

 University of Groningen

Vector Symbolic Finite State Machines in Attractor Neural Networks
Cotteret, Madison; Greatorex, Hugh; Ziegler, Martin; Chicca, Elisabetta

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Early version, also known as pre-print

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Cotteret, M., Greatorex, H., Ziegler, M., & Chicca, E. (2022). Vector Symbolic Finite State Machines in
Attractor Neural Networks. arXiv. http://2212.01196v1

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 15-02-2023

https://research.rug.nl/en/publications/c764d873-f6e7-47e9-8b96-f9f76beccbae
http://2212.01196v1

Vector Symbolic Finite State Machines
in Attractor Neural Networks

Madison Cotteret 1,2,3,†, Hugh Greatorex 2,3, Martin Ziegler 1, and Elisabetta Chicca 2,3

1Micro- and Nanoelectronic Systems (MNES), Technische Universität Ilmenau, Germany
2Bio-Inspired Circuits and Systems (BICS) Lab, Zernike Institute for Advanced Materials, University of Groningen, Netherlands

3Groningen Cognitive Systems and Materials Center (CogniGron), University of Groningen, Netherlands
†Email: m.cotteret@rug.nl

Abstract—Hopfield attractor networks are robust distributed
models of human memory. We propose construction rules such
that an attractor network may implement an arbitrary finite
state machine (FSM), where states and stimuli are represented
by high-dimensional random bipolar vectors, and all state
transitions are enacted by the attractor network’s dynamics.
Numerical simulations show the capacity of the model, in terms
of the maximum size of implementable FSM, to be linear in
the size of the attractor network. We show that the model is
robust to imprecise and noisy weights, and so a prime candidate
for implementation with high-density but unreliable devices.
By endowing attractor networks with the ability to emulate
arbitrary FSMs, we propose a plausible path by which FSMs
may exist as a distributed computational primitive in biological
neural networks.

I. INTRODUCTION

Hopfield attractor networks are robust models of human
memory, as from a simple Hebbian learning rule they display
emergent attractor dynamics which allow for reliable pattern
recall, completion, and correction even in noisy situations
[1–3]. Attractor models have since found widespread use in
neuroscience as a functional and tractable model of human
memory [4–7]. The assumption of these models is that
the network represents different states by different, usually
uncorrelated, global patterns of persistent activity. When the
network is presented with an input that closely resembles
one of the stored states, the network state switches to the
corresponding fixed-point attractor.

This process of switching between discrete attractor states
is thought to be fundamental both to describe biological
neural activity, as well as to model higher cognitive decision
making processes [8–12]. What attractor models currently
lack, however, is the ability to perform state-dependent
computation, a hallmark of human cognition [13–15]. That
is, when the network is presented with an input, the attractor
state to which the network switches ought to be dependent
both upon the input stimulus as well as the state the network
currently inhabits, rather than simply the input.

We thus seek to endow a classical neural attractor model,
the Hopfield network, with the ability to perform state-
dependent switching between attractor states, without re-
sorting to the use of biologically implausible mechanisms,
such as higher-order weight tensors or training via back-
propagation algorithms. The resulting attractor networks will
then be able to robustly emulate any arbitrary Finite State
Machine (FSM), vastly improving their usefulness as a neural
computational primitive.

We achieve this by leaning heavily on the framework of
Vector Symbolic Architectures (VSAs). VSAs treat com-
putation in an entirely distributed manner, by letting sym-
bols be represented by high-dimensional random vectors:
hypervectors [16–18]. When equipped with a few basic
operators for binding and superimposing vectors together,
corresponding often either to element-wise multiplication or
addition respectively, these architectures are able to store
primitives such a sets, sequences, graphs and arbitrary data
bindings, as well as enabling more complex relations, such
as analogical and figurative reasoning [19, 20]. Although
different VSA implementations often have differing represen-
tations and binding operations [21], they all share the need
for an auto-associative cleanup memory, which can recover
a clean version of the most similar stored hypervector, given
a noisy version of itself. We here use the recurrent dynamics
of a Hopfield-like neural attractor network as a state-holding
auto-associative memory [22].

Symbolic FSM states will thus be represented each by
a hypervector and stored within the attractor network as
a fixed-point attractor. Stimuli will also be represented by
hypervectors, which, when input to the attractor network,
will trigger the network dynamics to transition between
the correct attractor states. We make use of common VSA
techniques to construct a weights matrix to acheive these
dynamics, where we use the Hadamard product between
bipolar vectors {−1, 1}N as our binding operation. We thus
claim that attractor-based FSMs may be a plausible biological

1

ar
X

iv
:2

21
2.

01
19

6v
1

 [
cs

.N
E

]
 2

 D
ec

 2
02

2

https://orcid.org/0000-0002-4891-4835
https://orcid.org/0000-0002-3716-3992
https://orcid.org/0000-0002-6891-5747
https://orcid.org/0000-0002-5518-8990

computational primitive insofar as Hopfield networks are.
This represents a computational paradigm that is a depar-

ture from conventional von Neumann architectures, wherein
the separation of memory and computation is a major limiting
factor in current advances in conventional computational
performance (the von Neumann bottleneck [23, 24]). Sim-
ilarly, the high redundancy and lack of reliance on individual
components makes this architecture is fit for implementa-
tion with novel in-memory computing technologies such as
resistive RAM (RRAM) or phase change memory (PCM)
devices, which could perform the network’s matrix-vector-
multiplication (MVM) in a single step [25–27].

II. THEORY

Throughout this paper, symbols will be represented by
high-dimensional randomly generated dense bipolar vectors

x ∈ {−1, 1}N (1)

where the number of dimensions N > 10, 000. Unless
explicitly stated otherwise, any bold lowercase Latin letter
may be assumed to be a new, independently generated
hypervector, with the value Xi at any index i in x generated
according to

IP(Xi = 1) = IP(Xi = −1) =
1

2
(2)

For any two arbitrary hypervectors a and b, we define the
similarity between the two vectors by the normalised inner
product

d(a,b) :=
1

N
aᵀb =

1

N

N∑
i=1

aibi (3)

where the similarity between a vector and itself d(a,a) =
1, and d(a,−a) = −1. Due to the high dimensionality of
the vectors, the similarity between any two unrelated (and so
independently generated) vectors is the mean of an unbiased
random sequence of −1 and 1s

d(a,b) = 0± 1√
N
≈ 0 (4)

which tends to 0 for N → ∞. It is from this result
that we get the requirement of high dimensionality, as it
ensures that the inner product between two random vectors
is approximately 0. We can say that independently generated
vectors are psuedo-orthogonal [20]. For a set of indepen-
dently generated states {xµ}, these results can be summarised
by

d(xµ,±xν) N→∞
= ±δµν (5)

where δµν is the Kronecker delta. Hypervectors may be
combined in a so called binding operation to produce a new
vector that is dissimilar to both its constituents. We here
choose the Hadamard product, or element-wise multiplica-
tion, as our binding operation, denoted ”◦”.

(a ◦ b)i = ai · bi (6)

The statement that the product of two vectors is dissimilar
to its constituents is written as

d(a ◦ b,a) ≈ 0

d(a ◦ b,b) ≈ 0
(7)

where we implicitly assume that N is large enough that
we can ignore the O(1√

N
) noise terms.

If we wish to recover similarity between a ◦ b and a,
we can mask the system using b, such that only dimensions
where bi = 1 are remaining. Then, we have

d
(
a ◦ b,a ◦H(b)

)
=

1

N

∑
1≤i≤N

aibiaiH(bi)

=
1

N

[∑
1≤i≤N
bi=1

a2iH(1)−
∑

1≤i≤N
bi=−1

a2iH(−1)

]

=
1

N

∑
1≤i≤N
bi=1

1

≈ 1

2

(8)

where we have used the Heaviside step function H(·)
defined by

(
H(b)

)
i
= H(bi) =

{
1 if bi > 0

0 otherwise
(9)

to create a multiplicative mask H(b), setting to 0 all
dimensions where bi = −1. In the second line, we have
split the summation over all dimensions into summations
over dimensions where bi = 1 and −1 respectively. The final
similarity of 1

2 is a consequence of approximately half of all
values in a any vector being +1 (Equation 2).

We choose this as a mechanism for recovering similarity,
rather than simply applying another Hadamard multiplication
b ◦, as it is an operation that can easily and robustly be
realised in a neural attractor network with asynchronous
updates, as discussed later.

2

A. Hopfield networks

A Hopfield network is a dynamical system defined by its
internal state vector z and fixed recurrent weights matrix W,
with a state update rule given by

zt+1 = sgn
(
Wzt

)
(10)

where zt is the network state at discrete time step t,
and sgn(·) is an element-wise sign function, with zeroes
resolving1 to +1.

From standard Hopfield theory, we know that if we want
to store P uncorrelated patterns {xν}Pν=1 within a Hopfield
network, we can construct the weights matrix W according
to

W =

P∑
patterns ν

xνxνᵀ (11)

then as long as not too many patterns are stored (P <
0.14N [1]), the patterns will become fixed-point attractors of
the network’s dynamics, and the network can perform robust
pattern completion and correction.

