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Abstract. Understanding how biological neural networks carry out learning
using spike-based local plasticity mechanisms can lead to the development of
powerful, energy-efficient, and adaptive neuromorphic processing systems. A large
number of spike-based learning models have recently been proposed following
different approaches. However, it is difficult to assess if and how they could be
mapped onto neuromorphic hardware, and to compare their features and ease
of implementation. To this end, in this survey, we provide a comprehensive
overview of representative brain-inspired synaptic plasticity models and mixed-
signal CMOS neuromorphic circuits within a unified framework. We review
historical, bottom-up, and top-down approaches to modeling synaptic plasticity,
and we identify computational primitives that can support low-latency and low-
power hardware implementations of spike-based learning rules. We provide
a common definition of a locality principle based on pre- and post-synaptic
neuron information, which we propose as a fundamental requirement for physical
implementations of synaptic plasticity. Based on this principle, we compare the
properties of these models within the same framework, and describe the mixed-
signal electronic circuits that implement their computing primitives, pointing
out how these building blocks enable efficient on-chip and online learning in
neuromorphic processing systems.

Keywords: brain-inspired computing, neuromorphic CMOS circuits, spiking
neural networks, local synaptic plasticity, online learning.

1. Introduction

The ability of biological systems to learn and adapt to their environment is key
for survival. This learning ability is expressed mainly as the change in strength
of the synapses that connect neurons, to adapt the structure and function of the
underlying network. The neural substrate of this ability has been studied and modeled
intensively, and many brain-inspired learning rules have been proposed (McNaughton
et al. 1978, Gerstner et al. 1993, Stuart & Sakmann 1994, Markram et al. 1995).
The vast majority, if not all, of these biologically plausible learning models rely on
local plasticity mechanisms, where locality is a fundamental computational principle,
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naturally emerging from the physical constraints of the system. The principle of
locality in synaptic plasticity presupposes that all the information a synapse needs
to update its state (e.g., its synaptic weight) is directly accessible in space and
immediately accessible in time. This information is based on the activity of the
pre- and post-synaptic neurons to which the synapse is connected, but not on the
activity of other neurons to which the synapse is not physically connected (Zenke &
Neftci 2021).

From a biological perspective, locality is a key paradigm of cortical plasticity
that supports self-organization, which in turn enables the emergence of consistent
representations of the world (Varela et al. 1991). From the hardware development
perspective, the principle of locality is a key paradigm for the design of spike-based
plasticity circuits integrated in embedded systems, in order to enable them to learn
online, efficiently and without supervision. This is particularly important in recent
times, as the rapid growth of wearable and specialized autonomous sensory-processing
devices brings new challenges in analysis and classification of sensory signals and
streamed data at the edge. Consequently, there is an increasing need for online
learning circuits that have low latency, are low power, and do not need to be trained in
a supervised way with large labeled data-sets. As standard von Neumann computing
architectures have separated processing and memory elements, they are not well
suited for simulating parallel neural networks, they are incompatible with the locality
principle, and they require a large amount of power compared to in-memory computing
architectures. In contrast, neuromorphic architectures typically comprise parallel
and distributed arrays of synapses and neurons that can perform computation using
only local variables, and can achieve extremely low-energy consumption figures. In
particular, analog neuromorphic circuits operate the transistors in the weak inversion
regime using extremely low currents (ranging from pico-Amperes to micro-Amperes),
small voltages (in the range of a few hundreds of milli-Volts), and use the physics
of their devices to directly emulate neural dynamics (Mead 1990). The spike-based
learning circuits implemented in these architectures can exploit the precise timing of
spikes and consequently take advantage of the high temporal resolutions of event-
based sensors. Furthermore, the sparse nature of the spike patterns produced by
neuromorphic sensors and processors can give these devices even higher gains in terms
of energy efficiency.

Given the requirements to implement learning mechanisms using limited resources
and local signals, animal brains still remain one of our best sources of inspiration, as
they have evolved to solve similar problems under similar constraints, adapting to
changes in the environment and improving their survival chances (Hofman 2015).
Bottom-up, brain-inspired approaches to implement learning with local plasticity can
be very challenging for solving real-world problems, because of the lack of a clear
methodology for choosing specific plasticity rules, and the inability to perform global
function optimization (as in gradient back-propagation) (Eshraghian et al. 2021).
However, these approaches have the potential to support massively parallel and
distributed computations and can be used for adaptive online systems at a minimum
energy cost (Neftci et al. 2019). Recent work has explored the potential of brain-
inspired self-organizing neural networks with local plasticity mechanisms for spatio-
temporal feature extraction (Bichler et al. 2012), unsupervised learning (Diehl &
Cook 2015, Iyer & Basu 2017, Hazan et al. 2018, Kheradpisheh et al. 2018, Khacef
et al. 2020b), multi-modal association (Khacef et al. 2020a, Rathi & Roy 2021),
adaptive control (DeWolf et al. 2020), and sensory-motor interaction (Lallee &
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Dominey 2013, Zahra & Navarro-Alarcon 2019).
Some of the recently proposed models of plasticity have introduced the notion of a

“third factor”, in addition to the two factors used in learning rules, derived from local
information present at the pre- and post-synaptic site. In these three-factor learning
rules, the local variables are used to determine the potential change in the weight
(e.g., by using a local eligibility trace), but the change in the weight is applied only
when the additional third factor is presented. This third factor represents a feedback
signal (e.g., reward, punishment, or novelty) which could be implemented in the brain
for example by diffusion of neuromodulators, such as dopamine ( Lukasz Kuśmierz
et al. 2017, Gerstner et al. 2018). While this feedback signal is locally accessible to
the synapse, it is not produced directly at the pre- or post-synaptic site. Therefore,
these three-factor learning rules violate the principle of locality that we consider in
this review.

In the next section, we provide an overview of synaptic plasticity from a historical,
experimental, and theoretical perspective, with a focus on compatibility with physical
emulation on Complementary Metal-Oxide-Semiconductor (CMOS) systems. We
then present a selection of representative spike-based synaptic plasticity models
that adhere to the principle of locality and that can therefore be implemented in
neuromorphic hardware. We then present analog CMOS circuits that implement the
basic mechanisms present in the rules discussed. As different implementations have
different characteristics that impact the type and number of elements that use local
signals, for each target implementation, we assess the principle of locality taking into
account the circuits’ physical constraints. We conclude proposing steps to reach a
unified plasticity framework and presenting the challenges that still remain open in
the field.

2. Synaptic plasticity overview

2.1. A brief history of plasticity

The quest for understanding learning in human beings is a very old one, as the
process of acquiring new skills and knowledge was already a subject of debate among
philosophers back in Ancient Greece where Aristotle introduced the notion of the
brain as a blank state (or tabula rasa) at birth that was then developed through
education (Markram et al. 2011). It was in contrast to the idea of Plato, his teacher,
who believed the brain was pre-formed in the “heavens” then sent to earth to join the
body. In modern times, the question of nature versus nurture is still being debated,
with the view that we are born without preconceptions and our brain is molded by
experience proposed by modern philosophers such as Locke (1689), and the studies
that emphasize the importance of pre-defined structure in the nervous system and in
neural networks, to guide and facilitate the learning process (Binas et al. 2015, Hawkins
et al. 2017, Suárez et al. 2021).

In the later half of the nineteenth century, learning and memory were linked
for the first time to “junctions between cells” by Bain (1873), even before the
discovery of the synapse. In 1890, the psychologist William James postulated a
mechanism for associative learning in the brain: “When two elementary brain-
processes have been active together or in immediate succession, one of them, on
reoccurring, tends to propagate its excitement into the other” (James 1890). In
the same period, neuroanatomists discovered the two main components of the brain:
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neurons and synapses. They postulated that the brain is composed of separate
neurons (Waldeyer 1891), and that long-term memory requires the growth of new
connections between existing neurons (Ramón y Cajal 1894). These connections
became known then as “synapses” (Sherrington 1897). At the end of the nineteenth
century, synapses were already thought to control and change the flow of information
in the brain, thus being the substrate of learning and memory (Markram et al. 2011).

The first half of the twentieth century confirmed this hypothesis by various studies
on the chemical synapses and the direction of information flow among neurons, going
from the pre-synaptic axons to the post-synaptic dendrites. Neural processing was
associated to the integration of synaptic inputs in the soma, and the emission of
an output spike once a certain threshold was reached, propagating along the axon.
Donald Hebb combined earlier ideas and recent discoveries on learning and memory
in his book “The Organization of Behavior”. Similarly to the ideas of James 60 years
earlier, Hebb published, in 1949, his formal postulates for the neural mechanisms of
learning and memory: “When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s efficiency, as one of the cells
firing B, is increased” (Hebb 1949). Although Hebb stated that this idea is old,
strengthening synapses (that is, increasing synaptic efficacy or weight) connecting co-
active neurons has since been called “Hebbian plasticity”. It is also called Long-Term
Potentiation (LTP).

Even though Hebb wrote that “less strongly established memories would gradually
disappear unless reinforced through a slow “synaptic decay” (Hebb 1949), he did not
provide an active mechanism for weakening synapses. Hence, the synaptic strengths or
“weights” are unbounded and it is not possible to forget previously learned patterns to
learn new ones. The first solution proposed a few years later was to maintain the sum of
synaptic weights in a neuron constant (Rochester et al. 1956). In 1982, Oja proposed
a Hebbian-like rule (Oja 1982) that adds a “forgetting” parameter and solves the
stability problem with a form of local multiplicative normalization for synaptic weights.
In the same year, Bienenstock et al. (1982) proposed the Bienenstock Cooper Munro
(BCM) learning rule where during pre-synaptic stimulation, low-frequency activity of
the post-synaptic neuron leads to Long-Term Depression (LTD) while high-frequency
activity would lead to LTP. This model was an important shift as it introduced the so-
called homo-synaptic LTD, where the plasticity was determined by the post-synaptic
spike rate with no requirement on the temporal order of spikes. The importance of
the post-synaptic neuron in synaptic plasticity was further demonstrated by showing
how post-synaptic sub-threshold depolarization can determine whether LTP or LTD
is applied (Artola et al. 1990, Sjöström et al. 2001).

Time is inherently present in any associative learning since it only relies on co-
occurring events. McNaughton et al. (1978) were the first to experimentally explore
the importance of the pre- and post-synaptic spike timing in plasticity. Fifteen years
later, Gerstner et al. (1993) hypothesized that these pre/post spike times contain
more information for plasticity compared to spike rates. Their hypothesis would be
confirmed by experiments conducted by Stuart & Sakmann (1994) who discovered that
the post-synaptic spike is back-propagating into the dendrites, as well as by Markram
et al. (1995) who showed that a single spike leaves behind a Calcium trace of about
100 ms which is propagated back into the dendrites. These findings were highly
influential in the field because they provided evidence that synapses have local access
to the timings of pre-synaptic and postsynaptic neurons spikes. In their subsequent
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experiments, Markram et al. (1995) provided additional evidence that precise timing
is important in neocortical neurons: They showed that using a pre/post pairing with a
time difference of 10 ms led to LTP, while using the same time difference of 10 ms in an
inverted post/pre pairing led to LTD (Markram et al. 1997). Larger time differences of
100 ms did not lead to any change in the synaptic weights. Almost concurrently, Bi &
Poo (1998) performed similar experiments and found a 40 ms coincidence time window
using paired recordings. These experiments proved that in addition to mean rates,
also spike-timing matters. This phenomenon was later formulated in a learning rule
named Spike-Timing Dependent Plasticity (STDP) (Song et al. 2000).

In this respect, the Hebbian learning formula proposed by Shatz (1992) that “cells
that fire together wire together” could be misleading, as Hebb’s (1949) postulate
is directional: “axon of cell A is near enough to excite a cell B”, which may be
interpreted as implicitly time-dependent since cell A has to fire before cell B. On
the other hand, STDP had been later found to only partially explain more elaborate
learning protocols, which showed that while both LTP and LTD are compatible STDP
at low frequencies, only LTP occurs at high frequencies regardless of the temporal
order of spikes (Sjöström et al. 2001). As pair-based STDP models do not reproduce
the frequency dependence of synaptic plasticity, Pfister & Gerstner (2006) proposed
Triplet-based STDP (T-STDP) rule where LTP and LTD depend on a combination
of three pre- and post-synaptic spikes (either two pre- and one post or one pre- and
two post). Both pair-based and triplet-based STDP were then shown to be able
to reproduce BCM like behavior (Gjorgjieva et al. 2011). Furthermore, the same
frequency dependent experiments (Sjöström et al. 2001) showed that the state of the
post-synaptic membrane voltage is important for driving LTP or LTD under the same
pre/post timing conditions, confirming previous studies on the role of the neuron
membrane voltage in plasticity (Artola et al. 1990). Therefore, these recent findings
supported the computational plasticity models that depend on the arrival of the pre-
synaptic spike and the voltage of the postsynaptic membrane (Fusi et al. 2000, Brader
et al. 2007, Clopath et al. 2010), and which were also compatible with the STDP
model. The more recent three-factor learning rules aim at bridging the gap between the
different time scales of learning, specifically from pre-post spike timings (milliseconds)
to behavioral time scales (seconds) (Gerstner et al. 2018).

