

0.06

t0 t [s]

ẽf m

ζ1
ζ2
ζ3

(c)

Figure 3. Trajectory of the end-effector starting at t0 = 0.5 s and ending at t1 = 2 s in an undisturbed
environment for tracking accuracy analysis in 3D space. (a) Trajectory tracking of the pre-planned
trajectory marked by the subscript “des”, which is planned in the joint space and transformed
into the Cartesian space. (b) Absolute displacement of the end-effector p̃e

w = pe
w,des − pe

w to the
reference trajectory and the individual translational parts depending on the length de = 150 mm of
the end-effector. (c) Orientation error (11) in quaternion representation.

The pre-planned trajectory is generated by using the polynomial depicted in (7) in the
joint space. The computation time of approximately 1 ms required for this involving the
automatic joint configuration selection ensures an almost instantaneous start. Subsequently,
this is transformed to the Cartesian space. As can be seen in Figure 3a, the reference
trajectory exhibits rounded deviations, for example at t = 1.2 s in pe

w,z,des, compared to
a trajectory that would be directly planned in the Cartesian space, because the joints are
actuated uniformly over T here. In turn, the evaluation of the orientation by, e.g., roll-pitch-
yaw [74] is omitted by using the joint space, which could be singular in the representation.

In the evaluation of the end-effector’s translational deviation, both controllers must
be taken into account. It should be noted that the end-effector position is composed of the
positioning of the wrist point by the NMPC and the alignment by the orientation controller.
Both a too slow control of the wrist point and an incorrect orientation of the end-effector
would lead to a deviation from the end-effector’s reference trajectory. In Figure 3b, the
individual error components of p̃e

w = pe
w,des − pe

w and the absolute distance ‖p̃e
w‖ to the

reference trajectory at each time step are shown. Despite the short transition time T and
the long displacement along the trajectory, resulting in a rapid change of poses, only small
deviations can be detected. Compared to a common path tracking task, it must be taken
into account that, in the analysis of the trajectory tracking accuracy, a slight lag also leads
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to notable deviations. As can be seen in Figure 3b, especially the errors of pe
w,x and pe

w,y
exhibit small deviations, which converge to zero in the end, so that no stationary error
remains. The small lag in the xwyw-plane during the motion results from the parameterized
smoothness of the orientation controller, since it must perform the rotation correction in
each iteration step due to its constantly shifting reference {m} system. The NMPC places
the wrist point pς

w very accurately so that the reference system of the upper kinematic chain,
used for the orientation control, is moved further and further by the NMPC. Therefore,
a permanent adaptation in (11) governed by K is necessary. The rotation error is shown
in Figure 3c, where each of the imaginary unit quaternion error components can take a
maximum value of one. Thus, it can be seen that the orientation error was very small in
this case. Even though, the end-effector is chosen to be relatively long with de = 150 mm.
As a result, a larger deviation was enforced for a better illustration here. If de is chosen
shorter, the amplitudes in Figure 3b decrease. In total, just small deviations from the
pre-planned trajectory and, thus, accurate trajectory tracking can be observed when using
the presented approach.

4.3. Trajectory Control in Disturbed Environment With Fixed Obstacles

In the evaluation involving obstacles, the same control setup as in Section 4.2 was
utilized, but as illustrated in Figure 2, the scenario now included ν = 4 obstacles and
pe

w,0 = [110, −350, −445]Tmm and pe
w,des = [780, 390, −445]Tmm were set 40 mm lower

in the zw-direction. This small lowering of the reference trajectory would cause ground
contact, which should be prevented by the controller. Starting from the blue marker in
Figure 4, the first obstacle was placed close to the reference trajectory so that the boundary
condition (10f) had to consider the mentioned safety distance, since the NMPC has no
knowledge about the orientation controller, which adjusts the desired orientation. In the
extreme case, when the end-effector would be vertical, the NMPC should directly leave
the reference trajectory to avoid collisions. As shown in Figure 4, the two consecutive
obstacles on the left-hand side are crossed by the blue reference and disturb the tracking of
the pre-planned trajectory in xwyw-plane. Additionally, the central obstacle (Iν) presents
a difficulty in conjunction with the height constraint (10g), since the NMPC must deviate
significantly from the reference and take a remarkable detour to reach He

w,des. The NMPC
only considers the obstacles within the prediction horizon and has no information about
them before. In the accompanying video [92], the orientation error and the wrist point
tracking are also shown, in addition to the executed robot movements. For the sake of
readability, the evaluation is omitted in this section and reference is made to Section 4.2.

