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Abstract: Invasive species are known to have potential advantages over the native community
and can be expressed in their leaf functional traits. Thus, leaf-level traits with spectral reflectance
can provide valuable insights for distinguishing invasive trees from native trees in complex forest
environments. We conducted field spectroscopy measurements in a subtropical area, where we also
collected trait data for 12 functional traits of invasive (Psidium guajava and Hovenia dulcis), and native
species (Psidium cattleianum and Luehea divaricata). We found that photosynthetic pigments were
responsible for the greatest interspecific variability, especially in the green region of the spectrum
at 550 nm, therefore contributing to detection of invasive species. In addition, according to LDA
and stepwise procedures, the most informative reflectance spectra were concentrated in the visible
range that is closely related to pigment absorption features. Furthermore, we aimed to understand
the leaf optical properties of the target invasive species by using a combination of narrow bands and
linear regression models. P. guajava showed high correlations with specific leaf area, Car/Chl and
relative water content. H. dulcis had a strong correlation with water content, specific leaf area and
Chla/Chlb. Overall, this methodology proved to be appropriate for discriminating invasive trees,
although parameterization by species is necessary.

Keywords: remote sensing; invasive alien species; leaf functional traits; linear discriminant analysis;
optical properties

1. Introduction
1.1. Background

From the last century onwards, plant invasions have been increasing worldwide [1,2]
and have been considered a major threat to global biodiversity [3]. Invasive alien species
(IAS) are introduced by humans outside of their natural range and cause negative ecological,
economic, and social impacts on the novel environment [4–6]. Invasive trees are usually
adaptive and competitively distinct in relation to co-occurring native species [7]. Therefore,
they can alter the richness, composition and abundance of the community and also produce
changes in ecosystem functioning [8].

1.2. IAS in Protected Areas

Invasive species have been reported causing risks in protected areas all over the
world [9]. In Brazil, the establishment of protected areas was a main strategy for biodiversity
conservation [10]. However, in addition to habitat fragmentation and the presence of
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disturbed environments [11], these areas are also currently being threatened by biological
invasions [12]. Outside the protected areas, land uses also need attention, as they mostly
determine a strong propagule pressure and contribute to the success of plant invasions in
these areas [13–17].

The occurrence of invasive species has increased in forest ecosystems in recent years,
and negatively affects species composition, forest microclimate, and soil chemistry [8].
Additive or synergistic effects of habitat disturbance and species invasions, such as com-
petition for light and nutrients, result in today’s landscapes being dominated by exotic
species, which is a direct consequence of this competitive exclusion [18]. Changes caused
by invasive plants that disrupt ecosystem functioning and promote the invasion and estab-
lishment of new invasive plants create a feedback loop between habitat disturbance and
species invasion, i.e., “invasive collapse” of disturbed ecosystems [19,20].

IAS represent an ongoing challenge for the management of protected areas associated
with high economic costs [20–22]. In this regard, remote sensing can potentially contribute
as a methodological approach for the detection of invasive species and their monitoring
over large and hard-to-reach areas, including forests.

1.3. Leaf Optical Properties

Remote sensing (RS) in the optical domain, which can be applied to a range of environ-
mental studies, focuses on the spectral properties of the leaf in relation to its biochemical
content (chlorophyll, water, dry matter) and its anatomical structure [23]. The diffuse
reflectance of a leaf, modified by its internal properties, may contain features that are useful
for mapping the functional properties of leaves [24]. In a healthy green leaf, the spectral
region from 430 nm to 660 nm is characterized by a strong chlorophyll a absorption peak.
In contrast, the absorption range of chlorophyll b is more intense (450 nm and 650 nm).
The carotenoids have an absorption peak at 450 nm. In the near infrared (NIR) region, the
reflectance increases dramatically (700 nm to 1200 nm), with a reflectance peak at 900 nm.
Properties extracted from leaves and their reflectance spectra are input parameters and
serve to feed canopy models. Combinations of narrow bands, such as the proposition of
spectral indices, consist of a classical approach in remote sensing and are widely used for
extracting information related to photosynthetic pigment content, water content, and dry
mass, mainly due to their simplicity, and because they usually produce good results for
individual datasets [23].

1.4. Remote Sensing for the Detection, Mapping, and Monitoring of IAS

Remote sensing has been used in recent years to detect invasive plants [25–27]. IAS
detection and mapping is possible due to the dominance of invasive species that can form
homogeneous and large patches in the area, which contrasts the seasonal phenology of
IAS and the native plants, and biochemical, physiological, or structural traits that can
distinguish the IAS from the native community [28]. However, the platform and sensor
used for detection must be compatible with the target species and/or the environment
characteristics. Multiscale approaches, such as integrating data from different platforms and
sensors, are potential methodologies for the discrimination and mapping of IAS [29–31].

Phenology-based approaches are widely used, for example, to map IAS according
to flowering and leaf senescence [32–34]. On the other hand, structural traits tend to be
spatially separable within a native ecosystem using processing techniques based on image
segmentation. However, their application is indicated when the IAS present aggressive
and dominant characteristics [35], or they form groups that are distinct from the native
community [36,37].

Recent studies, such as those of Omer [38], Tesfamichael [39], and Iqbal [40], have
used methods based on field spectroscopy to discriminate invasive species. Omer [38] used
continuous wavelet analysis and feature reduction techniques to discriminate five invasive
plant species. Tesfamichael [39] investigated the potential of remote sensing in identifying
native, non-native, and hybrid Tamarix species in South Africa. Classification of species at
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the leaf and canopy level was performed using field spectroradiometer data. Iqbal [40] used
a hyperspectral field sensor to discriminate invasive plant species from adjacent native
species in two protected areas in Pakistan. Spectral separability was calculated using the
Jeffries-Matusita distance index based on selected wavebands.