Today, after more than two millennia of questioning, experimenting and more
recently modeling, synaptic plasticity is still not fully understood and many questions
remain unanswered. Nevertheless, it is clear that multiple forms of plasticity and
time-scales co-exist in the synapse and in the whole brain (Nelson et al. 2002). They
link to each other by sharing locality as a fundamental computational principle.

2.2. Experimental perspective

Synaptic weights are correlated with various elements in biological synapses (Bartol
et al. 2015) such as the number of docked vesicles in the pre-synaptic terminal (Harris
& Sultan 1995), the area of the pre-synaptic active zone (Schikorski & Stevens 1997),
the dendritic spine head size (Harris & Stevens 1989, Hering & Sheng 2001), the
amount of released transmitters (Murthy et al. 2001, Branco et al. 2008, Ho et al. 2011),
the area of the post-synaptic density (Lisman & Harris 1994), and the number of
AMPA receptors (Bourne et al. 2013, Biology of Synaptic Plasticity 2020). Synaptic
plasticity is known to be heterogeneous across different types of synapses (Abbott &
Nelson 2000, Bi & Poo 2001), and there is no unified experimental protocol to confront
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the different observations. Here we present the experimental results that led to the
bottom-up definition of multiple plasticity rules.

Spike-timing dependence. Multiple experiments have been performed to demonstrate
the dependence of plasticity on the exact pre- and post-synaptic neurons spike
times (Markram et al. 1997, Bi & Poo 1998, Sjöström et al. 2001). From a
computational point of view, these experiments led to the proposal of the STDP
learning rule (Abbott & Nelson 2000, Markram et al. 2011), and its variants, such as
T-STDP (Pfister & Gerstner 2006). Typically in these experiments, a pre-synaptic
neuron is driven to fire shortly before or shortly after a postsynaptic one, by injecting
a current pulse to the specific soma at the desired time. Specifically, these pre-post
and post-pre pairings are repeated for 50 to 100 times at a relatively low frequency of
about 1 Hz to 10 Hz (Sjöström & Gerstner 2010). Experimental results reveal synaptic
plasticity mechanisms that are sensitive to the difference in spike times at the time
scale of milliseconds (Gerstner et al. 1993). LTP is observed when the pre-synaptic
spike occurs within 10 ms before the post-synaptic spike is produced, while LTD is
observed when the order is reversed (Markram et al. 1997, Bi & Poo 1998). In biology,
this precise spike timing dependence could be supported by local processes in the
synapses that have access to both the timing information of pre-synaptic spikes and
to the postsynaptic spike times, either by sensing their local membrane voltage changes
or by receiving large depolarizations caused by output spikes that are back-propagated
into the dendrite (Stuart & Sakmann 1994).

Post-synaptic membrane voltage dependence. Another feature of synaptic plasticity is
its dependence on the post-synaptic neuron membrane voltage (Artola et al. 1990). To
study this dependence, the pre-synaptic neuron is driven to fire while the post-synaptic
neuron is clamped to a fixed voltage. The clamped voltage level will determine the
outcome of the synaptic changes: If the voltage is only slightly above the resting
potential of the neuron, then LTD is observed while if it is higher, then LTP is
observed (Artola et al. 1990, Ngezahayo et al. 2000). These experiments show that
post-synaptic spikes are not strictly necessary to induce long-term plasticity (Lisman
& Spruston 2005, Lisman & Spruston 2010). Moreover, even in the presence of
a constant pre/post timing (10 ms) at low frequencies (0.1 Hz), the post-synaptic
membrane voltage determines whether LTP or LTD can be induced (Sjöström
et al. 2001, Sjöström & Gerstner 2010). These findings suggest that the post-synaptic
membrane voltage might be more important than the pre/post spike timing for
synaptic plasticity.

Frequency dependence. While both spike-timing and post-synaptic membrane voltage
dependence are observed in experimental protocols when relatively low spike
frequencies are used, at high frequencies LTP tends to dominate over LTD regardless
of precise spike timing (Sjöström et al. 2001). This spike-rate dependence, which
is correlated with the Calcium concentration of the postsynaptic neuron (Sjöström
et al. 2001), is captured by multiple learning rules such as BCM (Bienenstock
et al. 1982) or the T-STDP (Pfister & Gerstner 2006) rule. In these rules, high
spike rates produce a strong / rapid increase in Calcium concentration that leads to
LTP, while low spike rates produce a modest / slow increase in Calcium concentration
that decays over time and leads to LTD (Bliss & Collingridge 1993).
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2.3. Theoretical perspective

Theoretical investigations of plasticity have yielded crucial insights in computational
neuroscience. Here, we summarize the fundamental theoretical and practical
requirements for long-term synaptic plasticity.

Sensitivity to pre-post spikes correlations. Synaptic plasticity has to adjust the
synaptic weights depending on the correlation between the pre- and post-synaptic
neurons (Hebb 1949). Depending on how information is encoded, this can be achieved
using spike times, spike rates or both (Brette 2015). It is important to note that the
objective behind the detection of correlation is to detect causality which would ensure
a better prediction (Vigneron & Martinet 2020). Even if correlation does not imply
causality (Brette 2015), correlation can be considered as a tangible trace for causality
in learning.

Selectivity to different patterns. In supervised, semi-supervised and reinforcement
learning, post-synaptic neurons are driven by a specific teacher signal that forces target
neurons to spike and other neurons to remain silent, allowing them to become selective
to the pattern applied in input (Brader et al. 2007). In unsupervised learning, the
selectivity emerges from competition among neurons (Kohonen 1990, Olshausen &
Field 1996) like in Winner-Take-All (WTA) networks (Chen 2017). By associating
local plasticity with a WTA network, it is possible to create internal models
of the probability distributions of the input patterns. This can be interpreted
as an approximate Expectation-Maximization algorithm for modeling the input
data (Nessler et al. 2009). Recently, the combination of STDP with WTA networks
has been successfully used for solving a variety of pattern recognition problems in both
supervised (Chang et al. 2018) and unsupervised scenarios (Bichler et al. 2012, Diehl
& Cook 2015, Iyer & Basu 2017, Rathi & Roy 2021).

Stability of synaptic memory. Long-term plasticity requires continuous adaptation
to new patterns but it also requires the retention of previously learned patterns.
As any physical system has a limited storage capacity, the presentation of new
experiences will continuously generate new memories that would eventually lead to
saturation of the capacity. When presenting new experiences, the stability (and
retrieval) of old memories is a major problem in Artificial Neural Networks (ANNs).
When learning of new patterns leads to the complete corruption or destruction of
previously learned ones, then the network undergoes catastrophic forgetting (Nadal
et al. 1986, French 1999). Both catastrophic forgetting and continual learning are
critical problems that need to be addresses for always-on neural processing systems,
including artificial embedded processors applied to solving edge-computing tasks. The
main challenge in always-on learning is not its resilience against time, but its resilience
against ongoing activity (Fusi et al. 2005).

Different strategies can be used to find a good balance between plasticity and
stability. A first solution is to introduce stochasticity in the learning process, for
example by using Poisson distributed spike trains to represent input signals to promote
plasticity, while promoting stability using a bi-stable internal variable that slowly
drives the weight between one of two possible stable states (Brader et al. 2007). As a
result, only a few synapses will undergo a LTP or LTD transition for a given input,
to progressively learn new patterns without forgetting previously learned patterns. A
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second solution is to have an intrinsic stop-learning mechanism to modulate learning
and not change synaptic weights if there is enough evidence that the current input
pattern has already been learned.

Depending on the particular pattern recognition problem to be solved and the
learning paradigm (offline/online), specific properties can be more or less important.

3. Computational primitives of synaptic plasticity

In this work, we refer to “computational primitives of synaptic plasticity” as those
basic plasticity mechanisms that make use of local variables.

3.1. Local variables

Synapse
Pre-synaptic site Post-synaptic site

Membrane voltage

Spikes

Integrative spike trace

Capped spike trace

Figure 1: The local variables involved in the local synaptic plasticity models we review
in this survey: Pre- and/or post-synaptic spike traces (capped or integrative) and
post-synaptic membrane (dendritic or somatic) voltage.

The following are the local variables that we consider:

Pre- and post-synaptic spike traces: These are the traces generated at the pre-
and post-synaptic site triggered by the spikes of the corresponding pre- or post-
synaptic neurons. They can be computed by either integrating the spikes using
a linear operator in models and a low-pass filter in circuits, or by using non-
linear operators/circuits. Figure 1 shows examples both linear (denoted as
“integrative”) and non-linear (denoted as “capped”) spike traces. In general,
these traces represent the recent level of activation of the pre- and post-synaptic
neurons. Depending on the learning rule, there might be one or more spike traces
per neuron with different decay rates. The biophysical substrates of these traces
can be diverse (Pfister & Gerstner 2006, Graupner & Brunel 2010), for example
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reflecting the amount of bound glutamate (Karmarkar & Buonomano 2002)
or the number of N-Methyl-D-Aspartate (NMDA) receptors in an activated
state (Senn et al. 2001). The post-synaptic spike traces could reflect the Calcium
concentration mediated through voltage-gated Calcium channels and NMDA
channels (Karmarkar & Buonomano 2002), the number of secondary messengers
in a deactivated state of the NMDA receptor (Senn et al. 2001) or the voltage
trace of a back-propagating action potential (Shouval et al. 2002).

Post-synaptic membrane voltage: The post-synaptic neuron’s membrane poten-
tial is also a local variable, as it is accessible to all of the neuron’s synapses.

These local variables are the basic elements that can be used to induce a change
in the synaptic weight, which is reflected in the change of the post-synaptic membrane
voltage that a pre-synaptic spike induces.

3.2. Spikes interaction

We refer to spike interactions as the number of spikes from the past activity of the
neurons that are taken into account for the weight update. In particular, we distinguish
two spikes interaction schemes:

All-to-all: In this scheme, the spike trace is ”integrative” and influenced,
asymptotically, by the whole previous spiking history of the pre-synaptic neuron.
The contribution of each spike is expressed in the form of a Dirac delta which
should be integrated. Nevertheless, if the spikes are considered to be point
processes for which their spike width is zero in the limit, the contribution of
all spikes in Eq. (1) can be approximated as follows:

𝑑𝑋 (𝑡)
𝑑𝑡

= −𝑋 (𝑡)
𝜏

+
∑︁
𝑖

𝐴 𝛿 (𝑡 − 𝑡𝑖) (1)

where 𝛿 (𝑡 − 𝑡𝑖) is a spike occurring at time 𝑡𝑖, 𝜏 is the exponential decay time
constant and 𝐴 is the jump value such that at the moment of a spike event,
the spike trace jumps by 𝐴. In addition to being a good first-order model
of synaptic transmission, this transfer function can be easily implemented in
electronic hardware using low-pass filters. Indeed, the trace 𝑋 (𝑡) represents the
online estimate of the neuron’s mean firing rate (Dayan & Abbott 2001).

Nearest spike: This is a non-linear mode in which the spike trace is only influenced
by the most recent pre-synaptic spike. It is implemented by means of a hard
bound that is limiting the maximum value of the trace, such that if the jumps
reach it, the trace is ”capped” at that bound value. It is expressed in Eq. (2):

𝑑𝑋 (𝑡)
𝑑𝑡

= −𝑋 (𝑡)
𝜏

+
∑︁
𝑖

(𝐴 − 𝑋 (𝑡)) 𝛿 (𝑡 − 𝑡𝑖) (2)

where 𝐴 is both the jump value and the hard bound, such that at the moment of
a spike event, the spike trace jumps to 𝐴. It means that the spike trace gives an
online estimate of the time since the last spike.

Therefore, the jump and bound parameters control the sensitivity of the learning
rule to the spike timing and rate combined (all-to-all) or to the spike timing alone
(nearest spike), while the decay time constant controls how fast the synapse forgets
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about these activities. Further spike interaction schemes are possible, for example by
adapting the nearest spike interaction so that spike interactions producing LTP would
dominate over those producing LTD.

3.3. Update trigger

In most synaptic plasticity rules, the weights update is event-based and happens at
the moment of a pre-synaptic spike (e.g. Brader et al. 2007), post-synaptic spike (e.g.
Diehl & Cook 2015) or both pre- and post-synaptic spikes (e.g. Song et al. 2000).
This event-based paradigm is particularly interesting for hardware implementations,
as it exploits the spatio-temporal sparsity of the spiking activity to reduce the energy
consumption with less updates. On the other hand, some rules use a continuous
update (e.g. Graupner & Brunel 2012) arguing for more biological plausibility, or
a mixture of both with e.g. depression at the moment of a pre-synaptic spike and
continuous potentiation (e.g. Clopath et al. 2010).

3.4. Synaptic weights

The synaptic weight represents the strength of a connection between two neurons.
Synaptic weights have three main characteristics:

(i) Type: Synaptic weights can be continuous, with full floating-point resolution in
software, or with fixed/limited resolution (binary in the extreme case). Both
cases can be combined by using fixed resolution synapses (e.g., binary synapses),
which however have a continuous internal variable that determines if and when
the synapse undergoes a low-to-high (LTP) or high-to-low (LTD) transition,
depending on the learning rule.