B. Finite State Machines

A Finite State Machine (FSM) M is a discrete system with
a finite state set ZFSM = {ζ1, ζ2, . . . , ζNZ

}, a finite input
stimulus set SFSM = {σ1, σ2, . . . , σNS

}, and finite output
response set RFSM = {ρ1, ρ2, . . . , ρNR

}. M is then fully
defined with the addition of its two characterising functions
F (·) and G(·)

zt+1 = F (zt, st)

rt+1 = G(zt, st)
(12)

where zt ∈ ZFSM, rt ∈ RFSM and st ∈ SFSM are the
state, output and stimulus at time step t respectively. F (·)
thus provides the state update rule, while G(·) provides the
output for any state-stimulus pair.
M can thus be represented by a directed graph, where

each node represents a different state ζ, and every edge has
a stimulus σ and optional output ρ associated with it.

III. ATTRACTOR NETWORK CONSTRUCTION

We now show how a Hopfield-like attractor network may
be constructed to emulate an arbitrary FSM, where the
states within the FSM are now attractors within the attractor
network, and the stimuli for transitions between node states
in the FSM trigger all corresponding transitions between
attractors. More specifically, for every node ζ ∈ ZFSM, an

1Though this arbitrary choice may seem to incur a bias to a particular
state, in practise the postsynaptic sum very rarely equals 0.

associated hypervector x is randomly generated and stored
as an attractor within the attractor network. We use ZAN
to denote the set of nodal hypervectors stored as attractors
within the attractor network. Every unique stimulus σ ∈ SFSM
in the FSM is also now associated with a randomly generated
hypervector s ∈ SAN, where SAN is the set of hypervectors
associated with a unique stimulus. For the FSM edge out-
puts, a corresponding set of output hypervectors is similarly
generated. These correspondences are summarised in Table I.

FSM (Symbols) Attractor Net. (Vectors)
Nodes ζ ∈ ZFSM Attractors x ∈ ZAN
Input stimuli σ ∈ SFSM Input stimuli s ∈ SAN
Outputs ρ ∈ RFSM Output vectors r ∈ RAN

TABLE I: A comparison of the notation used to represent
states, inputs and outputs in the FSM picture, and the
corresponding hypervectors used to represent the FSM within
the attractor network.

A. Constructing transitions
We consider the general situation that we want to initiate

a transition from source attractor state x ∈ ZAN to target
attractor state y ∈ ZAN, by imposing some stimulus state
s ∈ SAN as input onto the network.

x
s−→ y (13)

Crucial to the functioning of the network transitions is how
we model input to the network. We choose to model input
to the network as a masking of the network state, such that
all dimensions where the stimulus s is -1 are forced to be
0. This may be likened to saying we are considering input
to the network that selectively silences half of all neurons
according to the stimulus vector. While a stimulus vector s
is being imposed upon the network, the modified state update
rule is thus

zt+1 = sgn
(
W(zt ◦H(s))

)
(14)

where the Hadamard multiplication of the network state
with H(s) enacts the masking operation, and the weights
matrix W is constructed such that zt+1 will resemble the
desired target state.

For every edge in the FSM, we generate an ”edge state”
e, which is also stored as an attractor within the network.
Each edge will use this e state as a ”halfway-house”, en
route to y. Additionally, each unique edge label will now
have two stimulus hypervectors associated with it, sa and sb
which trigger transitions from source state x to edge state
e and edge state e to target state y respectively. A general
transition now looks like

x
sa−→ e

sb−→ y (15)

3

where x,y ∈ ZAN correspond to nodal states in the FSM
but e exists purely to facilitate the transition. The weights
matrix is constructed as

W =
1

N

NZ∑
nodes ν

xνxνᵀ︸ ︷︷ ︸
Hopfield

attractor terms

+
1

N

NE∑
edges η

Eη︸ ︷︷ ︸
Asymmetric

transition terms

(16)

where xν ∈ ZAN is the state corresponding to the ν’th node
in the graph to be implemented, NZ and NE are the number
of nodes and edges respectively, and Eη is the addition to
the weights matrix required to implement an individual edge,
given by

E(η) = eeᵀ

+H(sa) ◦ (e− x)(x ◦ sa)ᵀ

+H(sb) ◦ (y − e)(e ◦ sb)ᵀ
(17)

where x, e and y are the source, edge, and target states of
the edge η respectively, and sa and sb are the input stimulus
vectors associated with this edge’s label. The edge index η
has been dropped for brevity. The eeᵀ term is the attractor
we have introduced as a halfway-house for the transition. The
second set of terms enacts the x

sa−→ e transition, by giving
a nonzero inner product with the network state only when
the network is in state x, and the network is being masked
by the input sa. This allows terms to be stored in W which
are effectively obfuscated, not affecting network dynamics
considerably, until a specific stimulus is applied as a mask
to the network. Likewise, the third set of terms enacts the
e

sb−→ y transition.
In the absence of input, the network functions like a

standard Hopfield attractor network,

Wx ≈ x± σn ∀ x ∈ ZAN (18)

where n ∈ RN is a standard normally distributed random
vector, and

σ =

√
NZ + 3NE

N
(19)

is the magnitude of noise due to the undesired finite inner
product with other stored terms (see Appendix). Thus as long
as the magnitude of the noise is not too large, x will be a
solution of z = sgn(Wz) and so a fixed-point attractor of
the dynamics.

When a valid stimulus is presented as input to the net-
work however, masking the network state, the previously
obfuscated asymmetric transition terms become significant
and dominate the dynamics. Assuming there is a stored
transition term E corresponding to a valid edge with vectors

x, e,y, sa, sb having the same meaning as in Equation 17,
we have

W
(
x ◦H(sa)

) ∝∼ H
(
sa
)
◦ e+H(−sa) ◦ x±

√
2σn (20)

where ∝∼ implies approximate proportionality. The second
set of terms can be ignored, as they project only to neurons
which are currently being masked. Thus the only significant
term is that containing the edge state e, which consequently
drives the network to the e state, enacting the x

sa−→ e
transition. Since the state e is also stored as an attractor
within the network, we have

W
(
e ◦H(sa)

) ∝∼ e±
√
2σn (21)

and

We ≈ e± σn (22)

thus the edge states e are also fixed-point attractors of the
network dynamics. To complete the transition from state x
to y, the second stimulus sb is applied, giving

W
(
e ◦H(sb)

) ∝∼ H(sb) ◦ y +H(−sb) ◦ e±
√
2σn (23)

which drives the network state towards y ∈ ZAN, the
desired target attractor state. By consecutive application of
the inputs sa and sb, the transition terms Eη stored in W
have thus caused the network to controllably transition from
the source to target attractor states. Transition terms Eη may
be iteratively added to W to achieve any arbitrary transition
between attractor states, and so any arbitrary FSM may be
implemented within a large enough attractor network.

Note that we have here ignored that the diagonal of W is
set to 0 (no self connections), but this does not significantly
affect these results.

B. Edge outputs
Until now we have not mentioned the other critical compo-

nent of FSMs: the output associated with every edge. We have
separated the construction of transitions and edge outputs for
clarity, since the two may be effectively decoupled. Much
like for the nodes and edges in the FSM to be implemented,
for every unique FSM output ρ ∈ RFSM, we generate a
corresponding hypervector r ∈ RAN, where RAN is the set
of all output vectors. Different however, is that we let these
be sparse ternary vectors r ∈ {−1, 0, 1}N with coding level
fr := 1

N

∑N
i |ri|, the fraction of nonzero elements. These

output states are then embedded in the edge state attractors,
altering the eeᵀ terms in each E term according to

eeᵀ → ere
T :=

[
e ◦
(
1−H(r ◦ r)

)
+ r
]
eᵀ (24)

4

where er is here defined and 1 is a vector of all ones. As a
result of this modification, the edge states e themselves will
no longer be exact attractors of the space. The composite
state er will however be stable, in which the presence of r
can be easily detected (er ·r = Nfr). This has been achieved
without incurring any similarity and thus interference be-
tween attractors, which would otherwise alter the dynamics
of the previously described transitions. A full transition term
E, including its output, is thus given by

E(η) =
[
e ◦
(
1−H(r ◦ r)

)
+ r
]
eᵀ

+H(sa) ◦ (e− x)(x ◦ sa)ᵀ

+H(sb) ◦ (y − e)(e ◦ sb)ᵀ
(25)

which combined with the network state masking operation
is solely responsible for storing the FSM connectivity and
enabling the desired inter-attractor transition dynamics.