In tropical and subtropical forest ecosystems, mapping target IAS seems to be complex
as they are spread out in the woods and most have morphological traits that are similar to
the native species. Therefore, methods that not only use structural traits, but also spectral
data should be used [41,42]. Furthermore, to increase the potential for discrimination
between native and invasive plants, physiological characteristics linked to plant functioning
and growth must be included [32]. Invasive tree species can be detected directly via the
forest canopy [43] or indirectly by measuring the leaves and simulating the canopy [44,45].

Functional traits at leaf-level, such as photosynthetic pigments [46], nitrogen concen-
tration [47] and moisture content [48], are directly related to physiological functions such as
photosynthesis, respiration, and transpiration. These characteristics can be reflected in the
optical properties of the leaves and, when related to the spectral signatures, can contribute
to improving the discrimination and mapping of IAS [49,50].

Given the importance of the topic, the present study fills a gap related to remote
detection of IAS in complex forest ecosystems. Moreover, it intends to assess invasive forest
species that exhibit sparse invasion characteristics and sometimes form clusters; however,
these species are not characterized as monodominant. We pursued the following objectives:
1) determine leaf functional traits and spectral characterization of native and invasive trees;
2) discriminate invasive species from native species based on their reflectance values via
field spectroscopy; and 3) understand the relationship between functional characteristics of
invasive plants and their spectral patterns (optical types).

2. Materials and Methods
2.1. Study Site

The study was conducted at the Quarta Colonia State Park (hereafter QCSP) that
protects an area of ca. 1847 ha of secondary forest in southern Brazil (29◦27′57.39′′ S,
53◦16′51.30′′ W), within the Atlantic Forest domain [51–53] (Figure 1a,c). The vegetation of
QCSP is classified as seasonal deciduous and it is covered with native tree species such as
Nectandra megapotamica (Spreng.) Mez, Cupania vernalis Cambess, Trichilia clausseni C.DC.,
Chrysophyllum marginatum (Hook. & Arn.) Radlk., Luehea divaricata Mart., Sebastiania com-
mersoniana (Baill.) L.B.Sm. & Downs, Allophylus edulis (A.St.-Hil.) Hieron. ex Niederl.,
Cordia americana (L.) Gottschling & J.S.Mill. [54,55]. The landscape varies from undulating
to mountainous, which leads to heterogeneous bio-physical soil conditions in which soils
of the type Litolic Neosol and Regolitic Neosol predominate [56]. The mean annual tem-
perature ranges from 18 ◦C to 20 ◦C and mean annual precipitation is approximately 1300
mm [57]. Plant invasions are a significant threat at QCSP and are closely linked to land use
changes and anthropogenic impacts in the area prior to their establishment [53].

2.2. Target Species

We selected two invasive species, namely Hovenia dulcis Thunb. (Japanese raisin
tree) and Psidium guajava L. (Guava), and two co-occurring native species, namely Luehea
divaricata Mart. & Zucc. (Whips-horse) and Psidium cattleianum Sabine (Strawberry guava).
Native–invasive species pairs were chosen according to morphological and taxonomic
parameters (most similar to plant comparisons), and occurrence distribution (frequencies
and population densities). (See Table S1 and Figure S1 in Supplementary Materials).
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The Target IAS of the Study
Hovenia dulcis Thunberg

Hovenia dulcis, commonly known as Japanese raisin tree, is native to East Asia and
grows in China, Japan, North Korea, South Korea, Thailand, and Vietnam [58]. It is
described as a deciduous fast-growing tree that can reach 25 m in height, is tolerant of
shade though prefers habitats with high incidences of light [59,60]. Leaves are alternate,
simple, 10–15 cm long and 7–12 cm in width. It reproduces sexually by seed, and fruits
are produced in large quantities [61]. It is considered to be an invasive species in forest
ecosystems in South America, especially in the Atlantic Forest domain [62–64]. The species
was brought to southern Brazil and introduced to rural properties motivated by economic
reasons, shade and wood uses [61]. As a consequence, it has spread beyond cultivation
areas and has become a growing problem in subtropical deciduous seasonal forests, often
being found in the canopies of secondary forest fragments [64–66]. H. dulcis can outcompete
other species for light and nutrients [67] and promotes changes in structure and in species
composition in the plant community [68].
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Psidium guajava L.

Psidium guajava (commonly known as guava) is a tropical tree from southern Mexico
and northern South America that is under cultivation around the world and has become
invasive in southern Brazil [69]. Adult guava trees grow to 3–8 m in height. Leaves are
opposite, simple, 5–15 cm long and 3–7 cm wide [70]. It reproduces sexually and fruits are
fleshy, edible, and produce large quantities of seeds [71–73]. The species is well adapted
to a wide range of environmental conditions, and it can form dense monocultures and
produce allelopathic effects that displace native plants [74].

2.3. Spectral Measurements in the Field

Field sampling was conducted in QCSP in the spring of 2020 when plants were actively
growing and reaching greater photosynthetic capacity. The average field temperature and
relative humidity were 32 ◦C and 49%, respectively. We collected data from six mature
trees of each species. All individuals were sampled under similar solar radiation/light
conditions, i.e., measurements occurred at the same time (they started at 10:00 am and
ended at 1:30 pm) on cloudless and windless days in a homogeneous area with 20 years of
secondary forest succession (Figure 1b,d).

Spectral data collection was conducted in three campaigns in the spring, resulting in
the collection of 24 subsamples. Care was taken in the design of the sampling to represent
the different light incidence directions when collecting the samples. For this purpose, six
individuals (samples) per species were selected and only leaves from the upper third of the
canopy were collected. The subsample was distributed among the quadrants (north, south,
east, and west), with a replicate of four leaves for all variables analyzed, thus making a total
of 384 measured leaves. Sampling for leaf functional traits was conducted simultaneously
in the same field.

2.4. Leaf Sampling and Laboratory Processing

We analyzed 12 leaf functional traits for both native and invasive species, which were
related to photosynthetic pigments, water content and vegetation structure (Table 1). These
traits at leaf-level are relevant as they represent ecological strategies that can be correlated
with measurable leaf spectral properties [50]. For the study, the same six individuals of
each tree species previously selected were used for the measurements. In all cases, leaf
sampling was conducted on the middle third of the canopy, and thirty-two healthy leaves
were collected per individual. Four leaves were used in each analysis.

