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Abstract: The Helium Cooled Pebble Bed (HCPB) breeding blanket is one of the two driver-blanket
candidates for the European fusion demonstration power plant (EU DEMO) within the framework
of the EUROfusion Consortium. As the EU DEMO program is going, testing of mockups becomes
increasingly important. In this article, the engineering design of a first-ever breeder zone mockup of
the EU DEMO HCPB breeding blanket is reported. The mockup will be tested in the high-pressure,
high temperature, helium facility (HELOKA) at Karlsruhe Institute of Technology. This mockup
will act as a test rig to validate heat transfer correlations, CFD software, and thermal hydraulics
systems codes. As pressure equipment, the mockup shall conform to the latest European Union
Pressure Equipment Directive 2014/68/EU. The design description, rationale and test matrix, and
corresponding analyses are discussed and presented.
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1. Introduction

Within the EUROfusion framework, Karlsruhe Institute of Technology (KIT) is leading
the development of the Helium Cooled Pebble Bed (HCPB) breeding blanket [1], one of the
two driver-blanket candidates (e.g., HCPB and the Water Cooled Lead Lithium—WCLL [2])
selected for DEMO and to be tested in ITER [3]. Over the last decade, many design activities
on the HCPB have been performed [4–6]. As we are consolidating the concept, there is
an increasing need to proceed to qualify the blanket concept through testing. A series
of design and experimental activities for testing the components of the HCPB blanket
were conducted in the last decade [7–12]. The HETRA experimental campaigns on the
helium-cooled First Wall of the HCPB test blanket module (TBM) were conducted to
investigate the thermal hydraulic (heat removal and pressure drop) effectiveness of the
surface roughness in the First Wall channels in 8 MPa pressure and 300 ◦C temperature
conditions [7]. The mass flow distribution of the HCPB TBM coolant system were performed
in the GRICAMAN experimental facility [8]. The heat transfer and pressure drop of
transverse ribs and V-shaped ribs in the First Wall channel of the HCPB breeding blanket
were experimentally studied in a pressurized air facility [9]. The PREMUX experimental
investigations were done to benchmark the existing finite element method codes used for
the thermo-mechanical assessment of the lithium ceramic pebble beds and to measure the
thermal conductivity of the lithium ceramic pebble beds [10]. Experimental campaigns
reproducing the DEMO-relevant thermal hydraulics conditions during normal and off-
normal situations of the FW of HCPB breeding blanket were done in a large-scale helium
loop facility [11,12]. More recently, activities to validate the heat transfer correlations for the
smooth and rough annular channels and to investigate the nonuniform flow patterns of the
return flow in the annular channel of the fuel-breeder pin concept of the HCPB breeding
blanket were started [13]. This present article reports the engineering design of the first-ever
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breeder zone mockup of the fuel-breeder pin concept of the HCPB breeding blanket. The
scope is to validate the heat transfer correlations for the smooth and rough annular channels,
computational fluid dynamics (CFD) codes, and thermal hydraulics system codes.

2. Design of the Mockup

The design status and descriptions of the fuel-breeder pin concept of the HCPB blanket
is described elsewhere [1]. For completeness, the HCPB blanket is shown in Figure 1.
The axial length of the fuel-breeder pin is about 570 mm. The other dimensions of the
fuel-breeder pin are shown in Figure 1C-C. For the fuel-breeder pin concept, even with
a roughness of Rz = 260 µm on the surfaces of the annular channel of the fuel-breeder
pin, the pressure drop of the blanket unit-slice was about 0.79 bar. While for the previous
cooling plate concept of HCPB [14], the pressure drop of the blanket unit-slice was about
2 bar when using smooth channel [14]. This implies the superiority of the fuel-breeder pin
concept in terms of lower pressure drop. For qualifying the HCPB blanket concept, it is
planned that the testing of this mockup will be done under DEMO-relevant conditions in
the high temperature, high-pressure facility—Helium Loop Karlsruhe (HELOKA) [15]. It
is wished that this mockup would act as a validation rig for better understanding of the
design margins to ensure a feasible operation of this concept.
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2.1. Basic Considerations to Obtain Average Nusselt Number

