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DC Power Grids With Constant-Power
Loads—Part II: Nonnegative Power
Demands, Conditions for Feasibility,

and High-Voltage Solutions
Mark Jeeninga , Claudio De Persis , and Arjan van der Schaft , Fellow, IEEE

Abstract—In this two-part article, we develop a unifying
framework for the analysis of the feasibility of the power
flow equations for dc power grids with constant-power
loads. Part II of this article, explores further implications of
the results in Part I. We present a necessary and sufficient
linear matrix inequality (LMI) condition for the feasibility
of a vector of power demands (under small perturbation),
which extends a necessary condition in the literature. The
alternatives of these LMI conditions are also included. In
addition, we refine these LMI conditions to obtain a nec-
essary and sufficient condition for the feasibility of non-
negative power demands, which allows for an alternative
approach to determine power flow feasibility. Moreover,
we prove two novel sufficient conditions, which generalize
known sufficient conditions for power flow feasibility in
the literature. Finally, we prove that the unique long-term
voltage semistable operating point associated to a feasible
vector of power demands is a strict high-voltage solution.
A parametrization of such operating points, which is dual
to the parametrization in Part I, is obtained, as well as a
parametrization of the boundary of the set of feasible power
demands.

Index Terms—Power flow analysis, dc power grids,
constant-power loads, voltage stability.

IV. INTRODUCTION OF PART II

THE feasibility of the power flow equations is of crucial
importance for the long-term safe operation of a power

grid. Classical papers such as [1]–[3] have studied this problem
for ac power grids, and over the past decade, the research for ac
power grids has been reinvigorated by articles such as [4]–[8].
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Unfortunately, a complete understanding of this problem is still
lacking.

Similar to the ac case, the somewhat simpler case concerning
dc power grids is also not well-understood. A notable advance-
ment is [9], which presents an algorithm to decide on the
feasibility of the dc power flow equations with constant-power
loads. However, a full characterization of the feasibility of the
dc power flow equations is not found in the literature. For a more
detailed introduction, we refer to Part I of this article.

The aim of this twin article is to provide an in-depth analysis
of the power flow equations of dc power grids with constant-
power loads, and develop a framework which unifies and ex-
tends known results in the literature. In Part I, we presented
a complete geometric characterization of the feasibility of the
associated power flow equations. More importantly, we obtained
necessary and sufficient conditions for their feasibility, and
presented a method to compute the corresponding long-term
voltage semistable operating point, which was shown to be
unique. These advances fill an important gap in the literature,
and provide a deep insight in the nature of power flow feasibility
and voltage stability of power grids with constant-power loads.
In Part II of this article continues this approach by studying
nonnegative power demands, sufficient conditions for feasibility,
and high-voltage solutions. We refer to Part I for a list of the main
results M1–M11 of this twin article.

A. Organization of Part II

Section V presents a necessary and sufficient LMI condition
for the feasibility of a vector of power demands, and a simi-
lar condition for feasibility under small perturbation (M5). In
addition, the LMI alternatives of these results are presented.

Section VI focuses on nonnegative power demands, and
studies when such power demands are feasible. First, we give
an alternative parametrization of D and discuss its relation to
the parametrization of D in Part I (M6). By means of this
parametrization, we study the boundary of F (M7), and derive
a parametrization for the boundary of feasible power demands
in the nonnegative orthant (M8a). This allows us to refine the
necessary and sufficient condition M5 for nonnegative power
demands (M8b).

Section VII recovers and generalizes several sufficient con-
ditions in the literature in the context of dc power grids. More
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specifically, we prove two sufficient conditions (M10), which
generalize the sufficient conditions in [7] and [8]. In addition, we
show that any power demand, which is element-wise dominated
by a feasible power demand is feasible as well (M9).

Section VIII focuses on the long-term voltage semistable
operating points. We show that any such operating point is a strict
high-voltage solution. As a consequence, the notions of long-
term voltage stable operation points, dissipation-minimizing
operation points, and (strict) high-voltage solutions coincide
(M11). Section IX concludes this article.

B. Notation and matrix definitions

For a vector x =
(
x1 · · · xk

)�
, we denote

[x] := diag(x1, . . . , xk).

We let 1 and 0 denote the all-ones and all-zeros vector, re-
spectively, and let I denote the identity matrix. We let their
dimensions follow from their context. All vector and matrix
inequalities are taken to be element-wise. We write x � y if
x ≤ y and x �= y. We let ‖x‖p denote the p-norm of x ∈ Rk.

We define n := {1, . . . , n}. All matrices are square n× n
matrices, unless stated otherwise. The submatrix of a matrix A
with rows and columns indexed by α, β ⊆ n, respectively, is
denoted byA[α,β]. The same notation v[α] is used for subvectors
of a vector v. We let αc denote the set-theoretic complement
of α with respect to n. For a set S, the notation int(S), cl(S),
∂S, and conv(S) is used for the interior, closure, boundary and
convex hull of S, respectively.

We list some classical definitions from matrix theory.
Definition 4.1 (see[10], Ch. 5): A matrix A is a Z-matrix if

Aij ≤ 0 for all i �= j.
Definition 4.2 (see[10], Th. 5.3): A Z-matrix is an M-matrix

if all its eigenvalues have nonnegative real part.
Definition 4.3 (see[10], pp. 71): A matrix A is irreducible if

for every nonempty set α � n we have A[α,αc] �= 0.

Definition 4.4: The Schur complement of M =
(
A B

C D

)
with respect to the principal submatrix D is denoted by

M/D := A−BD−1C.

