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Abstract: We investigate how SL(2,Z) duality is realized in nonrelativistic type IIB
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1 Introduction

Dualities have played a key role in probing the different non-perturbative corners of string/
M-theory. In particular, type IIB superstring theory exhibits an SL(2,Z) symmetry con-
necting its perturbative and non-perturbative sectors. This SL(2,Z) symmetry survives in
the low-energy supergravity limit, which greatly facilitates the study of the spectrum of
supergravity solutions.1 A realization of this SL(2,Z) symmetry was given in the context of
the string sigma model by [8, 9] and in the context of the effective worldvolume actions of

1Historically, the discovery went in the other direction: SU(1,1)∼= SL(2,R) was observed as a global
symmetry of type IIB supergravity first in [1]. A decade later, this symmetry group was finally proposed
as a symmetry in type IIB superstring theory in [2] (also see [3]). See e.g. page 695 of [4] for a review of
the history. See also [5–7] for earlier references on the SL(2,Z) duality in lattice models. We thank Paul
Townsend for pointing out this early occurrence of the SL(2,Z) duality.
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D-branes by [10, 11]. D-branes are useful probes for understanding how the SL(2,Z) group
acts on the background fields of type IIB superstring theory. In this paper, we will follow
this approach as our guiding principle and use D-branes to study the SL(2,Z) duality in
the less well-understood case of nonrelativistic string theory [12–14].

Recently, a systematic construction of the non-perturbative duality web in nonrela-
tivistic string/M-theory has been initiated in [15]. Nonrelativistic string theory arises as a
corner of relativistic string theory, under a zero Regge slope limit where the Kalb-Ramond
field is fine-tuned to its critical value that matches the string tension [12–14]. This leads
to a string theory with a spectrum satisfying a Galilean-invariant dispersion relation. This
corner defines a self-consistent and ultra-violet complete string theory on its own [13]. Fur-
thermore, it has been established that this theory provides a first-principles definition for
string theory in the discrete light cone quantization (DLCQ) [16]. DLCQ plays an impor-
tant role in nonperturbative approaches to string/M-theory such as Matrix theory [17–20].

Lately, effective field theories that arise from nonrelativistic string theory have been
intensively studied, leading to novel nonrelativistic gravity and gauge theories [21–33] (for
further references, see the review [34]). In [16, 21], it is shown that the spacetime geometry
underlying nonrelativistic closed string theory is non-Riemannian and has a codimension-
two foliation structure.2 The spacetime equations of motion that govern the dynamics of
the target-space geometry have been studied in [25, 35–38] by imposing quantum Weyl
invariance. Extending the discussion to open strings, the effective worldvolume actions
for D-branes coupled to the bosonic closed string background fields including the Ramond-
Ramond fields have been studied in [15, 29]. This provides a framework that unifies nonrel-
ativistic Yang-Mills theory [29], noncommutative open string theory and noncommutative
Yang-Mills theory [39]. Analyses of various T- and S-duality transformations of nonrela-
tivistic D-branes have appeared in [15, 27, 40]. In particular, a nonrelativistic (p , q)-string
action has been derived in [15].3

So far, the full SL(2,Z) symmetry in nonrelativistic string theory has not yet been
thoroughly studied.4 It is the purpose of this paper to fill this gap and to investigate
how this SL(2,Z) duality manifests itself in the context of nonrelativistic string theory.
Surprisingly, the SL(2,Z) symmetry is realized in a nontrivial way where a branching arises,
which splits the (p , q) parameter space into two halves. The SL(2,Z) transformations
connect these two branches. Crucially, the branching is characterized not only by the
values of p and q, but also by the position x in spacetime via the background axion Ramond-
Ramond field C(0)(x), through the sign of the quantity

p− q C(0) . (1.1)

Note that this condition itself transforms under SL(2,Z) , which therefore splits this global
symmetry group into two halves, in an x-dependent way, to those that preserve and those

2Here, we have a slight abuse of the terminology “foliation,” which is technically only a “distribution”
in mathematics. This distinction is not important in this paper.

3Here, p and q are two coprime integers that transform as a doublet under the SL(2,Z) duality symmetry.
We use the convention where (p , q) = (1, 0) corresponds to the fundamental string.

4See e.g. [41–44] for studies of SL(2,Z) duality in the context of noncommutative open string theory.
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that flip the sign of p− q C(0). The inter-branch case where p− q C(0) = 0 requires careful
attention and will be discussed separately in this paper.

The paper is organized as follows. In section 2, we review some essential ingredients in
nonrelativistic string theory. In section 3, we derive the nonrelativistic (p , q)-string action
in eqs. (3.4) and (3.8) and show that its (p , q)-space splits into two branches. We then
derive the associated SL(2,Z) transformations in eq. (3.30) (and eq. (4.25)), which are
also branched. At the end of this section, we study a tensionless limit of nonrelativistic
(p , q)-strings with the inter-branch condition p − q C(0) = 0 . In section 4, we extend our
discussion to other nonrelativistic Dp-branes in type IIB superstring theory, including the
D-instanton and D3-brane described by the actions (4.7) and (4.20), respectively. We also
study the inter-branch case for the nonrelativistic D3-brane action with p − q C(0) = 0 .
We conclude the paper in section 5. This paper has two appendices. In appendix A, we
present a systematic derivation of the SL(2,Z)-invariants in nonrelativistic string theory.
In appendix B, we give an alternative derivation of the main results of this paper via a
nonrelativistic limit of relativistic string theory.

2 Nonrelativistic string theory and D-Branes

We start with a review of some basic ingredients of nonrelativistic string theory and the
relevant Dp-brane actions, which will be essential for our later constructions of manifestly
SL(2,Z)-invariant Dp-brane actions in nonrelativistic string theory.

2.1 Nonrelativistic closed string theory

Nonrelativistic closed string theory is defined by a two-dimensional (relativistic) sigma
model that maps the worldsheet Σ to a d-dimensional spacetime manifoldM . Define the
worldsheet coordinates to be σα, α = 0 , 1 and the worldsheet metric hαβ . In addition to
the worldsheet fields Xµ(σ) , µ = 0 , · · · , d− 1 representing the spacetime coordinates, the
sigma model describing nonrelativistic strings also contains a pair of one-form fields λ and
λ̄. Moreover, it is useful to introduce the zweibein field eαa , a = 0, 1 associated with hαβ ,
such that hαβ = eα

a eβ
b ηab . In flat spacetime, the sigma model is given by [13, 16]

S = − 1
4πα′

∫
d2σ

[√
−hhαβ ∂αXA′ ∂βX

B′ δA′B′ + εαβ
(
λ eα ∂βX + λ̄ ēα ∂βX

)]
, (2.1)

where α′ is the Regge slope, eα = eα
0 + eα

1 and ēα = eα
0 − eα1. Moreover, X = X0 +X1

and X = X0 −X1 are the lightlike coordinates in the longitudinal sector of the spacetime
manifoldM . The index A′ = 2, · · · , d−1 represents the transverse sector. Since the trans-
verse sector is of Euclidean signature, we will not distinguish upper and lower transverse
indices. Locally, in the operatorial formalism, λ and λ̄ are associated with derivatives of
the T-dual coordinates of X and X , respectively [38]. While X and X are conjugate to the
momenta, the T-dual coordinates are conjugate to the windings. The closed string sector
has a nontrivial spectrum if the longitudinal spatial direction X1 is compactified over a
circle of radius R . The dispersion relation and the level matching condition are [13]

E = α′

2wR

[
KA′KA′ + 2

α′
(
N + Ñ − 2

)]
, Ñ −N = nw . (2.2)
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Here, E is the energy, KA′ is the transverse momentum, w is the winding number in
X1, n is the Kaluza-Klein momentum number in the X1 circle, and N and Ñ are the
string excitation numbers. T-dualizing nonrelativistic string theory along X1 defines the
discrete light cone quantization (DLCQ) of relativistic string theory, where the longitudinal
spacelike circle is mapped to a lightlike circle [16].

In curved spacetime, the action (2.1) is generalized to be [16, 45]

S = − 1
4πα′

∫
d2σ

[√
−hhαβ ∂αXµ ∂βX

ν Eµν + εαβ
(
λ eα ∂βX

µ τµ + λ̄ ēα ∂βX
µ τ̄µ

)]
− 1

4πα′
∫
d2σ εαβ ∂αX

µ ∂βX
ν Bµν + 1

4π

∫
d2σ
√
−hRΦ .

(2.3)

Here, we require that the symmetric two-tensor Eµν take a restricted form with

Eµν = Eµ
A′ Eν

A′ , (2.4)

where EµA
′ plays the role of the transverse vielbein in spacetime.5 We also introduced the

longitudinal vielbein τµA , A = 0, 1 and defined

τµ = τµ
0 + τµ

1 , τ̄µ = τµ
0 − τµ1 . (2.5)

Finally, the theory is also coupled to the spacetime dilaton field Φ via the worldsheet
Einstein-Hilbert term. Such geometrical data encoded by τµ

A and Eµ
A′ , together with

other background fields including the Kalb-Ramond field Bµν and dilaton field Φ , defines
the so-called string Newton-Cartan geometry [21], which is endowed with a codimension-
two foliation structure. This geometry naturally generalizes Newton-Cartan geometry with
a codimension-one foliation structure for particles. There is no graviton in the string
spectrum, and the only gravitational force is the instantaneous Newton-like interaction
between winding strings [13, 46].