Table 1. Synthesis of traits and functions recorded for plant species at Quarta Colonia State Park
during the 2020 field season.

Leaf Trait Acronym Unit Indicator of

Water content
Fuel moisture content FMC % susceptibility of vegetation to fire
Liquid water content LWC % water content estimate

Equivalent water thickness EWT g cm−2 hydric stress
Vegetation structure

Leaf mass per area LMA g cm−2 leaf longevity and hardness
Specific leaf area SLA cm2 g−1 light capture efficiency

Photosynthetic pigments
Chlorophyll a Chla µg cm−2 main photosynthetic pigment
Chlorophyll b Chlb µg cm−2 accessory pigment

Total chlorophyll Chl µg cm−2 photosynthetic activity
Carotenoid Car µg cm−2 photoprotective pigments

Chlorophyll a:b ratio Chla/Chlb - photosynthetic response of the acclimatization process

Carotenoid:total chlorophyll ratio Car/Chl - changes in development and stress
photosynthetic responses

Sum of chlorophyll a and b Chla + b µg cm−2 photosynthetic activity
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To avoid the degradation of photosynthetic pigments, leaf samples were immediately
wrapped in aluminum foil, frozen in liquid nitrogen, and stored on thermal box in the
field until they could be transferred to a −80 ◦C freezer in the Plant Biotechnology Lab
at Santa Maria Federal University. Fresh leaf tissues (50 mg) were then homogenized in
liquid nitrogen, incubated at 65 ◦C with dimethyl sulfoxide (DMSO) until the pigments
were completely extracted, as per Hiscox and Israelstam [75], and estimated with Licht-
enthaler’s formula [76]. Concentrations of chlorophyll a, chlorophyll b and carotenoids
were quantified using a spectrophotometer (Spectrophotometer VM5, Celm E-205D, Bel
Engineering, Monza, Italy) based on their absorbance at 663, 645 and 470 nm, respectively.

Leaf samples for water content and for structural measurements were stored in hu-
midified bags in the field and kept in black plastic bags on thermal box to prevent wilting
during transport. Leaf samples were first measured with a scanner/portable leaf area meter
(Portable Leaf Area Meter -AM300, ADC BioScientific Ltd, Hoddesdon, UK) to determine
the leaf area. Leaves were fresh weighed and then oven-dried at ±65 ◦C until constant
weight before recording dry mass. We calculated leaf mass per area (LMA; g cm−2) as leaf
dry mass divided by leaf area. Specific leaf area (SLA; cm2 g−1) was calculated as area per
unit mass.

2.5. Collection of Leaf-Level Spectral Data

For leaf spectral characterization of the target species, field spectroscopy was per-
formed using a handheld portable spectroradiometer (ASD FieldSpec®, Malvern Panalyti-
cal, Malvern, UK) within the 300–1200 nm range, with spectral resolution of 3 nm. However,
the spectral range of 400–900 nm was delimited for this work due to noise observed in the
equipment. One exposed branch from the higher third of the canopy for each tree was
removed and four leaves were then collected. Immediately (less than 10 min), leaf samples
were overlapped and placed on a black background and leaf-level spectral reflectance
signatures were recorded for each sample.

The spectroradiometer was placed vertically over the target (leaf) at a distance of
10 cm, and data was collected by 25 degrees of field of view (FOV for field measurement).
The positioning of the spectroradiometer was performed by moving in constant azimuthal
movement (90◦). The distance between the target and the object was kept constant to
ensure that no reflectance came from the surroundings of the leaf. The spectroradiometer
was calibrated with a Lambertian reference plate before each sample measurement. For
each target, 10 readings were collected from the reference plate and leaf sample to obtain
the average spectrum. All measurements were collected with RS3 software (ASD), and
ViewSpecPro software (ASD) was used for post processing of spectra files. During the
field work, meteorological information, such as temperature, humidity, wind speed and
solar radiation inclination associated with each individual, was also collected. A thermo
hygro-anemometer and a clinometer were used.

2.6. Statistical Analyses

Our study was analyzed via the following three steps: (1) analysis of the functional
traits of the native and invasive trees using leaf traits measured in the field; (2) analysis
of spectral reflectance; and (3) integrated analysis of leaf functional traits and spectral
reflectance (Figure 2). All the analyses were performed using Microsoft Excel (Microsoft,
Redemond, Whashington, USA) and R (R Core Team 2020). A descriptive statistical analysis
of all 12 traits of the target species with a 95% confidence interval (CI) is also provided.
Additionally, the Kruskal–Wallis test was performed to compare the species, followed by
Dunn’s post hoc test.
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To evaluate the spectral signatures of the species, the analytical technique was used.
Linear discriminant analysis (LDA) was performed to distinguish the spectra with two
subsets; one containing 70% of the spectral data to build the model and one containing
the remaining 30% of the spectral data used for validation. Then, stepwise procedures
were used to select important wavelengths that best explain the differences among species.
This process selects the variables one by one in accordance with the p-value < 0.05 until no
variable can be entered. The leave-one-out cross-validation (LOOCV) was used to estimate
the model generalization, which is a disposition of k-fold cross-validation, where k is the
number of examples in the dataset (n).

To test the correlation between leaf characteristics and their respective spectral re-
flectance for invasive species, a simple relationship was investigated to estimate the bio-
physical and biochemical parameters using an interactive correlation environment (ICE)
according to Ogashawara [77]. The method was adapted for Microsoft Excel and consists
of a correlation matrix to select the single band ratio. First, a correlation matrix was created
for each independent variable in terms of reflectance values with a resolution of 1 nm. All
spectral band ratios were calculated for each variable. This procedure was performed for
each of the invasive species and permitted the identification of the wavelength with the
best correlation for each trait. Finally, simple linear regression (SLR) was used to determine
the significant functional optical properties based on the most significant functional charac-
teristics of the leaves according to the best simple ratio correlation (r). The performance
of the models was validated using the coefficient of determination (r2), root mean square
error (RMSE), and residual sum of squares (RSS).