IV. RESULTS

A. FSM Emulation

To show the generality of FSM construction, we chose
to implement a directed graph representing the relation-
ships between gods in ancient Greek mythology, due to
the graph’s dense connectivity. The graph and thus FSM
to be implemented is shown in Figure 1. From the graph
it is clear that a state machine representing the graph must
explicitly be capable of state-dependent transitions, e.g. the
input ”overthrown by” must result in a transition to state
”Kronos” when in state ”Uranus”, but to state ”Zeus” when
in state ”Kronos”. To construct W, the necessary random hy-
pervectors are first generated. For every node state ζ ∈ ZFSM
within the FSM (e.g. ”Zeus”, ”Kronos”) a random bipolar
vector x is generated. For every unique edge label σ ∈ SFSM
(e.g. ”overthrown by”, ”father is”) a pair of random stimulus
hypervectors sa and sb is generated. Similarly, sparse ternary
output vectors r are also generated. The weights matrix W
is then iteratively constructed as per Equations 16 and 25,
with a new hypervector e also being generated for every
edge. The matrix generated from this procedure we denote
Wideal. For all of the following results, the attractor network
is first initialised to be in a certain attractor state, in this case,
”Hades”. The network is then allowed to freely evolve for
10 time steps (chosen arbitrarily) as per Equation 10, with
every neuron being updated simultaneously on every time
step. During this period, it is desired that the network state
zt remains in the attractor state in which it was initialised. An
input stimulus sa is then presented to the network for 10 time
steps, during which time the network state is masked by the
stimulus vector, and the network evolves synchronously ac-
cording to Equation 14. If the stimulus corresponds to a valid

edge in the FSM, the network state zt should then be driven
towards the correct edge state attractor e. After these 10 time
steps, the second stimulus vector sb for a particular input
is presented for 10 time steps. Again, the network evolves
according to Equation 14, and the network should be driven
towards the target state attractor y, completing the transition.
This process is repeated every 30 time steps, causing the
network state zt to travel between attractor states x ∈ ZAN,
corresponding to a valid walk between states ζ ∈ ZFSM in the
represented FSM. To view the resulting network dynamics,
the similarity between the network state zt and the edge
and node states is calculated as per Equation 3, such that a
similarity of 1 between zt and some attractor state xν implies
zt = xν and thus that the network is inhabiting that attractor.
The similarity between the network state zt and the outputs
states r ∈ RAN is also calculated, but due to the output
vectors being sparse, the maximum value that the similarity
can take is d(z, r) = fr, which would be interpreted as that
output symbol being present.

An attractor network performing a walk is shown in
Figure 2, with parameters N = 10, 000, Nfr = 200, NZ =
8, and NE = 16. This corresponds to the network having a
per-neuron noise (the finite size effect resulting from random
hypervectors having a nonzero similarity to each-other) of
σ ≈ 0.07, calculated via Equation 19. The magnitude of
the noise is thus small compared with the desired signal of
magnitude 1 (Equation 18), and so we are far away from
reaching the memory capacity of the network. The network
performs the walk as intended, transitioning between the
correct nodal attractor states and corresponding edge states
with their associated outputs. The specific sequence of inputs
was chosen to show the generality of implementable state
transitions. First, there is the explicit state dependence in the
repeated input of ”father is, father is”. Second, it contains
an input stimulus that does not correspond to a valid edge for
the currently inhabited state (”Zeus overthrown by”), which
should not cause a transition. Third, it contains bidirectional
edges (”consort is”), whose repeated application causes the
network to flip between two states (between ”Kronos” and
”Rhea”). And fourthly self-connections, whose target states
and source states are identical. Since the network traverses
all these edges as expected, we do not expect the precise
structure of an FSM’s graph to limit whether or not it can
be emulated by the attractor network.

B. Network robustness

One of the advantages of attractor neural networks that
make them suitable as plausible biological models is their ro-
bustness to imperfect weights [2]. That is, individual synapses
may have very few bits of precision or become damaged, yet
the relevant brain region must still be able to carry out its

5

Gaia

Rhea

Uranus

Kronos

Hades Zeus

m
ot

he
r_

is

fa
th

er
_i

s

m
ot

he
r_

is

fa
th

er
_i

s

overthrow
n_by

overthrow
n_by

mother_is

consort_is
consort_is

mother_is

mother_isfather_is

father_is

consort_is

consort_isty

pe

ty

pe

ty

pe

type

type

type

Fig. 1: An example FSM which we implement within the attractor network. Each node within the graph (e.g. ”Zeus”) is
represented by a new hypervector xµ and stored as an attractor within the network. Every edge is labelled by its stimulus
(e.g. ”father is”), for which corresponding hypervectors sa and sb are also generated. When a stimulus’ hypervector is input
to the network, it should allow all corresponding attractor transitions to take place. Each edge may also have an associated
output symbol, where we here choose the edges labelled ”type” to output the generation of the god {”Primordial”, ”Titans”,
”Olympians”}. This graph was chosen as it displays the generality of the embedding: it contains cycles, loops, bidirectional
edges and state-dependent transitions.

functional task. To this end, we subject the network presented
here to similar non-idealities, to check that the network
retains the feature of global stability and robustness despite
being implemented with low-precision and noisy weights. In
the first of these tests, the ideal weights matrix Wideal was
binarised and then additive noise was applied, via

W noisy
ij = sgn

(
W ideal
ij) + σnoise · χij (26)

where χij ∈ R are independently sampled standard Gaus-
sian variables, sampled once during matrix construction, and
σnoise ∈ R is a scaling factor on the strength of noise being
imposed. The sgn(·) function forces the weights to be bipolar,
emulating that the synapses may have only 1 bit of precision,
while the χij random variables act as a smearing on the
weight state, emulating that the two weight states have a
finite width. A σnoise value of 2 thus corresponds to the
magnitude of the noise being equal to that of the signal
(whether W ideal

ij ≥ 0), and so, for example, for a damaged
weight value of W noisy

ij = +1 there is a 38% chance that the
pre-damaged weight W ideal

ij = −1. This level of degradation
is far worse than is expected even from novel binary memory
devices [25], and presumably also for biology. We used
the same set of hypervectors and sequence of inputs as in
Figure 2, but this time using the degraded weights matrix
Wnoisy, to test the network’s robustness. The results are
shown in Figure 3 for weight degradation values of σnoise = 2

and σnoise = 5. We see that for σnoise = 2 the attractor
network performs the walk just as well as in Figure 2, which
used the ideal weights matrix, despite the fact that here the
binary weight distributions overlap each-other considerably.
Furthermore, we have that d(zt,xν) ≈ 1 where xν is the
attractor that the network should be inhabiting at any time,
indicating that the attractor stability and recall accuracy is
unaffected by the non-idealities. For σnoise = 5, a scenario
where the realised weight carries very little information about
the ideal weight’s value, we see that the network nonetheless
continues to function, performing the correct walk between
attractor states. However, there is a degradation in the recall
of stored states, with the network state no longer converging
to a similarity of 1 with the stored attractor states. For greater
values of σnoise, the network ceases to perform the correct
walk, and indeed does not converge on any stored attractor
state (not shown).

A further test of robustness was to restrict the weights
matrix to be sparse, as a dense all-to-all connectivity may
not be feasible in biology, where synaptic connections are
spatially constrained and have an associated chemical cost.
Similar to the previous test, the sparse weights matrix was
generated via

W sparse
ij = sgn(W ideal

ij) ·H(|Wij | − θ) (27)

where θ is a threshold set such that Wsparse ∈

6

0

1

No
de

 st
at

e
sim

ila
rit

y
d(

z,
x) Hades Kronos Uranus Uranus Uranus Kronos Kronos Rhea Kronos

sa sb

father_is
sa sb

father_is
sa sb

father_is
sa sb

type
sa sb

overthrown_by
sa sb

type
sa sb

consort_is
sa sb

consort_isa) Input

b)

0

1

Ed
ge

 st
at

e
sim

ila
rit

y
d(

z,
e)

from
Hades
to
Kronos

from
Kronos
to
Uranus

from
Uranus
to
Uranus

from
Uranus
to
Kronos

from
Kronos
to
Kronos

from
Kronos
to
Rhea

from
Rhea
to
Kronos

c)

0 30 60 90 120 150 180 210 240
Time step t

0

fr

Ou
tp

ut
sim

ila
rit

y
d(

z,
r) Primordial Titan

d)

Fig. 2: An attractor network transitioning through attractor states in a state-dependent manner, as a sequence of input stimuli
is presented to the network. a) The input stimuli to the network, where for each unique edge label (e.g. ”father is”) in the
FSM to be implemented (Figure 1) a pair of hypervectors sa and sb have been generated. No stimulus, a stimulus sa, then
a stimulus sb are input for 10 time steps each in sequence. b) & c) The similarity of the network state zt to stored node
states x ∈ ZAN and stored edge states e respectively, computed via the inner product (Equation 3). d) The similarity of
the network state zt to the sparse output states r ∈ RAN. All similarities have been labelled with the state they represent
and the colours are purely illustrative. The state transitions shown here are explicitly state dependent, as can be seen from
the repeated input of ”father is”, which results in a transition to state ”Kronos” when in ”Hades”, but to ”Uranus” when
in ”Kronos”. Additionally, the network is unaffected by nonsense input that does not correspond to a stored edge, as the
network remains in the attractor ”Uranus” when presented with the input ”father is”.