The one-form fields λ and λ̄ in eq. (2.3) play the role of Lagrange multipliers that
impose the constraint equations,

εαβ eα τβ = εαβ ēα τ̄β = 0 , (2.6)

where we have introduced the pullback ταA = ∂αX
µ τµ

A.6 Up to an undetermined scale
factor, these constraints are solved by

eα ∝ τα , ēα ∝ τ̄α . (2.7)

In the absence of the Einstein-Hilbert term, we use these equations to eliminate the auxil-
iary worldsheet metric hαβ in eq. (2.3) to find the following Nambu-Goto action [21]:

SNG = − 1
4πα′

∫
d2σ

(√
−τ ταβ Eαβ + εαβ Bαβ

)
. (2.8)

5An arbitrary symmetric two-tensor Eµν can always be brought into the form of Eµν = Eµ
A′
Eν

A′
by

redefining the one-form fields λ and λ̄ together with the Kalb-Ramond field Bµν [34].
6When we use form notation, we do not distinguish between the worldvolume and target-space. It should

be clear from the context which one we mean.
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Here, we have defined the longitudinal metric τµν ≡ τµ
A τν

B ηAB and its pullback to the
worldsheet ταβ = ∂αX

µ ∂βX
ν τµν . The metric determinant and inverse metric are de-

noted as τ = det ταβ and ταβ , respectively. We also introduced the pullbacks Eαβ =
∂αX

µ ∂βX
ν Eµν and Bαβ = ∂αX

µ ∂βX
ν Bµν .

2.2 Open strings and nonrelativistic D-Branes

In the case where the worldsheet Σ has a boundary ∂Σ , it is also possible to introduce
open string vertex operators whose coherent states give rise to the boundary action. To be
concrete, we map the worldsheet to the upper half plane, with the boundary ∂Σ identified
with the real axis at σ = 0 . Open strings have to end on D-branes. For simplicity, we
consider the case of a single Dp-brane, which is a submanifold embedded in the spacetime
manifoldM , parametrized by

Xµ
∣∣
∂Σ = fµ(Y α) , α = 0 , · · · , p , (2.9)

where Y α are coordinates on the D-brane and fµ is the embedding function. It is illumi-
nating to consider a D(d−2)-brane, which is transverse to the longitudinal spatial direction
and extends in the remaining directions. The covariant boundary action is [29]

Sb = 1
2πα′

∮
∂Σ
dτ
[

1
2

(
λ− λ̄

)
ν + ∂τY

αAB
α

]
, α = 0 , 2 , · · · , d− 1 , (2.10)

where ν corresponds to a scalar mode that perturbs the shape of the D-brane and AB
α is

a U(1) gauge field on the D-brane. This theory describes nonrelativistic open strings [46].
String amplitudes in nonrelativistic open string theory have been recently studied in [47],
where a new KLT relation between nonrelativistic closed and open string amplitudes is
realized.

In flat spacetime, and with the longitudinal spatial direction being compactified over a
circle of radius R , the open string states enjoy a Galilean-invariant dispersion relation [46],

E = α′

2wR

[
KA′ KA′ + 1

α′
(N − 1)

]
. (2.11)

Requiring that the theory is consistent at the quantum level sets the beta-functionals of
the open string background fields ν and AB

α to zero, giving rise to the spacetime equations
of motion that determine the low-energy dynamics of the D-brane [29]. It is shown in [29]
that these equations of motion arise from a Dirac-Born-Infeld-like (DBI) action

SD(d−2) = −Td−2

∫
dd−1Y e−Φ

√√√√− det
(

0 ∂βf
ν τν

∂αf
µ τ̄µ ∂αf

µ ∂βf
ν Eµν + Fαβ

)
, (2.12)

where Fαβ = ∂αf
µ ∂βf

ν Bµν+Fαβ , with Fαβ = ∂αA
B
β−∂βAB

α . Formally, (2.12) looks rather
similar to the relativistic case; however, a crucial difference makes this action fundamentally
distinct from the standard DBI action: the matrix is d× d instead of (d− 1)× (d− 1) as

– 5 –
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is the case for relativistic D(d− 2)-branes! This D-brane action can be readily generalized
to any Dp-branes, also in the presence of Ramond-Ramond potentials, with [15]

SDp = −Tp
∫
dp+1σ e−Φ

√√√√− det
(

0 τβ
τ̄α Eαβ + Fαβ

)
− Tp

∫ ∑
q

C(q) ∧ eF
∣∣∣
p+1

, (2.13)

where
Tp = 1

(2π)p
(
α′
)(p+1)/2 . (2.14)

It is understood that only (p + 1)-forms are kept in the Wess-Zumino term. Here, p is
even for type IIA and odd for type IIB superstring theory. We use the basis in which the
action (2.13) is invariant under the Ramond-Ramond gauge transformations,

δRRC
(q) = dζ(q−1) + dB ∧ ζ(q−3) , (2.15)

where ζ(q) = 0 if q ≤ 0 . The action is also invariant under the Kalb-Ramond two-form
transformation,

δKRB = dξ , δKRA
B = −ξ . (2.16)

In flat spacetime,7 the effective nonrelativistic Dp-brane tension is given by

TDp = Tp
gs
, gs = e〈Φ〉 . (2.17)

Note that the action (2.13) also captures the D-brane configuration that extends in the
longitudinal spatial direction, which leads to noncommutative open string theory with a
relativistic string spectrum and noncommutativity between space and time [46].

3 Nonrelativistic (p , q)-strings and SL(2, Z) duality

In this section, we construct the SL(2,Z)-invariant (p, q)-string action in nonrelativistic
string theory and show that it contains two different branches representing strings carrying
opposite two-form charges. However, the strings in either branch do not form any closed
group representation individually. Instead, the two branches transform into each other
under the full SL(2,Z) group. We will show how this works at the level of the string
action and the string states (see after eq. (3.25)). While the background fields transform
under the SL(2,Z), the boundary between the two branches also rotates accordingly. As
we will see below, this implies that the SL(2,Z) transformation is realized in a highly non-
conventional way in nonrelativistic string theory. In appendix B, we will show how this
branched phenomenon in nonrelativistic string theory arises from a well-defined limit of
relativistic string theory.

7In the case where the longitudinal spatial direction is compactified over a circle, we fix its radius to be
unity, such that τµA = δAµ .
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3.1 Nonrelativistic (p , q)-strings

It is known that the relativistic (p , q)-string action can be derived from dualizing the U(1)
gauge potential on the D1-brane action in relativistic string theory [8, 48, 49]. The same
mechanism has also been realized in nonrelativistic string theory [15], which we review
in the following. This analysis gives rise to the nonrelativistic (p , q)-string action, which
enables our analysis of the SL(2,Z) duality in nonrelativistic string theory.

From the nonrelativistic Dp-brane action (2.13), we read off the action for q decoupled
nonrelativistic D1-branes

SD1 = −|q|T1

∫
d2σ e−Φ

√√√√− det
(

0 τβ
τ̄α Eαβ + Fαβ

)
− q T1

∫ (
C(2) + C(0)F

)
, (3.1)

where, for later use, we allow q to be negative. Here, T1 denotes the fundamental string
tension. It then follows that the tension for a single D1-string is

TD1 = T1
gs
. (3.2)

Note that the q in front of the DBI-like term has to appear as an absolute value for the
theory to be positive definite. Next, we perform a worldsheet duality transformation of
the one-form gauge field Aα by introducing a parent action that includes a generating
functional as follows:

Sparent = SD1 + T1
2

∫
d2σ H̃αβ

(
Fαβ − 2 ∂[αA

B
β]

)
. (3.3)

Here, F is treated as an independent field. Integrating out the auxiliary anti-symmetric
two-tensor H̃αβ imposes F = dAB and leads back to the original action (3.1). Integrating
out AB

α imposes the equation ∂αH̃αβ = 0 . In two dimensions, this equation can be solved
locally by setting H̃αβ = p εαβ , where p will turn out to be an integer that counts the
number of fundamental strings in the dual theory. Performing the electromagnetic duality
transformation by further integrating out F , we find the dual (p , q)-string action [15],8

S+
string = −T1

2

∫
d2σ

(
p− q C(0))√−τ ταβ Eαβ − T1

∫ (
pB + q C(2) + 1

2
q2 e−2Φ `

p− q C(0)

)
(3.4)

Here, ` is a two-form that is defined in components to be

`αβ = τα
A τβ

B εAB . (3.5)

Without loss of generality, we assumed that

? ` = 1
2 ε

αβ τα
A τβ

B εAB > 0 . (3.6)

This restriction is consistent with the connected component of the local SO(1, 1) in the
two-dimensional longitudinal sector of the target-space geometry. The (p , q)-string action

8The procedure of dualizing the worldsheet U(1) potential only corresponds to an SL(2,Z) transformation
when q = ±1 .
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has to be supplemented with the condition p− q C(0) > 0 . This is because the equation of
motion from varying F in eq. (3.3) gives

p− q C(0) = |q| e−Φ√−τ
[
− det

(
0 τβ
τ̄α Eαβ + Fαβ

)]− 1
2

> 0 . (3.7)

Moreover, the condition p− q C(0) > 0 is necessary for the kinetic part of the action (3.4)
to be positive definite. For this reason, we labeled the (p , q)-string action (3.4) with “+” as
S+
string . Quantum mechanically, p and q are required to be integers and label the number

of fundamental strings and D1-strings in the composite (p , q)-string state. Note that, for
the above procedure to make sense, we have assumed that q 6= 0 and p − q C(0) 6= 0 .
However, when p 6= 0 and q = 0 , the action (3.4) still holds and describes p fundamental
nonrelativistic strings, in agreement with the Nambu-Goto action (2.8). This implies that
the condition q 6= 0 arises only from a shortcoming of the D1-string action (3.1) instead
of any physical limitation, which can be avoided by using the Hamiltonian formalism (see
page 47 in [48] for an extensive argument).