3. Results
3.1. Leaf Functional Traits for Native and Invasive Species

We measured twelve leaf traits that were closely related to plant photosynthesis in
terms of water content, biochemical content, and leaf structure and physiology based on
dry mass. The statistical summary of the analyses can be found in the Supplementary
Materials (see Table S2 in Supplementary Materials).
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3.1.1. Water Content

In general, the water content differed between species according to the Kruskal–Wallis
test (Table 2). However, after post hoc testing, the significant differences were found for
the EWT trait (Table 3). The native species L. divaricata had the highest LWC for the total
dataset and the highest intraspecific variability. Nonetheless, when comparing the means,
the invasive H. dulcis presented the highest mean value among the species (Figure 3a). The
native species showed greater FMC as well as greater intraspecific variability. In contrast,
invasive species had lower values for data amplitude and lower intraspecific variability
(Figure 3b). The results also showed that, in general, both invasive species presented lower
EWT values when compared to the corresponding native species, and less intraspecific
variability (Figure 3c).

Table 2. Kruskal–Wallis rank-sum test of the 3 leaf traits Water content: LWC (%) = liquid water
content; FMC (%) = fuel moisture content; EWT (g cm−2) = equivalent water thickness; significance
(p ≤ 0.05).

chi-Squared df p-Value

LWC 10.747 3 0.01318
FMC 10.747 3 0.01318
EWT 53.874 3 1.19 × 10−8

Table 3. Dunn’s post hoc test adjusted using the Bonferroni method for the three leaf traits. Water con-
tent: LWC (%) = liquid water content; FMC (%) = fuel moisture content; EWT (g cm−2) = equivalent
water thickness for 24 subsamples collected from each species invasive (PG = Psidium guajava an
HD= Hovenia dulcis) and native (PC= Psidium cattleianum and LD= Luehea divaricata).

Trait Species Group_ Statistic p-Value p.Adjust

LWC

HD LD −2.34 0.0194 0.117
HD PC −2.09 0.0368 0.221
HD PG −3.14 0.00169 0.0101
LD PC 0.249 0.804 1
LD PG −0.803 0.422 1
PC PG −1.05 0.293 1

FMC

HD LD −2.34 0.0194 0.117
HD PC −2.09 0.0368 0.221
HD PG −3.14 0.00169 0.0101
LD PC 0.249 0.804 1
LD PG −0.803 0.422 1
PC PG −1.05 0.293 1

EWT

HD LD 1.29 1.97 × 10−11 0
HD PC 6.84 7.67 × 10−12 4.60 × 10−11

HD PG 3.51 4.43 × 10−4 2.66 × 10−3

LD PC 5.55 2.78 × 10−8 1.67 × 10−7

LD PG 2.22 2.62 × 10−2 1.57 × 10−1

PC PG −3.33 8.63 × 10−4 5.18 × 10−3
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(b) FMC (%) = fuel moisture content; and (c) EWT (g cm−2) = equivalent water thickness; were the
species are: HD (yellow) = Hovenia dulcis; LD (red) = Luehea divaricata; PC (blue) = Psidium cattleianum;
PG (green) = Psidium guajava. * Indicates outliers.

3.1.2. Vegetation Structure

The traits related to vegetation structure showed significant difference between species
(Table 4). After the post hoc test (Table 5), the greatest differences were observed among
the groups: invasive species H. dulcis and P. guajava; invasive species H. dulcis and native P.
cattleianum; followed by the native species L. divaricata and P. cattleinum.

Table 4. Kruskal–Wallis rank-sum test of the two leaf traits Vegetation structure: LMA (g cm−2) = leaf
mass per area; SLA (cm2 g−1) = specific leaf area; significance (p ≤ 0.05).

chi-Squared df p-Value

LMA 46.129 3 5.33 × 10−7

SLA 46.554 3 4.32 × 10−7

Table 5. Dunn’s post hoc test adjusted using the Bonferroni method for the two leaf traits. Vegetation
structure: LMA (g cm−2) = leaf mass per area; SLA (cm2 g−1) = specific leaf area for 24 subsamples
collected from each invasive species (PG = Psidium guajava and HD = Hovenia dulcis) and native
species (PC = Psidium cattleianum and LD = Luehea divaricata).

Trait Species Group_ Statistic p-Value p.Adjust

LMA

HD LD 1.86 0.0622 0.373
HD PC 6.01 1.81 × 10−9 1.08 × 10−8

HD PG 4.97 6.79 × 10−7 4.08 × 10−6

LD PC 4.15 3.34 × 10−5 2.00 × 10−4

LD PG 3.10 0.00192 0.0115
PC PG 1.05 0.295 1

SLA

HD LD −1.99 0.0461 0.260
HD PC −6.04 1.58 × 10−9 9.46 × 10−9

HD PG −5.09 3.62 × 10−7 2.17 × 10−6

LD PC −4.04 5.31 × 10−5 3.19 × 10−4

LD PG −3.09 0.00198 0.0119
PC PG 0.948 0.343 1
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The evergreen species (P. cattleianum and P. guajava) in this study showed greater leaf
mass per area (LMA; Figure 4a). On the other hand, the deciduous species (L. divaricata
and H. dulcis) exhibited higher values of specific leaf area (SLA; Figure 4b). The native
Psidium cattleianum presented the highest LMA (LMA = 0.018 g cm−2) and the smallest
SLA (SLA = 40.56 cm2 g−1). In contrast, the invasive Hovenia dulcis had the lowest LMA
(LMA = 0.004 g cm−2) and the largest SLA (SLA = 225.32 cm2 g−1).
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Figure 4. Boxplot of leaf-level functional traits. Vegetation structure: (a) LMA (g cm−2) = leaf
mass per area; (b) SLA (cm2 g−1) = specific leaf area; where the species are HD (yellow) = Hovenia
dulcis; LD (red) = Luehea divaricata; PC (blue) = Psidium cattleianum; PG (green) = Psidium guajava.
* Indicates outliers.