For obtaining the average Nusselt number through the thermal hydraulics experiment,
the Equation (1) could be used. Here, Nu is the Nusselt number, Dh is the hydraulic
diameter; λf is the thermal conductivity of coolant at bulk temperature; h is the convective
heat transfer coefficient. q′′w is the wall-to-fluid heat flux; Tw is the temperature at the
coolant-contacting wall; Tf is the bulk temperature of coolant. Once the geometry is given,
the Dh is known. The unknowns that have to be derived from measured data are λf,
q′′w, Tw, and Tf. q′′w can be calculated approximately by Equation (2), where λs is thermal
conductivity of steel. Tf can be obtained approximately by Equation (3). Where Tinlet is
coolant inlet temperature, Q is the integrated power up to location x, cp is the specific heat
of the coolant, and

.
m is the mass flow rate. The λf could be obtained from literature data,

once the bulk temperature is known. Tw can be obtained by Equation (4). T1 is a measured
thermocouple temperature, r1 is the radius, at which place the thermocouple is installed,
rw is the radius of inner surface of the annular channel, see Figure 2.

Nu =
Dh
λ f
∗ h =

Dh
λ f
∗ q′′w

Tw − Tf
(1)

q′′w = −λs ∗
dT
dx

(2)

Tf (x) = Tinlet +
Q(x)
cp ∗

.
m

(3)

Tw = T1 −
∣∣∣∣ q′′wλs
∗ rw ∗ ln

(
rw

r1

)∣∣∣∣ (4)
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2.2. Upscaling

The HELOKA facility offers a suitable DEMO-relevant testing range. HELOKA op-
erates at temperatures ranging from room temperature to 550 ◦C, pressure ranging from
4 to 9.2 MPa, mass flow rate ranging from 20 g/s to 1400 g/s [15]. The pressurized helium
coolant of the HCPB blanket has the nominal inlet/outlet of 300/520 ◦C. The mass flow
rate per fuel-breeder pin in the breeder zone of HCPB blanket ranges from about 15 g/s to
23 g/s. To facilitate the measurement of temperature and controlling of mass flow rates,
upscaling is needed, in which the same range of Reynolds number (Re), Péclet number
(Pe), and the dimensionless heating rate q+ [16] are kept. Pe is equal to the multiplication
of Re to Prandtl number (Pr). The Pr of helium is almost constant, therefore, only Re and
q+ are the relevant parameters for upscaling. The definition of q+ is shown in Equation
(5) where Across is the cross-section area of the channel, Q is the heating power, Aheat is the
heating surface area.

q+ =
Q

.
m ∗ cp ∗ Tinlet

Across

Aheat
=

q′′w( .
m/Across

)
∗ cp ∗ Tinlet

(5)
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The nominal Re number in the annular channel of the HCPB blanket breeder zone
ranges from 4000 to 5900. A wider range of Re (4000, 6000, 8000, and 10,000) was planned
to cover any fluctuation in the mass flow rate in the HCPB blanket. The maximum heat
flux from the ceramic breeder side to the annular coolant is about 10 times higher than that
from Be12Ti block. Therefore, in the mockup only the inner side of the annular channel is
heated to ease manufacturing and assembly efforts. The dimensionless heating rate, q+, of
the HCPB breeder zone from ceramic breeder side to coolant in the annular channel ranges
from 0.0002 via 0.0003, 0.0004, and 0.0005 to 0.00058. Therefore, the proposed q+ in this
experiment are 0.0002, 0.0003, 0.0004, 0.0005, and 0.0006. Here, a comparison table of the
heat flux at the same q+ at a selected Re number (Re = 4000, 21 g/s in HCPB and 25 g/s in
mockup) is shown in Table 1.

