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Original Article

A dynamic flow model mimicking duodenoscope reprocessing after
bacterial contamination for translational research

Maarten Heuvelmans MD1 , Willem Woudstra2 , Herman F. Wunderink MD, PhD1 , Jan F. Monkelbaan MD3 and

Henny C. van der Mei PhD2

1Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands, 2Department of Biomedical Engineering, University of
Groningen, Groningen, The Netherlands and 3Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, The Netherlands

Abstract

Objective: Duodenoscopy-associated infections and outbreaks are reported globally despite strict adherence to duodenoscope reprocessing
protocols. Therefore, new developments in the reprocessing procedure are needed.

Design: We evaluated a novel dynamic flow model for an additional cleaning step between precleaning and manual cleaning in the reproc-
essing procedure.

Methods: A parallel plate flow chamber with a fluorinated ethylene propylene bottom plate was used to mimic the duodenoscope channels.
The flow chamber was inoculated with a suspension containing Klebsiella pneumoniae to simulate bacterial contamination during a duode-
noscopic procedure. After inoculation the flow chamber was flushed with a detergent mimicking precleaning. Subsequently the flow chamber
was subjected to different interventions: flow with phosphate-buffered saline (PBS), flow with 2 commercial detergents, flow with sodium
dodecyl sulfate with 3 different concentrations, and flowwithmicrobubbles. Adhering bacteria were counted using phase-contrast microscopy
throughout the experiment, and finally, bacterial viability was assessed.

Results: During precleaning both PBS and 1% (v/v) NeodisherMediclean Forte were able to desorb bacteria, but neither proved superior. After
precleaning only sodium dodecyl sulfate could desorb bacteria.

Conclusions: Flushing during precleaning is an essential step for reducing adhering luminal bacteria, and sodium dodecyl sulfate is a prom-
ising detergent for bacterial desorption from duodenoscope channels after precleaning.

(Received 25 May 2022; accepted 1 August 2022)

Duodenoscopy-associated bacterial infections and outbreaks occur
globally, despite strict adherence to duodenoscope reprocessing
protocols.1 Contamination of duodenoscopes after reprocessing
occurs frequently, with rates as high as 15% resulting in 32 reported
outbreaks between 2000 and 2017 worldwide with almost 400
affected patients.1,2 Clearly the risk of bacterial contamination of
duodenoscopes is not eliminated entirely by current reprocessing
protocols, and additional measures are needed to further optimize
the reprocessing procedure. In 2015, to reduce the risk of duode-
noscopy-associated pathogen transmission, the US Food and Drug
Administration advised 4 supplemental reprocessing measures,
including double high-level disinfection, a culturing and quaran-
tine program, ethylene oxide gas sterilization, and liquid chemical
sterilization.3 Unfortunately, these supplemental reprocessing

measures have been shown to lack efficacy and are not cost-effec-
tive.4–10 Therefore, duodenoscopy-associated transmission
remains a problem and development of novel effective reprocess-
ing techniques is needed.

Given the high costs of duodenoscopes, it is not feasible to use
them for testing, and development of a universal and practical test
model will be required. Several models mimicking bacterial con-
tamination and evaluating the reprocessing of duodenoscopes with
various designs have been described.11–14 Some models used a
static system instead of a flow system. They do not resemble
repeated passage of fluids through the duodenoscope channel
and do not allow for evaluation of reprocessing methods using
flow.11,12 To resemble the lumen of a duodenoscope with flow,
models using polytetrafluoroethylene (PTFE) tubing can be
used.13,14 In this study, we developed a parallel plate flow chamber
with flow control and real-time visualization of bacterial adhe-
sion.15,16 This model is unique because it combines the hydropho-
bic properties of PTFE by using fluorinated ethylene propylene
(FEP) while allowing for real-time visualization.

We evaluated a novel dynamic flow model for an additional
transport cleaning step between precleaning and manual cleaning
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in the reprocessing procedure. The interventions were envisioned
during transport so the entire reprocessing procedure is not length-
ened. If this additional step proves to be effective, then further
research could be focused on optimizing the complete process
for instance by replacing precleaning and/or (part of) manual
cleaning (Fig. 1). We evaluated 7 different interventions for their
ability to desorb adhering luminal bacteria. The following inter-
ventions were tested in this study: flow with phosphate buffered
saline (PBS); flow with 2 commercial reprocessing products; flow
with sodium dodecyl sulfate (SDS) 1%, 2%, or 5%; and flow with
microbubbles.

