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Abstract: In this report, we compare two filter algorithms for extracting timing information using
novel metallic magnetic calorimeter detectors, applied to the precision X-ray spectroscopy of highly
charged ions in a storage ring. Accurate timing information is crucial when exploiting coincidence
conditions for background suppression to obtain clean spectra. For X-rays emitted by charge-
changing interactions between ions and a target, this is a well-established technique when relying
on conventional semiconductor detectors that offer a good temporal resolution. However, until
recently, such a coincidence scheme had never been realized with metallic magnetic calorimeters,
which typically feature much longer signal rise times. In this report, we present optimized timing
filter algorithms for this type of detector. Their application to experimental data recently obtained at
the electron cooler of CRYRING@ESR at GSI, Darmstadt is discussed.

Keywords: timing; coincidence; metallic magnetic calorimeter; microcalorimeter; precision X-ray
spectroscopy

1. Introduction

X-ray spectroscopy of characteristic transitions is an indispensable tool for the investi-
gation of atomic structure in heavy ionic systems. In these systems, inner-shell electrons
experience electromagnetic field strengths many orders of magnitude higher than what is
achievable by the most powerful laser systems and magnets. For the probing of quantum-
electrodynamics as well as relativistic effects, Kα (n = 2 → n = 1) transitions are of
particular importance. In systems with the highest atomic numbers (Z), these transitions
between the most strongly bound states reach energies up to about 100 keV [1]. For studies
of the heaviest, few-electron ions, storage rings are particularly well suited. Two examples
are Experimental Storage Ring (ESR) [2] and CRYRING@ESR [3], both located at GSI,
Darmstadt. In these devices, the application of stochastic cooling and/or electron cooling
decreases the emittance as well as the kinetic energy dispersion [4] of the ion beam. This
leads to a well-defined Doppler shift as well as a reduced Doppler broadening of the
spectral lines emitted by the projectiles. Moreover, collision experiments benefit from the
use of in-ring targets exploiting the high repetition rates in the order of 1 MHz, resulting in
a superior luminosity compared with single-pass setups. This enables the use of dilute gas
targets [5], providing single-collision conditions, thus yielding X-ray spectra undistorted
by multiple-collision effects.
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Precision X-ray spectroscopy further benefits from recent advances in the development
of so-called microcalorimeter detectors. These are based on arrays of low-temperature
detectors (LTDs) for ionizing radiation, which measure the temperature increase in a small
absorber volume upon absorption of an incident X-ray. In the photon energy regime
of few to tens of keV, various LTD technologies have demonstrated resolving powers
significantly better than 1× 103 [6–11]. We refer to the resolving power as R = E/∆E,
where E is the measured energy and ∆E is the full width at half maximum. This is an
improvement of the spectral resolution by more than one order of magnitude compared
with commonly used semiconductor detectors based on silicon or germanium. At the
same time, microcalorimeter detectors retain the broad bandwidth acceptance of solid-
state detectors. This is in sharp contrast to the narrow spectral acceptance typical of
crystal spectrometers. The unique combination of high spectral resolution and acceptable
quantum efficiency over an extended range of photon energies makes the LTD a particularly
promising type of detector system for the scientific program of the SPARC collaboration [12].
Prototypes of such detector systems have been developed and were recently deployed in
several test experiments at GSI [13–15].

However, beside a sufficient spectral resolution, a good signal-to-background ratio,
regularly referred to as signal-to-noise ratio (SNR), is also key to most high-precision
X-ray spectroscopy measurements. In experimental settings where the process under in-
vestigation is not already dominant in the considered spectral region, the SNR can often
significantly be improved via background suppression. An obvious route to discriminate
the photons of interest from unrelated radiative processes is the so-called coincidence
technique. It relies on the time-resolved detection of various reaction products to apply
temporal constraints. Recently, we succeeded in the implementation of such a time-resolved
measurement using novel microcalorimeter detectors at CRYRING@ESR [16]. In the fol-
lowing, we discuss the details of extracting timing information using the new type of
detector. This was performed in the post-processing of the recorded pulses. We compare
the performance of two different algorithms for that purpose.