Performing the same duality transformation for the action (3.1) but with q replaced
by −q and substituting the solution H̃αβ = −p εαβ , we are led to the following action:

S−string = T1
2

∫
d2σ

(
p− q C(0))√−τ ταβ Eαβ + T1

∫ (
pB + q C(2) + 1

2
q2 e−2Φ `

p− q C(0)

)
(3.8)

This action is supplemented with the condition

p− q C(0) < 0 , (3.9)

opposite to the condition (3.7). The string states captured by S+
string and S−string carry

the opposite (p, q) charges, and are related to each other via the transformation (p , q) →
(−p ,−q) , leaving the background fields unchanged. We will see that both S+

string and
S−string are required to realize the SL(2,Z) transformation in nonrelativistic string theory.
We will comment on the boundary case with p−q C(0) = 0 in section 3.4 for nonrelativistic
(p , q)-strings and section 4.3 for nonrelativistic D3-branes.

Generically, it can be a nontrivial matter to extract the effective tension of the (p , q)-
string from the action (3.4) (or eq. (3.8)). The tension is the coefficient of the kinetic term
of the Nambu-Goldstone bosons describing the fluctuations of the string. In the following,
we compute the effective tension in the special case when the (p , q)-string extends in the
longitudinal spatial direction. In flat spacetime with τµA = δAµ and EµA

′ = δA
′

µ , the string
configuration is described by

X0 = σ0 , X1 = σ1 , XA′ = XA′
0 + πA

′(σα) , (3.10)

where the (p , q)-string is localized at the transverse directions XA′
0 . The fields πA′ denote

the associated Nambu-Goldstone bosons that arise from spontaneously breaking the trans-
lational symmetries, and they describe the fluctuations of the shape of the (p , q)-string.
Expanding the action (3.4) (or eq. (3.8)) to quadratic order in πA′ , we find,

S±string ∼ ∓
T1
2

∫
d2σ

(
p− q C(0)) ∂απA′ ∂απA′ + · · · (3.11)
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In this special case, the quantity

Tp, q = T1
∣∣p− q 〈C(0)〉∣∣ (3.12)

plays the role of the effective tension of the (p , q)-string. Such (p , q)-string tensions satisfy
the following triangle inequality:

Tp1+p2, q1+q2 ≤ Tp1, q1 + Tp2, q2 . (3.13)

This inequality is saturated if all the (p , q)-strings involved in eq. (3.13) fall in the same
branch of (p , q)-space. The (p , q)-strings saturating the inequality are marginally stable
bound states [50].

3.2 A branched SL(2, Z) duality

Now, we are ready to study the SL(2,Z) transformations of the background fields and
analyze how these transformations act on the nonrelativistic (p , q)-string actions (3.4)
and (3.8) in different branches. This analysis will uncover a branched structure of the
SL(2,Z) duality in nonrelativistic string theory.

The positive branch. To observe how the nonrelativistic (p, q)-string transforms under
the SL(2,Z) group, it is useful to introduce variables in the Einstein frame, with(

τEαβ , E
E
αβ , `

E) = e−Φ/2 (ταβ , Eαβ , `) , (3.14)

We then rewrite the action (3.4) as

S+
string = −T1

2

∫
d2σ

(
Θᵀ C

)√
−τE ταβE EE

αβ − T1

∫
Θᵀ Σ , (3.15)

where

Θ =
(
p

q

)
, C = eΦ/2

(
1

−C(0)

)
, Σ =

(
B

C(2)

)
+ q

p− q C(0)

(
0

1
2 ` e

−2Φ

)
. (3.16)

We require that the vielbeine be SL(2,Z) invariant in the Einstein frame. Here, we assume
that (p, q) forms a doublet under the SL(2,Z) group and transforms as

Θ′ = Λ Θ , (3.17)

where
Λ =

(
a b

c d

)
, (3.18)

Here, a, b, c, d ∈ Z are SL(2,Z) group parameters satisfying a d − b c = 1 . For the first
term in (3.15) to be SL(2,Z) invariant, C has to be a doublet as well and thus transforms as

C′ =
(
Λ−1)ᵀ C , (3.19)

which further implies that

C ′(0) = aC(0) + b

cC(0) + d
, eΦ′/2 =

(
cC(0) + d

)
eΦ/2 . (3.20)
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This transformation only makes sense when cC(0) + d > 0 . This is also the requirement
that preserves the condition p− q C(0) > 0 : under SL(2,Z), we have

p′ − q′C ′(0) = p− q C(0)

cC(0) + d
> 0 . (3.21)

It looks like only the SL(2,Z) transformations that preserve the condition p − q C(0) > 0
survive. Note that C(0) also transforms nontrivially as in eq. (3.20).

An obvious question is: where does the other half of the SL(2,Z) transformations
satisfying the condition cC(0) + d < 0 go?9 Before answering this question, let us first
stick to the branch satisfying cC(0) + d > 0 and understand how the two-form fields B
and C(2) transform under the action of SL(2,Z), such that the second term in eq. (3.15)
is invariant. Naïvely, one would expect that the quantity Σ in eq. (3.16) has to transform
as a doublet, with Σ′ = (Λ−1)ᵀ Σ , for the term Θᵀ Σ to be SL(2,Z) invariant. However,
the definition of Σ in eq. (3.16) contains a (p , q)-dependent term, and forcing Σ to be a
doublet would require that SL(2,Z) act on both B and C(2) in a (p , q)-dependent way.
Such a (p , q)-dependent transformation of the supergravity fields B and C(2) would not
form a symmetry of type IIB nonrelativistic supergravity: the background fields would have
to transform differently depending on how many fundamental and D1-strings are present,
even in the case where no back reaction to the background fields is included!

Therefore, since the quantity Σ is not a supergravity field, it makes perfect sense that
we find that Σ is a “quasi”-doublet, meaning that it transforms as a doublet up to a
(p , q)-dependent term, i.e.,

Σ′ =
(
Λ−1)ᵀ (Σ + αΘ⊥

)
, Θ⊥ =

(
q

−p

)
. (3.22)

This already guarantees that the combination Θᵀ Σ is invariant. Requiring that both the
transformed background fields B′ and C ′(2) be independent of p and q, we find a unique
solution to α , with

α = c `

2 e2Φ (cC(0) + d
) (
p− q C(0)) . (3.23)

Together with eq. (3.20), we find a well-defined set of SL(2,Z) transformations of the
background fields B , C(0), C(2) and Φ , given by

C ′(0) = aC(0) + b

cC(0) + d
, Φ′ = Φ + 2 ln

(
cC(0) + d

)
, (3.24a)(

B′

C ′(2)

)
=
(
Λ−1)ᵀ [( B

C(2)

)
− c

cC(0) + d

(
0

1
2 ` e

−2Φ

)]
− c(

cC(0) + d
)2
(

0
1
2 ` e

−2Φ

)
,

(3.24b)

which are independent of p and q . These transformations have to satisfy cC(0) + d > 0
for the (p , q)-string action (3.4) to be invariant. In appendix B, we show that the same
transformations in eq. (3.24) can be obtained equivalently by taking a well-defined limit of
the SL(2,Z) transformations in relativistic string theory.

9When C(0) is rational, it is also possible that cC(0) + d = 0 . We exclude this singular case.
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p - q C(0) < 0

p - q C(0) > 0

p

q
p′

q′

p - q C(0) < 0

p - q C(0) > 0

p

q

p′

q′

cC
(0) + d > 0

cC (0) + d < 0

SL(2, Z)

p − q C(0) < 0

p − q C(0) > 0

p′ − q′C ′(0) < 0

p′ − q′C ′(0) > 0

p′ − q′C ′(0) < 0

p′ − q′C ′(0) > 0

Figure 1. The SL(2,Z) action in (p , q)-space. We marked one point in each branch and plotted
the location to which they are mapped under an SL(2,Z) transformation satisfying cC(0) + d > 0
and another one satisfying cC(0) + d < 0 . In the first case, the colored points remain in the
same branch, whereas in the second, they switch branches. The grids are aids to visualize how the
branched SL(2,Z) transformation acts on the plane.