3.1.3. Photosynthetic Pigments

Photosynthetic pigments showed significant differences among the analyzed species
groups, except for Car/Chl (Table 6). After the post hoc test, the differences found between
the groups of corresponding invasive and native species, H. dulcis × L. divaricata and P.
guajava × P. cattleianum, for the traits: Chla, Chlb, Chltotal, Car (Table 7).

Table 6. Kruskal–Wallis rank-sum test of the seven leaf traits. Photosynthetic pigments: Chla
(µg cm−2) = chlorophyll a content; Chlb (µg cm−2) = chlorophyll b content; Chl (µg cm−2) = to-
tal chlorophyll content; Car (µg cm−2) = carotenoid content; Chla/Chlb = chlorophyll a:b ratio;
Car/Chl = carotenoid: total chlorophyll ratio; Chla + b = sum of chlorophyll a and b; significance
(p ≤ 0.05).

chi-Squared df p-Value
Chla 37.419 3 3.75 × 10−5

Chlb 24.978 3 1.56 × 10−2

Chltotal 33.853 3 2.13 × 10−4

Car 39.859 3 1.14 × 10−5

Chla/Chlb 36.271 3 6.56 × 10−5

Car/Chl 51.107 3 0.1639
Chla + b 34.322 3 1.70 × 10−4
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Table 7. Dunn post hoc test by the adjusted method Bonferroni of the 7 leaf traits Photosynthetic
pigments: Chla (µg cm−2) = chlorophyll a content; Chlb (µg cm−2) = chlorophyll b content; Chl
(µg cm−2) = total chlorophyll content; Car (µg cm−2) = carotenoid content; Chla/Chlb = chlorophyll
a:b ratio; Car/Chl = carotenoid:total chlorophyll ratio; Chla + b = sum of chlorophyll a and b for
24 subsamples collected from each species invasive (PG = Psidium guajava an HD= Hovenia dulcis)
and native (PC= Psidium cattleianum and LD= Luehea divaricate).

Trait Group_Species Statistic p-Value p.Adjust

Chla

HD LD 2.94 0.00325 0.0195
HD PC −2.68 0.00728 0.0437
HD PG 2.04 0.0412 0.247
LD PC −5.63 1.83 × 10−8 1.10 × 10−7

LD PG −0.902 0.367 1
PC PG 4.73 2.30 × 10−6 1.38 × 10−5

Chlb

HD LD 3.28 1.34 × 10−4 8.05 × 10−4

HD PC 0.663 0.507 1
HD PG 3.85 1.18 × 10−4 7.09 × 10−4

LD PC −3.16 0.00160 0.00961
LD PG 0.0311 0.975 1
PC PG 3.19 0.00144 0.00864

Chltotal

HD LD 3.34 0.000603 0.00362
HD PC −1.63 0.103 0.616
HD PG 2.78 0.00540 0.0324
LD PC −5.06 4.14 × 10−7 2.49 × 10−6

LD PG −0.648 0.517 1
PC PG 4.41 1.01 × 10−5 6.07 × 10−5

Car

HD LD 3.63 0.000287 0.00172
HD PC −1.29 0.197 1
HD PG 3.82 0.000134 0.000805
LD PC −4.92 8.78 × 10−7 5.27 × 10−6

LD PG 0.192 0.848 1
PC PG 5.11 3.24 × 10−7 1.94 × 10−6

Chla/Chlb

HD LD −2.27 0.229 0.138
HD PC −5.63 1.78 × 10−8 1.07 × 10−7

HD PG −4.30 1.70 × 10−5 1.02 × 10−4

LD PC −3.36 0.000786 0.00472
LD PG −2.03 0.0428 0.257
PC PG 1.33 0.183 1

Car/Chl

HD LD −2.27 0.229 0.138
HD PC −5.63 1.78 × 10−8 1.07 × 10−7

HD PG −4.30 1.70 × 10−5 1.02 × 10−4

LD PC −3.36 0.000786 0.00472
LD PG −2.03 0.0428 0.257
PC PG 1.33 0.183 1

Chla + b

HD LD 3.39 0.000702 0.00421
HD PC −1.74 0.0817 0.490
HD PG 2.73 0.00642 0.0385
LD PC −5.13 2.90 × 10−7 1.74 × 10−6

LD PG −0.663 0.507 1
PC PG 4.47 7.96 × 10−6 4.77 × 10−5

For leaf chlorophyll a content (23.75 ± 8.98 µg cm−2), high values were indicated for
L. divaricata (Chla = 30.38 µg cm−2) and P. guajava (Chla = 25.96 µg cm−2), then for H. dulcis
(21.45 µg cm−2) and P. cattleianum (15.55 µg cm−2; Figure 5a). For chlo-rophyll b, high con-
tents were also observed for L. divaricata (Chlb = 9.46 µg cm−2) and P. guajava (Chlb = 8.88 µg
cm−2), followed by P. cattleianum (Chlb = 6.42 µg cm−2) and H. dulcis (Chlb = 5.9 µg cm−2;
Figure 5b). Again, L. divaricata (Chl = 115.3 µg cm−2; Chl a + b = 63.8 µg cm−2) and P.
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guajava (Chl = 103.8 µg cm−2; Chl a + b = 57.4 µg cm−2) showed greater Chl and Chl a +
b contents (Figures 5c and 6c). In general, IAS presented less intraspecific variability, on
average, than native species.
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Figure 5. Boxplot of leaf-level functional traits Photosynthetic pigments: (a) Chla (µg cm−2) = chloro-
phyll a content; (b) Chlb (µg cm−2) = chlorophyll b content; (c) Chl (µg cm−2) = total chlorophyll
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dulcis; LD (red)= Luehea divaricata; PC (blue) = Psidium cattleianum; PG (green)= Psidium guajava.
* Indicates outliers.
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Figure 6. Boxplot of leaf-level functional traits. Photosynthetic pigments: (a) Chla/Chlb = chlorophyll
a:b ratio; (b) Car/Chl = carotenoid:total chlorophyll ratio; (c) Chla + b = sum of chlorophyll a and b;
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The lowest Chla/Chlb rates were associated with the Psidium congeneric species, such
as P. cattleianum (Chla/Chlb = 2.58) and P. guajava (Chla/Chlb = 2.85; Figure 6a). Our results
showed that although these species are described as initial secondary, in general, they could
present shade-tolerant behavior. This suggests that P. guajava is also capable of extending
the range of invasion from degraded areas and forest edges, where it usually occurs, to the
understory of subtropical forests and, consequently, this should alert land managers to the
risk. In contrast, H. dulcis showed the highest Chla/Chlb rates (Chla/Chlb = 2.58). This
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was expected as this IAS is associated with light demand characteristics, and, therefore, its
invasion process is favored by the degradation and disturbance of forest ecosystems