(ii) Bistability: In parallel to the plastic changes that update the weights, on
their weight update trigger conditions, synaptic weights can be continuously
driven to one of two stable states, depending on additional conditions on the
weight itself and on its recent history. These bistability mechanisms have been
shown to protect memories against unwanted modifications induced by ongoing
spontaneous activity (Brader et al. 2007) and provide a way to implement
stochastic selection mechanisms.

(iii) Bounds: In any physical neural processing system, whether biological or artificial,
synaptic weights have bounds: they cannot grow to infinity. Two types of
bounds can be imposed on the weights: (1) hard bounds, in rules with additive
updates independent of weight, or (2) soft bounds, in weight-dependent updates
(for example, multiplicative) rules that drive the weights toward the bounds
asymptotically (Morrison et al. 2008).

3.5. Stop-learning

An intrinsic mechanism to modulate learning and automatically switch from the
training mode to the inference mode is important, especially in an online learning
context. This “stop-learning” mechanism can be either implemented with a global
signal related to the performance of the system, as in reinforcement learning, or
with a local signal produced in the synapses or in the soma. For example, a local
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variable that can be used to implement stop-learning could be derived from the post-
synaptic neuron’s membrane voltage (Clopath et al. 2010, Albers et al. 2016) or spiking
activity (Brader et al. 2007, Graupner & Brunel 2012).

4. Models of synaptic plasticity

We present a representative set of spike-based synaptic plasticity models, summarize
their main features, and explain their working principles. Table 1 shows a direct
comparison of the computational principles used by the relevant models, and Tables 14
and 15 show the main variables common to the different models.
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Table 1: Spike-based local synaptic plasticity rules: comparative table

Plas-
ticity
rule

Local variables
Spikes
inter-
action

Update
trigger (spike)

Synaptic weights Stop-
learning

LTD LTP Type Bista-
bility

Bounds

STDP
Pre- and post-synaptic

spike traces
Nearest

spike
Pre Post Analog No Hard No

T-STDP

Pre-synaptic spike
trace + 2

post-synaptic spike
traces (different time

constants)

Nearest
spike /
all-to-

all

Pre Post Analog No Hard No

SDSP

Post-synaptic
membrane voltage +
post-synaptic spike

trace

All-to-
all

Pre Binary∗ Yes Hard Yes1

V-STDP

Pre-synaptic spike
trace + post-synaptic
membrane voltage + 2

post-synaptic
membrane voltage

traces

All-to-
all

Pre
Contin-

uous
Analog No Hard Yes2

C-STDP

One synaptic spike
trace updated by both
pre- and post-synaptic

spikes

All-to-
all

Continuous Analog Yes Soft Yes3

SBCM
Pre- and post-synaptic

spike traces
All-to-

all
Continuous Analog No Hard No

MPDP
Pre-synaptic spike

trace + post-synaptic
membrane voltage

All-to-
all

Continuous Analog No Hard Yes4

DPSS

Pre-synaptic spike
trace + post-synaptic
dendritic voltage +

post-synaptic somatic
spike

All-to-
all

Continuous Analog No Hard No

RDSP
Pre-synaptic spike

trace
All-to-

all
Post Analog No Soft No

H-MPDP

Pre-synaptic spike
trace + post-synaptic

membrane voltage

All-to-
all

Continuous Analog No Hard Yes5

C-MPDP

Post-synaptic
membrane voltage +
post-synaptic spike

trace

All-to-
all

Pre Analog No Hard No

BDSP

Pre-synaptic spike
trace + post-synaptic

event trace +
post-synaptic burst

trace

All-to-
all

Post
(event)

Post
(burst)

Analog No Hard No

∗ Binary with analog internal variable.
1 At low and high activities of post-neuron (post-synaptic spike trace).
2 At low low-pass filtered post-synaptic membrane voltage (post-synaptic membrane voltage trace).
3 At low activity of pre- and post-neurons merged (synaptic spike trace).
4 At medium (between two thresholds) internal update trace.
5 At medium (between two thresholds) post-synaptic membrane voltage.
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4.1. Song et al. (2000): Spike-Timing Dependent Plasticity (STDP)

Spike-Timing Dependent Plasticity (STDP) (Song et al. 2000) was proposed to model
how pairs of pre-post spikes interact based solely on their timing. It is one of the most
widely used synaptic plasticity algorithms in the literature.

Δ𝑤 =

{
A+ exp( Δ𝑡

𝜏+
) if Δt < 0.

−A− exp( −Δ𝑡
𝜏−

) if Δt ≥ 0.
(3)

The synaptic weight is updated according to Eq. (3), whose variables are described
in Tab. 2. If a post-synaptic spike occurs after a pre-synaptic one (Δt < 0), potentiation
is induced (triggered by the post-synaptic spike). In contrast, if a pre-synaptic spike
occurs after a post-synaptic spike (Δt ≥ 0), depression occurs (triggered by the pre-
synaptic spike). The time constants 𝜏+ and 𝜏− determine the time window in which
the spike interaction leads to changes in synaptic weight. As shown in Tab. 1, STDP
is based on local pre- and post-spike traces with nearest spike interaction, meaning
that the spike traces are capped. Fig. 2 illustrates how STDP is implemented using
these spike traces for online learning.

Synapse

Pre-synaptic site

Post-synaptic site

Spikes
(LTD trigger)

Capped
spike trace

Spikes
(LTP trigger)

Capped
spike trace

Δw

Δt = tpre - tpost

Synaptic weight update 
with STDP

LTP

LTD

A+

A-

Figure 2: Online implementation principle of STDP using local pre- and post-synaptic
capped spike traces which provide an online estimate of the time since the last spike.
For example, at the moment of post-synaptic spike, potentiation is induced with a
weight change that is proportional to the value of the pre-synaptic spike trace, and
the post-synaptic spike trace is updated with a jump to 𝐴−.
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Table 2: Variables of the STDP rule.

Variable Description

𝑤 Synaptic weight
A+ / A− Maximum amount of synaptic change

Δ𝑡 Time difference between pre- and post-synaptic spikes: 𝑡𝑝𝑟𝑒 − 𝑡𝑝𝑜𝑠𝑡
𝜏+ / 𝜏− Time constants of synaptic traces

4.2. Pfister and Gerstner (2006): Triplet-based STDP (T-STDP)

The main limitation of the original STDP model is that it is only time-based; thus, it
cannot reproduce frequency effects as well as triplet and quadruplet experiments. In
this work, Pfister & Gerstner (2006) introduces additional terms in the learning rule
to expand the classical pair-based STDP to a Triplet-based STDP (T-STDP).

Specifically, the authors introduce a triplet depression (i.e. 2-pre and 1-post) and
potentiation term (i.e. 1-pre and 2-post). They do this by adding four additional
variables that they call detectors: 𝑟 and 𝑜. 𝑟1 and 𝑟2 detectors are pre-synaptic spike
traces which increase whenever there is a pre-synaptic spike and decrease back to zero
with their individual intrinsic time constants. Similarly, 𝑜1 and 𝑜2 detectors increase
on post-synaptic spikes and decrease back to zero with their individual intrinsic time
constants. The weight changes are defined in Eqs. (4), whose variables are described
in Tab. 3.

𝑤(𝑡) → 𝑤(𝑡) + 𝑟1 (𝑡)
[
𝐴+
2 + 𝐴+

3𝑜2 (𝑡 − 𝜖)
]

if 𝑡 = 𝑡post

𝑤(𝑡) → 𝑤(𝑡) − 𝑜1 (𝑡)
[
𝐴−
2 + 𝐴−

3𝑟2 (𝑡 − 𝜖)
]

if 𝑡 = 𝑡pre
(4)

While in classical STDP, potentiation takes place shortly after a pre-synaptic
spike and upon occurrence of a post-synaptic spike, in the current framework several
conditions need to be considered. Potentiation is triggered at every post-synaptic
spike where the weight change is gated by the 𝑟1 detector and modulated by the 𝑜2
detector. If there are no post-synaptic spikes shortly before the current one (𝑜2 is
zero) the degree of potentiation is determined by 𝐴+

2 only, just like in the pair-based
STDP. If however a triplet of spikes occurs (in this case 1-pre and 2-post) 𝑜2 is non
zero and an additional potentiation term 𝐴+

3𝑜2 (𝑡− 𝜖) contributes to the weight change.
Analogously, 𝑟2, 𝑜1, 𝐴−

2 and 𝐴−
3 operate for the case of synaptic depression which is

triggered at every pre-synaptic spike.

Table 3: Variables of the T-STDP rule.

Variable Description

𝑤 Synaptic weight
𝑟1 / 𝑟2 Pre-synaptic spike traces - integrative
𝑜1 / 𝑜2 Post-synaptic spike traces - integrative
A+

2 / A−
2 Weight change amplitude whenever there is a pair event

A+
3 / A−

3 Weight change amplitude whenever there is triplet event
𝜖 Small positive constant

𝑡pre / 𝑡post Time of pre- and post-synaptic spikes
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4.3. Brader et al. (2007): Spike-Driven Synaptic Plasticity (SDSP)

The Spike-Driven Synaptic Plasticity (SDSP) learning rule addresses in particular
the problem of memory maintenance and catastrophic forgetting: the presentation
of new experiences continuously generates new memories that will eventually lead to
saturation of the limited storage capacity, hence forgetting. As discussed in Sec. 2.3,
this problem concerns all learning rules in an online context. SDSP attempts to solve
it by slowing the learning process in an unbiased way. The model randomly selects
the synaptic changes that will be consolidated among those triggered by the input,
therefore learning to represent the statistics of the incoming stimuli.

The SDSP model proposed by Brader et al. (2007) is demonstrated in a feed-
forward neural network used for supervised learning in the context of pattern
classification. Nevertheless, the model is also well suited for unsupervised learning
of patterns of activation in attractor neural networks (Del Giudice et al. 2003, Brader
et al. 2007). It does not rely on the precise timing difference between pre- and post-
synaptic spikes, instead the weight update is triggered by single pre-synaptic spikes.
The sign of the weight update is determined by the post-synaptic neuron’s membrane
voltage 𝑉 (𝑡 𝑝𝑟𝑒). The post-synaptic neuron’s Calcium variable 𝐶 (𝑡 𝑝𝑟𝑒) represents a
trace of the recent low-pass filtered post-synaptic activity and is used to determine if
synaptic updates should occur (stop-learning mechanism). The synaptic dynamics is
described in Eq. (1).

The internal variable 𝑋 is updated according to Eq. (5) with the variables
described in Tab. 4.

𝑋 → 𝑋 + 𝑎 if 𝑉 (𝑡pre) > \𝑉 and \lup < 𝐶 (𝑡pre) < \hup

𝑋 → 𝑋 − 𝑏 if 𝑉 (𝑡pre) ≤ \𝑉 and \ldown < 𝐶 (𝑡
pre) < \hdown

(5)

The weight update depends on the instantaneous values of 𝑉 (𝑡pre) and 𝐶 (𝑡pre)
at the arrival of a pre-synaptic spike. A change of the synaptic weight is triggered
by the pre-synaptic spike if 𝑉 (𝑡pre) is above a threshold \𝑣 , provided that the post-
synaptic Calcium trace 𝐶 (𝑡pre) is between the potentiation thresholds \l𝑢𝑝 and \h𝑢𝑝.
An analogous but flipped mechanism induces a decrease in the weights.

The synaptic weight is restricted to the interval 0 ≤ 𝑋 ≤ 𝑋𝑚𝑎𝑥 . The bistability
on the synaptic weight implies that the internal variable 𝑋 drifts (and is bounded)
to either a low state or a high state, depending on whether 𝑋 is below or above a
threshold \𝑋 respectively. This is shown in Eqs (6).

𝑑𝑋

𝑑𝑡
=

{
𝛼 if 𝑋 > \𝑋

−𝛽 if 𝑋 ≤ \𝑋
(6)
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Table 4: Variables of the SDSP rule.

Variable Description

𝑋 Synaptic weight
𝑎, 𝑏 Jump sizes
𝑉 (𝑡) Post synaptic membrane potential
\𝑉 Membrane potential threshold
𝐶 (𝑡) Post-synaptic spike trace (Calcium) - integrative

\lup / \hup / \ldown / \hdown Thresholds on the Calcium variable
𝑋𝑚𝑎𝑥 Maximum synaptic weight
𝛼 / 𝛽 Bistability rates, ∈ R+
\𝑋 Bistability threshold on the synaptic weight

4.4. Clopath et al. (2010): Voltage-based STDP (V-STDP)

The Voltage-based STDP (V-STDP) rule has been introduced to unify several
experimental observations such as post-synaptic membrane voltage dependence,
pre-post spike timing dependence and post-synaptic rate dependence (Clopath &
Gerstner 2010), but also to explain the emergence of some connectivity patterns in the
cerebral cortex (Clopath et al. 2010). In this model, depression and potentiation are
two independent mechanisms whose sum produces the total synaptic change. Variables
of the equations are described in Tab. 5.