Methods

Bacterial growth conditions and harvesting

A Klebsiella pneumoniae strain isolated from a duodenoscope dur-
ing an outbreak was used to inoculate the flow chamber.17 The
strain was cultured from a frozen stock on blood agar (tryptone
soya agar with 5% sheep blood, Mediaproducts, Groningen, The
Netherlands) and was aerobically incubated for 24 hours at 37°
C. One colony was inoculated in 10 mL tryptone soya broth
(TSB, Oxoid, Basingstoke, UK) and incubated for 24 hours at
37°C. Subsequently, 10 mL bacterial suspension was added to
200mL TSB and incubated for 16 hours at 37°C. Bacteria were har-
vested by centrifugation at 5,000×g and washed twice with PBS (10
mM potassium phosphate and 150 mM sodium chloride; pH, 7.0).
The bacterial pellet was resuspended in PBS supplemented with 2%
(v/v) TSB to a final concentration of 109 bacteria per milliter, as
determined by enumeration with a Bürker-Türk counting
chamber.

The parallel plate flow chamber as a model for the
duodenoscope

The parallel plate flow chamber (175 × 17 × 0.75 mm3) and image
analysis system have been described previously.15,16 The top plate
of the flow chamber was made from glass and the bottom plate was
covered with a 25-μm FEP sheet (Holscot Europe, Grantham, UK)
to mimic the hydrophobic lumen of a duodenoscope channel
(Appendix 1). Transparent hydrophobic FEP was used instead
of nontransparent hydrophobic PTFE used in duodenoscopes to
evaluate bacterial adhesion in real time in the flow chamber while
retaining the same hydrophobic properties as PTFE. Images of bac-
terial adhesion and desorption were taken with a charge-coupled
device camera mounted on a phase-contrast microscope. Prior to
the assembly of the flow chamber, all components were extensively
cleaned with detergent, water, methanol, and water again as a final
step. Flasks containing bacterial suspension and buffer were posi-
tioned at a higher elevation with respect to the chamber to ensure
circulation of fluids by hydrostatic pressure. Constant flow was
maintained by recirculation of the fluids using a roller pump.

Bacterial adhesion and desorption during different
interventions

Prior to each experiment, the flow chamber was filled with PBS to
remove all air bubbles in the system. Subsequently, the flow cham-
ber was filled with bacterial suspension (1 × 109 bacteria/mL). The
flow was switched off and the bacterial suspension was allowed to
remain in the chamber for 30 minutes to simulate continued con-
tamination during a gastrointestinal procedure. After 30 minutes,
75 mL PBS was passed through the flow chamber at a flow rate of
450 mL per minute to remove the bacterial suspension and

nonadhering bacteria. Subsequently, images were taken from12
fixed points on the bottom plate of the flow chamber prior to
and after the interventions. Adhering bacteria in these images were
automatically counted using ImageJ version 1.49 software (Fiji
National Institutes of Health, Bethesda, MD).18 The mean of the
12 images was calculated and the difference between the mean
prior to and after an intervention was calculated as follows:

ðΔx̄ ¼ x̄t1 � x̄t0Þ, (1)

in which x̄t0 was the mean number of bacteria/cm2 prior to pre-
cleaning or intervention and x̄t1 was the mean number of bacte-
ria/cm2 after precleaning or intervention.

To simulate precleaning of a duodenoscope, the flow chamber
was flushed with 25 mL PBS or 1% (v/v) Neodisher Mediclean
Forte (NDMCF, Dr Weigert, Hamburg, Germany) at a flow rate
of 450 mL per minute. After flushing, the bottom plate of the flow
chamber was imaged to determine the number of bacteria that des-
orbed from the bottom plate during the precleaning step. Only
experiments where the flow chamber was flushed with NDMCF
were subjected to further intervention, in accordance with the cur-
rent reprocessing protocol of duodenoscopes in the University
Medical Center Utrecht. After the precleaning step with PBS or
NDMCF the flow chamber was exposed to different interventions.
These interventions were all applied for 2 hours at a flow rate of 14
mL per minute and included flow with PBS; flow with 1% (v/v)
NDMCF; flow with 20 g/L Neodisher Septo Active (NDSA, Dr.
Weigert); flow with 1%, 2%, or 5% (w/v) SDS (Bio-Rad
Laboratories, Hercules, CA); and flow with microbubbles.
Microbubbles were generated by running 8 cycles of 9 minutes
with the Braun OxyJet type 3721 (Proctor & Gamble,
Cincinnati, OH) on the fifth setting. As a control, inoculated flow
chambers that had been subjected to an NDMCF flush during pre-
cleaning were drained and left with residual moisture for 2 hours.