The negative branch. As we have discussed earlier, the transformations (3.24) with
the condition cC(0) + d > 0 does not yet constitute the full group of SL(2,Z) . What if we
apply the same transformations (3.24) to the (p , q)-string action (3.4), but now with the
condition cC(0) + d < 0 ? This procedure maps the action S+

string in eq. (3.15) to S−string in
eq. (3.8), i.e.,

S−string = T1
2

∫
d2σ

(
Θᵀ C

)√
−τE ταβE EE

αβ + T1

∫
Θᵀ Σ , (3.25)

where we performed a discrete transformation B′ → −B′ and C ′(2) → −C ′(2) and dropped
the primes that label the SL(2,Z)-dual fields in the result. In this dual frame, according
to the transformation in eq. (3.21), we are now in the branch of p − q C(0) < 0 , which is
precisely the condition for the kinetic part of S−string to be positive definite. The SL(2,Z)
transformations that keep S−string invariant are the same as the ones given in eq. (3.24). We
therefore conclude the following:
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• the SL(2,Z) transformations satisfying cC(0) +d > 0 preserve the string action S+
string

(S−string) in the positive (negative) p−q C(0) branch in the space of (p , q)-string states;

• the SL(2,Z) transformations satisfying cC(0) +d < 0 map between S+
string and S−string .

Therefore, the SL(2,Z) duality in type IIB nonrelativistic superstring theory relates
two different branches representing nonrelativistic (p , q)-string states satisfying p−q C(0) >

0 and the states satisfying p−q C(0) < 0 , respectively. These two branches are separated by
the line p−q C(0) = 0 in the (p , q)-plane and they are described by the (p , q)-string actions
S+
string and S−string , respectively. The boundary p− q C(0) = 0 itself changes with respect to

the SL(2,Z) transformations as C(0) transforms nontrivially. The SL(2,Z) transformations
are also branched: the transformations satisfying cC(0)+d > 0 map between string states in
the same branch, while the transformations satisfying cC(0) +d < 0 map between different
branches. See figure 1 for a summary of the SL(2,Z) action in (p , q)-space.

3.3 Manifestly SL(2, Z) invariant string action

Collectively, the above branched realization of SL(2,Z) invariance can be summarized as
follows: the invariant action that unifies S±string is

Sstring = −T1
2

∫
d2σ

∣∣Θᵀ C
∣∣√−τE ταβE EE

αβ − T1

∫ (
Θᵀ Σ

)
sgn

(
p− q C(0)) . (3.26)

The SL(2,Z) transformations are

Θ′ = Λ Θ , C′ = sgn(cC(0) + d) Λ C , (3.27)

and

Σ′ = sgn(cC(0) + d)
(
Λ−1)ᵀ [Σ + c `

2 e2Φ (cC(0) + d
) (
p− q C(0)) Θ⊥

]
. (3.28)

The variables
(
τEαβ , E

E
αβ , `

E) in Einstein’s frame are invariant. Recall that the quantities
Θ , C and Σ are defined in eq. (3.16). Moreover, as defined in eq. (3.22), Θ⊥ = (q ,−p)ᵀ .
The SL(2,Z) invariance of eq. (3.26) is made manifest by noticing that

sgn
(
p′ − q′C ′(0)) = sgn

(
p− q C(0)

cC(0) + d

)
. (3.29)

Note that the quasi-doublet Σ does not only transform as a doublet up to a term orthogonal
to Θ , but also up to an overall sign, depending on the value of the quantity cC(0) + d . In
components, we find the complete SL(2,Z) transformations that generalize eq. (3.24),

C ′(0) = aC(0) + b

cC(0) + d
, Φ′ = Φ + 2 ln |cC(0) + d| , (3.30a)(

B′

C ′(2)

)
= sgn

(
cC(0) + d

){(
Λ−1)ᵀ [( B

C(2)

)
− c

cC(0) + d

(
0

1
2 ` e

−2Φ

)]

− c(
cC(0) + d

)2
(

0
1
2 ` e

−2Φ

)}
. (3.30b)

These transformations will later be extended to include the one acting on the four-form
Ramond-Ramond potential C(4) in eq. (4.25).
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3.4 Winding strings in a tensionless limit

So far, we only considered nonrelativistic (p , q)-strings satisfying the condition p−q C(0) 6=
0 . In this last subsection, we consider a class of inter-branch strings at p − q C(0) = 0 .
One such p−q C(0) → 0 limit arises if the tension T1 is simultaneously scaled to zero, while
keeping finite the SL(2,Z)-invariant quantity

Teff ≡ lim
T1→0
C(0)→ p

q

T1 e
−Φ
∣∣∣∣ q

p− q C(0)

∣∣∣∣ . (3.31)

The SL(2,Z)-invariance of such an effective tension Teff at p − q C(0) = 0 follows directly
from the SL(2,Z) transformations (3.17) and (3.24) in section 3.3. Since T1 = (2πα′)−1

(see eq. (2.14)), we are essentially taking an infinite Regge slope limit. Under this double
scaling limit, the resulting action is

Stensionless = Teff
2

∫
|q| e−Φ ` . (3.32)

This theory is SL(2,Z)-invariant and purely topological. Just as in the previous analysis,
this action splits into two branches depending on the sign of q . As before, each branch is
mapped into itself under an SL(2,Z) transformation satisfying the condition cC(0) +d > 0 ,
and one branch is mapped into the other branch and vice versa if cC(0) + d < 0.

In order to decode the physics described by the new action (3.32), we consider a
simple string configuration in a constant dilaton background with gs = eΦ and in the flat
geometrical background fields with τµ

A = δAµ and EµA
′ = δA

′
µ . We focus on the winding

(p , q)-string configuration defined by

X0 = σ0 , X1 = wRσ1 , XA′ = XA′
0 + πA

′(σα) , (3.33)

where X1 is compactified over a circle of radius R and the (p , q)-string winds w times
around X1 , with w ∈ Z . In this case, the Lagrangian density of the action (3.32) evalu-
ates to

Ltensionless = wR
|q|Teff
gs

, (3.34)

which is proportional to how many times the (p , q)-string winds around the X1 direction.

4 SL(2, Z) symmetric actions for D-instanton and D3-brane

We have discussed the SL(2,Z) transformations of various background fields in type IIB
nonrelativistic supergravity, using the (p , q)-string as a probe. However, the considera-
tion of the (p, q)-strings does not suffice for establishing the complete SL(2,Z) duality
in type IIB nonrelativistic supergravity, which also contains a Ramond-Ramond potential
C(4). This four-form gauge field is not visible to the (p, q)-string, but it is coupled to
D3-branes. In this section, we construct a manifestly SL(2,Z) invariant D3-brane action
in nonrelativistic string theory. In appendix B, we will show how the action arises from
its relativistic counterpart. This formalism will fortify the branched SL(2, Z) realization
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in nonrelativistic string theory, which we have already learned about from nonrelativis-
tic (p , q)-strings. Moreover, it will grant us access to studying the inter-branch states
satisfying p− q C(0) = 0 .

Just as in the relativistic case, in order to formulate a manifestly SL(2,Z)-symmetric
D3-brane action, it is convenient to introduce another doublet [11]

Θ̃ =
(
p̃

q̃

)
(4.1)

that is conjugate to Θ = (p q)ᵀ , satisfying the condition

p q̃ − q p̃ = 1 . (4.2)

Note that Θ̃ is defined up to an arbitrary shift in Θ , forming the equivalence class

[Θ̃] : Θ̃ ∼ Θ̃ + βΘ , β ∈ R . (4.3)

We have chosen the normalization of Θ̃ such that the expression in eq. (4.2) is unity.10
Just as Θ , the new quantity Θ̃ transforms under the SL(2,Z) symmetry as

Θ̃′ = Λ Θ̃ . (4.4)

The condition (4.2) is manifestly SL(2,Z) invariant.
In the special case where (p , q) = (1, 0) , i.e., the (p , q)-string reduces to a single

fundamental string, a conjugate state is the single D-string state with (p̃ , q̃) = (0, 1) . In
this case, Θ and Θ̃ are projections to the fundamental and D-string state, respectively.

The new ingredient Θ̃ is already required for the construction of a (p , q)-symmetric
action for the nonrelativistic D(-1)-brane, which represents an instanton state. We will
study this D-instanton first, from which useful ingredients for building a (p , q)-symmetric
nonrelativistic D3-brane action will be obtained.

4.1 Nonrelativistic D-instanton

The nonrelativistic D-instanton action can be read off from the general Dp-brane ac-
tion (2.13) by setting p = −1 , which gives

SD(-1) = −T−1C
(0) . (4.5)

This action is not manifestly invariant under the SL(2,Z) transformation (3.24), which
acts nontrivially on C(0). In order to achieve the SL(2,Z) symmetry, eq. (4.5) has to be
covariantized as follows:

SD(-1) = T−1
Θ̃ᵀ C
Θᵀ C

. (4.6)

Since C defined in Eq, (3.16) is an SL(2,Z) doublet up to sgn(cC(0) + d) , the above action
is manifestly SL(2,Z) invariant. More explicitly, the instanton action (4.6) gives11

SD(-1) = T−1
p̃− q̃ C(0)

p− q C(0) . (4.7)

10When p q̃ − q p̃ = 0 , we have Θ̃ ∝ Θ and such a Θ̃ does not constitute a linearly independent doublet.
11Note that T−1 = 2π (see eq. (2.14)) and thus there is no analog of the tensionless T1 limit as in

section 3.4.
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In the case where Θ = (1 0)ᵀ and Θ̃ = (0 1)ᵀ , the D-instanton action (4.5) is recovered.
Note that the action becomes independent of Θ̃ after the condition (4.2) is imposed, except
for an overall constant shift of the action.