Depression is triggered by the arrival of a pre-synaptic spike (𝑋 (𝑡) = 1) and is
induced if the voltage trace 𝑢− (𝑡) of the post-synaptic membrane voltage 𝑢(𝑡) is above
the threshold \− (see Eq. (7)).

𝑑𝑤−

𝑑𝑡
= −𝐴LTD𝑋 (𝑡) [𝑢− (𝑡) − \−]+ (7)

On the other hand, potentiation is continuous and occurs following Eq. (8) if the
following conditions are met at the same time:

• The instantaneous post-synaptic membrane voltage 𝑢(𝑡) is above the threshold
\+, with \+ > \−;

• The low-pass filtered post-synaptic membrane voltage 𝑢+ is above \−;

• A pre-synaptic spike occurred a few milliseconds earlier and has left a trace 𝑥.

𝑑𝑤+

𝑑𝑡
= +𝐴LTP 𝑥(𝑡) [𝑢(𝑡) − \+]+ [𝑢+ (𝑡) − \−]+ (8)

The total synaptic change is the sum of depression and potentiation expressed in
Eqs. (7) and (8) respectively, within the weights’ hard bounds 0 and 𝑤max.
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Table 5: Variables of the V-STDP rule.

Variable Description

𝑤 Synaptic weight
𝑋 (𝑡) Pre-synaptic spike train

𝑋 (𝑡) = ∑
𝑛 𝛿 (𝑡 − 𝑡𝑛)

𝛿(.) Dirac delta function
𝑡𝑛 Time of the n-th pre-synaptic spike
𝑢(𝑡) Post-synaptic membrane voltage

𝑢− (𝑡) / 𝑢+ (𝑡) Post-synaptic membrane voltage traces
𝐴LTD / 𝐴LTP Amplitudes for depression and potentiation
\− / \+ Thresholds
[.]+ Rectifying bracket [𝑥]+ = 𝑥 if 𝑥 > 0, [𝑥]+ = 0 otherwise
𝑥(𝑡) Pre-synaptic spike trace - integrative
𝑤max Weight max hard bound

4.5. Graupner and Brunel (2012): Calcium-based STDP (C-STDP)

Founded on molecular studies, Graupner & Brunel (2012) proposed a plasticity model
(C-STDP) based on a transient Calcium signal. They model a single Calcium trace
variable 𝑐(𝑡) which represents the linear sum of individual Calcium transients elicited
by pre- and post-synaptic spikes at times 𝑡𝑖 and 𝑡 𝑗 , respectively. The amplitudes of
the transients elicited by pre- and post-synaptic spikes are given by 𝐶pre and 𝐶post,
respectively, and 𝑐(𝑡) decays constantly towards 0.

In the proposed model, the synaptic strength is described by the synaptic efficacy
𝜌 ∈ [0 : 1], which is constantly updated according to Eq. (9), whose variables are
described in Tab. 6. Changes in synaptic efficacy are continuous and depend on the
relative times in which the Calcium trace 𝑐(𝑡) is above the potentiation (\𝑝) and
depression (\𝑑) thresholds (Graupner & Brunel 2012).

𝜏
𝑑𝜌

𝑑𝑡
= −𝜌(1 − 𝜌) (𝜌★ − 𝜌) + 𝛾𝑝 (1 − 𝜌)Θ[𝑐(𝑡) − \𝑝] − 𝛾𝑑𝜌Θ[𝑐(𝑡) − \𝑑] + Noise(t) (9)

If the Calcium variable is above the threshold for potentiation (Θ[𝑐(𝑡) − \𝑝] = 1)

the synaptic efficacy is continuously increased by
𝛾𝑝 (1−𝜌)

𝜏
and as long as the Calcium

variable is above the threshold for depression (Θ[𝑐(𝑡) − \𝑑] = 1) the synaptic efficacy
is continuously decreased by − 𝛾𝑑𝜌

𝜏
. Eventually, the efficacy updates induced by the

Calcium concentration are in direct competition with each other as long as 𝑐(𝑡) is above
both thresholds (Graupner & Brunel 2012). In addition to constant potentiation or
depression updates, the bistability mechanism −𝜌(1 − 𝜌) (𝜌★ − 𝜌) drives the synaptic
strength toward 0 or 1, depending on whether the instantaneous value of 𝜌 is below
or above the bistability threshold 𝜌★.

Graupner & Brunel (2012) show that their rule replicates a plethora of dynamics
found in numerous experiments, including pair-based behavior STDP with different
STDP curves, synaptic dynamics found in CA3-CA1 slices for postsynaptic neuron
spikes and dynamics based on spike triplets or quadruplets. However, the rule contains
only a single Calcium trace variable 𝑐(𝑡) per synapse, which is updated by both pre-
and post-synaptic spikes. Since the synaptic efficacy update only depends on this
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variable and not on the individual or paired spike events of the pre- and post-synaptic
neuron, the system can get into a state in which isolated pre-synaptic or isolated
post-synaptic activity can lead to synaptic efficacy changes. In extreme cases, isolated
pre(post)-synaptic spikes could drive a highly depressed (𝜌 = 0) synapse into the
potentiated state (𝜌 = 1), without the occurrence of any post(pre)-synaptic action
potential. In a recent work, Chindemi et al. (2022) uses a modified version of the
C-STDP rule based on data-constrained post-synaptic Calcium dynamics according
to experimental data. They show that the rule is able to replicate the connectivity of
pyramidal cells in the neocortex, by adapting the probabilistic and limited release of
𝐶𝑎2+ during pre- and post-synaptic activity.

Table 6: Variables of the C-STDP rule.

Variable Description

𝑐(𝑡) Pre- and post-synaptic spike trace (Calcium) - integrative
𝐶pre / 𝐶post Amplitudes of pre- and post-synaptic Calcium jumps
\𝑝 / \𝑑 Thresholds for potentiation and depression

𝜏 Time constant of synaptic efficacy changes
𝜌 Synaptic efficacy
𝜌★ Bistability threshold on the synaptic efficacy

𝛾𝑝 / 𝛾𝑑 Rates of synaptic potentiation and depression
Θ[.] Heaviside function Θ[𝑥] = 1 if 𝑥 > 0, Θ[𝑥] = 0 otherwise

Noise(t) Activity-dependent noise

4.6. Bekolay et al. (2013): Spiking BCM (SBCM)

The Spiking BCM (SBCM) learning rule (Bekolay et al. 2013) has been proposed as
another spike-based formulation of the abstract learning rule BCM, after the T-STDP
rule. The weight update of the SBCM learning rule is continuous and is expressed in
Eq. (10), whose variables are described in Tab. 7.

Δ𝑤𝑖 𝑗 = ^𝛼 𝑗𝑎𝑖𝑎 𝑗 (𝑎 𝑗 − \ (𝑡)) (10)

The mechanistic properties of SBCM are closer to the formal BCM rule, with the
activities of the neurons expressed as spike activity traces and a filtered modification
threshold. Nevertheless, the SBCM exhibits both the timing dependence of STDP
and the frequency dependence of the T-STDP rule.

Table 7: Variables of the SBCM rule.

Variable Description

𝑤𝑖 𝑗 Synaptic weight between pre- and post-synaptic neurons 𝑖 and 𝑗 , respectively
^ Learning rate
𝛼 𝑗 Scaling factor (gain) associated with the neuron

𝑎𝑖 / 𝑎 𝑗 Pre- and post-synaptic spike traces
\ (𝑡) Modification threshold: \ (𝑡) = 𝑒−𝑡/𝜏\ (𝑡 − 1) + (1 − 𝑒−𝑡/𝜏𝑎 𝑗 (𝑡))
𝜏 Time constant of modification threshold
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4.7. Yger and Harris (2013): Membrane Potential Dependent Plasticity (MPDP)

The Membrane Potential Dependent Plasticity (MPDP) rule, also called the
“Convallis” rule (Yger & Harris 2013) aims to approximate a fundamental
computational principle of the neocortex and is derived from principles of unsupervised
learning algorithms. The main assumption of the rule is that projections with non-
Gaussian distributions are more likely to extract useful information from real-world
patterns (Hyvärinen & Oja 2000). Therefore, synaptic changes should tend to increase
the skewness of a neuron’s sub-threshold membrane potential distribution. The rule
is therefore derived from an objective function that measures how non-Gaussian the
membrane potential distribution is, such that the post-synaptic neuron is often close
to either its resting potential or spiking threshold (and not in between).

The resulting plasticity rule reinforces synapses that are active during post-
synaptic depolarization and weakens those active during hyper-polarization. It is
expressed in Eq. (11), where changes are continuously made on an internal update
trace Ψ, and are then applied on the synaptic weight 𝑤 as expressed in Eq. (12). The
variables of the equations are explained in Tab. 8. The rule was used for unsupervised
learning of speech data, where an additional mechanism was implemented to maintain
a constant average firing rate.

Ψ(𝑡) =
∫ 𝑡

−∞
𝑒−(𝑡−𝜏)/𝑇 𝐹 ′(𝑉 (𝜏))

𝑁𝑠∑︁
𝑖=1

𝐾 (𝜏 − 𝑡𝑠𝑖 )𝑑𝜏 (11)

𝑑𝑤

𝑑𝑡
=


Ψ − \pot 𝑖 𝑓 \pot < Ψ

0 𝑖 𝑓 \dep < Ψ ≤ \pot
Ψ − \dep 𝑖 𝑓 Ψ ≤ \dep

(12)

Table 8: Variables of the MPDP rule.

Variable Description

Ψ Internal spike trace
𝑇 Decay time constant

𝐹 ′(𝑉 (𝜏)) Function of the post-synaptic membrane voltage
𝑉 (𝜏) Post-synaptic membrane voltage
𝑁𝑠 Pre-synaptic spike indices∑𝑁𝑠

𝑖=1 𝐾 (𝜏 − 𝑡𝑠
𝑖
) Pre-synaptic spike trace - integrative

𝐾 (𝜏 − 𝑡𝑠
𝑖
) Kernel for pre-synaptic spikes

𝑤 Synaptic weight
\pot / \dep Thresholds for potentiation and depression

4.8. Urbanczik and Senn (2014): Dendritic Prediction of Somatic Spiking (DPSS)

Urbanczik & Senn (2014) proposed a new learning model based on the Dendritic
Prediction of Somatic Spiking (DPSS), which aims to implement a biologically
plausible non-Hebbian learning rule. In their rule, they rely on the pre-synaptic
spike trace, the post-synaptic spike event and the post-synaptic dendritic voltage
of a multi-compartment neuron model. Plasticity in dendritic synapses is realizing a
predictive coding scheme that matches the dendritic potential to the somatic potential.
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This minimizes the error of dendritic prediction of somatic spiking activity of a
conductance-based neuron model, that exhibits probabilistic spiking (Urbanczik &
Senn 2014). The neuron membrane potential 𝑈 is influenced by both a scaled version
of the dendritic compartment potential 𝑉∗

𝑤 and the teaching inputs from excitatory or
inhibitory proximal synapses 𝐼som

𝑈
.

In their proposed learning rule (see Eq. (13)), the aim is to minimize the error
between the predicted somatic spiking activity based on the dendritic potential
𝜙(𝑉∗

𝑤 (𝑡)) and the real somatic spiking activity represented by back-propagated spikes
𝑆(𝑡). The equation’s variables are described in Tab. 9. The error 𝑆(𝑡) − 𝜙(𝑉∗

𝑤 (𝑡))
is assigned to individual dendritic synapses based on their recent activation, similar
to Yger & Harris (2013) and Albers et al. (2016).

𝑃𝐼𝑖 (𝑡) = [𝑆(𝑡) − 𝜙(𝑉∗
𝑤 (𝑡))]ℎ(𝑉∗

𝑤 (𝑡))𝑃𝑆𝑃𝑖 (𝑡) (13)

Since the back-propagated spikes 𝑆(𝑡) are only 0 or 1, but the predicted rate
𝜙(𝑉∗

𝑤 ) based on a sigmoidal function is never 0 or 1, 𝑃𝐼 will never be 0. In this case,
there is never a zero weight change (Urbanczik & Senn 2014). The plasticity induction
variable 𝑃𝐼𝑖 is continuously updated and used as an intermediate variable, before it is
applied to induce a scaled persistent synaptic change, as expressed in Eq. (14).

𝜏Δ
𝑑Δ𝑖

𝑑𝑡
= 𝑃𝐼𝑖 (𝑡) − Δ𝑖

𝑑𝑤𝑖

𝑑𝑡
= [Δ𝑖

(14)

Sacramento et al. (2018) showed later analytically that the Dendritic Prediction
of Somatic Spiking (DPSS) learning rule combined with similar dendritic predictive
plasticity mechanisms approximate the error back-propagation algorithm, and
demonstrated the capabilities of such a learning framework to solve regression and
classification tasks.

Table 9: Variables of the DPSS rule.