Generally, leaf carotenoid content is found in the same proportion as chlorophyll
a in the PSI and PSII photosystems. However, we found carotenoids to be around
2.5 times more abundant than Chl a. The highest contents were described for L. di-
varicata (Car = 11.49 µg cm−2) and P. guajava, which also had the highest Car/Chl ratio
(Car = 11.59 µg cm−2; Car/Chl = 0.18; Figures 5d and 6b).

3.2. Leaf Spectral Reflectance

Differences in the spectral feature of species occur mainly in magnitude, as observed
for the species shown here in Figure 7a. Two spectral regions showed a greater difference in
features between species, the region of the spectral domain of green and NIR. In the green
range, a gradual increase was observed for all species (Figure 7b), which was even higher
for the invasive species. Furthermore, there was an approximation between the native
species (P. cattleianum and L. divaricata) and, consequently, a greater distance in terms of
magnitude, compared to the invasive species (P. guajava and H. dulcis). Results also showed
that, in general, the NIR region of the spectrum was able to distinguish the invasive species
with deciduous characteristics. The highest reflectance values were for the invasive H.
dulcis (55%) when compared to the native L. divaricata (45%; Figure 7c).
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Figure 7. Leaf-level spectral reflectance curves of the four target species: Psidium cattleianum (blue),
Psidium guajava (green), Luehea divaricata (red) and Hovenia dulcis (yellow) with spectral ranges at
400–900 nm (a); zoom in green spectral range (b); and zoom in NIR spectral range (c). Native species
are represented by the dashed lines, and invasive species by the solid lines.

3.3. Discrimination of Reflectance Spectra

For the discrimination between native and invasive species, the model created using
LDA achieved an overall accuracy of 97% via the 70/30 method, which indicates accurate
discrimination. While LD1 clearly separated the native L. divaricata, LD2 was effective for
the invasive H. dulcis. For the discrimination of the invasive P. guajava and the native P.
cattleianum, the combination of the first and second discriminants was necessary (Figure 8).
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Figure 8. Two-dimensional linear discriminant analysis (LDA) of leaf reflectance for the four target
species. PC (blue) = Psidium cattleianum; PG (green) = Psidium guajava; LD (red) = Luehea divaricata;
HD (yellow) = Hovenia dulcis.

The confusion matrix of the best-performing LDA model (Table 8) demonstrates the abil-
ity of generalization for the total set of samples, which achieved 95% classification accuracy.

Table 8. Confusion matrix obtained from the LDA-LOOCV species classification model showing
invasive and native species. Numbers in the diagonal of the matrix are the number of samples
predicted correctly. Were: P. cattleianum- Psidium cattleianum; P.guajava- Psidium guajava; H. dulcis-
Hovenia dulcis; L. divaricata- Luehea divaricata.

P. cattleianum P. guajava H. dulcis L.divaricata n

P. cattleianum 21 1 2 24
P. guajava 2 22 24
H. dulcis 24 24

L. divaricata 2 1 21 24

The stepwise method was applied to identify the most informative variables that
contributed to distinguishing IAS from native species. Thus, 32 spectral bands from the
visible range were selected as the most significant for discriminating the species in this study
(Table 9). Moreover, these bands are where pigment absorption features can be detected.

Table 9. Most-significant spectral bands selected by stepwise procedures. Blue, green and red are the
wavelength regions.

Blue Green Red

403–407 503–504 614
467 516 668
484 532–535 694–696
497 545–548 705

553 711
561–564
579–580

585
589–592
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3.4. Leaf Optical Properties of the Invasive Target Species

The most significant simple ratio (SR) was individually selected for each leaf trait
of each IAS. The most-significant optical properties for each group of leaf traits (water
content, vegetation structure and photosynthetic pigments) are shown in in Table 10 and
Figure 9. The total set of leaf traits analyzed, and their respective SR can be found in the
Supplementary Materials (see Tables S2 and S3, and Figures S2 and S3).
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Figure 9. Simple linear regression (SLR) for the most-significant functional optical properties and
simple ratios (SR). Regressions are performed for the target invasive species Psidium guajava (PG,
green = (a–c)) and Hovenia dulcis (HD, yellow = (d–f)). Substitute to (PG, green = (a,c and e)) and
Hovenia dulcis (HD, yellow = (d, e and f)).
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Table 10. Summary of the most-significant leaf optical properties and leaf characteristics of two
invasive tree species in QCSP. LWC (%) = liquid water content; SLA (cm2.g−1) = specific leaf area;
Chla/Chlb = chlorophyll a:b ratio; Car/Chl = carotenoid:total chlorophyll ratio; SR= simple ratio,
n = number of samples, r = simple ratio correlation; r2 = coefficient of determination; RMSE = root
mean square error; CV = coefficient of variation; RSS = residual sum of squares. Significant results at
α = 0.01, and at a 99% confidence level (p-value < 0.01).