V. NECESSARY AND SUFFICIENT CONDITIONS FOR

FEASIBILITY

We continue Part I of this article by restating the geometric
characterization of F in Theorem 3.18 in terms of an LMI
condition. In the context of Problem 2.6, Barabanov et al. [8]
presented a necessary LMI condition for the feasibility of power
demands, and states that the LMI condition is also sufficient
when the set of feasible power demands is closed and convex, as
is the case here. The following theorem recovers this result and
extends the result for power demands which are feasible under
small perturbation.

Theorem 5.1 (M5a): A vector P̃c of power demands is feasi-
ble (i.e., P̃c ∈ F) if and only if there does not exist a positive

vector ν ∈ Rn such that the (n+ 1)× (n+ 1) matrix(
[ν]YLL + YLL[ν] [ν]I∗

L

([ν]I∗
L)

� 2ν�P̃c

)
= 2

(
h(ν) 1

2 [ν]I∗
L

1
2 ([ν]I∗

L)
� ν�P̃c

)
(63)

is positive definite. Similarly, P̃c is feasible under small pertur-
bation (i.e., P̃c ∈ int(F)) if and only if there does not exist a
positive vector ν ∈ Rn such that (63) is positive semidefinite.

Proof: We will prove the logical transposition.
(⇐): Without loss of generality, we assume that ‖ν‖1 = 1. If

(63) is positive semidefinite, then h(ν) is positive semidefinite.
It follows from Lemmas B.8 and B.9 that h(ν) is an irreducible
M-matrix. Let v > 0 be a Perron vector of h(ν). Suppose that
h(ν) is singular, then h(ν)v = 0 by Proposition A.2. However,
note that for t ∈ R we have(

tv

1

)�(
h(ν) 1

2 [ν]I∗
L

1
2 ([ν]I∗

L)
� ν�P̃c

)(
tv

1

)
= tv�[ν]I∗

L + ν�P̃c

which is a nonconstant line in t since v�[ν]I∗
L > 0, and is not

bounded from below. This contradicts the assumption that (63)
is positive semidefinite. Hence, h(ν) must be positive definite
and ν ∈ Λ1. Alternatively, if (63) is positive definite, then h(ν)
is positive definite. If h(ν) is positive definite, then by the
Haynsworth inertia additivity formula (see [11, Sec. 0.10]) (63)
is positive definite (semidefinite) if and only if

ν�P̃c − 1
4 ([ν]I∗

L)
�h(ν)−1[ν]I∗

L > (≥) 0. (64)

Using (35) and (38), we note that (64) is equivalent to

ν�P̃c > (≥) 1
4 ([ν]I∗

L)
�h(ν)−1[ν]I∗

L = ‖ϕ(ν)‖2h(ν). (65)

Theorem 3.18 implies that P̃c is not feasible if and only if
there exists λ ∈ Λ such that P̃c �∈ Hλ, or equivalently, λ�P̃c >
‖ϕ(λ)‖2λ. Thus, if (63) is positive definite, then the strict inequal-
ity in (65) holds and P̃c is not feasible. Moreover, if equality in
(65) holds then

ν�P̃c = ‖ϕ(ν)‖2h(ν) = ν�Pc(ϕ(ν)).

Lemma 3.9 implies that P̃c = Pc(ϕ(ν)), and thus P̃c ∈ ∂F by
Theorem 3.14. Thus, if (63) is positive semidefinite, then P̃c �∈ F
or P̃c ∈ ∂F , and therefore, P̃c �∈ int(F). �

(⇒): The converse is obtained by reversing the steps.
Theorem 5.1 presents a necessary and sufficient LMI condi-

tions for the feasibility (under small perturbation) of a dc power
grid with constant-power loads. A more common formulation of
Theorem 5.1 as an LMI condition can be obtained by replacing
[ν] by a positive definite diagonal matrixD, and replacing ν�P̃c

by 1�DP̃c (cf. [8]).
Note that Theorem 5.1 shows that power flow feasibility

and the positive definiteness of (63) are mutually exclusive. By
considering the LMI alternative of the latter condition, we may
obtain an equivalence of power flow feasibility instead.

Theorem 5.2 (M5b): A vector P̃c of power demands is feasi-
ble (i.e., P̃c ∈ F) if and only if there exists a nonzero symmetric
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positive semidefinite matrixZ = Z� ∈ R(n+1)×(n+1) such that

trace

(
Z

(
h(ei)

1
2 [ei]I∗

L
1
2 ([ei]I∗

L)
� e�i P̃c

))
= 0 (66)

for all i = 1, . . . , n. Similarly, P̃c is feasible under small pertur-
bation (i.e., P̃c ∈ int(F)) if and only if there exists a symmetric
positive definite matrixZ = Z� ∈ R(n+1)×(n+1) such that (66)
holds for all i.

Proof: For i = 1, . . . , n, we define

Ai :=

(
h(ei)

1
2 [ei]I∗

L
1
2 ([ei]I∗

L)
� e�i P̃c

)
.