Iν

Figure 4. Resulting trajectories of the end-effector pe
w(t) governed by the NMPC and orientation

controller in the scenario from Figure 2. The motion starts at the blue marker and ends at the red
marker. The reference trajectory (blue) according to (7) crosses the obstacles (green). Without a height
constraint for pς

w,z, the motion results in an upward swerve (yellow). Activating (10g), the spheres
are avoided in the xwyw-plane (red).

From Figure 5a, the trajectory of the end-effector can be taken in the case where the
wrist point pς

w is only constrained by pς
w,z,min = −228 mm in (10g) involving no upper
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height limit, so that the ground will not be touched. A deviation from the dashed reference
trajectory due to the obstacle avoidance can be seen. Especially with respect to pe

w,x and
pe

w,y, it is obvious that the trajectory controller tries to follow the reference trajectory under
consideration of the given constraints, but a delay is recognizable. From Figure 4, it
becomes even clearer that the yellow trajectory in the xwyw-plane follows the arc of the
blue reference quiet accurately. The obstacles are avoided by swerving in the zw-direction,
which is confirmed by the green line in Figure 5a. Due to the chosen IPOPT algorithm and
depending on the length of the control horizon, which has to be chosen according to the
computation times of the controller’s online calculations, small repeated repulsions of the
end-effector can be detected in Figure 4 while avoiding the obstacles tightly.

0 1 t1 3 4
−500

0

500

t0

pe w
[m

m
]

x
y
z

(a)

0 1 t1 3
−500

0

500

t0 t [s]

pe w
[m

m
]

xdes
ydes
zdes

(b)

Figure 5. Trajectory tracking of the blue curve in Figure 4 starting at t0 = 0.5 s and ending at t1 = 2 s
in a disturbed environment involving ν = 4 fixed obstacles. (a) No upper height limitation of
the Cartesian space. Analogous to the yellow trajectory in Figure 4, the manipulator moves over
the obstacles. (b) Constraining the height by −228 mm ≤ pς

w,z ≤ −145 mm in (10g) for obstacle
avoidance in the xwyw-plane, as the red curve in Figure 4.

By reducing the computational costs, short evaluation times of the NMPC can be
achieved, even if additional constraints are inserted, which further influence the robot’s
behavior. This means that, by decomposing the differential kinematics, not only an accurate
controller can be designed, but also, it can be used more flexibly. In order to demonstrate
this, the maximum height in the Cartesian space was constrained in the further analysis.
The height constraint −228 mm ≤ pς

w,z ≤ −145 mm of the wrist’s workspace forces the
controller to avoid the obstacles by a planar motion. The lifting of the end-effector is thus
suppressed. Therefore, He

w,des can just be approached by a significant deviation from the
reference trajectory, mainly disturbed by the central obstacle (Iν). A noticeable change in
the movement compared to the dashed lines can be noticed at Figure 5b. Even though,
the motion has to be adapted and is thus slightly delayed. The online applicability of the
approach is still valid. For a better interpretation, the corresponding course is illustrated
as the red path in Figure 4. This shows that the introduced approach is able to control the
standard industrial robot in disturbed environments.

4.4. Trajectory Control in a Varying Environment with Moving Obstacles

Based on the evaluation of the controller in a disturbed environment, the same setup as
shown in Figures 2 and 4 with pe

w,0 = [110, −350, −445]Tmm and
pe

w,des = [780, 390, −445]Tmm was utilized subsequently. The Jacobian transpose con-
troller continued to align the end-effector downward. However, the ν = 4 obstacles were
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in motion here, and thus, they represent a varying environment. Again, the wrist point
was constrained in height using −228 mm ≤ pς

w,z ≤ −145 mm to avoid an upward swerve.
Two different scenarios were examined to demonstrate the resulting behavior of the con-
troller. First, all obstacles moved uniformly in one direction, continuously blocking the
corridor realized Figure 5b after the end-effector deviated from the reference trajectory.
Subsequently, only the central obstacle Iν moved, which caused a dead end for a short time.
Both scenarios were chosen such that the obstacles force the NMPC to adjust the movement
and the end-effector must depart from the desired trajectory analogous to Section 4.3. The
reference trajectory shown in Figure 5 and, thus, the motion of the robot starts at t0 = 0.5 s
and ends at t1 = 2 s.