Variable Description

𝑈 Somatic potential
𝑉∗
𝑤 Scaled dendritic potential

𝐼som
𝑈

Proximal input current
𝜙(.) Sigmoid function
𝑆(𝑡) Back-propagated somatic spiking activity
𝑃𝐼𝑖 (𝑡) Plasticity induction variable
ℎ(.) Positive weighting function

𝑃𝑆𝑃𝑖 (𝑡) Pre-synaptic spike trace - integrative
𝑃𝑆𝑃𝑖 (𝑡) =

∑
𝑠∈𝑋dnd

𝑖
^(𝑡 − 𝑠)

^(𝑡 − 𝑠) Kernel for pre-synaptic spikes
𝑋dnd
𝑖

Pre-synaptic spike train
𝑤𝑖 Synaptic strength of synapse 𝑖
𝜏Δ Plasticity induction variable time constant
[ Learning rate
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4.9. Diehl and Cook (2015): Rate Dependent Synaptic Plasticity (RDSP)

Diehl & Cook (2015) proposed the Rate Dependent Synaptic Plasticity (RDSP) rule
as a local credit assignment mechanism for unsupervised learning in self-organizing
Spiking Neural Networks (SNNs). The idea is to potentiate or depress the synapses
for which the pre-synaptic neuron activity was high or low at the moment of a post-
synaptic spike, respectively. The RDSP learning rule relies solely on the pre-synaptic
information and is triggered when a post-synaptic spike arrives. The weight update
is shown in Eq. (15), whose variables are described in Tab. 10.

Δ𝑤 = [(𝑥pre − 𝑥tar) (𝑤max − 𝑤)𝑢 (15)

𝑢 determines the weight dependence of the update for implementing a soft bound,
while the target value of the pre-synaptic spike trace 𝑥𝑡𝑎𝑟 is crucial in this learning
rule because it acts as a threshold between depression and potentiation. If it is set
to 0, then only potentiation is observed. It is hence important to set it to a non-zero
value to ensure that pre-synaptic neurons that rarely lead to the firing of the post-
synaptic neuron will become more and more disconnected. More generally, the higher
the value of 𝑥tar value, the more depression occurs and the lower the synaptic weights
will be (Diehl & Cook 2015).

This rule was first proposed as a more biologically plausible version of a previously
proposed rule for memristive implementations by Querlioz et al. (2013). The main
difference between the two models is that the RDSP rule uses an exponential time
dependence for the weight change which is more biologically plausible (Abbott &
Song 1999) than a time-independent weight change. This can also be more useful for
pattern recognition depending on the temporal dynamics of the learning task.

Table 10: Variables of the RDSP rule.

Variable Description

𝑤 Synaptic weight
[ Learning rate
𝑥pre Pre-synaptic spike trace - integrative
𝑥tar Target value of the pre-synaptic spike trace
𝑤max Maximum weight
𝑢 Weight dependence - soft bound

4.10. Albers et al. (2016): Homeostatic MPDP (H-MPDP)

The Homeostatic MPDP (H-MPDP) learning rule proposed by Albers et al. (2016) is
derived from an objective function similar to that of the MPDP rule but with opposite
sign, as it aims to balance the membrane potential of the post-synaptic neuron between
two fixed thresholds; the resting potential and the spiking threshold of the neuron.
Hence, the MPDP and the H-MPDP implement a Hebbian or homeostatic mechanism,
respectively. In addition, the H-MPDP differs from the other described models by
inducing plasticity only to inhibitory synapses.

Albers et al. (2016) use a conductance based neuron and synapse model, similar
to the C-MPDP and the DPSS rules. The continuous weight updates of the H-MPDP
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rule depend on the instantaneous membrane potential 𝑉 (𝑡) and the pre-synaptic spike
trace

∑
𝑘 𝜖 (𝑡 − 𝑡𝑘𝑖 ) as expressed in Eq. (16) whose variables are described in Tab. 11.

𝑤𝑖 = [(−𝛾 [𝑉 (𝑡) − 𝜗𝐷]+ + [𝜗𝑃 −𝑉 (𝑡)]+)
∑︁
𝑘

𝜖 (𝑡 − 𝑡𝑘𝑖 ) (16)

The authors claim that their model is able to learn precise spike times by keeping
a homeostatic membrane potential between two thresholds. This definition differs
from the homeostatic spike rate definition of the C-MPDP rule by Sheik et al. (2016).

Table 11: Variables of the H-MPDP rule.

Variable Description

𝑤𝑖 Synaptic weight
[ Learning rate
𝛾 Scaling factor for LTD/LTP
[.]+ Rectifying bracket [𝑥]+ = 𝑥 if 𝑥 > 0, [𝑥]+ = 0 otherwise
𝑉 (𝑡) Instantaneous membrane potential
𝜗𝑃/𝜗𝐷 Thresholds for plasticity induction∑
𝑘 𝜖 (𝑡 − 𝑡𝑘𝑖 ) Pre-synaptic spike trace - integrative
𝑡𝑘
𝑖

Time of the k-th spike at the i-th synapse
𝜖 (𝑠) Kernel for pre-synaptic spikes

4.11. Sheik et al. (2016): Calcium-based MPDP (C-MPDP)

The Calcium-based MPDP (C-MPDP) learning rule (Sheik et al. 2016) was proposed
with the explicit intention to have a local spike-timing based rule that would be
sensitive to the order of spikes arriving at different synapses and that could be ported
onto neuromorphic hardware.

Similarly to the DPSS rule, the C-MPDP rule uses a conductance-based neuron
model. However, instead of relying on mean rates, it relies on the exact timing of
the spikes. Furthermore, as for the H-MPDP rule, Sheik et al. (2016) propose to
add a homeostatic element to the rule that targets a desired output firing rate. This
learning rule is very hardware efficient because it depends only on the pre-synaptic
spike time and not on the post-synaptic one. The equation that governs its behavior
is Eq. (17). The weight update, triggered by the pre-synaptic spike, depends on a
membrane voltage component (see Eq. (18)) and on a homeostatic one (see Eq. (19)).
All equation variables are described in Tab. 12.

Δ𝑊 = Δ𝑊𝑣 + Δ𝑊ℎ (17)

Δ𝑊𝑣 = [𝛿(𝑉𝑚 (𝑡 + 1) > 𝑉lth)[+ − 𝛿(𝑉𝑚 (𝑡 + 1) < 𝑉lth)[−]𝑆(𝑡 − 𝑡pre) (18)

Δ𝑊ℎ = [ℎ (𝐶𝑎𝑡 − 𝐶𝑎)𝑆(𝑡 − 𝑡pre) (19)

The post-synaptic membrane voltage dependent weight update shown in Eq. (18)
depends on the values of the membrane voltage 𝑉𝑚 and an externally set threshold 𝑉lth,
which determines the switch between LTP and LTD. The homeostatic weight update
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in Eq. (19) is proportional to the difference in post-synaptic activity represented by
the post-synaptic spike trace 𝐶𝑎 and an externally set threshold 𝐶𝑎𝑡 .

The authors show that this learning rule, using the spike timing together with
conductance based neurons, is able to learn spatio-temporal patterns in noisy data and
differentiate between inputs that have the same 1st-moment statistics but different
higher moment ones. Although they gear the rule toward neuromorphic hardware
implementations, they do not propose circuits for the learning rule.

Table 12: Variables of the C-MPDP rule.

Variable Description

𝑊 Synaptic weight
Δ𝑊𝑣 Voltage-based weight update
Δ𝑊ℎ Homeostatic weight update
𝛿 Boolean variable
𝑉𝑚 Membrane potential
𝑉lth Threshold on membrane potential

[+ / [− / [ℎ Magnitude of LTP/LTD/Homeostasis
𝑆(𝑡 − 𝑡pre) Pre-synaptic spike trains

𝑡pre Pre-synaptic spike time
𝐶𝑎 Post-synaptic spike trace (Calcium) - integrative
𝐶𝑎𝑡 Calcium target concentration trace

4.12. Payeur et al. (2021): Burst-Dependent Synaptic Plasticity (BDSP)

The Burst-Dependent Synaptic Plasticity (BDSP) learning rule (Payeur et al. 2021)
has been proposed to enable online, local, spike-based solutions to the credit
assignment problem in hierarchical networks (Zenke & Neftci 2021), i.e. how can
neurons high up in a hierarchy signal to other neurons, sometimes multiple synapses
apart, whether to engage in LTP or LTD to improve behavior. The BDSP learning
rule is formulated in Eq. (20) whose variables are described in Tab. 13.

𝑑𝑤𝑖 𝑗

𝑑𝑡
= [[𝐵𝑖 (𝑡) − 𝑃𝑖 (𝑡)𝐸𝑖 (𝑡)]𝐸 𝑗 (𝑡) (20)

where an event 𝐸𝑖 (𝑡) is said to occur either at the time of an isolated spike or at
the time of the first spike in a burst, whereas a burst 𝐵𝑖 (𝑡) is defined as any occurrence
of at least two spikes (at the second spike) with an inter-spike interval less than a pre-
defined threshold. Any additional spike within the time threshold belongs to the same
burst. Hence, LTP and LTD are triggered by a burst and an event, respectively. Since
a burst is always preceded by an event, every potentiation is preceded by a depression.
However, the potentiation through the burst is larger than the previous depression,
which results in an overall potentiation.

The moving average 𝑃𝑖 (𝑡) regulates the relative strength of burst-triggered
potentiation and event-triggered depression. It has been established that such a
mechanism exists in biological neurons (Mäki-Marttunen et al. 2020). It is formulated
as a ratio between averaged post-synaptic burst and event traces. The authors show
that manipulating the moving average 𝑃𝑖 (𝑡) (i.e. the probability that an event becomes
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a burst) controls the occurrence of LTP and LTD, while changing the pre- and post-
synaptic event rates simply modifies the rate of change of the weight while keeping the
same transition point between LTP and LTD. Hence, the BDSP rule paired with the
control of bursting provided by apical dendrites enables a form of top-down steering
of synaptic plasticity in an online, local and spike-based manner.

Moreover, the authors show that this dendrite-dependent bursting combined
with short-term plasticity supports multiplexing of feed-forward and feedback signals,
which means that the feedback signals can steer plasticity without affecting the
communication of bottom-up signals. Taken together, these observations show that
combining the BDSP rule with short-term plasticity and apical dendrites can provide
a local approximation of the credit assignment problem. In fact, the learning rule
has been shown to implement an approximation of gradient descent for hierarchical
circuits and achieve good performance on standard machine learning benchmarks.

Table 13: Variables of the BDSP rule.

Variable Description

𝑤𝑖 𝑗 Synaptic weight between pre- and post-synaptic neurons 𝑗 and 𝑖
[ Learning rate

𝐵𝑖 (𝑡) Post-synaptic bursts

𝑃𝑖 (𝑡) Exponential moving average of the proportion of post-synaptic bursts
𝐸𝑖 (𝑡) Post-synaptic events

𝐸 𝑗 (𝑡) Pre-synaptic spike trace

4.13. Models common variables

Tables 14 and 15 show the major common variables between the different models.
This allows an easy comparison of the formalism of each rule.

Table 14: Variables in common between rules Part I

Variables STDP T-STDP SDSP V-STDP C-STDP SBCM

Synaptic
weight

w w X 𝑤 𝜌 𝑤𝑖 𝑗

Weight
bounds

𝑋𝑚𝑎𝑥 𝑤𝑚𝑎𝑥 0 / 1

Traces
𝑜1 / 𝑜2 / 𝑟1

/ 𝑟2
𝐶 (𝑡) 𝑢− (𝑡) / 𝑢+ (𝑡)

/ 𝑥(𝑡) 𝑐(𝑡) 𝑎𝑖 / 𝑎 𝑗

Time
constants

𝜏+ / 𝜏− 𝜏 𝜏

Membrane
potential

𝑉 (𝑡) 𝑢(𝑡)

Thresholds

\𝑉 / \l𝑢𝑝 /

\h𝑢𝑝 / \l
𝑑𝑜𝑤𝑛

/ \h
𝑑𝑜𝑤𝑛

/
\𝑋

\− / \+ 𝜌★ / \𝑝 / \𝑑 \

Amplitudes A+ / A−
A2+ / A2− /
A3+ / A3−

𝑎 / 𝑏 / 𝛼 /
𝛽

𝐴𝐿𝑇 𝑃 /
𝐴𝐿𝑇 𝐷

𝐶𝑝𝑟𝑒 / 𝐶𝑝𝑜𝑠𝑡

/ 𝛾𝑝 / 𝛾𝑑
^ / 𝛼 𝑗
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Table 15: Variables in common between rules Part II

Variables MPDP DPSS RDSP H-MPDP C-MPDP BDSP

Synaptic
weight

𝑤 𝑤𝑖 𝑤 𝑤𝑖 𝑊 𝑤𝑖 𝑗

Weight
bounds

𝑤𝑚𝑎𝑥

Traces
Ψ /

𝐾 (𝜏 − 𝑡𝑠
𝑖
)

𝑃𝑆𝑃𝑖 (𝑡) /
Δ𝑖

𝑥𝑝𝑟𝑒
∑

𝑘 𝜖 (𝑡 − 𝑡𝑘𝑖 ) 𝐶𝑎 / 𝐶𝑎𝑡 𝐸 𝑗 (𝑡)

Time
constants

T 𝜏Δ

Membrane
potential

𝑉 (𝜏) 𝑈 𝑉 (𝑡) 𝑉𝑚

Thresholds
\𝑑𝑒𝑝 /
\𝑝𝑜𝑡

𝑥𝑡𝑎𝑟 𝜗𝑃 / 𝜗𝐷 𝑉𝑙𝑡ℎ

Amplitudes [ [ / 𝑢 [ / 𝛾 [+ / [− / [ℎ [ / 𝑃𝑖 (𝑡)

5. CMOS implementations of synaptic plasticity

Our comparison of plasticity models has highlighted many common functional
primitives that are shared among the rules. These primitives can be grouped according
to their function into the following blocks: low-pass filters, eligibility traces, and weight
updates. These blocks can be readily implemented in CMOS technology, and they can
be combined to implement different learning circuits. An overview of the proposed
CMOS learning circuits that implement some of the models discussed is shown in
Table 16. To better link the CMOS implementations with the models presented, we
named all the current and voltage variables of our circuits to match those in the model
equations.