By Theorem 5.1, a vector P̃c of power demands is feasible (i.e.,
P̃c ∈ F) if and only if (63), which is equivalent to 2

∑
i λiAi,

is not positive definite for all positive vectors λ ∈ Rn. Note
that h(λ) [and hence (63)] is never positive definite if λ �> 0
since YLL has positive diagonal elements. Hence, a vector P̃c of
power demands is feasible (i.e., P̃c ∈ F) if and only if (63)
is not positive definite for all λ ∈ Rn. It follows from [12,
Th. 1] that (63) is not positive definite for all λ ∈ Rn if and
only if there exists a nonzero symmetric positive semidefinite
Z = Z� ∈ R(n+1)×(n+1) such that trace(ZAi) = 0 for all i.
Analogously, by [12, Th. 2], it follows that (63) is not posi-
tive semidefinite for all λ ∈ Rn if and only if there exists a
symmetric positive definite Z = Z� ∈ R(n+1)×(n+1) such that
trace(ZAi) = 0 for all i. �

Theorems 5.1 and 5.2 give a description of the power flow
feasibility in terms of LMI problems and semidefinite program-
ming problems. Since computational tools for such problems are
widely available, these results may have a promising application
for the assessment of power flow feasibility in a practical setting.
As an example, the existence of equilibria to the dynamical dc
power grid (15) of Section II-C can be determined by Theo-
rems 5.1 or 5.2. This study of these results and their performance
for benchmark power grids are an interesting topic for further
research.

VI. NONNEGATIVE FEASIBLE POWER DEMANDS

In this section, we study the feasibility of nonnegative power
demands (i.e., power demands P̃c such that P̃c ≥ 0). Recall that
in Part I, we consider constant-power loads which could both
drain power and inject power. However, practical applications of
dc power grids often deal with constant-power loads that do not
inject power into the network, in which case the power demands
are nonnegative. The goal of this section is to refine the result
of Part I for such power demands. In particular, we show that
the necessary and sufficient LMI condition for the feasibility
of a vector of power demands P̃c ∈ Rn (see Theorem 5.1) can
be refined, leading to a condition that provides an alternative
method to determine if the power flow is feasible.

This section is structured as follows. We first identify the
operating points corresponding to a nonnegative power demand
(see Lemma 6.1). In addition, we present a refinement for the
geometric characterization of Theorem 3.18 (see Lemma 6.3),
which motivates us to study the boundary ofF in more detail. To
study this boundary, we deduce an alternative parametrization of

Fig. 1. Plot of the voltage domain for a power grid with two load nodes.
The blue area corresponds to the set D of long-term voltage stable
operating points. The brown area indicates the operating points corre-
sponding to a nonnegative power demand. The green area corresponds
to the vectors in M, which contains the set cl(D). The black operating
points correspond to the black power demands in Fig. 2.

D (see Theorem 6.6), which is in a sense dual to the parametriza-
tion in Theorem 3.7. We subsequently give a parametrization of
the boundary ofF (see Theorem 6.8). This parametrization gives
rise to a parametrization of the boundary ofF in the nonnegative
orthant (see Theorem 6.12). We then reformulate the geometric
characterization (see Corollary 6.14), and refine the necessary
and sufficient LMI condition of Theorem 5.1 for nonnegative
power demands (see Theorem 6.15).

A. Operating Points and a Geometric Characterization
for Nonnegative Power Demands

We are interested in the nonnegative feasible power demands,
which are described by the set F ∩N , where

N := { ν ∈ Rn | ν ≥ 0 }
denote the nonnegative vectors. The following lemma charac-
terizes the operating points, which correspond to a nonnegative
power demand.

Lemma 6.1: A feasible power demand P̃c is nonnegative (i.e.,
P̃c ∈ F ∩N ) if and only if the operating points ṼL associated
to P̃c satisfy YLLṼL ≤ YLLV

∗
L = I∗

L.
Proof: Since operating points are assumed to be positive, we

have ṼL > 0. Hence

P̃c = Pc(ṼL) = [ṼL]YLL(V
∗
L − ṼL) ≥ 0

if and only if YLL(V
∗
L − ṼL) = I∗

L − YLLṼL ≥ 0, where we
used (6). �

Fig. 1 illustrates the location of these operating points in the
voltage domain.

Lemma 6.1 shows that all operating points corresponding to
a positive power demand lie in the polyhedral set{

ṼL ∈ Rn
∣∣∣ ṼL > 0, YLLṼL ≤ I∗

L

}
. (67)

Authorized licensed use limited to: University of Groningen. Downloaded on February 14,2023 at 07:43:40 UTC from IEEE Xplore.  Restrictions apply. 



JEENINGA et al.: DC POWER GRIDS WITH CONSTANT-POWER LOADS—PART II 21

Note that equality holds in YLLṼL ≤ I∗
L if and only if ṼL =

V ∗
L, which corresponds to the power demand P̃c = 0. The next

result shows that the vector of open-circuit voltages V ∗
L element-

wise strictly dominates all operating points corresponding to a
nonzero nonnegative power demand.

Corollary 6.2: Let P̃c �= 0 be a nonnegative feasible power
demand, then any operating point ṼL associated to P̃c satisfies
ṼL < V ∗

L. Hence, (67) is bounded.
Proof: The matrixYLL is an irreducible M-matrix, and hence,

its inverse is positive by [10, Th. 5.12]. By Lemma 6.1, we have
YLL(V

∗
L − ṼL) ≥ 0. Since Pc(V

∗
L) = 0 and P̃c �= 0 it follows

that ṼL �= V ∗
L and, therefore, YLL(V

∗
L − ṼL) � 0. Multiplying

this inequality by the positive matrix YLL
−1 implies that V ∗

L −
ṼL > 0. �

Using Theorem 3.18, we present a geometric characterization
of F ∩N .

Lemma 6.3: The set F ∩N is closed, convex, bounded, and
is the intersection over all λ ∈ Λ1 of the half-spaces Hλ for
which P (ϕ(λ)) is nonnegative, i.e.,

F ∩N = N ∩
⋂

λ∈Λ1: Pc(ϕ(λ))≥0

Hλ.