2. The Experiment

The data presented in this work was obtained at the electron cooler of CRYRING@ESR.
Two microcalorimeters for precision X-ray spectroscopy were positioned at 0◦ and 180◦

with respect to the ion beam axis. In the cooler section, stored U91+ ions with a kinetic
energy of 10.225 MeV/u interacted with the cooler electrons. In these collisions, a free
electron can recombine with an ion under the emission of a photon via a process referred
to as radiative recombination (RR) [17]. Electrons with a relative velocity close to zero
with respect to the circulating ions tend to recombine into Rydberg states, i.e., those with
high quantum numbers n, l, and subsequently decay to the ground state via radiative
cascades [18,19]. As a consequence, the formation of a U90+ ion in the cooler section yields
two types of particles of interest: a down-charged U90+ ion and one or more photons.
The ion was detected by an ion counter downstream behind a dipole magnet. The magnet
separated the charge-changed ions from the primary U91+ beam. The photons in the X-ray
regime were recorded using microcalorimeter detectors of the maXs type (Microcalorimeter
Arrays for High Resolution X-ray Spectroscopy) [13,20]. The used maXs-100 absorber
arrays were tailored to deliver a spectral resolution ∆EFWHM < 50 eV for photons between
a few keV and more than 100 keV energy. For a detailed description of the experimental
setup, the reader is referred to [16].

For photons and down-charged ions resulting from the same RR reaction, the dif-
ference in their arrival times is determined by the distance of the interaction from the
respective detector and the ion beam velocity. The possible range of these so-called time-of-
flight (TOF) values is limited by the lifetime of the relevant excited states in U90+ and the
flight time through the cooler region. For the present experimental conditions the width of
this coincidence window is below 100 ns (see [19] for details). By setting a corresponding
condition on the observed arrival time difference, one can achieve an effective suppression
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of background radiation in the photon spectra. This requires sufficient time resolution of
the detector systems. This is easily fulfilled by the ion counter. It is based on the detection
of secondary electrons produced from ion impact on a baffle plate using a channeltron
with a very fast signal rise time. Likewise, semiconductor detectors for X-ray detection
routinely achieve time resolutions down to a few tens of nanoseconds. Thus, coincidence
measurement between X-rays and ions is a well-established experimental technique. How-
ever, the microcalorimeters employed in the present study featured a much longer rise
time in the order of 10 µs. Recently, coincidence measurements have been realized using
MMCs [16] as well as transition edge sensors [11].

In the present experiment, the voltage signals of the 32 channels of the MMC detec-
tors were digitized using Struck SIS3316 modules. Once the digitizers registered a pulse,
the readout of the data acquisition system was triggered. A signal trace of about 2 ms in
length, consisting of 214 voltage values, was stored as an event within a file. For each of
these photon hits, the digitized signal of the particle detector trigger was also written into
the same readout event within a 0.5 ms window centred around the time of the photon
trigger. For a detailed description of the detector readout and data acquisition, the reader is
referred to [16]. Storing the raw detector pulses allows a software-based coincidence scheme
to be implemented during the post-processing of the data. Due to the long rise-time of
the MMC pulses and a wide range of different pulse amplitudes, a dedicated timing filter
algorithm is necessary to extract information on the photon arrival time with a reasonable
temporal resolution. The performance of two timing filter algorithms in their application to
background suppression via a coincidence condition is compared in the following section.

3. Coincidence-Based Background Suppression

With trigger, we refer to any logic that is capable of identifying an event, such as
a pulse in a signal trace, and returning its timing information. For the present detector
pulses, two different trigger algorithms were implemented. The first was a leading edge
discriminator (LED) with an adaptive threshold, also referred to as a kσ filter. The second
was a trigger filter reproducing the functionality of a constant fraction discriminator (CFD).
The threshold of the LED was set to a fixed factor k times standard deviation σ as the
square root of the variance of the signal trace prior to the current sample. In previous
microcalorimeter measurements, which did not require precise timing information, the kσ
trigger was used to determine the time of arrival of the photon with better accuracy than the
hardware trigger. The application of the kσ logic to the band-pass filtered signal can swiftly
and reliably identify both isolated hits and multiple consecutive hits. The latter result in—
compared to single hit pulses—distorted pulse shapes. The band-pass filter is implemented
as a box filter. For a discrete signal sj, the i-th value of the box filter of width wB is defined as

boxi = ∑i−wB
k=i−2wB+1 sk−∑i

k=i−wB+1 sk (see [21] for details). The timing information returned
by the kσ trigger, however, is insufficient to achieve acceptable background suppression in
coincidence measurements. The CFD filter was, therefore, introduced as a robust alternative
for the extraction of timing information. It is based on the idea that the sum of the signal
and an inverted, scaled, and delayed copy of the signal have a zero crossing at a fixed
fraction of the pulse height. This is true for signals with the same rise time but a severely
different pulse height. The implementation and application of both algorithms is discussed
in more detail in [22].