5.1. CMOS building blocks

The basic building blocks found required for building neuromorphic learning circuits
can be grouped in four different families.

Eligibility trace blocks These are implemented using either a current-mode
integrator circuit, such as the Differential Pair Integrator (DPI), or other non-
linear circuits that produce slowly decaying signals. Input spikes can either
increase the trace amplitude, decrease it, or completely reset it. The rate at
which the trace decays back to its resting state can be typically modulated with
externally controllable parameters. Circuit blocks implementing eligibility traces
are highlighted in green in the schematics.

Comparator blocks They are typically implemented using Winner-Take-All (WTA)
current mode circuits, or voltage mode transconductance or Operational
Amplifiers (OpAmps). The comparator block changes its output based on which
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input is greater. Circuit blocks implementing comparators are highlighted in
yellow in the schematics.

Weight update blocks They typically comprise a capacitor that stores a voltage
related to the amplitude of the weight. Charging and discharging pathways
connected to the capacitor enable potentiation and depression of the weight
depending on the status of other signals. These blocks are is similar to the
eligibility trace ones, except for the fact that they can produce both positive and
negative changes. Circuit blocks implementing weight updates are highlighted in
purple in the schematics.

Bistability blocks These are typically implemented using a Transconductance
Amplifier (TA) connected in feedback operation which compares the weight
voltage to a reference voltage. Depending on the value of the weight voltage
the bistability circuit will push the weight to the closest stable state. In its
simplest form they have one single reference voltage, but they could be expanded
to produce multiple stable states. Circuit blocks implementing bistability are
highlighted in red in the schematics.
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Table 16: Neuromorphic circuits for spike-based local synaptic plasticity models

Rule Paper Difference with the model Implementation

STDP

(Bofill-i-Petit
et al. 2001)1

/ 0.6 µm Fabricated

(Indiveri 2002)
All-to-all spike interaction +

bistable weights
1.5 µm Fabricated

(Bofill-i-Petit &
Murray 2004)

/ 0.6 µm Fabricated

(Cameron et al. 2005)
Anti-STDP + Non-exponential

spike trace
0.35 µm Fabricated

(Indiveri et al. 2006) Bistable weights 1.6 µm Fabricated
(Arthur &

Boahen 2006)2
All-to-all interaction + binary

weights
0.25 µm Fabricated

(Koickal et al. 2007) Soft bounds 0.6 µm Fabricated

(Liu & Mockel 2008)
All-to-all spike interaction +

asymmetric bounds (soft lower
bound + hard upper bound)

0.35 µm Fabricated

(Tanaka et al. 2009) / 0.25 µm Fabricated
(Bamford et al. 2012) All-to-all spike interaction 0.35 µm Fabricated

(Gopalakrishnan &
Basu 2014)

All-to-all spike interaction +
asymmetric bounds (soft lower
bound + hard upper bound)

0.35 µm Fabricated

(Mastella et al. 2020) / 0.15 µm Simulated

T-STDP

(Mayr et al. 2010) / Simulated

(Azghadi et al. 2013) / 0.35 µm Simulated
(Gopalakrishnan &

Basu 2017)
/ 0.35 µm Fabricated

SDSP

(Fusi et al. 2000)
No post-synaptic spike trace +

no stop-learning mechanism
1.2 µm Fabricated

(Chicca & Fusi 2001)
No post-synaptic spike trace +

no stop-learning mechanism
0.6 µm Fabricated

(Chicca et al. 2003)
No post-synaptic spike trace +

no stop-learning mechanism
0.6 µm Fabricated

(Giulioni et al. 2008) Analog weights 0.35 µm Fabricated
(Mitra et al. 2009) Analog weights 0.35 µm Fabricated
(Chicca et al. 2014) Analog weights 0.35 µm Fabricated

C-STDP
(Maldonado Huayaney

et al. 2016)
Hard bounds 0.18 µm Fabricated

RDSP

(Häfliger et al. 1997)

Nearest spike interaction +
reset of pre-synaptic spike
trace at post-spike + very

small soft bounds

2 µm Fabricated

(Ramakrishnan
et al. 2011)

Nearest spike interaction +
asymmetric bounds (soft lower
bound + hard upper bound)

0.35 µm Fabricated

1 Potentiation and depression triggers done with digital logic gates.
2 Weight storage in digital SRAM.
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5.2. Spike-Timing Dependent Plasticity (STDP)

Weight update

Trace
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IA-

VA+
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Vw

Vτ+

Vτ-

Iτ+

Iτ-

Vdd Vdd

Vdd

Vpot

Vdep

Figure 3: STDP circuit with highlighted the CMOS building blocks used: Eligibility
traces (in green) and Weight updates (in violet). The voltage and current variables
reflect the model equation. Adapted from: Indiveri et al. (2006).

Following the formalization of the STDP model in 2000 (see Eq. (3)), many
CMOS implementations have been proposed. Most implement the model as
explained in Section above (Bofill-i-Petit et al. 2001, Indiveri 2003, Bofill-i-Petit &
Murray 2004, Arthur & Boahen 2006, Bamford et al. 2012) however, some exploit
the physics of single transistors to propose a floating gate implementation (Liu &
Mockel 2008, Gopalakrishnan & Basu 2014).

Indiveri et al. (2006) presented the implementation in Fig. 3. This circuit increases
or decreases the analog voltage 𝑉𝑤 across the capacitor 𝐶𝑤 depending on the relative
timing of the pulses 𝑝𝑟𝑒 and 𝑝𝑜𝑠𝑡. Upon arrival of a pre-synaptic pulse 𝑝𝑟𝑒, a
potentiating waveform 𝑉𝑝𝑜𝑡 is generated within the pMOS-based trace block (see
Fig. 3). 𝑉𝑝𝑜𝑡 has a sharp onset and decays linearly with an adjustable slope set by 𝑉𝜏+.
𝑉𝑝𝑜𝑡 serves to keep track of the most recent pre-synaptic spike. Analogously, when a
post-synaptic spike (𝑝𝑜𝑠𝑡) occurs, 𝑉𝑑𝑒𝑝 and 𝑉𝜏− create a trace of post-synaptic activity.
By ensuring that 𝑉𝑝𝑜𝑡 and 𝑉𝑑𝑒𝑝 remain below the threshold of the transistors they are
connected to and the exponential current-voltage relation in the sub-threshold regime,
the exponential relationship to the spike time difference Δ𝑡 of the model is achieved.
While 𝑉𝐴+ and 𝑉𝐴− set the upper-bounds of the amount of current that can be injected
or removed from 𝐶𝑤 , the decaying traces 𝑉𝑝𝑜𝑡 and 𝑉𝑑𝑒𝑝 determine the value of 𝐼𝐴+
or 𝐼𝐴− and ultimately the weight increase or decrease on the capacitor 𝐶𝑤 within the
weight update block (see Fig. 3).
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5.3. Triplet-based STDP (T-STDP)
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Figure 4: T-STDP circuit with highlighted the CMOS building blocks used: Eligibility
traces with leaky integrators (in green) and weight updates (in violet). The voltage
and current variables reflect the model equation. The 𝑟 and 𝑜 detectors of the model
are also reported in this circuit figure. Adapted from: Azghadi et al. (2013).

Similarly, as for the pair-based STDP, there are many implementations of the
T-STDP rule. While some are successful in implementing the equations in the
model (Mayr et al. 2010, Meng et al. 2011, Rachmuth et al. 2011, Azghadi et al. 2013),
others exploit the properties of floating gates (Gopalakrishnan & Basu 2017).

Specifically, Mayr et al. (2010) as well as Rachmuth et al. (2011) and Meng
et al. (2011) implement learning rules that model the conventional pair-based STDP
together with the BCM rule. Azghadi et al. (2013) is the first, to our knowledge,
to not only model the function but also model the equations presented in Pfister
et al. (2006) (see Eq. (4)). Figure 4 shows the circuit proposed by Azghadi in 2013 to
model the T-STDP rule. It faithfully implements the equations by having independent
circuits and biases, for the model parameters 𝐴−

2 , 𝐴+
2, 𝐴−

3 , and 𝐴+
3. These parameters

correspond to spike-pairs or spike-triplets: post-pre, pre-post, pre-post-pre, and post-
pre-post, respectively.

In this implementation, the voltage across the capacitor 𝐶𝑤 determines the weight
of the specific synapse. Here, a high potential at the node 𝑊 is caused by a highly
discharged capacitor indicating a low synaptic weight, which results in a depressed
synapse. In the same way, a low potential at this node is caused by a more strongly
charged capacitor and resembles a strong synaptic weight and in turn a potentiated
synapse. The capacitor is charged and discharged by the two currents 𝐼𝑝𝑜𝑡 and 𝐼𝑑𝑒𝑝
respectively. These two currents are gated by the most recent pre- and post-synaptic
spikes through the transistors controlled by 𝑝𝑟𝑒(𝑛) and 𝑝𝑜𝑠𝑡 (𝑛) within the weight
update block (see Fig. 4)
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The amplitude of the depression current 𝐼𝑑𝑒𝑝 and the potentiation current 𝐼𝑝𝑜𝑡
is given by the recent spiking activity of the pre- and post-synaptic neurons. On the
arrival of a pre-synaptic spike, the capacitors 𝐶+ and 𝐶𝑥 (in the trace - leaky integrator
blocks r1 and r2 in Fig. 4) are charged by the currents 𝐼𝐴2+ and 𝐼𝐴3−. Analogously,
the capacitors 𝐶− and 𝐶𝑦 (in the trace - leaky integrator blocks o1 and o2 in Fig. 4)
are charged at the arrival of a post-synaptic spike by the currents 𝐼𝐴2− and 𝐼𝐴3+. Here,
both currents 𝐼𝐴2+ and 𝐼𝐴2− depend on an externally set constant input current plus
the currents generated by the o2 and r2 blocks, respectively. These additional blocks
o2 and r2 activated by previous spiking activity realize the triplet-sensitive behavior
of the rule. All capacitors within the“Trace - leaky integrator” blocks (𝐶+, 𝐶−, 𝐶𝑥 ,
𝐶𝑦) constantly discharge with individual rates given by 𝐼𝜏+, 𝐼𝜏−, 𝐼𝜏𝑥 , 𝐼𝜏𝑦, respectively.

5.4. Spike-Driven Synaptic Plasticity (SDSP)
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Figure 5: SDSP circuit with highlighted the CMOS building blocks used: Eligibility
traces with a DPI (in green), weight updates (in violet), bistability (in red) and
comparators with WTA (in yellow). The voltage and current variables reflect the
model equation. Adapted from: Chicca et al. (2014).

A sequence of theoretical works on spike based learning rules designed in the
theoretical framework of attractor neural network and mean field theory preceded
the Spike-Driven Synaptic Plasticity (SDSP) formalization by Brader et al. (2007).
Several hardware implementations by Fusi et al. (2000), Dante et al. (2001) and Chicca
et al. (2003) accompanied this theoretical work. After formalization by Brader et al.
(2007) many implementations of the Spike-Driven Synaptic Plasticity (SDSP) rule
were proposed following the desire to build smarter, larger, and more autonomous
networks. The implementations by Chicca et al. (2003), Mitra et al. (2009), Giulioni
et al. (2008) and Chicca et al. (2014) share similar building blocks: trace generators,
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comparators, blocks implementing the weight update and bistability mechanism. Here,
we present the most complete design by Chicca et al. (2014), shown in Fig. 5, which
replicates more closely the model equations (see Eq. (5)).

At each pre-synaptic spike 𝑝𝑟𝑒, the weight update block (see Fig. 5) charges or
discharges the capacitor 𝐶𝑥 altering the voltage 𝑉𝑥 , depending on the values of 𝑉𝑎
and 𝑉𝑏. Here, 𝑉𝑥 represents the synaptic weight. If 𝐼𝑎 > 𝐼𝑏, 𝑉𝑥 increases, while in
the opposite case 𝑉𝑥 decreases. Moreover, over long time scales, in the absence of
pre-synaptic spikes, 𝑉𝑥 is slowly driven toward the bistable states 𝑉𝑠𝑡𝑎𝑏𝑙𝑒𝐻 or 𝑉𝑠𝑡𝑎𝑏𝑙𝑒𝐿
depending on whether 𝑉𝑥 is higher or lower than \𝑥 respectively (see bistability block
in Fig. 5).