Following the interventions, images were taken from the bot-
tom plate, after which the flow chamber was disassembled and
the FEP recovered to determine bacterial viability. The FEP was
cut in 3 equal sections, and bacterial viability was determined using
the 3M Petrifilm aerobic count (3M, Saint Paul, MN). The FEP
pieces were placed into the hydrated Petrifilm and incubated for
48 hours at 37°C. After 48 hours, the number of colony-forming
units (CFU) were counted. In total, every intervention was per-
formed at least 3 times.

Determination of the minimal inhibitory and bactericidal
concentration

The minimal inhibitory concentration (MIC) and minimal bacte-
ricidal concentration (MBC) of the different detergents used for
the interventions were determined using serial dilutions in a 96-
well round-bottom plate (Costar, Corning, Corning, NY).
Detergents were 2-fold serially diluted in demineralized water after
which 100 μL bacterial suspension (2 × 105 bacteria/mL) was
added in double-concentrated TSB. The final bacterial concentra-
tion was 1 × 105 bacteria/mL. The 96-well plate was incubated
aerobically for 24 hours at 37°C and was then evaluated for visual
growth. The first well without visual growth was the MIC. From
each well without visual growth, 10 μL bacterial suspension was
cultured on a blood agar plate and incubated aerobically for 24
hours at 37°C. The lowest concentration with no growth on the
blood agar plate was regarded as the MBC. The determinations
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of the MIC and MBC were performed in triplicate with separately
cultured bacteria.

Statistical analysis

All statistics were calculated using GraphPad Prism version 8.3.0
software (GraphPad Software, San Diego, CA) and P < .05 was
considered significant. An unpaired t test was used to compare
the PBS and NDMCF flush during simulated precleaning. The
interventions were compared to the flow chambers without inter-
vention and analyzed using separate unequal variance t tests. To
analyze the results of the viability assay, growth was divided into
3 categories: <30 CFU/cm2, 30–300 CFU/cm2, and >300 CFU/
cm2.19 These categorical data were analyzed by comparing the
viability from flow chambers with and without intervention with
separate Mann-Whitney U tests.

Results

In this study, bacterial desorption in a duodenoscope reprocessing
dynamic flow model was investigated. Both precleaning and the
interventions that directly followed precleaning were evaluated
for their effect on desorption of adhering bacteria (Fig. 1).
Additionally, the viability of the remaining adhering bacteria after
precleaning and the subsequent interventions was assessed.

Effect of precleaning

After 30 minutes of bacterial adhesion, a mean of 1.66 × 106 bac-
teria/cm2 (95% CI, 1.45–1.86 × 106) adhered on FEP (Appendix 2).
Precleaning with NDMCF was compared to precleaning with PBS,
and both showed desorption of adhering bacteria. Precleaning with
NDMCF resulted in a mean desorption of 0.60 × 106 bacteria/cm2

(95% CI, 0.45–0.76 × 106) and PBS in 0.87× 106 bacteria/cm2 (95%
CI, 0.32–1.42 × 106), leading to 64% (95% CI, 55%–73%) and 42%
(95% CI, 5%–78%) reductions, respectively. The difference
between flushing with NDMCF or PBS was not significant.

Effect of precleaning plus interventions

The difference between the mean number of adhering bacteria
prior to precleaning and that of adhering bacteria after the inter-
ventions were compared to no intervention (ie, flow chambers that
were left empty for 2 hours after 30 minutes bacterial adhesion).
The only interventions that caused desorption were those contain-
ing SDS 1%, 2%, or 5%. Only 1% SDS showed significant desorp-
tion (Fig. 2A). PBS without added compounds showed no
desorption of bacteria. Interestingly, no desorption was observed
with NDMCF or NDSA. Microbubbles also showed no bacterial

desorption but, in contrast to other interventions, resulted in clus-
tering of bacteria on the FEP (Fig. 3).