A uniform movement of the obstacles simulated the driving of the robot, as is common,
e.g., in agricultural or industrial applications. Starting at t = 0 s, the four obstacles moved
uniformly with 30 mm s−1 in the negative xw-direction and with 45 mm s−1 in the yw-
direction, so that they moved diagonally towards the robot. The {w} system can be taken
from Figure 2, which is aligned with the axes of the {0} frame. The change in position
of the moving obstacles relative to the yellow robot can be seen in Figure 6a–g. The safe
distance introduced in (10f) is illustrated in orange. The trajectory of the online controlled
movement can be taken from Figure 7a. For comparison, the resulting trajectories from the
previous subsection are also plotted in Figure 7 and marked with the subscript “fix”. Due
to the height constraint of the wrist in the NMPC, any adjustment of the movement in the
zw-direction was excluded. However, compared to the static scenario, further adjustments
were conducted in the xwyw-plane. The end-effector was also guided into the corridor
between the obstacles after passing the first one from the robot’s point of view, as the rear
ones prevent the direct tracking of the trajectory.

xw
yw

(a) t = 0 s (b) t = 0.5 s (c) t = 1 s (d) t = 1.5 s (e) t = 2 s (f) t = 2.5 s (g) t = 3 s

Iν

(h) t = 0 s (i) t = 0.5 s (j) t = 1 s (k) t = 1.5 s (l) t = 2 s (m) t = 2.5 s (n) t = 3 s

Figure 6. The positions of the moving obstacles (green) at different time steps. The safe distance
(orange) from (10f) and the robot (yellow) are highlighted for clarification. Referring to the {w}
system in Figure 2, (a–g) illustrate the uniform movement of all obstacles with 30 mm s−1 in the
negative xw-direction and with 45 mm s−1 in the yw-direction. In (h–n), the displacement of the
central obstacle Iν with 60 mm s−1 in the negative xw-direction is visualized.

Due to the displacement of the obstacles, the end-effector can be shifted earlier in the
yw-direction, which can be observed from the comparison of the curves visualizing pe

w,y.
At about t = 1.7 s, the NMPC must further adjust the motion to avoid a collision with
the central obstacle marked by Iν in Figure 2 and Figure 4, respectively. Therefore, the
end-effector is initially pulled closer to the base, which is apparent from pe

w,x, and then, a
fast movement is performed to pass Iν. The increase in velocity can be seen in Figure 7a at
about t = 2.4 s by the larger slope of pe

w,x and pe
w,y. The desired terminal pose is reached

insignificantly later without collision.
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Figure 7. Trajectory tracking of the blue curve in Figure 4 starting at t0 = 0.5 s and ending at
t1 = 2 s in a disturbed environment involving moving obstacles and an active height constraint. The
directions of the obstacles’ movement can be taken from Figure 2, and for comparison, the subscript
“fix” indicates the end-effector’s motion in the statically disturbed environment from Figure 5b. (a) All
obstacles move uniformly with 30 mm s−1 in the negative xw-direction and with 45 mm s−1 in the
yw-direction. (b) The central obstacle (Iν) moves with 60 mm s−1 in the negative xw-direction, so that
a dead end is created briefly.

In the second scenario evaluating the decomposition-based controller in a varying
environment, only the central obstacle (Iν) moved with 60 mm s−1 in the negative xw-
direction, and the others were fixed. Figure 6h–n demonstrate the movement of Iν. The
corresponding trajectory of the end-effector is shown in Figure 7b. It can be seen that the
beginning of the movement was similar to the motion performed in the static disturbed
environment. The NMPC departed from the blue reference trajectory in Figure 4 to move
through the corridor between the obstacles. However, the movement of Iν was chosen in
such a way that this briefly formed a dead end in combination with the other obstacles,
while the end-effector tried to pass it. This led to a deceleration of the movement between
approximately t = 1.4 s and t = 1.9 s, since pe

w,des cannot be reached at that moment. Due
to the round shape of the obstacles, a small adjustment of the motion can be detected from
that time in pe

w,y as Iν continued to move on. From about t = 2.6 s, the corridor between Iν

and the rear obstacles opened enough to continue the motion without any collisions, so
that the desired terminal pose was reached. This demonstrates that the presented optimal
control approach can be used in disturbed and varying environments.