{−1, 0, 1}N×N has the desired sparsity. Through this pro-
cedure, only the most extreme weight values are allowed to
be nonzero. Since the terms inside Wideal are symmetrically
distributed around 0, there are approximately as many +1
entries in Wsparse as -1s. Using the same hypervectors and
sequence of inputs as before, an attractor network performing
a walk using the sparse weights matrix Wsparse is shown in
Figure 4, with sparsities of 98% and 99%. We see that for the
98% sparse case, there is again very little difference with the
ideal case shown in Figure 2, with the network still having
a similarity of d(zt,x) ≈ 1 with stored attractor states, and
performing the correct walk. When the sparsity is pushed
further to 99% however, we see that despite the network
performing the correct walk, the attractor states are again

slightly degraded, with the network converging on states with
d(zt,x

ν) < 1 with stored attractor states xν . For greater
sparsities, the network ceases to perform the correct walk,
and again does not converge on any stored attractor state
(not shown).

These two tests thus highlight the extreme robustness of
the model to imprecise and unreliable weights. The network
may be implemented with 1 bit precision weights, whose
weight distributions are entirely overlapping, or set 98%
of the weights to 0, and still continue to function without
any discernible loss in performance. The extent to which
the weights matrix may be degraded and the network still
remain stable is of course a function not only of the level
of degradation, but also of the size of the network N , as

7

De
ns

ity

noise = 2

a)

0

1
No

de
 st

at
e

sim
ila

rit
y

d(
z,

x) Hades Kronos Uranus Uranus Uranus Kronos Kronos Rhea Kronos

sa sb

father_is
sa sb

father_is
sa sb

father_is
sa sb

type
sa sb

overthrown_by
sa sb

type
sa sb

consort_is
sa sb

consort_is

b)

5 0 5
Weight Wnoisy

ij

De
ns

ity

noise = 5

c)
W ideal

ij 0
W ideal

ij < 0

0 30 60 90 120 150 180 210 240
Time step t

0

1

No
de

 st
at

e
sim

ila
rit

y
d(

z,
x)

Hades Kronos Uranus Uranus Uranus Kronos Kronos Rhea Kronos

d)

Fig. 3: The attractor network performing a walk as in Figure 2, but using the damaged weights matrix Wnoisy, whose
entries have been binarised and then independent additive noise has been applied, as per Equation 16. a) The distribution of
weights after they have been thusly damaged with noise of magnitude σnoise = 2. Weights whose ideal values were positive
or negative have been plotted separately. b) The similarity of the network state zt to stored node states, with the network
using the weights from a). Shown above is the sequence of inputs given to the network, identical to in Figure 2. c) The
distribution of weights damaged with σnoise = 5. d) The similarity of the network state to stored node states, but with the
network using the damaged weights from c). The network transitions are thus highly robust to unreliable weights, and show
a gradual degradation in performance, even when the network’s weights are majorly imprecise and noisy. For both b) and
d) the edge state and output similarity plots have been omitted for visual clarity.

well as the the number of states NZ and edges NE stored
within the network. For conventional Hopfield models with
Hebbian learning, these two factors are normally theoreti-
cally treated alike, as contributing an effective noise to the
postsynaptic sum as in Equation 19, and so the magnitude
of withstandable synaptic noise increases with increasing N
[2, 28]. Although a thorough mathematical investigation into
the scaling of weight degradation limits is justified, as a first
result we have here given numerical data showing stability
even in the most extreme cases of non-ideal weights, and
expect that any implementation of the network with novel
devices would be far away from such extremities.

C. Asynchronous updates

Another useful property of Hopfield networks is the ability
to robustly function even with asynchronously updating neu-
rons, wherein not every neuron experiences a simultaneous
state update. This property is especially important for any ar-
chitecture claiming to be biologically plausible, as biological
neurons update asynchronously and largely independent of
each-other, without the the need for global clock signals. To
this end, we ran a similar experiment to that in Figure 2,
using the undamaged weights matrix Wideal, but with an
asynchronous neuron update rule, wherein on each time step
every neuron has only a 10% chance of updating its state.

The remaining 90% of the time, the neuron retains its state
from the previous time step, regardless of its postsynaptic
sum. There is thus no fixed order of neuron updates, and
indeed it is not even a certainty that a neuron will update
in any finite time. To account for the slower dynamics of
the network state, the time for which inputs were presented
to the network, as well as the periods without any input,
was increased from 10 to 40 time steps. To be able to easily
view the gradual state transition, three of the attractor states
were chosen to be columns of the N -dimensional Hadamard
matrix, rather than being randomly generated. The results
are shown in Figure 5, for a shorter sequence of stimulus
inputs. We see that the network functions as intended, but
with the network now converging on the correct attractors in
a finite number of updates rather than in just one. The model
proposed here is thus not reliant on synchronous dynamics,
which is important not only for biological plausibility, but
also when considering possible implementations on asyn-
chronous neuromorphic hardware.

D. Storage capacity

It is well known that the storage capacity of a Hopfield
network, the number of patterns P that can be stored and
reliably retrieved, is proportional to the size of the network,
via P < 0.14N [1, 2]. When one tries to store more than P

8

0

1

No
de

 st
at

e
sim

ila
rit

y
d(

z,
x) Hades Kronos Uranus Uranus Uranus Kronos Kronos Rhea Kronos

sa sb

father_is
sa sb

father_is
sa sb

father_is
sa sb

type
sa sb

overthrown_by
sa sb

type
sa sb

consort_is
sa sb

consort_is

a)

0 30 60 90 120 150 180 210 240
Time step t

0

1

No
de

 st
at

e
sim

ila
rit

y
d(

z,
x)

Hades Kronos Uranus Uranus Uranus Kronos Kronos Rhea Kronos

b)

Fig. 4: The attractor network performing a walk as in Figure 2, but using a sparse ternary weights matrix Wsparse ∈
{−1, 0, 1}N×N , generated via Equation 27. The weights matrices for a) and b) are 98% and 99% sparse respectively.
Shown are the similarities of the network state zt with stored node states xν ∈ ZAN, with the stimulus input hypervector to
the network at any time shown above. We see that even when 98% of the entries in W are zeroes, the network continues to
function with negligible loss in stability, as the correct walk between attractor states is performed, and the network converges
on stored attractors with similarity d(zt,x) ≈ 1. At 99% sparsity there is a degradation in the accuracy of stored attractors,
with the network converging on states with d(zt,x) < 1, but with the correct walk still being performed. Beyond 99%
sparsity the attractor dynamics break down (not shown). Thus although requiring a large number of neurons N to enforce
state pseudo-orthogonality, the network requires far fewer than N2 nonzero weights to function robustly.

attractors within the network, the so-called memory blackout
occurs, after which no pattern can be retrieved. We thus
perform numerical simulations for a large range of attractor
network and FSM sizes, to see if an analogous relationship
exists. Said otherwise, for an attractor network of finite size
N , what sizes of FSM can the network successfully emulate?

For a given N , number of FSM nodes NZ and edges
NE , a random FSM was generated and an attractor network
constructed to represent it as described in Section III. To
ensure a reasonable FSM was generated, the FSM’s graph
was first generated to have all nodes connected in a sequential
ring structure, i.e. every state ζν ∈ ZFSM connects to
ζν+1 mod NZ . The remaining edges between nodes were
selected at random, until the desired number of edges NE
was reached. For each edge an associated stimulus is then
required. Although one option would be to allocate as few
unique stimuli as possible, so that the state transitions are
maximally state dependent, this results in some advantageous
cancellation effects between the Eη transition terms and
the stored attractors xνxνᵀ. To instead probe a worst-case
scenario, each edge was assigned a unique stimulus.