Traits SR n Mean r r2 RMSE CV% RSS

Psidium
guajava
LWC R817/R802 22 64.125 0.91 0.83 1.76 0.027 62.55
SLA R822/R801 18 85.89 0.97 0.95 3.20 0.037 172.2

Car/Chl R839/R785 20 0.171 0.75 0.56 0.01 0.061 0.002

Hovenia dulcis
LWC R706/R531 22 70.4 0.92 0.85 1.67 0.02 56.2
SLA R706/R531 21 147 0.88 0.77 15.4 0.10 488

Chla/Chlb R818/R769 23 4.0 0.7 0.47 0.66 0.16 9.6

According to the simple linear regression (Figure 9), P. guajava expressed the strongest
correlations in NIR. The NIR reflectance ratio between 817 and 802 nm was correlated with
LWC (r = 0.91), thus it was one of the best bands to predict the water content in P. guajava
leaves (Figure 9a). However, we know that this result may not be exclusively related to
water content. For SLA, a narrow waveband of NIR (R822/R801) showed good accuracy
(r2 = 0.95) (Figure 9c). For Car/Chl, the spectral behavior of the species suggests an increase
in reflectance at 839 nm and 785 nm) (r = 0.75), and an increase in carotenoids in leaves at
the same time (Figure 9e).

Additionally, the other invasive species, H. dulcis, showed a strong correlation with
LWC (r = 0.92) and SLA (r = 0.88) at the same reflectance ratio (R706/R532) in the visible
region of the spectrum (Figure 9b,d). Lastly, Chla/Chlb was best correlated with R818
(NIR) and R769 (red) (Figure 9f). Analyzing the increase in reflectance in NIR, we can relate
it to a decrease in chlorophyll a content and, consequently, an increase in chlorophyll b.

4. Discussion

The detection and mapping of IAS still represents a major challenge in remote sensing,
especially in complex forest ecosystems [42,78]. Tropical and subtropical forests, mainly in
the Atlantic Forest domain, still have not been studied in depth [79]. In this paper, the use
of field spectrometry for native and invasive tree species discrimination was developed
based on leaf functional traits and proved to be appropriate.

4.1. Characterization of Leaf Functional Traits and Spectral Behavior

The optical properties of leaves are related to their biochemical composition and
structure depending on the species and the phenological age of the leaves [28]. Considering
that the spectral curves of green leaves are generally similar in shape, the difference is
mainly in magnitude, as was observed for the species in our study. The optical properties of
water are well known [80], and EWT and FMC are two different ways to define leaf water
content. As described by [81], these two attributes are perfectly correlated when LMA is
constant. However, this was not observed since LMA was not constant for our species. In
general, IAS presented lower FWC, FMC and EWT when compared to the native species.
Mainly, low FMC values may suggest that invasive species are more susceptible to fire at
leaf and canopy levels, thus increasing the risk of wildfires in invaded areas [80–83].

Leaf reflectance proved successful for generating LMA and SLA estimates [84]. How-
ever, there appears to be little agreement between physical and empirical bases of the
methods, beyond which spectral wavelengths fit best for estimation [85]. Quantitative
information on LMA provides a better understanding of the taxonomy of functional groups,



Remote Sens. 2023, 15, 791 17 of 23

regulation of physiological mechanisms and ecosystem functioning [86–88]. On the other
hand, SLA is considered one of the main functional traits that drive plant differentiation
since it is directly related to the efficiency of water use and, therefore, consists of a vari-
able potential for the spectral characterization of vegetation [89–93]. Overall, deciduous
species showed higher SLA than evergreen species; however, when the species were classi-
fied based on their origins, the IAS had higher SLA values, thus summarizing ecological
strategies such as those related to the acquisitive end of the leaf economic spectrum and
faster growing species [94]. The values obtained for LMA in this study confirm what was
described by [28], i.e., that deciduous species are associated with lower LMA (H. dulcis and
L. divaricata) when compared to evergreen species (P. guajava and P. cattleianum).

Photosynthetic pigments indicate that there is potential to differentiate species [80]. A
marked difference was noticed in the green region at 550 nm, as mentioned by [95]. Addi-
tionally, the near-infrared reflectance plateau at 850 nm indicates the wavelength region
with the greatest reflectance as well as the greatest differences between species [28]. The red
edge, around 750 nm, demonstrates a distinct reflectance peak between the co-competing
invasive and native species (H. dulcis × L. divaricata and P. guajava × P. cattleianum).

4.2. Spectral Discrimination of IAS from Native Species

Our results show that the VIS wavelengths are an important spectral region for dis-
criminating the species, especially for pigment absorption features [28,96,97]. Moreover,
differences in pigment content in the visible range are detected when comparing invasive
and native species at the same site. [40] discriminated more plant species pairs (invasive
species from the native species) within VIS regions (84%) than in NIR regions (60%). Our
study also confirms the limitations of NIR as mentioned by [98] for 26 tree species in a
tropical dry forest in Costa Rica. The reflectance in NIR has shown to be more promising
for differentiating tree functional types based on leaf phenology (evergreen and deciduous
species) than for differentiating IAS from the native community.

4.3. Leaf Optical Properties of IAS

Understanding the relationship between leaf functional traits and optical types of
plants is still a knowledge gap [99]. Thus, we sought to fill this gap mainly on IAS in
this study. Psidium guajava expressed the strongest correlations for LWC and SLA in NIR.
Previous studies also proposed models based on wavelengths located in the NIR region for
SLA [87,100] and for LWC [101]. Carotenoid and Car/Chl ratio contents represent indicators
of photosynthetic activity and photoprotective mechanisms in plants [97]. Recently, [102]
proposed two models exclusively in the VIS region (500, 660 and 700 nm) and accurately
described Car/Chl changes in the range from 0.15 (r2 = 0.87) to 0.6 (r2 = 0.82), requiring
no species-specific parameterization. Although the response obtained in our study may
suggest the activation of photoprotection mechanisms by the species [97]. Hovenia dulcis,
however, was optically significant for LWC and SLA in a narrow waveband of the visible
region (R706/R530). Additionally, we found that the species seems to be water-efficient,
even though water absorption is low in this region [103], and high correlations may be
associated with leaf chlorophyll content [104] and structural aspects [28]. Even so, we must
consider that the species did not have excessive losses in terms of water content, and the
increase in visible reflectance reflects the increase in liquid water content.