Proof: The set F ∩N is the intersection of closed convex
sets, and is, therefore, closed and convex. Note thath(1) = YLL,
ϕ(1) = 1

2V
∗
L, Pc(ϕ(1)) = Pmax, and that (22) is equivalent to

the inclusion

F ⊆ H1 =
{
y
∣∣ 1�y ≤ 1�Pmax

}
.

It follows that F ∩N ⊆ H1 ∩ N . The set F ∩N is bounded
since H1 ∩N is bounded. It follows from Theorem 3.18 that

F ∩N = N ∩
⋂
λ∈Λ1

Hλ.

Since F ∩N is closed and convex, it coincides with the inter-
section of its supporting half-spaces (see Section III-C). The-
orem 3.12 identifies all supporting half-spaces of F , and in
particular shows that Pc(ϕ(λ)) is the unique point of support
associated to the half-spaceHλ. By definition,Hλ is also a sup-
porting half-space forF ∩N if and only ifPc(ϕ(λ)) ∈ F ∩N ,
which is equivalent to Pc(ϕ(λ)) ≥ 0. �

The power demandsPc(ϕ(λ)) forλ ∈ Λ1 describe the bound-
ary of F (see Corollary 3.20 and Theorem 3.7). Lemma 6.3
characterizes all nonnegative feasible power demands in terms
of the boundary in the nonnegative orthant (i.e., ∂F ∩N ). In
its current form, this requires the identification of all λ such
that λ ∈ λ and Pc(ϕ(λ)) ≥ 0, which is a nontrivial computa-
tional problem. In the remainder of this section, we deduce an
alternative parametrization of the boundary of F in the nonneg-
ative orthant. This parametrization leads to a more constructive
description of all such λ.

B. Alternative Parametrization of D
In order to parametrize the boundary of F in the nonnegative

orthant, we study the set D of long-term voltage stable oper-
ating points in more detail. In Part I of this article, we have
parametrized the set D and its boundary by means of the set λ1
(see Theorem 3.7). In the following, we present an alternative

parametrization of D, which is dual to the parametrization
in Theorem 3.7, in the sense that we parametrize D by the
(right) Perron vector of − ∂Pc

∂VL
(ṼL) instead of its transpose

− ∂Pc

∂VL
(ṼL)

�.
We introduce the following definitions. For a vector μ ∈ Rn,

we introduce the notation

g(μ) := [μ]YLL + [YLLμ]. (68)

Note that g(μ) is linear in μ, and that for any vector v we have
g(μ)v = g(v)μ. By using (11) and (6), we observe that

∂Pc

∂VL
(ṼL) = [YLLV

∗
L]− [ṼL]YLL − [YLLṼL]

= [I∗
L]− g(ṼL). (69)

Analogous to λ, we define the set

M := { μ | g(μ) is a nonsingular M-matrix } .
Appendix E lists several properties of the set M. In particular,
Lemma E.1 shows that M is an open cone, which lies in the
positive orthant, and that M is simply connected.

Recall that Z-matrices, M-matrices, and irreducible matrices
were defined in Definitions 4.1–4.3. Appendix A lists multiple
properties of such matrices. Recall the following proposition
from Part I of this article.

Proposition 6.4 (Proposition 3.1 of Part I): Let A be an
irreducible Z-matrix. There is a unique eigenvalue r of A with
smallest (i.e., “most negative”) real part. The eigenvalue r,
known as the Perron root, is real and simple. A corresponding
eigenvector v, known as a Perron vector, is unique up to scaling,
and can be chosen such that v > 0.

The next lemma relates the Perron root and Perron vector of
the Jacobian of Pc to the set M.

Lemma 6.5: Let r ∈ R and μ ∈ Rn such that r ≥ 0 and
μ > 0. The Jacobian− ∂Pc

∂VL
(ṼL) is an irreducible M-matrix with

Perron root r and Perron vector μ if and only if g(μ) is an
M-matrix (i.e., μ ∈ M) and ṼL satisfies

ṼL = g(μ)−1[μ](I∗
L + r1). (70)

Proof: (⇒): The matrix YLL is an irreducible Z-matrix and
μ > 0, and so g(μ) is an irreducible Z-matrix by Proposi-
tions A.3 and A.4 of Part I. We let s and v > 0 denote,
respectively, the Perron root and Perron vector of g(μ). The
matrix − ∂Pc

∂VL
(ṼL) is an M-matrix, and therefore, a Z-matrix.

Lemma 3.2 states that − ∂Pc

∂VL
(ṼL) is a Z-matrix if and only if

V ∗
L > 0, and so ṼL > 0. Using the fact that (r, μ) is an eigenpair

to − ∂Pc

∂VL
(ṼL) and substituting (69), we observe that

rμ = − ∂Pc

∂VL
(ṼL)μ = g(ṼL)μ− [I∗

L]μ = g(μ)ṼL − [μ]I∗
L.

By rearranging terms it follows that

[μ]I∗
L + rμ = g(μ)ṼL. (71)

Multiplying (71) by v� results in

v�([μ]I∗
L + rμ) = v�g(μ)ṼL = sv�ṼL. (72)
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Note that ṼL > 0, v > 0, μ > 0, r ≥ 0, and I∗
L � 0. It follows

that the left-hand side of (72) is positive. Since v�ṼL is also
positive, we deduce that the Perron root s is positive. This means
that g(μ) is a nonsingular M-matrix (i.e., μ ∈ M), and that (70)
follows from (71).

(⇐): If μ ∈ M, then μ > 0 by Lemma E.1. The rest of the
proof follows by reversing the steps of the “⇒”-part. �

Note that (70) is invariant under scaling of μ, and since M is
a cone we may normalize μ. For this purpose, we define

M1 := M∩ { μ | ‖μ‖1 = 1 } = M∩ { μ ∣∣ 1�μ = 1
}
.