Effect of interventions without precleaning

Bacterial desorption during the 2 hours interventions only was also
analyzed by excluding desorption that had occurred during pre-
cleaning. The mean number of adhering bacteria after precleaning
was 1.07 × 106 bacteria/cm2 (95% CI, 0.83–1.31 × 106). The differ-
ence between the mean numbers of adhering bacteria after pre-
cleaning and after the interventions were compared to that of
flow chambers left empty for 2 hours (Fig. 2B). This analysis
revealed that only interventions using SDS resulted in significant
desorption of the number of adhering bacteria. A 1% SDS solution
resulted in a 91% (95% CI, 84 %–98%) desorption compared to the
mean number of adhering bacteria directly after precleaning. The
SDS 2% and 5% experiments showed similar results, with 88%
(95% CI, 80%–96%) and 98% reductions (95% CI, 96%–99%),
respectively. No concentration-dependent effect of SDS on bacte-
rial desorption was observed.

Effect of interventions on viability of remaining adhering
bacteria

The viability assay of the bacteria adhering on FEP after the inter-
ventions revealed that SDS and NDSA showed significant reduc-
tions of the remaining viable bacteria (Table 1). The MIC and
MBC for NDMCF were 0.4 and 0.7 μg/mL. The MIC and MBC
for NDSA were both 5 μg/mL. The MIC and MBC for SDS were
2.5 and >20 μg/mL.

Discussion

We have described the novel dynamic flow model we used to
model and evaluate an additional transport cleaning step between
precleaning and manual cleaning in the reprocessing procedure.
Different interventions were investigated for efficacy during this
additional transport cleaning step.

A parallel plate flow chamber with an FEP bottom plate was
used to mimic the internal lumen of a duodenoscope. The FEP bot-
tom plate allowed real-time evaluation of the contamination rate
during reprocessing, which is an advantage compared to other
models (Table 2). This novel model for duodenoscope reprocessing
was evaluated using a K. pneumoniae strain that survived standard
reprocessing and led to a duodenoscopy-associated outbreak.17

The interventions demonstrated that 2 hours of flow with an
SDS solution removed adhering bacteria. SDS did not show a con-
centration-dependent effect because interventions using SDS
always reached the detection limit regardless of the concentration

Fig. 1. The current steps of duodenoscope reprocessing.32 Green block: the duodenoscopic procedure; blue blocks: current steps of the reprocessing procedure; orange block:
additional step evaluated in this study.
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used. After treatment with 1% SDS 5 × 104 (95% CI, 1–9 × 104)
bacteria/cm2 remained on the FEP surface, which was 10-fold
lower than an FEP surface without an intervention exposure.
A bactericidal step remains warranted for the remaining bacteria
on the surface.

Rinsing the contaminated duodenoscope during transport from
the procedure room to the reprocessing facility with a 1% SDS sol-
ution would reduce the number of adhering bacteria in the duode-
noscope channel prior to manual cleaning. Application of a device
during the transport of the duodenoscope is feasible; however, a
closed system is needed to avoid leakage and contact with air
because SDS is a strong detergent and will form large amounts
of foam when in contact with air.20

The possible health risks associated with the use of 1% SDS are
limited given that toxicity after ingestion does not exceed the tox-
icity of table salt and SDS is not a carcinogen.21 An SDS concen-
tration of <0.1% can be considered nonirritating to eyes, and
although SDS at a concentration >2% can be irritating to skin,
SDS is widely used as a foaming chemical in cosmetic products
such as toothpaste and shampoo.21,22 Furthermore, duodenoscopes
need to undergo high-level disinfection, which requires rinsing of
the duodenoscope channels with water to remove the toxic chem-
icals used for high-level disinfection. Both application of high-level
disinfection chemicals and rinsing afterward will result in a negli-
gible amount of SDS remaining.21,22

Using SDS as an additional step in reprocessing would be inter-
esting given that almost all reprocessing chemicals focus on their
bactericidal properties and not on their ability to remove bacteria.
Perhaps applying both in the same reprocessing procedure can be
synergistic. Several chemicals used for high-level disinfection, such
as glutaraldehyde and even some formulations with peracetic acid,
can fixate proteins and thereby lead to bacterial accumulation in
duodenoscope channels.23,24 Therefore, removal of debris and bac-
teria during manual cleaning is essential for the effectivity of high-
level disinfection, and SDS could be an excellent addition in this

Fig. 2. Desorption of adhering bacteria during interventions with 2 hours of flow compared with flow chambers left empty for 2 hours. (A) The difference between the mean
number of adhering bacteria prior to precleaning compared to the number of adhering bacteria after an intervention. (B) The difference between the mean number of adhering
bacteria after precleaning compared to the number of adhering bacteria after intervention. The dotted line represents no intervention. *P < .05 was considered significant.