5. Discussion

In this paper an approach that reduces the computational costs of NMPC was intro-
duced and applied for online trajectory control in disturbed and varying environments.
For this purpose, the differential kinematics was decomposed and partitioned into a trans-
lational and rotational part related to the Cartesian space containing the corresponding
robot joints. The differential kinematics was considered since it can be modeled based on
the DH parameters from the robot’s data sheets, and thus, the approach is also applica-
ble to position controlled industrial robots. The decomposition-based approach can be
applied to all robot types that can be partitioned in this way. The translational motion
control was used for obstacle avoidance. For this purpose, an OCP was introduced and
implemented as the NMPC, which considered both Cartesian and joint constraints. Due to
the reduced number of decision variables in the OCP, additional constraints to adjust the
robot’s behavior, such as the height of the workspace, can be included without significantly
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increasing the computation times. The NMPC moved the wrist point of the anthropomor-
phic robot, which led to a change in the orientation of the end-effector. For the correction
of the orientation, the Jacobian transpose controller was introduced and applied to the
problem using unit quaternions, avoiding singularities. In addition to the online motion
control, trajectory planning with an automatic selection of the best joint configuration was
introduced, eliminating the need for manual input, as usually required for PTP motions.

In the evaluation, the approach was compared in terms of the computational costs
with an NMPC that considered the full robot model involving all DOFs. The comparison
demonstrated that the required times in the computation of the OCP were significantly
reduced by the introduced method. For the analysis, different scenarios and parameters
were considered. A comparison with other approaches has been omitted here, since
higher computation times resulted from the references presented in the introduction, e.g.,
in [23–25,48], and the consideration of the full system is most common.

The analysis of the tracking accuracy and the delay-free online control in a disturbed
or varying environment with (moving) obstacles was performed in simulations. The im-
plementation was carried out using a standard computer, MATLAB, ROS, and CASADI,
although the performance in hardware and software can be further increased by replac-
ing these tools. Larger prediction horizons and differently shaped obstacles can also be
considered. However, this work serves as a proof of concept and was intended to show
the possibilities of this decomposition-based approach. The extensive evaluation revealed
that the coupled controllers precisely followed a trajectory and adapted the motion to
the environment. This resulted in an optimal controller setup that considered external
constraints with high precision and without limiting the workspace. The focus was placed
on the NMPC, although the Jacobian transpose controller was also considered in the evalu-
ation, but this has been extensively analyzed in other publications [58,69]. Further, it was
examined whether the orientation was also implemented by a second NMPC whose initial
conditions were given by the translational NMPC.

This contribution introduced the concept of the control architecture and evaluated it
by simulations. This demonstrated the precision of the method and serves as a basis for
further developments. Besides the replacement of MATLAB by another programming
language, improvements will be made to the individual components for the transfer to
a real experiment. ROS is suitable for the communication with GAZEBO, but for a better
performance, this will be replaced by ETHERCAT [93], as, e.g., implemented in [94] for
the control of a Stäubli TX2-90. The obstacles are detected by motion tracking, and their
positions can be updated in (10f) at a high rate. Alternative solvers such as ACADOS [95,96]
or GraMPC [97] are evaluated either on a Linux server or on a PLC to further reduce the
computation times.

6. Conclusions and Future Work

This contribution exhibited that, by decomposing the differential kinematics of an
anthropomorphic robot, the computational costs of NMPC can be significantly reduced
with basically no effect on the solution’s accuracy and reliability. This seemingly small
adjustment has a huge impact on the computational effort and demonstrates an approach
that addresses the cause, not the symptoms, of long NMPC computation times. By re-
ducing the decision variables in the OCP, optimal online trajectory control in disturbed
and varying environments for (standard industrial) robots is possible. The NMPC for the
translational motion of the end-effector was coupled with a Jacobian transpose controller
for the orientation correction, so that all DOFs of the robot were used. There were no
special requirements for the control hardware, and a standard computer was sufficient for
the NMPC evaluations. The simulation results showed that an online implementation for
NMPC in the field of robotics has been elaborated without limiting the workspace due
to the model’s decomposition. This opens up the possibility of using standard industrial
robots in various areas and applications, where many sensor data have to be processed
or the interaction with a dynamically varying environment is required. The evaluation
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of the computation times, the tracking accuracy, the control in a disturbed environment
with additional height constraints, and the trajectory adaptation in a varying environment
demonstrated the performance of the approach.

The method offers many possibilities in terms of extension and transferability. In
addition to self-collision avoidance, the concept can also be used to interact with objects
due to the short evaluation times of the NMPC. Further on, the approach will be brought
to a real experiment and coupled with a force control, so that, e.g., haptic grasping can be
implemented in a disturbed environment.
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