5. Conclusions

It was shown that field spectroscopy is a potential method for correct discrimination
of IAS from their co-occurring native species in the subtropical Brazilian Atlantic Forest.
Although this method requires target species parameterization, these results are consistent,
and the technique may be extended to other IAS and sites within the same subtropical
forest ecosystem. This study is also important for the development of Dossel models
with the goal of increasing the space–time resolution, and can be used with airborne or
space-based remote sensing. We emphasize the importance of adding species leaf traits to
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the spectral database, as this may advance the expansion of knowledge in the field. Finally,
the outcomes observed in this study may contribute to monitoring and improving IAS
control practices in protected areas.

From this study we can conclude that:

1. Linear discriminant analysis (LDA) can be used to accurately discriminate Psidium
guajava and Hovenia dulcis from Psidium cattleianum and Luehea divaricata;

2. The greatest discrimination for IAS is located in the VIS region, specifically in the red
(705 nm) and green regions (553 nm), which are known for being highly sensitive
to pigment content variation. This suggests improved separability in chlorophyll
absorption pits, as it also may suggest that the difference in anthocyanin content may
enhance discrimination between species;

3. For both IAS, the LWC and SLA showed similar behavior;
4. P. guajava correlated to Car/Chl (R = 0.75) in NIR (R839/R785), which may suggest

photoprotection activation. This provides an efficient process of acclimatization to
environments normally unfavorable for other species;

5. H. dulcis was best correlated to Chla/Chlb at R818/R769 (R = 0.7), which may suggest
that photosynthetic activity is maintained even under conditions of high luminosity
and temperature;

6. IAS showed good correlation with Car/Clh and Chla/Chlb. Therefore, we may
extend the space-time resolution based on data from orbital and suborbital platforms.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs15030791/s1, Figure S1. Native-invasive species pairs according to tree functional types
based on leaf phenology (columns: evergreen and deciduous species), and origin occurrence (lines:
native and invasive species). Images were obtained by scanning the leaves in the laboratory. Figure S2.
Simple linear regression (SLR) for the most significant functional optical properties and simple ratios
(SR). Regressions are performed for the target invasive species Psidium guajava (PG). Water content:
(a) FMC (%) = Fuel moisture content; (b) EWT (g cm−2) = Equivalent water thickness; Vegetation
structure: (c) LMA (g cm−2) = Leaf mass area; Photosynthetic pigments (d) Chl (µg cm−2) = Total
chlorophyll, (e) Chla+b (µg cm−2) = Sum of chlorophyll a and b, (f) Chla (µg cm−2) = Chlorophyll a,
(g) Chlb (µg cm−2)= Chlorophyll b, (h) Car (µg cm−2) = Carotenoid,(i) Chla/Chlb = Chlorophyll a:b
ratio. Significant results at α = 0.01, and at a 99% confidence level (p-value < 0.01). Figure S3. Simple
linear regression (SLR) for the most significant functional optical properties and simple ratios (SR).
Regressions are performed for the target invasive species Hovenia dulcis (HD). Water content: (a) FMC
(%) = Fuel moisture content; (b) EWT (g cm−2) = Equivalent water thickness; Vegetation structure:
(c) LMA (g cm−2) = Leaf mass area; Photosynthetic pigments: (d) Chl (µg cm−2) = Total chlorophyll,
(e) Chla+b (µg cm−2) = Sum of chlorophyll a and b, (f) Chla (µg cm−2) = Chlorophyll a,(g) Chlb (µg
cm−2) = Chlorophyll b, (h) Car (µg cm−2) = Carotenoid, (i) Car/Chl = Carotenoid: total chlorophyll
ratio. Significant results at α = 0.01, and at a 99% confidence level (p-value < 0.01). Table S1. Compar-
ative table of study target species (native x invasive) with key taxonomic, morphological, biological
and ecological characteristics. Table S2. Summary of statistical analysis of 12 leaf traits for 96 sub-
samples collected from the four target species, namely P. cattleianum, P. guajava, L. divaricata and H.
dulcis. FMC (%) = fuel moisture content; LWC (%) = liquid water content; EWT (g cm−2) = equivalent
water thickness; LMA (g cm−2) = leaf mass per area; SLA (cm2 g−1) = specific leaf area; Chla (µg
cm−2) = chlorophyll a content; Chlb (µg cm−2) = chlorophyll b content; Chl (µg cm−2) = total chloro-
phyll content; Car (µg cm−2) = carotenoid content; Chla/Chlb = chlorophyll a:b ratio; Car/Chl
= carotenoid: total chlorophyll ratio; Chla+b = sum of chlorophyll a and b. Significant results at
α = 0.05. Table S3. Summary of the other leaf characteristics of Psidium guajava and the respective
most significative simple ratio (SR); n = number of samples, r = simple ratio correlation; r2 = coefficient
of determination; RMSR = root mean square error; CV = coefficient of variation; RSS = residual sum
of squares. Significant results at α = 0.01, and at a 99% confidence level (p-value < 0.01). Table S4.
Summary of the other leaf characteristics of Hovenia dulcis and its respective most significative
simple ratio (SR); n = number of samples, r = simple ratio correlation; r2 = coefficient of determina-
tion; RMSR = root mean square error; CV = coefficient of variation; RSS = residual sum of squares.
Significant results at α = 0.01, and at a 99% confidence level (p-value < 0.01).
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