4.2 Nonrelativistic D3-brane

We are finally ready to construct a manifestly SL(2,Z)-invariant nonrelativistic D3-brane
action. Setting p = 3 in the general nonrelativistic Dp-brane action (2.13), and rewriting
the geometric data in terms of the Einstein-frame variables, we find

SD3 =− T3

∫
d4σ

√√√√− det
(

0 τEβ
τ̄Eα EE

αβ + e−Φ/2Fαβ

)

− T3

∫ (
C(4) + C(2) ∧ F + 1

2 C
(0)F ∧ F

)
,

(4.8)

where F = B + dAB . This action is invariant under the Ramond-Ramond and Kalb-
Ramond gauge symmetries given in eqs. (2.15) and (2.16).

We would like to write down a manifestly SL(2,Z)-invariant D3-brane action by re-
placing the quantities in the action (4.8) with their SL(2,Z)-invariant counterparts.12 The
invariant form of C(0) has already been given in section 4.1, where we essentially performed
the following replacement:

C(0) → −Θ̃ᵀ C
Θᵀ C

, (4.9)

which reduces to C(0) when Θ = (1 0)ᵀ and Θ̃ = (0 1)ᵀ . Similarly, the SL(2,Z)-invariant
counterpart of the dilaton term eΦ is given by

eΦ →
(
Θᵀ C

)2
. (4.10)

We also learned in section 3 that the SL(2,Z)-invariant version of the B-field is given by
eq. (3.26), with

B → sgn(p− q C(0))
(
Θᵀ Σ

)
, (4.11)

where Σ is defined in eq. (3.16). This implies that the quantity F should be replaced as

F → sgn
(
p− q C(0)) (Θᵀ F

)
, F = Σ + dA , (4.12)

where A =
(
AB AC)ᵀ , with AB and AC the Born-Infeld potentials associated with B and

C(2), respectively. The Born-Infeld vector A transforms under the combined Ramond-
Ramond and Kalb-Ramond gauge symmetries as

δA = −Ξ , Ξ ≡
(
ξ

ζ(1)

)
, (4.13)

such that F is gauge invariant. We require that A be an SL(2,Z) doublet up to a sign,
satisfying the following transformation:

A′ = sgn
(
cC(0) + d

)
(Λ−1)ᵀA . (4.14)

12See appendix A for further justification of the following replacements.
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The introduction of the extra field AC does not change the degrees of freedom as long as
A is only contracted with Θ (but not Θ̃) [11].

We still need to construct an SL(2,Z)-invariant counterpart of C(2) , which has to
involve the doublet Θ̃ . This requires building a new quasi-doublet Σ̃ that transforms as a
doublet up to a (p̃ , q̃)-dependent term. In analogy with the quantity Σ in eq. (3.28), we
have

Σ̃′ = sgn
(
cC(0) + d

) (
Λ−1)ᵀ (Σ̃ + α̃ Θ̃⊥

)
, Θ̃⊥ =

(
q̃

−p̃

)
. (4.15)

We have introduced Θ̃⊥ that is orthogonal to Θ̃ , satisfying Θ̃ᵀ Θ̃⊥ = 0 . Such a quasi-
doublet Σ̃ defined with respect to Θ̃ is derived in appendix A, with

Σ̃ = Σ + q q̃ −1(
p− q C(0))2

(
0

1
2 ` e

−2Φ

)
, (4.16)

from which we find that the parameter α̃ in eq. (4.15) is given by

α̃ = c e−2Φ `

2
(
cC(0) + d

) (
p− q C(0)) (c p̃+ d q̃

) (c p+ d q + q

q̃

c C(0) + d

p− q C(0)

)
. (4.17)

The appropriate replacement of C(2) is therefore

C(2) → sgn
(
p− q C(0)) (Θ̃ᵀ Σ̃

)
, (4.18)

which is manifestly SL(2,Z)-invariant and gives back C(2) when Θ = (1 0)ᵀ and Θ̃ =
(0 1)ᵀ .

Applying the replacements (4.9), (4.10), (4.12), and (4.18) to the D3-brane action (4.8),
we find the following manifestly SL(2,Z)-invariant action:

SD3 =− T3

∫
d4σ

√√√√− det
(

0 τEβ
τ̄Eα EE

αβ + Θᵀ Fαβ

|Θᵀ C|

)

− T3

∫ [
C(4) +

(
Θ̃ᵀ Σ̃

)
∧
(
Θᵀ F

)
− 1

2
Θ̃ᵀ C
Θᵀ C

(
Θᵀ F

)
∧
(
Θᵀ F

)]
.

(4.19)

We have introduced an SL(2,Z) singlet C(4) that replaces C(4) . We will later derive the
explicit form of C(4) in eq. (4.22) by analyzing the gauge symmetries. This action already
combines the positive and negative p− q C(0) branches described by the following actions:

S±D3 =− T3

∫
d4σ

√√√√− det
(

0 τEβ
τ̄Eα EE

αβ ±
Θᵀ Fαβ

Θᵀ C

)

− T3

∫ [
C(4) +

(
Θ̃ᵀ Σ̃

)
∧
(
Θᵀ F

)
− 1

2
Θ̃ᵀ C
Θᵀ C

(
Θᵀ F

)
∧
(
Θᵀ F

)] (4.20)

Here, S+
D3 describes D3-branes coupled to the (p , q)-strings with p − q C(0) > 0 , while

S−D3 describes D3-branes coupled to the (p , q)-strings with p − q C(0) < 0 . Just like the
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(p , q)-string case discussed in section 3.2, the SL(2,Z) duality is branched: the SL(2,Z)
transformations satisfying cC(0) + d > 0 map S+

D3 (S−D3) to itself, and the SL(2,Z) trans-
formations satisfying cC(0) + d < 0 map S+

D3 and S−D3 to each other. .
In order to compensate for the variation of the action (4.20) with respect to the

gauge transformation rule δΣ̃ = dΞ , the SL(2,Z)-invariant C(4) has to transform under
the Ramond-Ramond and Kalb-Ramond gauge symmetries as

δC(4) = dZ(3) +
(
Θᵀ dΣ

)
∧
(
Θ̃ᵀ Ξ

)
, (4.21)

where Z(3) is a parameter characterizing the three-form gauge transformation. The relation
between C(4) and the objects that we have defined, namely, C(4) and Σ , can be fixed by
matching the gauge transformations, which gives

C(4) = C(4) + 1
4 Σᵀ ∧

(
ρΣ
)
− 1

2
(
Θᵀ Σ

)
∧
(
Θ̃ᵀ Σ

)
. (4.22)

Here, we defined the constant matrix

ρ =
(

0 1
1 0

)
. (4.23)

The gauge transformation of C(4) can be found in eq. (2.15), where the gauge parameter
ζ(3) is related to Z(3) in eq. (4.21) via

Z(3) = ζ(3) − 1
2 Σᵀ ∧

(
Θ Θ̃ᵀ + Θ̃ Θᵀ)Ξ + 1

2 Σᵀ ∧
(
ρΞ
)
. (4.24)

From the SL(2,Z)-invariant expression (4.22), we can solve for the SL(2,Z) transformation
of C(4), which gives,

C ′(4) = C(4) + 1
2 K

ᵀ

(
b d −b c
−b c a c

)
∧ K , (4.25)

where
K =

(
B

C(2)

)
− c

cC(0) + d

(
0

1
2 ` e

−2Φ

)
. (4.26)

Note that the action (4.19) becomes independent of Θ̃ after the condition (4.2) is
imposed, up to a boundary term that we ignore. Moreover, under the condition Θ =
(1 0)ᵀ , as expected, the action reduces to the original nonrelativistic D3-brane action (4.8).
Alternatively, when Θ = (0 1)ᵀ , the action (4.19) becomes

S̃D3 =− T3

∫
d4σ e−Φ

√√√√− det
(

0 τβ
τ̄α Eαβ + F̃αβ

)

− T3

∫ (
C̃(4) + C̃(2) ∧ F̃ + 1

2 C̃
(0) F̃ ∧ F̃

)
,

(4.27)

where

C̃(0) = −C(0), F̃ = −C
(2) + dAC

C(0) + `

2
(
eΦC(0))2 , (4.28a)

C̃(2) = C(0)
[
B − `

2
(
eΦC(0))2

]
, C̃(4) = C(4) +

(
C(2) − e−2Φ `

2C(0)

)
∧B . (4.28b)
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This is the S-dual action of the original nonrelativistic D3-brane action (4.8), which can
be equivalently obtained by dualizing the U(1) gauge field on the D3-brane [15].