Table 1. Heat flux comparison at same q+ of selected Re number.

q+ Heat Flux in HCPB [W/m2] Heat Flux in Mockup [W/m2]

0.0002 3.25 × 104 3976

0.0003 5.94 × 104 5971

0.0004 6.69 × 104 7970

0.0005 9.25 × 104 9972

0.0006 1.03 × 105 11,979

2.3. Design Description

After many iterations between designers and experimentalists, the design has been
defined, as shown in Figures 3 and 4, only pending confirmation from manufacturing
partner. The mockup is connected to the HELOKA facility by using two flanges, facilitating
the exchange of test sections. The mockup is heated through three-coiled, wire-form electric
heaters, which are embedded into the grooves on the Tube-1 through brazing to ensure
a good contact. The three electric heaters are identical and each can have a maximum
heating power of 2000 W. The maximum power needed in this experiment is expected to be
about 4000 W. The electric heaters will work at lower than the maximum heating capacity
to optimize their lifetime.
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In order to test the heat transfer enhancement of different roughness conditions on the
surface of the annular channel, the mockup is designed in a way to make sure that the Tube-
3 is exchangeable. Different roughness profiles were manufactured on the outer surfaces of
different versions of Tube-3 that can be consecutively integrated into the mockup.
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Tube-2 acts as the tube carrier for the Tube-1 (for heaters) and Tube-3 (for roughness).
There are grooves for the three wire-form electric heaters. After winding into the grooves
on Tube-1, the heaters are then brazed with Tube-1 and Tube-2. The Tube-3 is attached
to Tube-2 using tack welding, which allows the Tube-3 to be dismantled from the Tube-2.
At the upstream region, there is a cover-dome for guiding the coolant to flow into the
annular channel formed by Tube-3 and Tube-4. Now, the Tube-1, Tube-2, and Tube-3 are
bundled together, thereafter called insert-tubes. The region containing the tubes Tube-1,
Tube-2, Tube-3, and Tube-4 is also called the test section. The outer contour of the mockup
is driven by the dimension of Tube-4 (DN 150-120), which was determined using the above-
mentioned upscaling methods. The Flange-1 is used to connect the mockup to the helium
loop, whose pipe size is smaller than Tube-4. Therefore, two reducers are used to connect
the Flange-1 to Tube-4. Tube-4 is then connected with a T-junction. The 90◦ branch is
welded to Pipe-2 for returning the flow to the helium loop (see Figure 4). Again, a reducer
(Reducer-3) is used for the transition of differently sized pipes. Between the Reducer-3 and
the Flange-4, an elbow is used for accommodating thermal expansion. The straight branch
of the T-junction is for facilitating the exchange of the insert-tubes and the feedthroughs of
the electric heaters and thermocouples (TCs) through the Flange-2. These feedthroughs
are needed for ensuring the tightness of mockup. The insert-tubes are connected by three
evenly spaced support rods to a thick circular plate between the Flange-2 and Flange-3.
The Flange-2 has an outer diameter of 395 mm. The total horizontal length from the inlet
flange (Flange-1) to the end-tip of feedthrough is about 2080 mm. The vertical height of the
mockup is about 898 mm. The total mass of this mockup (without considering isolation) is
about 362 kg. The insert-tubes, which are planned to be exchanged during the experimental
campaign, have a mass of about 67 kg.

The nominal dimensions of the 4 tubes at the test section is shown in Table 2. It is
desired that, during the manufacturing, a small fabrication tolerance will be maintained.

Table 2. Dimensions of the 4 tubes in test section.

Tube No. Inner Diameter [mm] Outer Diameter [mm]

Tube-1 51.84 71.84

Tube-2 71.84 91.84

Tube-3 91.84 114.3

Tube-4 144.3 168.3

Based on the previous study of Shah and Bhatti [17], the flow regime in ducts can be
classified into three categories: (1) hydraulically smooth regime, (2) transition regime, and
(3) fully rough regime. Shah and Bhatti [17] have proposed correlations for the Nusselt
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number for the different flow regime. The classification is based on the value of roughness
Reynolds number e+, defined as follows:

e+ = Re∗ e
Dh
∗
√

f
8

(6)

where, Re is Reynolds number, e sand-grain roughness, Dh the hydraulic diameter, f Darcy
friction factor.