Lemma 6.5 and Corollary 3.4 give rise to an alternative
parametrization of D.

Theorem 6.6 (M6): The set D of long-term voltage stable
operating points, its closure cl(D), and its boundary ∂D are
parametrized by

D =
{
g(μ)−1[μ](I∗

L + r1)
∣∣ μ ∈ M1, r > 0

}
cl(D) =

{
g(μ)−1[μ](I∗

L + r1)
∣∣ μ ∈ M1, r ≥ 0

}
∂D =

{
g(μ)−1[μ]I∗

L

∣∣ μ ∈ M1

}
.

Furthermore, the map

(μ, r) 
→ g(μ)−1[μ](I∗
L + r1)

from M1 × R≥0 to cl(D) is a bicontinuous map.
The proof of Theorem 6.6 is analogous to the proof of Theo-

rem 3.7, and is therefore omitted.
To simplify notation, we define for μ ∈ M the map

ψ(μ) := g(μ)−1[μ]I∗
L. (73)

Note that Theorem 6.6 implies that ψ(M1) = ∂D, which is a
parametrization of the boundary of D.

Fig. 1 illustrates that cl(D) is in fact a subset of M1, which
is shown is Lemma 1.2.

Theorems 3.7 and 6.6 present two different parametrizations
of ∂D. The next lemma relates these two parametrizations,
and will be instrumental for identifying which λ ∈ Λ satisfy
Pc(ϕ(λ)) ≥ 0 in Lemma 6.3.

Lemma 6.7: Let ṼL ∈ ∂D, then there exist
1) a unique vector λ ∈ Λ1 such that ṼL = ϕ(λ);
2) a unique vector μ ∈ M1 such that ṼL = ψ(μ);
3) a positive scalar c such that

[λ]ṼL = cμ. (74)

Consequently, μ may be expressed in terms of λ, and vice
versa, by

μ = (λ�ϕ(λ))−1[λ]ϕ(λ) ∈ M1 (75)

λ = (1�[ψ(μ)]−1μ)−1[ψ(μ)]−1μ ∈ Λ1. (76)

Proof: The existence and uniqueness of λ and μ follows, re-
spectively, from Theorems 3.7 and 6.6. Since YLL is symmetric
we have

− ∂Pc

∂VL
(ṼL)[ṼL] = [ṼL]YLL[ṼL] + [ṼL][YLL(ṼL − V ∗

L)]

= −[ṼL]
∂Pc

∂VL
(ṼL)

�. (77)

Note that − ∂Pc

∂VL
and its transpose are singular M-matrices by

Corollary 3.4, and are irreducible by Lemma 3.2 since ṼL > 0.
Proposition A.2 states that the kernels of− ∂Pc

∂VL
and its transpose

are spanned by any of their respective Perron vectors. Hence, if
λ ∈ Λ1 is such that ṼL = ϕ(λ), then λ in a Perron vector of
− ∂Pc

∂VL
(ṼL)

� by Lemma 3.6. We deduce from (77) that

0 = −[ṼL]
∂Pc

∂VL
(ṼL)

�λ = − ∂Pc

∂VL
(ṼL)[ṼL]λ.

It follows that [ṼL]λ spans in the kernel of − ∂Pc

∂VL
(ṼL).

Lemma 6.5 implies that (74) holds for some scalar c. Since
ṼL > 0, λ > 0, and μ > 0, we have c > 0. Moreover, since
μ�1 = 1, multiplying (74) by 1� yields c = λ�ṼL = λ�ϕ(λ).
By taking c to the other side of (74) we obtain (75). Simi-
larly, since λ�1 = 1, multiplying (74) by 1�[ṼL]−1 yields 1 =

1�[ṼL]−1μc = 1�[ψ(μ)]−1μc. By multiplying (74) by [ψ(μ)]−1

we obtain (76). �
Lemma 6.7, and in particular (74), establishes a duality be-

tween the two parametrizations of ∂D. Note that (75) and (76)
describe their correspondence.

C. Two Parametrizations of the Boundary of F
We continue by studying parametrizations of the boundary of

F . Corollary 3.20 states that∂D is in one-to-one correspondence
with ∂F . Since ∂D is parametrized both byϕ(λ) forλ ∈ Λ1 (see
Theorem 3.7) and by ψ(μ) for μ ∈ M1 (see Theorem 6.6), it
follows that ∂F can be parametrized as

∂F = { Pc(ϕ(λ)) | λ ∈ Λ1 } = { Pc(ψ(μ)) | μ ∈ M1 } .
The following theorem gives an alternative formulation for both
of these parametrizations.

Theorem 6.8 (M7): Let P̃c ∈ ∂F , then there exist unique
vectors ṼL ∈ ∂D and μ ∈ M1 such that P̃c = Pc(ṼL) and
ṼL = ψ(μ). These vectors satisfy

P̃c = [ṼL]
2[μ]−1YLLμ. (78)

This implies that the boundary of F is parametrized by

∂F =
{
[ψ(μ)]2[μ]−1YLLμ

∣∣ μ ∈ M1

}
. (79)

Proof: The existence and uniqueness of ṼL and μ follows,
respectively, from Corollary 3.20 and Theorem 6.6. By (73),
(68), and (6) we have

ψ(μ) = g(μ)−1[μ]I∗
L

= ([μ]YLL + [YLLμ])
−1[μ]YLLV

∗
L

= V ∗
L − ([μ]YLL + [YLLμ])

−1[YLLμ]V
∗
L. (80)