With the FSM now generated, an attractor network with N
neurons was constructed as previously described. An initial

attractor state was chosen at random, and then a random valid
walk between states was chosen to be performed (chosen
arbitrarily to be of length 6, corresponding to each run taking
180 time steps). The corresponding sequence of stimuli was
input to the attractor network via the same procedure as in
Figure 2, each masking the network state. Each run was then
evaluated to have either passed or failed, with a pass meaning
that the network state inhabited the correct attractor state
with overlap d(zt,xν) > 0.75 in the middle of all intervals
when it should be in a certain node attractor state. A pass
thus corresponds to the network performing the correct walk
between attractor states. The results are shown in Figure 6.
We see that for a given N , there is a linear relationship
between the the number of nodes NZ and number of edges
NE in the FSM that can be implemented before failure.
That this trade-off exists is not surprising, since both con-
tribute additively to the SNR within the attractor network
(Equation 19). For each N , a linear Support Vector Machine
(SVM) was fitted to the data, to find the separating boundary
at which failure and success of the walk are approximately
equiprobable. The boundary is given by NZ+βNE = c(N),
where β represents the relative cost of adding nodes and
edges, and c(N) is an offset. For all of the fitted boundaries,

9

0

1

No
de

 st
at

e
sim

ila
rit

y
d(

z,
x) Hades Kronos Uranus

sa sb

father_is
sa sb

father_is

a)

0 40 80 120 160 200 240
Time step t

0

10

20

Ne
ur

on
 in

de
x i

b)

(zt)i = + 1
(zt)i = 1

Fig. 5: An attractor network performing a shorter walk than in Figure 2, but where neurons are updated asynchronously, with
each neuron having a 10% chance of updating on any time step. a) The similarity of the network state zt to stored attractor
states, with the input stimuli to the network shown above. b) The evolution of a subset of neurons within the attractor
network, where for visual clarity, three nodal states shown have hypervectors taken from columns of the N -dimensional
Hadamard matrix, rather than being randomly generated. The network functions largely the same as in the synchronous case,
but with transitions between states now taking a finite number of time steps to complete. The model is thus not dependent
on the precise timing of neuron updates, and should function robustly in asynchronous systems where timing is unreliable.

the value of β was found to be approximately constant,
with β = 2.4 ± 0.1, and so is assumed to be independent
of N . For every value of N , we define the capacity C to
be the maximum size of FSM which can be implemented
before failure, for which NE = NZ . The capacity C is then
given by C(N) = c(N)

1+β , and is also plotted in Figure 6. A
linear fit reveals an approximate proportionality relationship
of C(N) ≈ 0.025N . In all, the boundary which limits the
size of FSM which can be emulated is then given by

NZ + 2.4NE < 0.085N (28)

It is expected that additional edges consume more of the
network’s storage capacity than additional nodes, since for
every edge, 5 additional terms are added to W (Equation 25),
contributing 3× as much cross-talk noise as adding a node
would (Equation 19). We can compare this storage capac-
ity relation with that of the standard Hopfield model, by
considering the case NE = 0, i.e. there are no transition
terms in the network, and so the network is identical to a
standard Hopfield network. In this case, our failure boundary
would become NZ < 0.085N , in comparison to Hopfield’s
P < 0.14N . Although this may seem like a drastic reduction
in memory capacity, we must remember that as a result of
input stimuli applying a masking operation to our network,

the actual size of the network during these periods is actually
N ′ := 1

2N . In this case, the failure boundary can be rewritten
as NZ < 0.17N ′, which is more in keeping with the Hopfield
estimate2.

V. DISCUSSION

A. Hardware implementability

Since the network described in this paper differs very little
from the conventional Hopfield description, having changed
only the prescription for the generation of the weights matrix
and the specific way that input is modelled, we can lean
heavily on previous works concerning VLSI implementations
of Hopfield networks [29–31].

The main difficulty associated with an implementation
would be the size requirements, requiring a high dimensional-
ity N to ensure pseudo-orthogonality of randomly generated
hypervectors. Although we may need N > 104 neurons, we
have shown this does not necessarily mean we need 108

synapses, as the network still functions when the weights
matrix is sparse (Figure 4). Despite having shown the robust
functioning of the network only in the two cases of sparse

2Although it might seem we are claiming that the network implemented
here has a greater storage capacity than standard Hopfield networks, our
boundary at 0.17N is for equiprobable success and failure, while the 0.14N
figure is given for overwhelmingly likely success.

10

5 105 205 305 405 505 605 705
Nodes NZ

5

105

205

305

405

505

605

705

N
E

N
Z

a)
N = 20,000
N = 15,000
N = 12,500
N = 10,000
N = 7,500
N = 5,000
N = 2,500
N = 1,000

0 10,000 20,000
Attractor network size N

0

100

200

300

400

500

M
ax

im
um

 F
SM

 si
ze

 C

b)

Linear fit
Data

Fig. 6: The capacity of the attractor network for varying size N , in terms of the size of FSM that can be emulated before
failure. For a given N , a random FSM was generated with number of nodes NZ and number of edges NE . An attractor
network was then constructed as described in Section III, and a sequence of stimuli input to the network that should trigger
a specific walk between attractor states. a) Every coloured square is a successful walk, with no unique (NZ , NE , N) triplet
being sampled more than once, and lower-N squares occlude higher-N squares. Since only graphs with at least as many
edges as nodes were sampled, NE −NZ is given on the y-axis rather than NE . The overlain black lines are the SVM-fitted
decision boundaries, distinguishing between values that succeeded and values that failed. b) The capacity C for varying
Hopfield network sizes N , where C is defined to be the maximum size of of FSM which can be implemented before failure,
for which NE = NZ . A linear fit is overlain, and shows a linear relationship in the capacity C in terms of N over the
range explored. Assuming that the gradients of the linear fit in a) are equal, the boundary at which failure and success are
equiprobable is given by NZ + 2.4NE = 0.085N .

ternary weights and dense noisy weights, we expect there to
be a trade-off between the amount of each non-ideality that
the network can withstand before failure. That is, an attractor
network with dense noisy weights may withstand a greater
degree of noise before failure than a network with sparse
noisy weights.

An efficient and high-density implementation of a dense
weights matrix may however be enabled by novel memris-
tive crossbar technologies, which execute the dense matrix-
vector-multiplication (MVM) step required in the state update
rule in one operation [25–27]. Such devices are already of
great interest due to their immediate application in image pro-
cessing and deep learning acceleration, and hybrid CMOS-
memristor hardware implementations have thus already been
pursued for their usefulness as an associative memory [32–
34], as well as for more direct FSM implementations [35,
36] using memristive ternary content addressable memory
(TCAM) cells. Since we have shown that individual weights
may be bistable, incredibly unreliable and noisy without
incurring a significant loss to performance, then a large
enough crossbar would be a highly suitable platform on
which to implement the network presented here.

Since the additions to the weights matrix for each state

and transition are composed purely of outer products, fully
parallel one-shot in-memory online learning of the weights
matrix may be achievable. As long as the updates in the mem-
ristors’ conductances are sufficiently linear and symmetric,
then attractors and transitions may be learned in one-shot
by specifying the two vectors at the crossbar’s inputs and
outputs [37, 38].

B. Relation to other architectures

While there is a large body of work concerning the
equivalence between RNNs and FSMs, their implementations
broadly fall into a few categories. There are those that require
iterative gradient descent methods to mimic an FSM [39–41],
which makes them difficult to train for large FSMs, and
improbable for use in biology. There are those that require
creating a new FSM with an explicitly expanded state set,
Z ′ := Z × S, such that there is a new state for every old
state-stimulus pair [42, 43], which is unfavourable due to
the the explosion of (usually one-hot) states needing to be
represented, as well as the difficulty of adding new states
or stimuli iteratively. There are those that require higher-
order weight tensors in order to explicitly provide a weight
entry for every unique state-stimulus pair [44–46]. As well

11

as being non-distributed, the weight tensors require synapses
to connect between more than two neurons, which is difficult
to implement and non-biological [47]. In [48] transitions are
triggered by adiabatically modulating a global inhibition pa-
rameter, such that the network may transition between similar
stored patterns. Lacking however is a method to construct a
network to perform arbitrary, controllable transitions between
states. In [49] an in-depth analysis of small populations
of rate-based neurons is conducted, wherein synapses with
short-term synaptic depression enable a rich behaviour of
itinerancy between attractor states, but does not scale to large
systems and arbitrary stored memories.

Most closely resembling our approach, however, are earlier
works concerned with the related task of creating a sequence
of transitions between attractor states in Hopfield-like neural
networks. The majority of these efforts rely upon the use of
synaptic delays, such that the postsynaptic sum on a time
step t depends, for example, also on the network state at
time t − 10, rather than just t − 1. These delay synapses
thus allow attractor cross-terms of the form xν+1xνᵀ to
become influential only after the network has inhabited an
attractor state for a certain amount of time, triggering a
walk between attractor states [50, 51]. This then also allowed
for the construction of networks with state-dependent input-
triggered transitions [52–54]. Similar networks were shown
to function without the need for synaptic delays, but require
fine tuning of network parameters and suffer from extremely
low storage capacity [2, 55]. In any case, the need for
synaptic delay elements represents a large requirement on any
substrate which might implement such a network, and indeed
are problematic to implement in neuromorphic systems [56].

State-dependent computation in spiking neural networks
was realised in [57] and [58], where they used population
attractor dynamics to achieve robust state representations via
sustained spiking activity. However, these approaches differ
from this work in that the state representations are still
fundamentally population-based rather than distributed, and
so pose difficulties such as the requirement of finding a new
population of neurons to represent any new state.

This work also differs from conventional methods to
implement graphs in VSAs [20, 59], in that the network
state does not need to be read by an outsider in order
to implement state-dependent switching. That is, where in
previous works a graph is encoded by a hypervector such that
it may be reliably decoded by external circuitry, we instead
encode the graph’s connectivity in the attractor network’s
weights matrix, such that its recurrent dynamics realise the
desired state machine. Our implementation could however
have been brought closer to previous works, and indeed made
simpler, if there were a way to reliably achieve a flipping of
neuron states when input is received. Then, the transition

dynamics could be achieved just by storing edge terms like
E = y(x ◦ s)ᵀ. Although achieving a state flip may be easy
in a digital synchronous system, it would be very difficult
to robustly achieve in an analogue asynchronous system. To
avoid flickering, the flip would need to be reliably initiated by
a single event. These events would also need to arrive at all
neurons simultaneously, lest attractor dynamics take over and
correct these apparent errors. Both of these factors prohibit
such an operation from existing in biological systems.