0 ≤ e+ < 5 Hydraulically smooth regime (7)

5 ≤ e+ < 70 Transition regime (8)

e+ ≥ 70 Fully rough regime (9)

Three different surface roughness conditions are proposed to be tested following the
above-mentioned flow regime classifications. For the hydraulically smooth regime, the
normally manufactured surface with an Rz of about 10 µm, where Rz is the difference
between the tallest peak and the deepest valley in the surface. Different roughness sets are
to be tested to select the most optimized ones. The roughness sets on Tube-3 are shown in
Table 3. The roughness Re of different roughness sets are shown in Table 4.

Table 3. Roughness sets.

Roughness Set Rz [µm] Surface Treatment

Set 1 ca. 10 Normally manufactured, no surface treatment

Set 2 ca. 500 Thread profile

Set 3 ca. 1200 Thread profile

Set 4 ca. 125 Laser-structuring-made incremental vaporizing-like surface

Set 5 ca. 250 Laser-structuring-made incremental vaporizing-like surface

Set 6 ca. 500 Laser-structuring-made incremental vaporizing-like surface

Set 7 ca. 1200 Laser-structuring-made incremental vaporizing-like surface

Table 4. Roughness Reynolds number at different Rz and Re.

Rz Re Roughness Re

10

4000 0.093

6000 0.133

8000 0.172

10,000 0.210

125

4000 1.213

6000 1.762

8000 2.299

10,000 2.829

250

4000 2.528

6000 3.705

8000 4.868

10,000 6.024

500

4000 5.409

6000 8.013

8000 10.601

10,000 13.183

1200

4000 14.818

6000 22.197

8000 29.563

10,000 36.923
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3. Measurement of the Mockup

To obtain the unknown quantities in Section 2, many temperature measures are needed.
The locations of the thermocouples in the test section are displayed in Figure 5. The whole
mockup is installed into a robust metallic tank, which is exposed to environment air
through small, opened windows. By doing this, the staff would not be affected in case
of a breakage of the mockup. In order to minimize the heat loss from the mockup to the
environment, all the mockup parts are wrapped in 4-layer thick isolation layers (totally
about 115 mm, not scaled in Figure 5). At the test section, two axial locations are chosen
to measure the temperature in order to obtain information both at the axial-half length
and at the proximity of the full length of the test section. To be redundant on the measure,
pairs of thermocouples are used at the same axial and radial location, e.g., TC-1 pairing
with TC-3. The number of thermocouples is also limited by the maximum number that the
facility can accommodate. The thermocouples TC-1 to TC-8 are on the Tube-4 for measuring
the temperature at the middle and on the end of Tube-4 to determine the heat flow from
the mockup to the isolation layer. The thermocouples TC-22 to TC-25 are attached on the
outer-surface of the isolation layers; together with TC-1 to TC-4, these TCs are used to
obtain the heat loss from the mockup to the environment. The thermocouples TC-9 to
TC-16 are used to determine the heat flux from the solid to the coolant. The thermocouples
TC-17 to TC-19 are used for monitoring the temperatures of three electric heaters.
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Figure 5. TCs on test section.

Upstream of the test section, there are two small pipes (called Pipe-1a and Pipe-1b) for
accommodating the thermocouple (TC-20) and pressure tap (DP-1). At the downstream
region of the test section, there are also thermocouple (TC-21) and pressure tap (DP-2). The
locations of these thermocouples and pressure taps are depicted in Figure 6. Since we are
more interested in the temperature measure in this work, the TC-20 and TC-21 are placed
closer than DP-1 and DP-2 to the test section. A differential pressure sensor is connected to
the mock-up inlet (Pipe-1b) and outlet (Pipe-2b) via two pressure taps DP-1 and DP-2.