We deduce that

[μ]YLL(V
∗
L − ψ(μ))

= [μ]YLL([μ]YLL + [YLLμ])
−1[YLLμ]V

∗
L. (81)
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Observe that for any two square matricesA,B such thatA+B
is nonsingular we have the identity1

A(A+B)−1B = B(A+B)−1A. (82)

Using (82) with A = [μ]YLL and B = [YLLμ] in (81) yields

[μ]YLL(V
∗
L − ψ(μ))

= [YLLμ]([μ]YLL + [YLLμ])
−1[μ]YLLV

∗
L

= [YLLμ]ψ(μ) = [ψ(μ)]YLLμ (83)

where we substituted (80). By (83) it follows that

Pc(ψ(μ)) = [ψ(μ)]YLL(V
∗
L − ψ(μ))

= [ψ(μ)][μ]−1[ψ(μ)]YLLμ = [ψ(μ)]2[μ]−1YLLμ

which proves (79). Since P̃c = Pc(ψ(μ)) and ṼL = ψ(μ) we
have P̃c = [ṼL]

2[μ]−1YLLμ, which proves (78). �
The duality of Lemma 6.7 implies the following corollary.
Corollary 6.9 (M7): Let P̃c ∈ ∂F , then there exists unique

vectors ṼL ∈ ∂D and λ ∈ Λ1 such that P̃c = Pc(ṼL) and ṼL =
ϕ(λ). These vectors satisfy

P̃c = [ṼL][λ]
−1YLL[λ]ṼL. (84)

This implies that the boundary of F is parametrized by

∂F =
{
[ϕ(λ)][λ]−1YLL[λ]ϕ(λ)

∣∣ λ ∈ Λ1

}
. (85)

D. Boundary of F in the Nonnegative Orthant

Theorem 6.8 gives an explicit relation between the boundary
of F and the vectors μ ∈ M1. The following lemma character-
izes all μ ∈ M1 for which the corresponding power demand in
∂F lies in the nonnegative orthant.

Lemma 6.10: Given P̃c ∈ ∂F , let ṼL ∈ ∂D and μ ∈ M1 be
the unique vectors so that P̃c = Pc(ṼL) and ṼL = ψ(μ), then
P̃c ∈ N if and only if YLLμ ∈ N . Consequently, the boundary
of F in the nonnegative orthant is parametrized by

∂F ∩N = { Pc(ψ(μ)) | μ ∈ M1, YLLμ ∈ N } .
Proof: The existence and uniqueness of ṼL and μ follow,

respectively, from Corollary 3.20 and Theorem 6.8. Note that
ṼL > 0, and μ > 0 by Lemma E.1. Hence, it follows from
(78) that P̃c ≥ 0 if and only if YLLμ ≥ 0. The parametrization
follows directly from Theorem 6.8. �

Lemma 6.10 shows that any power demand P̃c in ∂F ∩N is
uniquely associated to the vector YLLμ in N . Conversely, we
now show that any nonzero vector ν in N is, up to scaling of
ν, is uniquely associated to a power demand in ∂F ∩N . We
require the following lemma.

Lemma 6.11: For each nonzero vector ν ∈ N , we have
YLL

−1ν ∈ M.
Proof: It suffices to show that g(YLL

−1ν) is a nonsingular
M-matrix. Note that

g(YLL
−1ν) = [YLL

−1ν]YLL + [ν].

1This identity may be verified by adding A(A+B)−1A to both sides of the
equation and simplifying.

The matrix YLL is a nonsingular irreducible M-matrix, and its
inverse is a positive matrix by [10, Th. 5.12]. Since ν � 0 it
follows thatYLL

−1ν > 0. Hence, [YLL
−1ν]YLL is a nonsingular

M-matrix by Proposition A.3:5. Since ν � 0, Proposition A.3:6
implies that [YLL

−1ν]YLL + [ν] is a nonsingular M-matrix. �
We normalize the nonzero vectors in N by

N1 := N ∩ { ν | ‖ν‖1 = 1 }
=
{
ν ∈ Rn

∣∣ ν ≥ 0, 1�ν = 1
}
. (86)

We remark that N1 is known as the standard n− 1-simplex.
Lemmas 6.10 and 6.11 suggest that each ν ∈ N1 is uniquely

associated to a vector μ ∈ M1 for which the associated power
demand Pc(ψ(μ)) is nonnegative. Since there is a one-to-one
correspondence between M1 and Λ1 by Lemma 6.7, this would
mean that there is a one-to-one correspondence between N1,
and the vectors λ ∈ Λ1 for which the associated power demand
Pc(ϕ(λ)) is nonnegative. To this end, we define for nonzero
ν ∈ N the map

χ(ν) :=
[
ψ(YLL

−1ν)
]−1

YLL
−1ν

=
[
[YLL

−1ν]−1g
(
YLL

−1ν
)−1

[YLL
−1ν]I∗

L

]−1

1. (87)

Since YLL is symmetric we have for all μ > 0 that

[μ]−1g(μ)[μ] = (YLL + [μ]−1[YLLμ])[μ] = g(μ)� (88)

by using (68), and hence χ(ν) can also be written as

χ(ν) =
[
g
(
YLL

−1ν
)−� I∗

L

]−1

1. (89)

The following theorem establishes a one-to-one correspon-
dence between the set N1 and the sets ∂F , ∂D, M1, and Λ1

for which their associated power demands are nonnegative. In
addition, we present a parametrization of the boundary of F
restricted to the nonnegative orthant, in terms of N1.