4.3 Inter-branch D3-branes

In section 3.1, we found the actions S± in eqs. (3.4) and (3.8), which describe nonrelativistic
(p , q)-strings satisfying p − q C(0) 6= 0 . Although the (p , q)-string action is well defined
in both the branches, it becomes singular at the boundary defined by p − q C(0) = 0 . In
contrast, intriguingly, when the D3-brane action (4.19) is concerned, the limit p−q C(0) → 0
appears to be non-singular (e.g., see [15] when Θ = (0 1)ᵀ). In the following, we study
explicitly such inter-branch D3-branes and uncover the resulting finite action in the p −
q C(0) → 0 limit.

We start with defining δ ≡ p − q C(0) . It matters from which side that we approach
the boundary. We first consider the limit with δ → 0+. Expanding eq. (4.19) with respect
to δ , we find that the DBI-like part of the Lagrangian gives

LDBI ≡−

√√√√− det
(

0 τEβ
τ̄Eα EE

αβ + Θᵀ Fαβ

|Θᵀ C|

)

= 1
2 δ2

∣∣q tr(?`X )∣∣
e2Φ + 1

4 δ q tr
(
?X X

)
sgn

[
q tr
(
?`X

)]

+
q2 e−2ΦG+ tr

(
?X τ ?X E

)
− 1

16 q
−2 e2Φ

[
tr
(
?X X

)]2
∣∣q tr(?`X )∣∣ +O(δ) .

(4.29)

Since the worldvolume is flat, the indices are raised (lowered) by the Minkowski metric ηαβ
(ηαβ). Here, (τ)αβ = ταβ , (E)αβ = Eαβ , and

X = p
(
B + dAB)+ q

(
C(2) + dAC) , (4.30a)

G = −1
4 ε

α1α2α3α4 εβ1β2β3β4 τα1β1 τα2β2 Eα3β3 Eα4β4 . (4.30b)

The Hodge duals of ` and X are defined to be(
?`
)
αβ

= 1
2 εαβ

γδ `γδ ,
(
?X
)
αβ

= 1
2 εαβ

γδ Xγδ . (4.31)

Similarly, the Wess-Zumino part of the Lagrangian in eq. (4.19) gives

LWZ ≡−
[
C(4) +

(
Θ̃ᵀ Σ̃

)
∧
(
Θᵀ F

)
− 1

2
Θ̃ᵀ C
Θᵀ C

(
Θᵀ F

)
∧
(
Θᵀ F

)]

=− 1
δ2

q

e2Φ ` ∧ X − 1
2 δ q X ∧ X

− X (4) −
(
p̃ B + q̃ C(2)) ∧ X + q̃

2 q X ∧ X +O(δ).

(4.32)

Here,
X (4) = C(4) + 1

2 B ∧ C
(2) − 1

2
(
pB + q C(2)) ∧ (pB + q C(2)) , (4.33)
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in analogy with the definition (4.22). For the combination LDBI + LWZ to be finite, we
require

q tr
(
?`X

)
> 0 , for p− q C(0) → 0+ . (4.34)

In particular, we require that q 6= 0 . As a result, in the limit δ → 0+, we find a nonsingular
action for the inter-branch D3-brane as

S = T3

∫
d4σ

q2 e−2ΦG+ tr
(
?X τ ?X E

)
− 1

16 q
−2 e2Φ

[
tr
(
?X X

)]2
∣∣q tr(?`X )∣∣

− T3

∫ [
X (4) +

(
p̃ B + q̃ C(2)) ∧ X − q̃

2 q X ∧ X
]
.

(4.35)

Note that we have introduced an absolute value in eq. (4.35) such that it also incorporates
the other limit by sending δ → 0− , instead of δ → 0+ . For the limit δ → 0− to be
well-defined, the condition (4.34) has to be replaced with

q tr
(
?`X

)
< 0 , for p− q C(0) → 0− . (4.36)

The quantity |q tr
(
?`X )| plays the role of the effective coupling of the inter-branch D3-

brane.
In the case where Θ = (0, 1) and Θ̃ = (−1, 0) , the action (4.35) becomes

S = T3

∫
d4σ

e−2ΦG+ tr
(
?X τ ?X E

)
− 1

16 e
2Φ
[
tr
(
?X X

)]2
∣∣tr(?`X )∣∣

− T3

∫ [
C(4) +B ∧

(
C(2) + dAC)] .

(4.37)

This is the action that has been studied in [15], which is S-dual to the nonrelativistic
D3-brane action (4.8) at C(0) → 0 . In other words, eq. (4.37) coincides with the S-dual
action (4.27) in the C(0) → 0 limit. This theory has a sector that describes noncommutative
Yang-Mills (NCYM) theory [15, 39]. In order to make this NCYM sector manifest, we focus
on flat spacetime and choose the following background field configuration:

τµ
A = δAµ , Eµ

A′ = δA
′

µ , C(q) = 0 , Bαβ = −
(

02×2 02×2
02×2 b εij

)
, (4.38)

where i , j = 2 , 3. Here, b is a constant and εij is a Levi-Civita symbol defined by ε23 =
−ε32 = 1 . Moreover, we choose the D-brane configuration such that Xα = σα , α =
0, · · · , 3 , such that the D3-brane extends in the target-space longitudinal directions. Using
the Seiberg-Witten map [51], we find that the effective open string coupling is given by

Go =
√

2πgs b , (4.39)

where gs = e〈Φ〉 is the closed string coupling. Moreover, the worldvolume acquires non-
commutativity in the σ2 and σ3 directions, with

[σ2 , σ3] ∝ 1
b
, (4.40)
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controlled by the inverse of the “magnetic” B-field. This implies that the resulting theory
in the chosen configuration describes NCYM on the worldvolume, which is S-dual to non-
commutative open string theory [39].13 The NCYM coupling is given by the open string
coupling Go in eq. (4.39), which is proportional to the square-root of the magnetic B-field.

5 Conclusions

In this paper, we constructed manifestly SL(2,Z)-invariant actions in nonrelativistic string
theory for D-instantons in eq. (4.7), (p , q)-strings in eqs. (3.4) and (3.8) and D3-branes
in eq. (4.20), where the branes are coupled to a non-Lorentzian background geometry
equipped with a codimension-two foliation structure. Intriguingly, such a realization re-
quires a branching in the (p , q)-space, determined by the sign of p− q C(0), with C(0) the
zero-form axion background field. The states in the different branches are described by
distinct actions, related to each other by sending (p , q) to (−p ,−q) without changing the
background fields. The SL(2,Z) group itself is also branched. Consider the SL(2,Z) group
element Λ in eq. (3.18), which satisfies cC(0) + d > 0 . Such a transformation maps covari-
antly each of the branches in (p , q)-space to itself. In contrast, an SL(2,Z) transformation
satisfying cC(0) + d < 0 maps between one branch in (p , q)-space and the other.

We also discussed the inter-branch D3-branes that arise from the limit p− q C(0) → 0 ,
resulting in the non-singular, SL(2,Z)-invariant brane action (4.35). In flat spacetime with
zero Ramond-Ramond potentials and (p , q) = (0 , 1) , the inter-branch D3-brane action
leads to noncommutative Yang-Mills theory [15, 39].

It should be noted that the non-relativistic SL(2,Z) transformations we constructed in
eqs. (3.30) and (4.25) are a deformation of the standard relativistic duality rules containing
extra terms. It is well-known that these relativistic SL(2,Z) duality transformations have
a geometric interpretation, from a nine-dimensional point of view, as the geometric trans-
formations of an M-theory two-torus [3]. It would be interesting to see what the geometric
interpretation of the extra terms in the non-relativistic SL(2,Z) duality rules are, given the
fact that the general coordinate transformations do not have non-relativistic corrections.

The fact that the SL(2,Z) duality in nonrelativistic string theory involves a branch-
ing depending on C(0) may suggest that a background D7-brane is needed for a thorough
understanding of this branched duality. The magnetic dual of C(0) is an eight-form field,
which naturally couples to the D7-brane. It would therefore be natural to examine the
role that such D7-branes might play in describing the dynamics of (p , q)-strings in non-
relativistic string/F-theory. Moreover, it would be interesting to study the implications of
our studies of various bound states for the Hagedorn transition along the lines of [52].

It is important to extend the analysis of this project to include supersymmetry and
study the corresponding type IIB supergravity background fields. This will be an extension
of the construction of nonrelativistic minimal supergravity in [30, 32] to the case of maximal
supersymmetry. It would be intriguing to understand the realization of the branched
SL(2,Z) symmetry in that theory. Once the SL(2,Z) duality is understood in supergravity,

13The fact that the S-dual relation in [39] between NCYM and NCOS only arises when the inter-branch
condition p− q C(0) = 0 is satisfied has been observed in e.g. [44].