For the safety of the mockup and the HELOKA facility, several safety measurements
needed to be implemented to protect the electric heaters from overheating and damaging
the mockup and the HELOKA facility. The thermocouples TC-17 to TC-19 are attached to
the safety circuit, with a temperature limit of 500 ◦C. The thermocouple TC-6 located on the
inner surface of Tube-6 and the thermocouple TC-21 for measuring the coolant temperature
at the outlet are used for triggering safety signals, with 400 ◦C as the corresponding
temperature limit. Once any of the temperatures on these thermocouples exceeds the
above-defined temperature limits (500 ◦C for TC-17 to TC-19 and 400 ◦C for TC-6 and
TC-21), the electric heaters will be switched off automatically.
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4. Test Matrix

There are 7 roughness sets. The runs are grouped following the Reynolds numbers,
which are 4000, 6000, 8000, and 10,000. The heating powers are calculated by the corre-
sponding dimensionless heating rate q+ (ranging from 0.0002, 0.0003, 0.0004, 0.0005, and
0.0006) using Equation (5), which represents the q+ range in the HCPB breeder zone [1,18].
Therefore, in total, there are 140 runs. The inlet temperature of the coolant is always
set at 300 ◦C.

5. Categorization of the Mockup following the European Union Pressure Equipment Directive

Since the mockup is a pressure equipment, the mockup has to conform to the require-
ments of European Union Pressure Equipment Directive 2014/68/EU. There are several
steps to determine the category of pressure equipment following the Directive 2014/68/EU.

Step 1: Grouping of the fluid.
Step 2: Check if it is required to meet the essential safety requirements according to

Annex I of the Directive 2014/68/EU.
Step 3: Assignment of the category (Cat. I to Cat. IV), based on: Type of pressure

equipment (vessel or piping); state of aggregation of the fluid; Fluid group of the fluid and
design data (Product of pressure and volume or pipe size).

Following the above-mentioned steps and the instructions in the Directive 2014/68/EU,
the pressurized helium is not hazardous; therefore, it is grouped into Fluid II/gaseous.
As pressure equipment, the mockup is required to meet the essential safety requirements.
Based on the features of the mockup, the mockup can be considered as vessel or as piping.
It is decided to consider the mockup as piping pressure equipment. Finally, the mockup is
assigned to pressure equipment Cat. III module G. The thickness of the pressure-bearing
parts is determined following the harmonized European Norm of metallic industrial piping
EN 13480 [19] and pressure vessel EN 13445 [20].

The maximum operating temperature allowed in HELOKA facility is 550 ◦C and the
operating pressure is 8 MPa. According to the norms, the calculation pressure should be
9.2 MPa, 115% of the operating pressure, to account uncertainty. According to the norm
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EN 13445, the strength condition and geometrical condition (e.g., minimum thickness)
should be met. Using the professional European Norm-conforming software FEST [21], the
required minimal effective thickness of the tube is 8.6 mm; the required maximum ratio
of effective thickness to outer diameter is 0.16. The selected tube size is with 168.3 mm as
outer diameter and with a thickness of 12 mm.

6. Performance Analysis
6.1. Thermofluid-Dynamic Analysis

To reduce meshing and computation time, only critical regions had been modelled in
the 3D conjugated CFD thermofluid-dynamic analyses to assess the temperature fields at
these critical regions and the flow distribution. The critical regions include the fluid domain
from the inlet to outlet of the mockup, the electric heaters, the Tube-1, Tube-2, Tube-3,
and Tube-4. The mesh of the model is shown in Figure 7, done by using ANSYS Meshing.
Besides the wire electric heaters and Tube-1, all the other parts were meshed by structured
hexagonal mesh. In the fluid domain, there were 10 layers of boundary layers. And the
mesh size is fine enough to ensure that the y+ is about 1. Totally, there are about 50 million
elements. The CFD software CFX was used for the calculations. The total pressure drop
between inlet and outlet is calculated to be about 390 Pa.
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The solid structure was made of stainless-steel SS 316, whose physical properties
were provided by the supplier and are temperature-dependent. The helium properties
were taken from the NIST [22] and implemented into the CFX setting-up as temperature-
and pressure-dependent.