Theorem 6.12 (M8a): There is a one-to-one correspondence
between the following sets:

i) the nonnegative feasible power demands P̃c on the bound-
ary of F (i.e., P̃c ∈ ∂F ∩N );

ii) the operating points ṼL on the boundary of D such that
YLLṼL ≤ I∗

L;
iii) the vectors μ ∈ M1 such that YLLμ ∈ N ;
iv) the vectors λ ∈ Λ1 such that YLL[λ]ϕ(λ) ∈ N ;
v) the vectors ν ∈ N1.

These correspondences satisfy the equations

P̃c = Pc(ṼL);

ṼL = ψ(μ) = ψ(YLL
−1ν)

= ϕ(λ) = ϕ(χ(ν));

μ ∝ [λ]ϕ(λ) ∝ YLL
−1ν

λ ∝ [ψ(μ)]−1μ ∝ χ(ν)
ν ∝ YLL[λ]ϕ(λ) ∝ YLLμ

where by ∝ we mean that equality holds up to a positive scaling
factor. In particular, χ is a one-to-one correspondence between
N1 and the set iv), up to scaling. Moreover, the boundary of F
in the nonnegative orthant is parametrized by

∂F ∩N =
{
Pc(ψ(YLL

−1ν))
∣∣ ν ∈ N1

}
and the corresponding operating points are parametrized by{

ṼL ∈ ∂D
∣∣∣ Pc(ṼL) ≥ 0

}
=
{
ψ(YLL

−1ν))
∣∣ ν ∈ N1

}
.
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Proof: (i ↔ ii): The map Pc from ∂D to ∂F is a one-to-one
by Corollary 3.20. Lemma 6.1, therefore, implies that the map
Pc from i) and ii) is one-to-one.

(i ↔ iii): The map ψ from M1 to ∂D is one-to-one by
Theorem 6.6, and hence, Pc ◦ ψ from M1 to ∂F is one-to-one.
Lemma 6.10, therefore, implies that the map Pc ◦ ψ from i) to
iii) is one-to-one.

(iii ↔ iv): Lemma 6.7 establishes that M1 and λ1 are in
one-to-one correspondence, and that ṼL = ψ(μ) = ϕ(λ). Note
that (75) and (76) imply that μ ∝ [λ]ϕ(λ) and λ ∝ [ψ(μ)]−1μ.
Substituting (74) in iii) results in iv) and are therefore equivalent.

(v ↔ iii): Lemma 6.11 shows that the map v 
→
(1�YLL

−1ν)−1YLL
−1ν is a map N1 to M1. This map is in-

jective since YLL
−1 is nonsingular, and is therefore one-to-one

on its image, which is exactly the set iii). This shows that
μ ∝ YLL

−1ν and ν ∝ YLLμ.
Since μ ∝ [λ]ϕ(λ) and ν ∝ YLLμ, it follows that ν ∝

YLL[λ]ϕ(λ). Due to (73) and (88), we have

[μ]−1ψ(μ) = [μ]−1g(μ)−1[μ]I∗
L = g(μ)−�I∗

L.

Since λ ∝ [ψ(μ)]−1μ, it follows that λ ∝ [g(μ)−�I∗
L]

−11. Be-
cause μ ∝ YLL

−1ν, we deduce that λ ∝ χ(ν) by (89). Thus, the
map χ from N1 to Λ is one-to-one, up to scaling.

Finally, the parametrizations follow directly from (i ↔ iii)
and (v ↔ iii). �

Remark 6.13: From a computation standpoint, the
parametrization of ∂F ∩N in Theorem 6.12 is cheaper to
compute than the parametrizations of ∂F in Theorem 6.8 or
Corollary 6.9. Indeed, to compute the set ∂F , we require to
identify either M1 or Λ1 by Theorem 6.8 or Corollary 6.9,
respectively, which both are sets that are (in essence) described
in terms of the eigenvalues of n× n matrices. In contrast, the
parametrization of ∂F ∩N in Theorem 6.12 is in terms of
the set N1, which is merely an n− 1-simplex and requires no
additional computation.

E. Refined Results for Nonnegative Power Demands

We conclude this section by presenting a refinement of The-
orems 3.18 and 5.1 for nonnegative power demands. This is
obtained by applying Theorem 6.12 to Lemma 6.3.

Theorem 6.12 states that the mapχ is a one-to-one correspon-
dence between the set ν ∈ N1 and vectors λ ∈ Λ1 for which
the associated power demand Pc(ϕ(λ)) is nonnegative. More
specifically, we have

{λ ∈ Λ1|Pc(ϕ(λ)) ≥ 0 }
=
{
(1�χ(ν))−1χ(ν)

∣∣ ν ∈ N1

} ⊆ Λ1. (90)

By substituting this result in Lemma 6.3, we obtain a geometric
characterization of F in terms of N1.

Corollary 6.14: The set F ∩N is the intersection over all
ν ∈ N1 of the half-spaces Hχ(ν), i.e.,

F ∩N = N ∩
⋂

ν∈N1

Hχ(ν).

Proof: The statement follows from substituting (90) in
Lemma 6.3, and by noting the half-spacesHλ are invariant under
scaling of λ. �

We may now present a necessary and sufficient condition for
a vector of nonnegative power demands to be feasible. This
condition can be regarded as a refinement of Theorem 5.1
for nonnegative power demands, and is obtained from Corol-
lary 6.14 by rewriting the half-spaces Hχ(ν).