The 𝑉𝑎 and 𝑉𝑏 signals are continuously computed in the learning block, which
compares the membrane potential of the neuron (𝑉) to the threshold \𝑉 and evaluates
in which region the Calcium concentration 𝑉𝑐 lies. The neuron’s membrane potential
is compared to the threshold \𝑉 by a transconductance amplifier. If 𝑉 > \𝑉 , 𝑉𝑚ℎ𝑖 is
high and 𝑉𝑚𝑙𝑜 is low, while if 𝑉 < \𝑉 , 𝑉𝑚ℎ𝑖 is low and 𝑉𝑚𝑙𝑜 is high. At the same time,
the post-synaptic neuron spikes (𝑝𝑜𝑠𝑡) are integrated by a DPI to produce the Calcium
concentration 𝑉𝑐 (see trace - DPI block in Fig. 5), which is then compared with three
Calcium thresholds by three WTA circuits (see comparator circuits in Fig. 5). In the
lower comparator, 𝐼𝑐 is compared to 𝐼\𝐶1 and if 𝐼𝑐 < 𝐼\𝐶1 no learning conditions of
the SDSP rule is satisfied and there is no weight update. Assuming that 𝐼𝑐 > 𝐼\𝐶1,
the two upper comparators set the signals 𝑉𝑎 and 𝑉𝑏. If 𝑉𝑚𝑙𝑜 is high and 𝐼𝑐 < 𝐼\𝐶2, 𝑉𝑏
is increasing, setting the strength of the nMOS-based pull-down branch in the weight
update block. If 𝑉𝑚ℎ𝑖 is high and 𝐼𝐶 < 𝐼\𝐶3, 𝑉𝑎 is decreasing, setting the strength of
the pMOS-based pull-up branch of the weight update block. These two branches in
the weight update block are activated by the 𝑝𝑟𝑒 input spike.
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5.5. Calcium-based STDP (C-STDP)
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Figure 6: C-STDP circuit with highlighted CMOS building blocks used: Eligibility
traces with a DPI (in green), Weight updates (in violet), Bistability (in red) and
Comparators with WTA (in yellow). Not shown is the circuit that implements the
pre-synaptic spike extension. The voltage and current variables reflect the model
equation. Adapted from: Maldonado Huayaney et al. (2016).

The C-STDP rule proposed by Graupner & Brunel (2007) (see Eq. (9)) attracted
the attention of circuit designer thanks to its claim to closely replicate biological
findings and explain synaptic plasticity in relation to both spike timing and rate. To
implement the C-STDP rule proposed by Graupner & Brunel (2007) (see Eq. (9)),
Maldonado Huayaney et al. (2016) made small adaptations to the original model and
proposed the circuit shown in Fig. 6. Specifically, they proposed to convert the soft
bounds of the efficacy update to hard bounds, resulting in the following model for the
update of the synaptic efficacy:

𝜏
𝑑𝜌

𝑑𝑡
= −𝑘𝑏𝑠𝜌(1−𝜌) (𝜌★ − 𝜌) + 𝛾𝑝Θ[𝑐(𝑡) − \𝑝] − 𝛾𝑑Θ[𝑐(𝑡) − \𝑑]

𝜌 > 1 → 𝜌 = 1

𝜌 < 0 → 𝜌 = 0

(21)

with 𝑘𝑏𝑠 acting as a constant which scales the bistability dynamics and the hard-
bounds implemented by the Heaviside function Θ. The building blocks implemented
in this work are shown in Fig. 6. The trace block implements the local spike trace
𝑐(𝑡) represented by the voltage 𝑉𝑐 (𝑡). It consists of a DPI with two input branches.
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On the arrival of either a post-synaptic spike (𝑝𝑜𝑠𝑡) or the delayed pre-synaptic spike
(𝑝𝑟𝑒 𝐷) the capacitor 𝐶𝑐𝑎 is charged by a current defined by the gain of the DPI
(𝑉𝑔𝐶𝑎) and 𝑉𝐶𝑝𝑜𝑠𝑡 or 𝑉𝐶𝑝𝑟𝑒, respectively. Charging the capacitor decreases the voltage
𝑉𝑐 (𝑡). In the absence of input pulses, the capacitor discharges at a rate controlled by
𝑉𝜏𝐶𝑎 towards its resting voltage 𝑉𝑐𝑟𝑒 𝑓 . The voltage 𝑉𝑐 (𝑡) of the trace block sets
the amplitude of the current 𝐼𝑐 (𝑡) within the comparator blocks (see Fig. 6). The
current 𝐼𝑐 (𝑡) is compared with the potentiation and depression thresholds defined by
the currents 𝐼\ 𝑝 and 𝐼\𝑑, respectively. The WTA functionality of the comparator
circuits implements the Heavyside functionality of the comparison of the local spike
trace 𝑐(𝑡) with the thresholds for potentiation (\𝑝) and depression (\𝑑) in the model
(see Eq. (9)).

While the Calcium current 𝐼𝑐 (𝑡) is greater than the potentiation threshold current
𝐼\ 𝑝, the synapse efficacy capacitor 𝐶𝜌 within the weight update block (see Fig.6)
is continuously charged by a current defined by the parameter 𝑉𝛾𝑝. Similarly, as
long as 𝐼𝑐 (𝑡) is greater than the depression threshold current 𝐼\𝑑, 𝐶𝜌 is constantly
discharged with a current controlled by 𝑉𝛾𝑑. The voltage across the synapse capacitor
𝑉𝜌 resembles the efficacy 𝜌 of the synapse. To implement the bistability behavior of the
synaptic efficacy, Maldonado et al. use an TA in positive feedback configuration with
a very small gain defined by 𝑉𝑏 (see Fig. 6). As long as the synaptic efficacy voltage
𝑉𝜌 is above the bistability threshold 𝑉𝜌★ the positive feedback constantly charges the
capacitor 𝐶𝜌 and drives 𝑉𝜌 towards the upper limit defined by 𝑉𝑤ℎ. In the case that
𝑉𝜌 is below 𝑉𝜌★, the TA discharges the capacitor and drives 𝑉𝜌 toward the lower limit
defined by 𝑉𝑤𝑙.

5.6. Rate Dependent Synaptic Plasticity (RDSP)
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Figure 7: RDSP circuit with highlighted the CMOS building blocks used: Eligibility
traces (in green), weight updates (in violet) and comparators with differential pair (in
yellow). Adapted from: Häfliger et al. (1997).
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The first CMOS implementation of a spike-based learning rule done by Häfliger
et al. (1997) pre-dates the formalization of the RDSP model, which happened almost
20 years later (Diehl & Cook 2015). It is one of the most apparent cases of how
building electronic circuits that mimic biological behavior leads to the discovery of
useful mechanisms for solving real-world problems.

The algorithmic definition of their learning rule is based on a correlation signal,
local to each synapse, which keeps track of the pre-synaptic spike activity. The
correlation signal is refreshed at each pre-synaptic event and decays over time. When
a post-signal arrives, depending on the value of the correlation, the weight is either
increased or decreased, while the correlation signal is reset. Similarly, the RDSP rule
relies on the pre-synaptic spike time information and is triggered when a post synaptic
spike arrives. The direction of weight update depends on a target value 𝑥𝑡𝑎𝑟 , which
determines the threshold between depression and potentiation.

The two main differences between the circuit by Häfliger et al. (1997) (see Fig. 7)
and the RDSP rule (see Eq. (15)) is that the correlation signal in Häfliger et al. (1997) is
binary and is compared to a fixed threshold voltage (the switching threshold of the first
inverter), which resembles a fixed 𝑥𝑡𝑎𝑟 . In the Häfliger et al. (1997) implementation,
the voltage 𝑉𝑤 across the capacitor 𝐶𝑤 represents the synaptic weight and the voltage
𝑉𝑥𝑝𝑟𝑒 at the capacitor 𝐶𝑥𝑝𝑟𝑒 represents the correlation signal. At the arrival of a pre-
synaptic input spike (𝑝𝑟𝑒), the voltage 𝑉𝑤 determines the amplitude of the current
towards the soma (𝑉𝑚𝑒𝑚) of the post-synaptic neuron. At the same time, the capacitor
𝐶𝑥𝑝𝑟𝑒 is fully discharged and 𝑉𝑥𝑝𝑟𝑒 is low. In the absence of pre-synaptic and post-
synaptic spikes (𝑝𝑟𝑒 and 𝑝𝑜𝑠𝑡 are low), 𝐶𝑥𝑝𝑟𝑒 is slowly charged towards 𝑉𝑑𝑑 by the
pMOS branch in the trace block (see Fig. 7).

The voltage 𝑉𝑥𝑝𝑟𝑒 is constantly compared to the threshold voltage (resembling
𝑥𝑡𝑎𝑟 ) of the first inverter it is connected to. At the arrival of a post-synaptic spike
(𝑝𝑜𝑠𝑡 is high) the weight capacitor 𝐶𝑤 is either charged (depressed) or discharged
(potentiated) depending on the momentary level of 𝑉𝑥𝑝𝑟𝑒. If 𝑉𝑥𝑝𝑟𝑒 is above the
inverter threshold voltage, the right branch of the weight update block (see Fig. 7) is
inactive, while the left branch is active and the pMOS-based current mirror charges
the capacitor 𝐶𝑤 . In the opposite case, where 𝑉𝑥𝑝𝑟𝑒 is below the inverter threshold
voltage, the right branch is active while the output of the second inverter disables the
left branch of the weight update block. This results in a discharge of the capacitor
𝐶𝑤 controlled by the nMOS-based current mirror. The amplitude for potentiation
and depression is set by the two biases 𝑉[ and 𝑉𝑎𝑚𝑝. At the end of a post-synaptic
spike the correlation signal 𝑉𝑥𝑝𝑟𝑒 is reset to 𝑉𝑑𝑑. A similar approach implementing a
nearest-spike interaction scheme and a fixed 𝑥𝑡𝑎𝑟 was implemented by Ramakrishnan
et al. (2011) exploiting the properties of floating gates.

5.7. Other models implementations

To the best of our knowledge, there have been no dedicated CMOS-based
implementations of the other models presented in Sec. 4. Although the V-STDP rule
proposed by Clopath et al. (2010) and Clopath & Gerstner (2010) shares similarities
with the T-STDP rule and can be related to the BCM rule (Gjorgjieva et al. 2011), its
complexity for implementations comes from its multiple transient signals on different
timescales. To this end, emerging novel technologies, such as memristors (Cantley
et al. 2011, Li et al. 2013, Li et al. 2014, Ziegler et al. 2015, Diederich et al. 2018)
and neuristors (John et al. 2018) are capable of supporting promising solutions
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to implement different timescales in a compact and efficient manner. Similarly,
implementations for the DPSS rule (Urbanczik & Senn 2014) are difficult due to the
increased complexity of the required multi-compartment neuron models. Recently,
implementations based on hybrid memristor-CMOS systems (Nair et al. 2017, Payvand
et al. 2020) or using existing neuromorphic processors to exploit neuron structures to
replicate the multi-compartment model (Cartiglia et al. 2020) have been proposed. A
detailed view on these implementations is beyond the scope of this review and the
authors refer the readers to the original publications.

However, introducing CMOS implemented models through the lens of functional
building blocks allows us to quickly look for analogies and differences between the
implemented and other models. Throughout this Section, we have highlighted the
similarities and differences of each of the implemented models. Focusing on functional
building blocks also allows for a broader generalization to all the models that have
not been implemented yet: using the basic building block we presented (e.g. Traces,
Comparators, Weight updates, and Bistability) one could potentially construct all the
learning models we have discussed in Sec. 4.

6. Discussion and conclusion

6.1. Toward a unified synaptic plasticity framework

In this survey, we highlighted the similarities and differences of representative synaptic
plasticity models and provided examples of neuromorphic circuits CMOS that can be
used to implement their principles of computation. We highlighted how the principle
of locality in learning and neural computation in general is fundamental and enables
the development of fast, efficient and scalable neuromorphic processing systems. We
highlighted how the different features of the plasticity models can be summarized in
(1) synaptic weights properties, (2) plasticity update triggers and (3) local variables
that can be exploited to modify the synaptic weight (see also Table 1). Although
all local variables of these rules are similar in nature, the plasticity rules can can be
subdivided in the following way:

• Pre-synaptic spike trace: RDSP.

• Pre- and post-synaptic spike traces: STDP, T-STDP, C-STDP, SBCM, BDSP.

• Pre-synaptic spike trace + post-synaptic membrane voltage: V-STDP, DPSS,
MPDP, H-MPDP.

• Post-synaptic membrane voltage + post-synaptic spike trace: SDSP, C-MPDP.

Many possibilities arise when exploring how the local variables used by these
rules interact (e.g. comparison, addition, multiplication, etc.). This leads to a wide
range of additional models that could be proposed and to a large number of biological
experiments that could be carried out to verify the hypotheses and predictions made
by the rules.