In Figure 1, we present a typical detector pulse together with the results of the ap-
plication of both trigger filters. There, the dashed vertical line indicates the determined
arrival time. As σ is governed by the noise floor and k is held constant, in the case of the kσ
filter, this time depends on the signal height, as pulses with high amplitudes cross the set
threshold earlier than smaller pulses. In contrast, the CFD filter pinpoints the arrival time
when the pulse reaches a fixed fraction of its height. The identified arrival time is, therefore,
ideally independent of the absolute pulse amplitude.
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Figure 1. Illustrationof the kσ and CFD filter algorithms. Horizontal dashed lines represent threshold
levels that the filtered signal is required to cross in order to initiate a trigger. Vertical dashed lines
indicate the resulting arrival time of the pulse. Left: Entire raw detector signal as recorded by the
data acquisition system (t = 0 defined by the hardware trigger). Blue line in all plots: raw signal.
The middle and right plots focus on the signal’s rising slope. Centre: Illustration of the kσ trigger
applied to the box-filtered signal (orange; see text for details). The threshold is set as a k-multiple of
standard deviation σ of the filtered signal trace (k is drastically exaggerated for illustrative purposes).
Right: The CFD signal (green) is the sum of the raw signal (blue) and a scaled, delayed, and inverted
copy of the raw signal (orange).

The different behaviour of both timing filter algorithms is contrasted in Figure 2. Here,
the TOF between X-ray photons recorded by the maXs detector located at the 180◦ port and
down-charged ions is presented for four transitions in U90+ with energy values between
14 and 87 keV in the laboratory system. It is obvious that the TOF resulting from the
application of the kσ trigger yielded a broader distribution, i.e., worse timing resolution,
than the CFD approach, an effect that was particularly pronounced for low energy values.
In addition, the four photon energy values corresponded to different pulse amplitudes;
consequently, the kσ filter yielded a different position of the coincidence peak for each
energy value. In contrast, the application of an additional CFD trigger led to constant
timing throughout the entire spectrum. The slightly deteriorating time resolution at lower
photon energy values can be explained by the larger influence of electronic noise at small
pulse amplitudes.

In order to benchmark the filters with respect to the aforementioned coincidence tech-
nique for background suppression, we applied a time condition corresponding to the width
of the coincidence peaks in Figure 2. The resulting X-ray spectra are presented in Figure 3
for the detector located at 180◦ at the CRYRING@ESR electron cooler. The energy region
displayed contains the L→K transitions as well as the K-RR radiation (direct recombination
into the K shell). As discussed above, the beneficial characteristics of the CFD filter allowed
a narrower coincidence condition to be achieved, yielding a further reduction in the back-
ground of the recorded spectrum. In fact, the CFD approach achieved an improvement
by more than a factor of five over the kσ filter. According to the present data, the CFD
filter enabled almost background-free spectra when used in combination with the particle
detector signal for the determination of the time of flight and the subsequent application of
a coincidence condition.
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Figure 2. Time-of-flight (TOF) spectra of photons emitted from U90+ (in four distinct regions of
interest) relative to the arrival time of the corresponding down-charged ions. Data recorded by the
180◦ microcalorimeter and the particle detector. The data resulted from the application of the kσ (left)
and the CFD trigger (right). Noteworthy differences are the broader range of arrival times of the
kσ trigger, i.e., worse timing resolution, than that of the CFD trigger, as well as a pulse-amplitude-
dependent shift in the mean arrival time recorded by the kσ trigger. See text for details.
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Figure 3. Demonstration of the background reduction achieved by means of a coincidence measure-
ment. The spectrum without application of a coincidence condition is marked as ‘raw’ and compared
with the spectra with an appropriate coincidence condition for the kσ trigger and the CFD trigger, re-
spectively. The distinct spectral features are labelled. Those stemming from U90+ appear prominently
in the coincident spectra.

4. Conclusions

The performance of two timing filter algorithms applied to coincidence measurements
using novel microcalorimeter detectors was demonstrated. A filter mimicking the function-
ality of a constant fraction discriminator was found to yield time resolution of a few 100 ns,
allowing a background suppression improvement by a factor of five to be obtained when
compared with the previously used trigger filter. This was sufficient to mask almost all
background radiation in the example case of a recent experiment at the electron cooler of
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CRYRING@ESR. Currently, we are investigating whether the time resolution can be even
further improved using a filter that contains information of the pulse shape.
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