– 20 –



J
H
E
P
1
0
(
2
0
2
2
)
1
3
1

it is natural to apply it together with the nonrelativistic T-duality transformations [15,
16] to construct new half-BPS background solutions out of known solutions, such as a
nonrelativistic version of the well-known D-brane solutions, along the lines of [33]. We
expect that these solutions will provide an important input for a top-down construction of
nonrelativistic holography. We are currently working on a partner article addressing these
questions.
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A Derivation of SL(2, Z) invariants

In our construction of the manifestly SL(2,Z)-invariant nonrelativistic D3-brane action in
section 4.2, the following SL(2,Z)-invariant is introduced in eq. (4.18):

sgn
(
p− q C(0)) (Θ̃ᵀ Σ̃

)
, (A.1)

where Θ̃ =
(
p̃ q̃

)ᵀ and

Σ̃ = Σ + q q̃ −1(
p− q C(0))2

(
0

1
2 ` e

−Φ

)
, Σ =

(
B

C(2)

)
+ q

p− q C(0)

(
0

1
2 ` e

−2Φ

)
. (A.2)

It is straightforward to check the invariance of eq. (A.1) under the SL(2,Z) transforma-
tions (3.30). In this appendix, we present a systematic procedure of constructing the
SL(2,Z)-invariants that appeared in the bulk of the paper by starting with the transforma-
tion rules of the background fields, using which the invariant (A.1) can also be naturally
derived.
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A.1 Branched SL(2, Z) transformations

We start with summarizing the SL(2,Z) transformations that have been given in eqs. (3.30)
and (4.25), which act on the Ramond-Ramond potentials and the B-field as follows:14

C ′(0) = aC(0) + b

cC(0) + d
, (A.4a)(

B′

C ′(2)

)
= sgn

(
cC(0) + d

) [(
Λ−1)ᵀK − c(

cC(0) + d
)2
(

0
1
2 ` e

−2Φ

)]
, (A.4b)

C ′(4) = C(4) + 1
2 K

ᵀ

(
b d −b c
−b c a c

)
∧ K , (A.4c)

where
K =

(
B

C(2)

)
− c

cC(0) + d

(
0

1
2 ` e

−2Φ

)
. (A.5)

It is also useful to recall that

`′ = |cC(0) + d| ` , Φ′ = 2 ln |cC(0) + d| , (A.6)

which are needed for explicitly checking the SL(2,Z)-invariance of the quantities that we
will construct in the following.

A.2 Zero-form invariants

In order to demonstrate the procedure of deriving SL(2,Z)-invariants, we start with using
the SL(2,Z) transformation of the zero-form C(0) in eq. (A.4a) to derive a family of SL(2,Z)
invariants. Recall that Θ and Θ̃ are both SL(2,Z)-doublets, which transform under the
action of the SL(2,Z) matrix Λ as

Θ′ = Λ Θ , Θ̃′ = Λ Θ̃ . (A.7)

First, we fix all the primed background fields and the primed doublets Θ′ and Θ̃′ , which
take the following reference values:

Θ′ =
(
x

y

)
, Θ̃′ =

(
x̃

ỹ

)
, (A.8)

where the constant integers x, y, x̃, ỹ satisfy x ỹ − y x̃ = 1 . Then, the matrix Λ can be
expressed in terms of Θ and Θ̃ , with

Λ =
(
x q̃ − x̃ q x̃ p− x p̃
y q̃ − ỹ q ỹ p− y p̃

)
. (A.9)

14It is interesting to note the curious fact that the transformation (A.4c) of C(4) is reminiscent of its
counterpart in relativistic string theory [53]. However, K is not an SL(2,Z)-doublet: K is only defined with
respect to a particular SL(2,Z) transformation, with explicit dependence on the Lie group parameters c
and d . Moreover, the transformation (A.4b) of the two-form fields can be brought into the form analogous
to the relativistic case as

K′ = sgn(cC(0) + d)
(
Λ−1)ᵀK . (A.3)

Note that K′ contains c′ = −c and d′ = a . Here, K′ depends on the SL(2,Z) transformation Λ′ that maps
the primed fields to the unprimed fields, i.e., Λ′ = Λ−1 .
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Plugging eq. (A.9) into the transformation rule (A.4a) for C(0) , we find

C ′(0) =
x̃
(
p− q C(0))− x (p̃− q̃ C(0))

y
(
p̃− q̃ C(0))− ỹ (p− q C(0)) . (A.10)

Since we have fixed the primed background fields including the zero-form C ′(0) , the r.h.s.
of eq. (A.10) takes the same value for any Θ and Θ̃ , which are related to the fixed Θ′ and
Θ̃′ in eq. (A.8) via an SL(2,Z) transformation. Therefore, due to the associativity of group
actions, the r.h.s. of eq. (A.10) defines an SL(2,Z) invariant.

Note that the invariant implied by eq. (A.10) is defined with respect to the arbitrary
but fixed reference parameters in eq. (A.8), which ensures that it is SL(2,Z)-invariant, but
does not necessarily mean that it must arise in the D-instanton Lagrangian in nonrelativis-
tic string theory. The actual terms that arise in the nonrelativistic D(−1)-brane action
correspond to fixing the reference values of Θ′ and Θ̃′ in eq. (A.8) to be

Θ′ =
(

1
0

)
, Θ̃′ =

(
0
1

)
. (A.11)

Then, the SL(2,Z) matrix eq. (A.9) becomes

Λ =
(
q̃ −p̃
−q p

)
. (A.12)

Henceforth, we will fix Θ′ and Θ̃′ to the values in eq. (A.11). In this case, the SL(2,Z)-
invariant implied by eq. (A.10) becomes

p̃− q̃ C(0)

p− q C(0) , (A.13)

which reproduces the SL(2,Z)-invariant that we already constructed in eq. (4.7) for non-
relativistic D-instantons.

A.3 Higher-form invariants

We are now ready to apply the same method developed in section A.2 to the SL(2,Z)
transformations of the higher-form fields and derive the associated SL(2,Z) invariants.
Again, the actual terms that arise in the Dp-brane action correspond to fixing Θ′ and Θ̃′
as in eq. (A.11).

We first consider the SL(2,Z) transformations of the two-form fields in eq. (A.4b). Us-
ing the reference values of Θ′ and Θ̃′ in eq. (A.11), and plugging eq. (A.12) into eq. (A.4b),
we find (

B′

C ′(2)

)
= sgn

(
p− q C(0))(Θᵀ Σ

Θ̃ᵀ Σ̃

)
, (A.14)

where Σ and Σ̃ are given in eq. (A.2). Since the primed background fields B′ and C ′(2) are
both fixed, we find two independent SL(2,Z)-invariants,

sgn
(
p− q C(0)) (Θᵀ Σ

)
, sgn

(
p− q C(0)) (Θ̃ᵀ Σ̃

)
. (A.15)
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The first expression in eq. (A.15) reproduces the Wess-Zumino term in the nonrelativis-
tic (p , q)-string action (3.26). Moreover, the second expression in eq. (A.15) gives the
SL(2,Z)-invariant that we quoted in eq. (4.18), which is important to the construction of
the nonrelativistic D3-brane action (4.19).

Finally, plugging eq. (A.12) into the SL(2,Z) transformation (A.4c) of the four-form
field C(4) , we find

C ′(4) = C(4) − 1
2 Σᵀ

(
p p̃ q p̃

q p̃ q q̃

)
∧ Σ = C(4) , (A.16)

where C(4) is defined in eq. (4.22), which is the SL(2,Z)-singlet desired for the construction
of the nonrelativistic D3-brane action (4.19).

B Nonrelativistic string limit

In this appendix, we show how the D-instanton action (4.7), the (p, q)-string actions (3.4)
and (3.8), and the D3-brane action (4.20) in nonrelativistic string theory follow from the
nonrelativistic string limit of relativistic string theory. We start by reviewing the corre-
sponding actions for relativistic instantons, (p, q)-strings, and D3-branes, which are given
by [8, 11]

ŜD(-1) = T−1
Θ̃ᵀ M̂−1 Θ
Θᵀ M̂−1 Θ

, (B.1a)

Ŝstring = −T1

∫
d2σ

√
Θᵀ M̂−1 Θ

√
− det ĜE

αβ − T1

∫
Θᵀ Σ̂ , (B.1b)

ŜD3 = −T3

∫
d4σ

√√√√− det
(
ĜE + Θᵀ F̂√

Θᵀ M̂−1 Θ

)

− T3

∫ [
Ĉ(4) +

(
Θ̃ᵀ Σ̂

)
∧
(
Θᵀ F̂

)
− 1

2
Θ̃ᵀ M̂−1 Θ
Θᵀ M̂−1 Θ

(
Θᵀ F̂

)
∧
(
Θᵀ F̂

)]
, (B.1c)

The SL(2,Z) doublets Θ and Θ̃ have already been defined in the bulk of the paper, see
equations (3.16), (4.1), and (4.2). The Einstein frame metric and its pullback are defined as

ĜE
αβ = ∂αX

µ ∂βX
ν ĜE

µν , ĜE
µν = e−Φ̂/2 Ĝµν , (B.2)

where α, β are the respective worldvolume indices. We furthermore use the following defi-
nitions of the matrix M̂ and the doublet of two-forms Σ̂ :

M̂ = eΦ̂
((
Ĉ(0))2 + e−2Φ̂ Ĉ(0)

Ĉ(0) 1

)
, Σ̂ =

(
B̂

Ĉ(2)

)
. (B.3)

Together with a doublet of Born-Infeld vectors A, we also introduced the following world-
volume two-form F̂ and SL(2,Z) singlet four-form C(4) :