Many CFD simulations were done. Here, only a representative case is shown, with
a mass flow rate of 64 g/s and with a q+ of 0.0006 (corresponding to a total heating power of
3370 W). The thermal contact conductance (TCC) between Tube-2 and Tube-3 is calculated
to be about 2400 W/(m2 K) assuming a stagnant helium gap of 0.1 mm.

The velocity streamline of the coolant is shown in Figure 8. The temperature contour
of the mockup is shown in Figure 9. The hotspots are located at the heaters and the Tube-1,
which surrounds the heaters. Maximum temperature of the tube is 430.6 ◦C, well below
the allowable operating temperature 550 ◦C.
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The average heat flux from Tube-3 towards coolant is shown in Figure 10. The heat
flux at heating region between 50 mm and 400 mm is uniform. It can be seen that there are
entrance and exit effects on the heat flux distribution, which should be taken into account
when post-processing the experimental data in the future.

The velocity contour of the coolant is shown in Figure 11. The velocity profile of
10 lines crossing the annular channel (location of the 10 lines shown in Figure 11) approach-
ing the end of the test section is shown in Figure 12. It can be seen that the flow profiles
at different lines almost overlap. The velocity profile comparison at lines 4, 9, 5, and 10 is
shown in Figure 13. It is observed that the flow there is not symmetric, probably because of
the T-junction at the outlet.
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As the contact between Tube-1 and Tube-2 is ensured via brazing, a perfect contact
between them is assumed. The TCC between different tubes will influence the heat transfer
between them. Therefore, for the sake of model robustness, a scoping study varying the
TCC values between Tube-2 and Tube-3 should be done. The scoping study considers
four different TCC values between Tube-2 and Tube-3: 500, 1000, 1500, and 2000 W/(m2 K),
all below the nominal value 2400 W/(m2 K). The temperature fields of the four cases are
shown in Figure 14. It can be seen that the maximum temperature 467.6 ◦C on the mockup
occurs at TCC = 500 W/(m2 K), which implies that the mockup will be safe (Tmax < 550 ◦C),
even with a very low TCC.
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6.2. Determining the Number of Stiffening Rings

In order to hold the tube insert in position, its rear part is supported by the supporting
rods connected via the supporting ring, see Figure 15. In the original design, as shown
in Figures 3 and 4, there is only one supporting ring. However, after discussion with
the manufacturing partner, it was suggested to have additional stiffening rings for rein-
forcement. Therefore, FEM analysis was done to check the deflection of the front part of
the tube insert due to self-weight. Two cases were studied. The first one (case 1) with
one additional stiffening ring, the second one (case 2) with three additional stiffening rings.
The boundary conditions for case 2 are shown in Figure 16. Similar boundary conditions
for case 1 were used.
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The resulting deformations for case 1 and case 2 are respectively shown in Figures 18 and 19.
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It can be seen that with three additional stiffening rings, the deformation due to
self-weight is smaller. To be conservative, case 2 is chosen for the final design.

7. Conclusions and Outlook

In this article, the design of a breeder zone mockup of the EU DEMO HCPB breeding
blanket has been presented. The analyses show that the temperature field and flow distri-
bution are within expected range. The design of the pressure-bearing parts is checked with
the harmonized European Standard EN 13480, hence ensuring the conformity of the design
with the latest European Union Pressure Equipment Directive 2014/68/EU. Nevertheless,
before manufacturing, the design shall be verified by a notified body, which is the natural
follow-up step. Once manufactured, the mockup will be tested in the high-pressure, high
temperature helium facility (HELOKA) at Karlsruhe Institute of Technology.
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