It is difficult to predict whether a unified rule of synaptic plasticity can be
formulated, based on the observation that several plasticity mechanisms coexist in
the brain (Abbott & Nelson 2000, Bi & Poo 2001), and that different problems may
require different plasticity mechanisms. Nevertheless, we provided here a single unified
framework that allowed us to do a systematic comparison of the features of many
representative models of synaptic plasticity presented in the literature, developed
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following experiment-driven bottom-up approaches and/or application-driven top-
down approaches (Frenkel et al. 2021). While the bottom-up approach can help in
explaining the plasticity mechanisms found in the brain, top-down guidance can help
to find the right level of abstraction from biology to get the best performance for
solving problems in the context of efficient and adaptive artificial systems. In line
with the neuromorphic engineering perspective, this work bridges the gap between
both approaches.

6.2. Overcoming back-propagation limits for online learning

Local synaptic plasticity in neuromorphic circuits offers a promising solution for
online learning in embedded systems. However, due to the very local nature of
this approach, there is no direct way of implementing global learning rules in multi-
layer neural networks, such as the gradient-based back-propagation algorithm (LeCun
et al. 1998, Schmidhuber et al. 2007). This algorithm has been the work horse of
ANNs training in deep learning over the last decade. Gradient-based learning has
recently been applied for offline training of SNNs, where the Back-Propagation (BP)
algorithm coupled with surrogate gradients is used to solve two critical problems:
first, the temporal credit assignment problem which arises due to the temporal
inter-dependencies of the SNN activity. It is solved offline with Back-Propagation
Through Time (BPTT) by unrolling the SNN like standard Recurrent Neural Networks
(RNNs) (Neftci et al. 2019). Second, the spatial credit assignment problem, where
the credit or “blame” with respect to the objective function is assigned to each
neuron across the layers. However, BPTT is not biologically plausible (Bengio
et al. 2015, Lillicrap et al. 2020) and not practical for on-chip and online learning
due to the non-local learning paradigm. On one hand, BPTT is not local in time as it
requires keeping all the network activities for the duration of the trial. On the other
hand, BPTT is not local in space as it requires information to be transferred across
multiple layers. Indeed, synaptic weights can only be updated after complete forward
propagation, loss evaluation, and back-propagation of error signals, which lead to the
so-called “locking effect” (Czarnecki et al. 2017).

Recently, intensive research in neuromorphic computing has been dedicated
to bridge the gap between back-propagation and local synaptic plasticity rules by
reducing the non-local information requirements, at a cost of accuracy in complex
problems (Eshraghian et al. 2021). The temporal credit assignment can be handled
by using eligibility traces (Zenke & Ganguli 2018, Bellec et al. 2020) that solve the
distal reward problem by bridging the delay between the network output and the
feedback signal that may arrive later in time (Izhikevich 2007). Similarly, inspired
by recent progress in deep learning, several strategies have been explored to solve the
spatial credit assignment problem using feedback alignment (Lillicrap et al. 2016),
direct feedback alignment (Nøkland 2016), random error BP (Neftci et al. 2017)
or by replacing the backward pass with an additional forward pass whose input is
modulated with error information (Dellaferrera & Kreiman 2022). However, these
approaches only partially solve the problem (Eshraghian et al. 2021), since they
still suffer from the locking effect, which can nonetheless be tackled by replacing
the global loss by a number of local loss functions (Mostafa et al. 2018, Neftci
et al. 2019, Kaiser et al. 2020, Halvagal & Zenke 2022) or by using direct random
target projection (Frenkel et al. 2021). Assigning credit locally, especially within
recurrent SNNs, is still an open question and an active field of research (Christensen
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et al. 2021).
The local synaptic plasticity models and circuits presented in this survey do

not require the presence of a teacher signal and contrast with supervised learning
using labeled data which is neither biologically plausible (Halvagal & Zenke 2022)
nor practical in most online scenarios (Muliukov et al. 2022). Nevertheless, the main
limit of spike-based local learning is the diminished performance on complex pattern
recognition problems. Different approaches have been explored to bridge this gap,
such as DPSS (Urbanczik & Senn 2014, Sacramento et al. 2018) and BDSP (Payeur
et al. 2021) learning rules that use multi-compartment neurons and show promising
performance in approximating back-propagation with local mechanisms, or using
multi-modal association to improve the self-organizing system’s performance (Gilra
& Gerstner 2017, Khacef et al. 2020a, Rathi & Roy 2021) as in contrast to labeled
data, multiple sensory modalities (e.g. sight, sound, touch) are freely available in the
real-world environment.

6.3. Structural plasticity and network topology

Exploring local synaptic plasticity rules gives valuable insights into how plasticity and
learning evolves in the brain. However, in bringing the plasticity of single synapses to
the function of entire networks, many more factors come into play. Functionality at a
network level is determined by the interplay between the synaptic learning rules, the
spatial location of the synapse, and the neural network topology.

Furthermore, the network topology of the brain is itself plastic (Holtmaat &
Svoboda 2009). Le Bé & Markram (2006) provided the first direct demonstration
of induced rewiring (i.e. sprouting and pruning) of a functional circuit in the
neocortex (Markram et al. 2011), which requires hours of general stimulation.
Some studies suggest that glutamate release is a key determinant in synapse
formation (Engert & Bonhoeffer 1999, Kwon & Sabatini 2011), but additional
investigations are needed to better understand the computational foundations of
structural plasticity and how it is linked to the synaptic plasticity models we
reviewed in this survey. Together, structural and synaptic plasticity are the local
mechanisms that lead to the emergence of the global structure and function of the
brain. Understanding, modeling, and implementing the interplay between these two
forms of plasticity is a key challenge for the design of self-organizing systems that can
get closer to the unique efficiency and adaptation capabilities of the brain.

6.4. CMOS neuromorphic circuits

The computational primitives that are shared by the different plasticity models were
grouped together in corresponding functional primitives and circuit blocks that can be
combined to map multiple plasticity models into corresponding spike-based learning
circuits. Many of the models considered rely on exponentially decaying traces. By
operating the CMOS circuits in the sub-threshold regime, this exponential dependency
is given by the physical substrate of transistors showing an exponential relationship
between current and voltage (Mead 1990).

The circuits presented make use of both analog computation (e.g. analog
weight updates) and digital communication (e.g. pre- and post-synaptic spike
events). This mixed-signal analog/digital approach aligns with the observations that
biological neural systems can be considered as hybrid analog and digital processing
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systems (Sarpeshkar 1998). Due to the digital nature of spike transmission in these
neuromorphic systems, plasticity circuits that require the use of pre-synaptic traces
need extra overhead to generate this information directly at the post-synaptic side.

The emergence of novel nanoscale memristive devices has high potential for
allowing the implementation of such circuits at a low overhead cost, in terms of space
and power (Demirag et al. 2021). In addition, these emerging memory technologies
have the potential of allowing long-term storage of the synaptic weights in a non-
volatile way, that would allow these neuromorphic systems to operate continuously,
without having to upload the neural network parameters at boot time. This will be a
significant advantage in large-scale systems, as Input/Output operations required to
load network parameters can take a significant amount of power and time. In addition,
the properties of emerging memristive devices could be exploited to implement
different features of the plasticity models proposed (Diederich et al. 2018).

Overall, the number of proposed CMOS-based analog or mixed-signal
neuromorphic circuits over the past 25 years is relatively low, as this was mainly driven
by fundamental academic research. With the increasing need for low-power neural
processing systems at the edge, the increasing maturity of novel technologies, and
the rising interest in brain-inspired neural networks and learning for data processing,
we can expect an increasing number of new mixed signal analog/digital circuits
implementing new plasticity rules also for commercial exploitation. In this respect,
this review can provide valuable information for making informed modeling and circuit
design decision in developing novel spike-based neuromorphic processing systems for
online learning.
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Clopath, C., Büsing, L., Vasilaki, E. & Gerstner, W. (2010). Connectivity reflects coding: a model
of voltage-based STDP with homeostasis, Nature Neuroscience 13(3): 344–352.

Clopath, C. & Gerstner, W. (2010). Voltage and spike timing interact in stdp – a unified model,
Frontiers in Synaptic Neuroscience 2: 25.

Czarnecki, W. M., Swirszcz, G., Jaderberg, M., Osindero, S., o. Vinyals & Kavukcuoglu, K.
(2017). Understanding synthetic gradients and decoupled neural interfaces, Proceedings of
the 34th International Conference on Machine Learning - Volume 70, ICML’17, JMLR.org,
p. 904–912.

Dante, V., Del Giudice, P. & Mattia, M. (2001). Implementation of neuromorphic systems: from
discrete components to analog VLSI chips (testing and communication issues), 37(2): 231–9.

Dayan, P. & Abbott, L. (2001). Theoretical Neuroscience: Computational and Mathematical
Modeling of Neural Systems, MIT Press.

Del Giudice, P., Fusi, S. & Mattia, M. (2003). Modeling the formation of working memory with
networks of integrate-and-fire neurons connected by plastic synapses, Journal of Physiology
Paris 97 pp. 659–681.

Dellaferrera, G. & Kreiman, G. (2022). Error-driven input modulation: Solving the credit assignment
problem without a backward pass, CoRR abs/2201.11665.
URL: https://arxiv.org/abs/2201.11665

Demirag, Y., Moro, F., Dalgaty, T., Navarro, G., Frenkel, C., Indiveri, G., Vianello, E. & Payvand, M.
(2021). PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change
materials, International Symposium on Circuits and Systems (ISCAS), IEEE, pp. 1–5.

DeWolf, T., Jaworski, P. & Eliasmith, C. (2020). Nengo and low-power ai hardware for robust,
embedded neurorobotics, Frontiers in Neurorobotics 14: 73.

Diederich, N., Bartsch, T., Kohlstedt, H. & Ziegler, M. (2018). A memristive plasticity model of



Spike-based local synaptic plasticity: A survey of models and circuits 41

voltage-based stdp suitable for recurrent bidirectional neural networks in the hippocampus,
Scientific Reports 8(1).

Diehl, P. & Cook, M. (2015). Unsupervised learning of digit recognition using spike-timing-dependent
plasticity, Frontiers in Computational Neuroscience 9: 99.

Engert, F. & Bonhoeffer, T. (1999). Dendritic spine changes associated with hippocampal long-term
synaptic plasticity, Nature 399: 66–70.

Eshraghian, J. K., Ward, M., Neftci, E., Wang, X., Lenz, G., Dwivedi, G., Bennamoun, M., Jeong,
D. S. & Lu, W. D. (2021). Training spiking neural networks using lessons from deep learning.

French, R. M. (1999). Catastrophic forgetting in connectionist networks, Trends in Cognitive Sciences
3(4): 128–135.

Frenkel, C., Bol, D. & Indiveri, G. (2021). Bottom-up and top-down neural processing systems
design: Neuromorphic intelligence as the convergence of natural and artificial intelligence.

Fusi, S., Annunziato, M., Badoni, D., Salamon, A. & Amit, D. J. (2000). Spike-driven synaptic
plasticity: Theory, simulation, VLSI implementation, Neural Computation 12: 2227–2258.

Fusi, S., Drew, P. & Abbott, L. (2005). Cascade models of synaptically stored memories, Neuron
45: 599–611.

Gerstner, W., Lehmann, M., Liakoni, V., Corneil, D. & Brea, J. (2018). Eligibility traces and
plasticity on behavioral time scales: Experimental support of neohebbian three-factor learning
rules, Frontiers in Neural Circuits 12: 53.

Gerstner, W., Ritz, R. & van Hemmen, J. L. (1993). Why spikes? hebbian learning and retrieval of
time-resolved excitation patterns, Biological cybernetics 69(5-6): 503—515.

Gilra, A. & Gerstner, W. (2017). Predicting non-linear dynamics by stable local learning in a
recurrent spiking neural network, eLife 6: 1–43.

Giulioni, M., Camilleri, P., Dante, V., Badoni, D., Indiveri, G., Braun, J. & Del Giudice, P. (2008).
A VLSI network of spiking neurons with plastic fully configurable “stop-learning” synapses,
International Conference on Electronics, Circuits, and Systems, ICECS 2008, IEEE, pp. 678–
681.

Gjorgjieva, J., Clopath, C., Audet, J. & Pfister, J. P. (2011). A triplet spike-timing-dependent
plasticity model generalizes the bienenstock-cooper-munro rule to higher-order spatiotemporal
correlations, Proceedings of the National Academy of Sciences 108(48): 19383–19388.

Gopalakrishnan, R. & Basu, A. (2014). Robust doublet STDP in a floating-gate synapse, 2014
International Joint Conference on Neural Networks (IJCNN), pp. 4296–4301.

Gopalakrishnan, R. & Basu, A. (2017). Triplet spike time-dependent plasticity in a floating-gate
synapse, IEEE Transactions on Neural Networks and Learning Systems 28(4): 778–790.

Graupner, M. & Brunel, N. (2007). Stdp in a bistable synapse model based on CaMKII and associated
signaling pathways, PLOS Computational Biology 3(11): 2299–2323.

Graupner, M. & Brunel, N. (2010). Mechanisms of induction and maintenance of spike-timing
dependent plasticity in biophysical synapse models, Frontiers in Computational Neuroscience
4(136): 1–19.

Graupner, M. & Brunel, N. (2012). Calcium-based plasticity model explains sensitivity of synaptic
changes to spike pattern, rate, and dendritic location, Proceedings of the National Academy
of Sciences 109(10): 3991–3996.
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