The lack of a flipping mechanism is also discussed in
[60], wherein they show the necessity of a population of
neurons with mixed selectivity, connected to both the input
and attractor neurons, in order to achieve the flipping-like
behaviour necessary for complex state switching. This re-
quirement arose by demanding that the network state switch
to resembling the target state immediately upon receiving
a stimulus. We instead show that similar results can be
achieved without this extra population, if we relax to instead
demanding only that the network soon evolve to the target
state.

C. Biological plausibility

Transitions between discrete neural attractor states are
thought to be a crucial mechanism for performing context-
dependent decision making in biological neural systems
[8–11]. Attractor dynamics enable a temporary retention of
received information, and ensure that irrelevant inputs do not
produce stable deviations in the neural state. As such, in this
work we provide a description of an attractor-based network
that can perform controllable context-dependent transitions
in a simple manner, while abiding by the principles of
distributed representation.

The procedure for generating the weights matrix W, as a
result of this simplicity, makes the proposed network more
plausible than other more complex approaches, e.g. those
utilising gradient descent methods. It can be learned in one-
shot in a fully online fashion, since adding a new node or
edge involves only an additive contribution to the weights
matrix, which does not require knowledge of irrelevant edges,
nodes, their hypervectors, or the weight values themselves.
Furthermore, as a result of the entirely distributed represen-
tation of states and transitions, new behaviours may be added
to the weights matrix at a later date, both without having to
allocate new hardware, and without having to recalculate W
with all previous data. Both of these factors are critical for
continual online learning.

Evaluating the local learnability of W to implement tran-
sitions is also necessary to evaluate the biological plausibility
of the model. In the original Hopfield paper the weights could

12

be learned using the simple Hebbian rule

δwij = xνi x
ν
j (29)

where xνi and xνj are the activities of the post- and presy-
naptic neurons respectively, and δwij the online synaptic
efficacy update [1, 61]. While the attractor terms within the
network can be learned in this manner, the transition cross-
terms that we have introduced require an altered version of
the learning rule. If we simplify our network construction
by removing the edge state attractors, then the local weight
update required to learn a transition between states is given
by

δwij = H(si)yixjsj (30)

where y, x and s are as previously defined. In removing
the edge states, we disallow FSMs with consecutive edges
with the same stimulus (e.g. ”father is, father is”), but this
is not a problem if completely general FSM construction is
not the goal per se. This state-transition learning rule is just
as local as the original Hopfield learning rule, as the weight
update from presynaptic neuron j to postsynaptic neuron i is
dependent only upon information that may be made directly
accessible in the pre- and postsynaptic neurons, and does not
depend on information in other neurons to which the synapse
is not connected [62, 63].

The robust functioning of the network despite noisy and
unreliable weights is another prerequisite for the model to
plausibly be able to exist in biological systems. The network
weights may be considerably degraded without affecting the
behaviour of the network, and indeed beyond this the network
exhibits a so-called graceful degradation in performance. Fur-
thermore, biological synapses are expected to have only a few
bits of precision [64–66], and the network has been shown
to function even in the worst case of binary weights. These
properties stem from the massive redundancy arising from
storing the attractor states across the entire synaptic matrix
in a distributed manner, a technique that the brain is expected
to utilise [67, 68]. Since the network is still an attractor
network, it retains all of the properties that make attractor
networks suitable for modelling cognitive function, such as
that the network can perform robust pattern completion and
correction, i.e. the recovery of a stored prototypical memory
given a damaged, incomplete or noisy version, and thereafter
function as a stable working memory [1, 2].

VI. CONCLUSION

Attractor neural networks are robust abstract models
of human memory, but previous attempts to endow them
with complex and controllable attractor-switching capabilities
have suffered mostly from being either non-distributed, not

scalable, or not robust. We have here introduced a simple
procedure by which any arbitrary FSM may be embedded
into a large enough Hopfield-like attractor network, where
states and stimuli are replaced by high-dimensional random
vectors, and all information pertaining to FSM transitions is
stored in the network’s weights matrix in a fully distributed
manner. Our method of modelling input to the network as
a masking of the network state allows cross-terms between
attractors to be stored in the weights matrix in a way that they
are effectively obfuscated until the correct state-stimulus pair
is present, much in a manner similar to the standard binding-
unbinding operation in more conventional VSAs.

We showed that the network retains many of the features
of attractor networks which make them suitable for biology,
namely that the network is robust to unreliable and imprecise
weights, thus also making them highly suitable for imple-
mentation with high-density but noisy devices. We presented
numerical results showing that the network capacity in terms
of implementable FSM size scales linearly with the size of
the attractor network, and also that the network continues to
function when the synchronous neuron update rule is replaced
with a stochastic, asynchronous variant.

In summary, we introduced an attractor-based neural state
machine which overcomes many of the shortcomings that
made previous models unsuitable for use in biology, and
propose that attractor-based FSMs may thus represent a
plausible path by which FSMs may exist as a distributed
computational primitive in biological neural networks.

ACKNOWLEDGEMENTS

We thank Dr. Federico Corradi, Dr. Nicoletta Risi and Dr.
Matthew Cook for their invaluable input and suggestions, as
well as their help with proofreading this document.

Funded by the Deutsche Forschungsgemeinschaft
(DFG German Research Foundation) - Projects NMVAC
(432009531) and MemTDE (441959088).

The authors would like to acknowledge the financial sup-
port of the CogniGron research center and the Ubbo Emmius
Funds (Univ. of Groningen).

REFERENCES

1. Hopfield, J. J. Neural networks and physical systems
with emergent collective computational abilities. en.
Proceedings of the National Academy of Sciences 79.
Publisher: National Academy of Sciences Section: Re-
search Article, 2554–2558 (Apr. 1982).

2. Amit, D. Modeling Brain Function: The World of
Attractor Neural Networks, 1st Edition in (1989).

3. Eliasmith, C. A unified approach to building and con-
trolling spiking attractor networks. eng. Neural Com-
putation 17, 1276–1314 (June 2005).

13

4. Little, W. A. The existence of persistent states in the
brain. en. Mathematical Biosciences 19, 101–120 (Feb.
1974).

5. Schneidman, E., Berry, M. J., Segev, R. & Bialek, W.
Weak pairwise correlations imply strongly correlated
network states in a neural population. en. Nature 440,
1007–1012 (Apr. 2006).

6. Chaudhuri, R. & Fiete, I. Computational principles
of memory. en. Nature Neuroscience 19. Number: 3
Publisher: Nature Publishing Group, 394–403 (Mar.
2016).

7. Khona, M. & Fiete, I. R. Attractor and integrator
networks in the brain. en. Nature Reviews Neuroscience
23. Number: 12 Publisher: Nature Publishing Group,
744–766 (Dec. 2022).

8. Daelli, V. & Treves, A. Neural attractor dynamics in
object recognition. eng. Experimental Brain Research
203, 241–248 (June 2010).

9. Mante, V., Sussillo, D., Shenoy, K. V. & Newsome,
W. T. Context-dependent computation by recurrent dy-
namics in prefrontal cortex. en. Nature 503. Number:
7474 Publisher: Nature Publishing Group, 78–84 (Nov.
2013).

10. Miller, P. Itinerancy between attractor states in neural
systems. Current opinion in neurobiology 40, 14–22
(Oct. 2016).

11. Tajima, S. et al. Task-dependent recurrent dynamics in
visual cortex. eLife 6 (ed Latham, P.) Publisher: eLife
Sciences Publications, Ltd, e26868 (July 2017).

12. Brinkman, B. a. W. et al. Metastable dynamics of
neural circuits and networks. Applied Physics Reviews
9. Publisher: American Institute of Physics, 011313
(Mar. 2022).

13. Dayan, P. Simple substrates for complex cognition.
Frontiers in Neuroscience 2, 31 (2008).

14. Buonomano, D. V. & Maass, W. State-dependent com-
putations: spatiotemporal processing in cortical net-
works. en. Nature Reviews Neuroscience 10. Number:
2 Publisher: Nature Publishing Group, 113–125 (Feb.
2009).

15. Granger, R. Toward the quantification of cognition.
arXiv:2008.05580 [cs, q-bio]. arXiv: 2008.05580 (Aug.
2020).

16. Kanerva, P. Fully Distributed Representation. Proc.
1997 Real World Computing Symposium (RWC97,
Tokyo) (Nov. 2002).

17. Plate, T. A. Holographic Reduced Representation: Dis-
tributed Representation for Cognitive Structures en
(Center for the Study of Language and Information,
Apr. 2003).