F̂ = Σ̂ + dA , Ĉ(4) = Ĉ(4) + 1
2 B̂ ∧ Ĉ

(2) − 1
2
(
Θᵀ Σ̂

)
∧
(
Θ̃ᵀ Σ̂

)
. (B.4)
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The instanton, (p, q) string, and D3 brane actions (B.1) are invariant15 under the action
of SL(2,Z), where Θ and Θ̃ transform as doublets, while the Einstein frame metric ĜE and
the four-form potential Ĉ(4) transform as singlets. Moreover, the quantities M̂ , Σ̂ , and F̂
transform as

M̂′ = ΛM̂Λᵀ , Σ̂′ =
(
Λ−1)ᵀΣ̂ , F̂ ′ =

(
Λ−1)ᵀF̂ . (B.5)

In terms of the string coupling ĝs = 〈eΦ̂〉 , the tension of the (p, q)-string action (B.1b) is
given by

T̂p, q = T1

√(
p− q

〈
Ĉ(0)〉)2

+ q2

ĝ2
s

, (B.6)

which matches the result from type IIB supergravity [3].
Nonrelativistic string theory arises from the nonrelativistic limit of relativistic string

theory [13]. To facilitate such a limit, we introduce a real dimensionless parameter ω > 0
by reparametrizing the relativistic metric field Ĝµν , Kalb-Ramond field B̂µν , dilaton field
Φ̂, and Ramond-Ramond forms Ĉ(q) as follows [15, 24, 25]:16

Ĝµν = ω2 τµν + Eµν , Φ̂ = Φ + lnω , (B.7a)
B̂ = −ω2 `+B , (B.7b)

Ĉ(q) = ω2C(q−2) ∧ `+ C(q) . (B.7c)

Here, we define the two-form ` to be in the target space as opposed to eq. (3.5), which is
on the worldsheet:

`µν = τµ
A τν

B εAB . (B.8)

Moreover, for the purpose of this paper, we only care about q = 0, 2, 4 . After taking the
limit ω →∞, the fields τµν , Eµν , Bµν , Φ , and C(q) are interpreted as the background fields
of nonrelativistic string theory that we have reviewed in section 2.1. Note that all hatted
symbols represent quantities in relativistic string theory. The nonrelativistic string sigma
model (2.3) and nonrelativistic D-brane action (2.13) then arise from taking the ω → ∞
limit of their associated relativistic theories [15, 21, 25, 29, 31]. We emphasize that these
resulting extended objects in nonrelativistic string theory are coupled to string Newton-
Cartan geometry with a codimension-two foliation. This is distinct from the general p-brane
limits considered in the literature, where a codimension-(p+ 1) foliation is induced in the
target space [13, 54].

We now apply the nonrelativistic string limit to the manifestly SL(2,Z)-invariant ac-
tions for relativistic instantons, strings, and D3-branes in eq. (B.1). The ω → ∞ limit of
the relativistic D-instanton action (B.1a) proceeds in a rather straightforward way, which
leads to the nonrelativistic instanton action (4.7). In the following, we discuss how the non-
relativistic (p , q)-string and D3-brane actions arise from the nonrelativistic string limit.

15In the literature, the action (B.1b) is sometimes called covariant [8], when the action of SL(2,Z) on Θ
is considered to be passive.

16It is understood that C(q) = 0 for q < 0 . In particular, for the purpose of this paper, C(−2) = 0 .
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Expanding the relativistic (p , q)-string action (B.1b) with respect to a large ω , we find

Ŝstring = −ω2 T1

∫
`
[
|p− q C(0)| − (p− q C(0))

]
+O(ω0) , (B.9)

which implies that the ω → ∞ limit is well-defined only if the condition p − q C(0) > 0 is
satisfied. Note that the leading O(ω2) term in eq. (B.9) receives contributions from both
the kinetic and the Wess-Zumino part of the relativistic action (B.1b). As a result,

lim
ω→∞

Ŝstring = S+
string , if p− q C(0) > 0 , (B.10)

where S+
string is given in eq. (3.4). This shows that the ω → ∞ limit effectively decouples

half of the relativistic states — namely, those with p − q C(0) < 0. Moreover, taking the
nonrelativistic string limit of the relativistic (p, q)-string tension (B.6), where ĝs = ω gs
due to the rescaling of the dilaton, leads to the nonrelativistic (p, q)-string tension (3.12)
for the effective action (3.11).

Applying the ω →∞ limit to the relativistic D3-brane action (B.1c), we find that the
Wess-Zumino term leads to a finite contribution. In contrast, for the ω → ∞ limit of the
kinetic term to be finite, the same condition p−q C(0) > 0 has to hold. It then follows that

lim
ω→∞

ŜD3 = S+
D3 , if p− q C(0) > 0 , (B.11)

where the nonrelativistic D3-brane action S+
D3 is given in eq. (4.20).

In the bulk of this paper, we have seen that the nonrelativistic string and brane ac-
tions S+

string and S+
D3 are not invariant under the full SL(2,Z)-duality group by them-

selves. Instead, under SL(2,Z) transformations satisfying the condition cC(0) + d < 0 ,
the positive-branch actions S+

string and S+
D3 with p− q C(0) > 0 are respectively mapped to

the negative-branch actions S−string and S−D3 with p − C(0)q < 0 . It is natural to wonder
whether these negative-branch actions also arise from a similar nonrelativistic string limit.
This can be achieved by slightly changing the reparametrization by inverting the signs of
the two-forms. Effectively, one can define the negative-branch limit by replacing the rules
for the two forms in eq. (B.7) by

B̂ = ω2 `−B , Ĉ(2) = −ω2C(0) `− C(2) . (B.12a)

Using this parametrization, we find in the ω →∞ limit that

lim
ω→∞

Ŝstring = S−string ,

lim
ω→∞

ŜD3 = S−D3 ,
if p− q C(0) < 0 , (B.13)

where S−string is given in eq. (3.8) and S−D3 is given in eq. (4.20).
We observe that the branching of the (p , q)-space naturally follows from the occurrence

of a divergence in the nonrelativistic limit. Physically, this can be understood as follows:
for a given Ĉ(0), certain states in the (p, q)-space become infinitely heavy as ω →∞. The
ω →∞ limit associated with the background field reparametrization (B.7) decouples all the
states with p−q C(0) < 0 . The ω →∞ limit associated with the reparametrization (B.12),
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Ŝ

ω →∞

S+ S–

p− q C(0) < 0p− q C(0) > 0

cC(0) + d > 0
cC(0) + d < 0

cC(0) + d > 0

Figure 2. This figure illustrates the limiting procedure for nonrelativistic Dp-branes. Here, Ŝ
denotes a Dp-brane action in relativistic string theory. The positive branch arises from the ω →∞
limit with the reparametrization (B.7) of the background fields in relativistic string theory, which
leads to the nonrelativistic Dp-brane action S+ , satisfying the condition p − q C(0) > 0 . The
negative branch arises from the ω →∞ limit with the reparametrization (B.12), which leads to the
action S− , satisfying the condition p − q C(0) < 0 . While the SL(2,Z) transformations satisfying
cC(0) + d > 0 map S+ (S−) to itself, the transformations satisfying cC(0) + d < 0 map between
S+ and S− .

on the other hand, decouples all states with p − q C(0) > 0. The surviving states are
described by S+

string and S−string , respectively. Similarly, the limit of the D3-branes branches
and the surviving states are described by S+

D3 and S
−
D3, respectively. This limiting procedure

is exemplified in figure 2.
Similar to the non-relativistic limit of the relativistic action we have discussed above,

the non-relativistic SL(2,Z) transformations can be obtained by a large ω expansion of the
relativistic fields in eq. (B.3). The relativistic SL(2,Z) transformations in eq. (B.5) and
the transformation of Ĉ(4) can be expressed as

Ĝ′αβ =
[
(c Ĉ(0) + d)2 + c2 e−2Φ̂

] 1
2
Ĝαβ , B̂′ = d B̂ − c Ĉ(2) ,

eΦ̂′ =
[
(c Ĉ(0) + d)2 + c2 e−2Φ̂

]
eΦ̂ , Ĉ(2)′ = a Ĉ(2) − b B̂ , (B.14)

Ĉ(0)′ =
(a Ĉ(0) + d)

(
c Ĉ(0) + d

)
+ a c e−2Φ̂(

c Ĉ(0) + d
)2 + c2 e−2Φ̂

, Ĉ ′(4) = Ĉ(4) + 1
2 Σ̂ᵀ

(
b d −b c
−b c a c

)
∧ Σ̂ .

Substituting the expansion (B.7) into both sides of the transformations in eq. (B.14), we get
the non-relativistic SL(2,Z) transformation in eqs. (3.30) and (4.25) (or, equivalently, (A.4)
and (A.6)) for cC(0) + d > 0 , which is a required condition for the resulting branched
SL(2,Z)-transformations to be finite.

We note that there is a complementary but equivalent procedure where instead of
taking two inequivalent limits of one action one takes one limit of two inequivalent actions.
These actions differ from each other by the sign of the Wess-Zumino term.

Finally, it is also possible to reproduce the topological action (3.32) by starting with
the relativistic (p , q)-string action (B.1b) satisfying the condition p − q C(0) = 0 . Using
the parametrizations in eq. (B.7), together with the additional ansatz,

T1 = Teff
ω

, (B.15)

we find that the action (3.32) arises as the ω →∞ limit of the relativistic action.
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