Table 1. Remaining Adhering Viable Bacteria on FEP After the Interventions

Interventions
(2-h flow) No.

<30 CFU/
cm2

30–300 CFU/
cm2

>300 CFU/
cm2

P
Valuea

PBS, % 5 0 20 80 .3571

NDMCF, % 3 0 33 67 .2500

NDSA, % 4 50 25 25 .0140

1% SDS, % 5 0 60 40 .0275

2% SDS, % 4 0 100 0 .0014

5% SDS, % 4 0 100 0 .0014

Microbubbles,
%

3 0 0 100 >.9999

Note. PBS, phosphate-buffered saline; NDMCF, Neodisher Mediclean Forte; NDSA, Neodisher
Septo Active; SDS, sodium dodecyl sulfate.
aThe viability results of the interventions were compared to that of flow chambers left empty
for 2 h. There were ten experiments with flow chambers left empty and all had>300 CFU/cm2

of growth after 2 h. P < .05 was considered significant.

Table 2. Duodenoscope Contamination Model Characteristics

Principal
Component Substratum Advantage Disadvantage References

Pegs PTFE Easy
application

No flow da Costa
Luciano
et al11

da Costa
Luciano
et al12

Tubes PTFE Flow No direct
observation

Alfa et al13

Alfa et al14

Flow
chamber

FEP Flow direct
observation
inside
lumen

Adhesion might be
influenced because
of different
chemical
composition

Bakker
et al15

Kaper
et al16

Note. PTFE, polytetrafluoroethylene; FEP, fluorinated ethylene propylene.
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regard, especially given its ability to disrupt biofilms.25 Further
research will be needed to evaluate the effect of SDS on bacteria
in conjunction with organic debris.

This study confirms that precleaning is essential for desorption
of adhering bacteria, lowering the amount of adhering bacteria by
64%. Therefore, flushing a duodenoscope directly after use remains
an essential part of reprocessing. No added benefit was seen from
using NDMCF compared to PBS, which raises the question of
whether detergents add to the removal of bacteria during preclean-
ing. Application of NDMCF as intervention did not result in addi-
tional removal of adhering bacteria, and NDMCF only has a
bactericidal effect with a concentration >20 times the maximum
advised concentration of 1%.26 NDSA does have a strong bacteri-
cidal effect because it contains 0.15% peracetic acid. Applying
20 g/L NDSA for 15 minutes should be bactericidal, and when
applied for 60 minutes, its effect should even be sporicidal, accord-
ing to the manufacturer.27 Interestingly, when 20 g/L NDSA was
applied in our experiment for 2 hours, viable bacteria could be
recovered in 50% of the samples (Table 1). Furthermore, no signifi-
cant desorption was observed with NDSA, meaning that a high
number of dead bacteria remained in the lumen after application
of NDSA. These dead bacteria could function as a growth medium
for future microorganisms. Microbubbles, as applied in this study,
did not add to the removal of adhering bacteria, in contrast to other
studies that showed reduction of adhering bacteria with microbub-
bles.28,29 Currently, we cannot conclude that microbubbles are
unsuited for bacterial removal in duodenoscopes because micro-
bubble generation can be performed with a broad set of parame-
ters, which was beyond the scope of this study.28–30 An important
factor for desorption of adhering bacteria with microbubbles is
flow rate, which was not evaluated in this study.31

The novel dynamic flow model for evaluation of duodenoscope
contamination and reprocessing showed that precleaning is an
essential part of duodenoscope reprocessing and that an SDS sol-
ution can be used to desorb adhering bacteria, making SDS a
potential valuable application for duodenoscope reprocessing.
The lack of effect by commercially available reprocessing chemicals
is striking and warrants further investigation.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/ash.2022.294
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