18. Gayler, R. W. Vector Symbolic Architectures answer
Jackendoff’s challenges for cognitive neuroscience.
arXiv:cs/0412059. arXiv: cs/0412059 (Dec. 2004).

19. Kanerva, P. Hyperdimensional Computing: An Intro-
duction to Computing in Distributed Representation
with High-Dimensional Random Vectors. en. Cognitive
Computation 1, 139–159 (June 2009).

20. Kleyko, D. et al. Vector Symbolic Architectures as a
Computing Framework for Nanoscale Hardware. en.
arXiv:2106.05268 [cs]. arXiv: 2106.05268 (June 2021).

21. Kleyko, D., Rachkovskij, D. A., Osipov, E. & Rahimi,
A. A Survey on Hyperdimensional Computing aka
Vector Symbolic Architectures, Part I: Models and
Data Transformations. ACM Computing Surveys. Just
Accepted (May 2022).

22. Gritsenko, V. I. et al. Neural Distributed Autoassocia-
tive Memories: A Survey. Kibernetika i vyčislitel’naâ
tehnika 2017. arXiv:1709.00848 [cs], 5–35 (June 2017).

23. Backus, J. Can programming be liberated from the von
Neumann style? A functional style and its algebra of
programs. Communications of the ACM 21, 613–641
(Aug. 1978).

24. Indiveri, G. & Liu, S.-C. Memory and Information
Processing in Neuromorphic Systems. Proceedings of
the IEEE 103. Conference Name: Proceedings of the
IEEE, 1379–1397 (Aug. 2015).

25. Xia, Q. & Yang, J. J. Memristive crossbar arrays
for brain-inspired computing. en. Nature Materials 18.
Number: 4 Publisher: Nature Publishing Group, 309–
323 (Apr. 2019).

26. Ielmini, D. & Wong, H.-S. P. In-memory computing
with resistive switching devices. en. Nature Electronics
1. Number: 6 Publisher: Nature Publishing Group, 333–
343 (June 2018).

27. Zidan, M. A. & Lu, W. D. en. in Memristive Devices
for Brain-Inspired Computing (eds Spiga, S., Sebastian,
A., Querlioz, D. & Rajendran, B.) 221–254 (Woodhead
Publishing, Jan. 2020).

28. Sompolinsky, H. The theory of neural networks: The
Hebb rule and beyond en. in Heidelberg Colloquium on
Glassy Dynamics (eds van Hemmen, J. L. & Morgen-
stern, I.) (Springer, Berlin, Heidelberg, 1987), 485–527.

29. Howard, R. et al. An associative memory based on an
electronic neural network architecture. IEEE Transac-
tions on Electron Devices 34. Conference Name: IEEE
Transactions on Electron Devices, 1553–1556 (July
1987).

30. Verleysen, M. & Jespers, P. An analog VLSI imple-
mentation of Hopfield’s neural network. IEEE Micro 9.
Conference Name: IEEE Micro, 46–55 (Dec. 1989).

14

31. Weinfeld, M. en. in VLSI for Artificial Intelligence
(eds Delgado-Frias, J. G. & Moore, W. R.) 169–178
(Springer US, Boston, MA, 1989).

32. Guo, X. et al. Modeling and Experimental Demonstra-
tion of a Hopfield Network Analog-to-Digital Converter
with Hybrid CMOS/Memristor Circuits. Frontiers in
Neuroscience 9, 488 (2015).

33. Yang, J., Wang, L., Wang, Y. & Guo, T. A novel
memristive Hopfield neural network with application
in associative memory. en. Neurocomputing. Dynamical
Behaviors of Coupled Neural Networks with Reaction-
Diffusion Terms: Analysis, Control and Applications
227, 142–148 (Mar. 2017).

34. Molahasani Majdabadi, M., Shamsi, J. & Baradaran
Shokouhi, S. Hybrid CMOS/memristor crossbar struc-
ture for implementing hopfield neural network. en.
Analog Integrated Circuits and Signal Processing 107,
249–261 (May 2021).

35. Graves, C. E. et al. In-Memory Computing with
Memristor Content Addressable Memories for Pattern
Matching. en. Advanced Materials 32, 2003437 (Sept.
2020).

36. De Lima, J. P. C., Brandalero, M., Hübner, M. & Carro,
L. STAP: An Architecture and Design Tool for Au-
tomata Processing on Memristor TCAMs. ACM Journal
on Emerging Technologies in Computing Systems 18,
39:1–39:22 (Dec. 2022).

37. Alibart, F., Zamanidoost, E. & Strukov, D. B. Pattern
classification by memristive crossbar circuits using ex
situ and in situ training. en. Nature Communications 4.
Number: 1 Publisher: Nature Publishing Group, 2072
(June 2013).

38. Li, Y. et al. In situ Parallel Training of Analog Neural
Network Using Electrochemical Random-Access Mem-
ory. Frontiers in Neuroscience 15, 636127 (Apr. 2021).

39. Zeng, Z., Goodman, R. M. & Smyth, P. Learning Finite
State Machines With Self-Clustering Recurrent Net-
works. Neural Computation 5, 976–990 (Nov. 1993).

40. Lee Giles, C., Horne, B. G. & Lin, T. Learning a
class of large finite state machines with a recurrent
neural network. en. Neural Networks 8, 1359–1365
(Jan. 1995).

41. Das, S. & Mozer, M. C. A Unified Gradient-
Descent/Clustering Architecture for Finite State Ma-
chine Induction in Advances in Neural Information
Processing Systems 6 (Morgan-Kaufmann, 1994).

42. Minsky, M. L. Computation: finite and infinite machines
(Prentice-Hall, Inc., USA, 1967).

43. Sanfeliu, A. An Algebraic Framework to Represent
Finite State Machines in Single-Layer Recurrent Neural
Networks. Neural Computation 7 (Oct. 1999).

44. Omlin, C., Thornber, K. & Giles, C. Fuzzy finite-
state automata can be deterministically encoded into
recurrent neural networks. IEEE Transactions on Fuzzy
Systems 6. Conference Name: IEEE Transactions on
Fuzzy Systems, 76–89 (Feb. 1998).

45. Forcada, M. & Carrasco, R. C. Finite-State Com-
putation in Analog Neural Networks: Steps towards
Biologically Plausible Models? in Emergent Neural
Computational Architectures Based on Neuroscience
(2001).

46. Mali, A. A., Ororbia II, A. G. & Giles, C. L. A
Neural State Pushdown Automata. IEEE Transactions
on Artificial Intelligence 1. Conference Name: IEEE
Transactions on Artificial Intelligence, 193–205 (Dec.
2020).

47. Krotov, D. & Hopfield, J. Large Associative Mem-
ory Problem in Neurobiology and Machine Learn-
ing. arXiv:2008.06996 [cond-mat, q-bio, stat]. arXiv:
2008.06996 (Apr. 2021).

48. Recanatesi, S., Katkov, M. & Tsodyks, M. Memory
States and Transitions between Them in Attractor Neu-
ral Networks. Neural Computation 29, 2684–2711 (Oct.
2017).

49. Chen, B. & Miller, P. Attractor-state itinerancy in
neural circuits with synaptic depression. The Journal
of Mathematical Neuroscience 10, 15 (Sept. 2020).

50. Sompolinsky, H. & Kanter, I. Temporal Association in
Asymmetric Neural Networks. Physical Review Letters
57. Publisher: American Physical Society, 2861–2864
(Dec. 1986).

51. Kleinfeld, D. Sequential state generation by model neu-
ral networks. Proceedings of the National Academy of
Sciences of the United States of America 83, 9469–9473
(Dec. 1986).

52. Gutfreund, H. & Mezard, M. Processing of Temporal
Sequences in Neural Networks. Physical Review Letters
61. Publisher: American Physical Society, 235–238
(July 1988).

53. Amit, D. J. Neural Networks Counting Chimes. Pro-
ceedings of the National Academy of Sciences of
the United States of America 85. Publisher: National
Academy of Sciences, 2141–2145 (1988).

54. Drossaers, M. F. J. Hopfield models as nondetermin-
istic finite-state machines in Proceedings of the 14th
conference on Computational linguistics - Volume 1
(Association for Computational Linguistics, USA, Aug.
1992), 113–119.

55. Buhmann, J. & Schulten, K. Noise-Driven Temporal
Association in Neural Networks. en. Europhysics Let-
ters (EPL) 4. Publisher: IOP Publishing, 1205–1209
(Nov. 1987).

15

56. Nielsen, C., Qiao, N. & Indiveri, G. A compact ultra
low-power pulse delay and extension circuit for neuro-
morphic processors in 2017 IEEE Biomedical Circuits
and Systems Conference (BioCAS) (Oct. 2017), 1–4.

57. Neftci, E. et al. Synthesizing cognition in neuromorphic
electronic systems. en. Proceedings of the National
Academy of Sciences 110, E3468–E3476 (Sept. 2013).

58. Liang, D. & Indiveri, G. A Neuromorphic Computa-
tional Primitive for Robust Context-Dependent Deci-
sion Making and Context-Dependent Stochastic Com-
putation. IEEE Transactions on Circuits and Systems
II: Express Briefs 66. Conference Name: IEEE Trans-
actions on Circuits and Systems II: Express Briefs,
843–847 (May 2019).

59. Poduval, P. et al. GrapHD: Graph-Based Hyperdimen-
sional Memorization for Brain-Like Cognitive Learn-
ing. Frontiers in Neuroscience 16 (2022).

60. Rigotti, M., Ben Dayan Rubin, D., Wang, X.-J. & Fusi,
S. Internal Representation of Task Rules by Recurrent
Dynamics: The Importance of the Diversity of Neural
Responses. Frontiers in Computational Neuroscience 4
(2010).

61. Hebb, D. O. The organization of behavior; a neu-
ropsychological theory Pages: xix, 335 (Wiley, Oxford,
England, 1949).

62. Zenke, F. & Neftci, E. O. Brain-Inspired Learning
on Neuromorphic Substrates. Proceedings of the IEEE
109, 935–950 (May 2021).

63. Khacef, L. et al. Spike-based local synaptic plasticity:
A survey of computational models and neuromorphic
circuits arXiv:2209.15536 [cs]. Nov. 2022.

64. O’Connor, D. H., Wittenberg, G. M. & Wang, S. S.-H.
Graded bidirectional synaptic plasticity is composed
of switch-like unitary events. eng. Proceedings of the
National Academy of Sciences of the United States of
America 102, 9679–9684 (July 2005).

65. Bartol, T. M. et al. Hippocampal Spine Head Sizes
Are Highly Precise en. Tech. rep. Section: New Results
Type: article (bioRxiv, Mar. 2015), 016329.

66. Baldassi, C., Gerace, F., Lucibello, C., Saglietti, L. &
Zecchina, R. Learning may need only a few bits of
synaptic precision. Physical Review E 93 (Feb. 2016).

67. Rumelhart, D. E. & McClelland, J. L. Parallel Dis-
tributed Processing: Explorations in the Microstructure
of Cognition: Foundations — MIT Press eBooks —
IEEE Xplore 1987.

68. Crawford, E., Gingerich, M. & Eliasmith, C. Biolog-
ically Plausible, Human-Scale Knowledge Representa-
tion. eng. Cognitive Science 40, 782–821 (May 2016).

16

APPENDIX

A. Dynamics without masking

For the following calculations we assume that the coding level of the output states fr is low enough that their effect can
be ignored. With this in mind, if we ignore the semantic differences between attractors for node states and attractors for
edge states, the two summations over states can be absorbed into one summation over both types of attractor, here both
denoted xν . Similarly there is then no difference between the two transition cross-terms within each E term, and they too
can be absorbed into one summation. Our simplified expression for W is now given by

W =
1

N

NZ+NE∑
attr’s ν

xνxν ᵀ +
1

N

2NE∑
tran’s λ

H(sπ(λ)) ◦ (xυ(λ) − xχ(λ))(xχ(λ) ◦ sπ(λ))ᵀ (31)

where χ(λ) and υ(λ) are functions {1, . . . , 2NE} → {1, . . . , NZ +NE} determining the indices of the source and target
states for transition λ, and π(λ) : {1, . . . , 2NE} → {1, . . . Nstimuli} determines the index of the associated stimulus. We then
wish to calculate the statistics of the postsynaptic sum Wz while the attractor network is currently in an attractor state.
When in an attractor state xµ, the postsynaptic sum is given by

[
Wxµ

]
i
=

1

N

NZ+NE∑
attr’s ν

xνi
[
xν · xµ

]︸ ︷︷ ︸
N if µ=ν

else N (0,N)

+
1

N

2NE∑
tran’s λ

H(s
π(λ)
i) ◦ (xυ(λ)i − xχ(λ)i)

[
(xχ(λ) ◦ sπ(λ)) · xµ

]︸ ︷︷ ︸
N (0,N)

= xµi +

NZ+NE∑
attr’s
ν 6=µ

xνi︸︷︷︸
Var.=1

[
N ν
(
0,

1

N

)]
+

2NE∑
tran’s λ

H(s
π(λ)
i) ◦ (xυ(λ)i − xχ(λ)i)︸ ︷︷ ︸

Var.=1

[
N λ
(
0,

1

N

)]

≈ xµi +N

(
0,
NZ +NE − 1

N

)
+N

(
0,

2NE
N

)

≈ xµi +N

(
0,
NZ + 3NE

N

)
(32)

where we have used the notation N (µ, σ2) to denote a normally-distributed random variable (RV) with mean µ and
variance σ2. In the third line we have made the approximation in the transition summation that the linear sum of attractor
hypervectors, each multiplied by a Gaussian RV, is itself a separate Gaussian RV in each dimension. This holds as long
as there are ”many” attractor terms appearing on the LHS of the transition summation. Said otherwise, if the summation
over transition terms has only very few unique attractor terms on the LHS (NE � NZ), then the noise will be a random
linear sum of the same few (masked) hypervectors, each with approximate magnitude 1√

N
, and so will be highly correlated

between dimensions. Nonetheless we assume we are far away from this regime, and let the effect of the sum of these
unwanted terms be approximated by a normally-distributed random vector, and so we have

Wxµ ≈ xµ + σn (33)

where σ =
√

NZ+3NE

N is the strength of cross-talk noise, and n a vector composed of IID standard normally-distributed
terms. This procedure of quantifying the signal-to-noise ratio (SNR) is adapted from that in the original Hopfield paper [1,
2].

17

B. Dynamics with masking

We can similarly calculate the postsynaptic sum when in an attractor state xµ, while the network is being masked by a
stimulus sκ, with this (state, stimulus) tuple corresponding to a certain valid transition λ′, with source, target, and stimulus
vectors xµ, xφ, and sκ respectively:

[
W
(
xµ ◦H(sκ)

)]
i
=

1

N

NZ+NE∑
attr’s ν

xνi
[
xν ·

(
xµ ◦H(sκ)

)]︸ ︷︷ ︸
1
2N if µ=ν

else N (0, 12N)

+
1

N

2NE∑
tran’s λ

H(s
π(λ)
i)(x

υ(λ)
i − xχ(λ)i)

[
(xχ(λ) ◦ sπ(λ)) ·

(
xµ ◦H(sκ)

)]︸ ︷︷ ︸
1
2N if χ(λ)=µ and π(λ)=κ

else N (0, 12N)

=
1

2
xµi +

1

2
H(sκi)(x

φ
i − x

µ
i) +

NZ+NE∑
attr’s
ν 6=µ

xνi︸︷︷︸
Var.=1

[
N ν(0,

1

2N
)
]

+

2NE∑
tran’s
λ6=λ′

H(s
π(λ)
i)(x

υ(λ)
i − xχ(λ)i)︸ ︷︷ ︸

Var.=1

(
N λ(0,

1

2N
)
)

≈ 1

2

[
H(sκi) +H(−sκi)

]
xµi +

1

2
H(sκi)(x

φ
i − x

µ
i) +N

(
0,
NZ +NE − 1

2N

)
+N

(
0,

2NE − 1

2N

)
=

1

2
H(sκi)x

φ
i +

1

2
H(−sκi)x

µ
i +N

(
0,
NZ + 3NE − 2

2N

)
≈ 1

2

[
H(sκi)x

φ
i +H(−sκi)x

µ
i +
√
2 · N

(
0,
NZ + 3NE

N

)]

(34)

where in the third line we have made the same approximations as previously discussed. The postsynaptic sum is thus
approximately xφ in all indices that are not currently being masked, which drives the network towards that (target) attractor.
In vector form, the above is written as

W
(
xµ ◦H(sκ)

) ∝∼ H(sκ) ◦ xφ +H(−sκ) ◦ xµ +
√
2σn (35)

where it is assumed that there exists a stored transition from state xµ to xφ with stimulus sκ, and ∝∼ denotes approximate
proportionality. A similar calculation can be performed in the case that a stimulus is imposed which does not correspond to
a valid transition for the current state. In this case, no terms of significant magnitude emerge from the transition summation,
and we are left with

W
(
xµ ◦H(sinvalid)

) ∝∼ xµ +
√
2σn (36)

i.e. the attractor dynamics are largely unaffected. Since we have not distinguished between our above attractor terms being
node attractors or edge attractors, or our stimuli from being sa or sb stimuli, the above results can be applied to all relevant
situations mutatis mutandis.

18

	I Introduction
	II Theory
	II-A Hopfield networks
	II-B Finite State Machines

	III Attractor network construction
	III-A Constructing transitions
	III-B Edge outputs

	IV Results
	IV-A FSM Emulation
	IV-B Network robustness
	IV-C Asynchronous updates
	IV-D Storage capacity

	V Discussion
	V-A Hardware implementability
	V-B Relation to other architectures
	V-C Biological plausibility

	VI Conclusion
	VI-A Dynamics without masking
	VI-B Dynamics with masking