Theorem 6.15 (M8b): Let P̃c be a nonnegative power demand
(i.e., P̃c ∈ N ). The following are equivalent:

1) P̃c is feasible (i.e., P̃c ∈ F ∩N );
2) the inequality

χ(ν)�P̃c ≤ 1
2ν

�V ∗
L (91)

holds for all ν ∈ N1;
3) the inequality

‖P̃c‖• := max
ν∈N1

{
χ(ν)�P̃c
1
2ν

�V ∗
L

}
≤ 1 (92)

holds
whereχ(ν)was defined in (87), whereV ∗

L are the open-circuit
voltages (6), and where N1 is the standard n− 1-simplex (86).
More explicitly, (91) is equivalent to

1�
[(
[YLL

−1ν] + YLL
−1[ν]

)−1
V ∗
L

]−1

P̃c ≤ 1
2ν

�V ∗
L.

Similarly, P̃c is feasible under small perturbation (i.e., P̃c ∈
int(F) ∩N ) if and only if the inequality in (91) holds strictly
for all ν ∈ N1, if and only if inequality in (92) holds strictly. �

Proof: (1 ⇔ 2): Corollary 6.14 implies that P̃c ∈ F ∩N if
and only if P̃c ∈ N and P̃c ∈ Hχ(ν) for all ν ∈ N1. By definition
of Hλ, the latter is equivalent to

χ(ν)�P̃c ≤ ‖ϕ(χ(ν))‖2h(χ(ν)) (93)

for all ν ∈ N1. We continue by rewriting the right-hand side of
(93). Note that

‖ϕ(χ(ν))‖2h(χ(ν)) = ϕ(χ(ν))�h(χ(ν))ϕ(χ(ν))

= 1
2ϕ(χ(ν))

�[χ(ν)]I∗
L (94)

where we substituted (38) and (35). By substituting (87) in (94)
it follows that the right-hand side of (93) equals

1
2ϕ(χ(ν))

�[ψ(YLL
−1ν)]−1[YLL

−1ν]I∗
L. (95)

Theorem 6.12 states that ϕ(χ(ν)) = ψ(YLL
−1ν), and hence,

from (95), we deduce that the right-hand side of (93) equals

1
21�[YLL

−1ν]I∗
L = 1

2ν
�YLL

−1I∗
L = 1

2ν
�V ∗

L

where we used (6). The left-hand side of (91) can be rewritten
by observing in (89) that

g
(
YLL

−1ν
)−� I∗

L = (YLL[YLL
−1ν] + [ν])−1I∗

L

= ([YLL
−1ν] + YLL

−1[ν])−1YLL
−1I∗

L

= ([YLL
−1ν] + YLL

−1[ν])−1V ∗
L

where we used (68) and (6) of the Part I of this article.
(2 ⇔ 3): Note that the right-hand side of (91) is positive

since ν � 0 since ν ∈ N1, and V ∗
L > 0 due to Lemma 2.3. The

equivalence of 2 and 3 follows immediately. The maximum is
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well-defined since we maximize a continuous function over the
compact set N1.

Lemma 3.9 states that we have equality in (93) if and only
if P̃c = Pc(ϕ(χ(ν))). Theorem 6.12 implies that P̃c ∈ ∂F ∩N
if and only if there exists ν ∈ N1 such that P̃c = Pc(ϕ(χ(ν))).
Hence, P̃c �∈ ∂F ∩N if and only if equality in (91) does not
hold for all ν ∈ N1. Thus, P̃c ∈ int(F) ∩ N if and only if the
inequality in (91) holds strictly for all ν ∈ N1, if and only if
inequality in (92) holds strictly. �

The scalar ‖P̃c‖• defined in (92) provides an exact measure for
the feasibility of the power flow in the power grid, generalizing
the feasibility measures in [6] and [7]. Indeed, Theorem 6.15
tells us that the power flow is feasible if and only if ‖P̃c‖• ≤ 1.
The relation between Theorem 6.15 and the sufficient conditions
from [7] and [6] is discussed in Section VII. Moreover, if P̃c is
feasible then the scalar 1− ‖P̃c‖• provides a measure for how
close the power flow is to unfeasibility.

We note that the necessary and sufficient condition presented
in Theorem 6.15 does not require the definiteness of any ma-
trices, in contrast to the necessary and sufficient conditions in
Theorems 5.1 and 5.2. Instead, Theorem 6.15, and in particular
(92), seeks to maximize a continuous scalar-valued function
over a compact domain. The prospect of this observation is that
may also use non-LMI-based computational techniques, such
as gradient descent algorithms to determine if the power flow
is feasible. However it is noted that an effective application
of this approach and a comparison with the LMI approach of
Theorems 5.1 and 5.2 requires a more in-depth study of the
maximization problem in (92), and in particular of the possible

concavity of the map ν 
→ χ(ν)� ˜Pc

ν�V ∗
L

. These topics lie beyond the
scope of this article.

Remark 6.16: Note that the numerator and denominator in
(92) are invariant under scaling of ν. Hence, we may similarly
define ‖ · ‖• by taking the maximization over all ν ∈ N so that
1
2ν

�V ∗
L = 1, in which case the denominator in (92) equals 1.

Remark 6.17: Similar results for positive power demand are
obtained by taking N = {ν ∈ Rn|ν > 0} throughout this sec-
tion. In particular, analogous to Theorem 6.15, it can be shown
that a vector of positive power demands P̃c > 0 is feasible if
and only if (91) holds for all ν > 0, and similar for feasibility
under small perturbation.

VII. SUFFICIENT CONDITIONS FOR POWER FLOW

FEASIBILITY

In the remainder of this article, we return to the case where
power demands are not restricted to the nonnegative orthant.
In this section, we prove two novel sufficient conditions for
the feasibility of a vector of power demands, which generalize
the sufficient conditions found in [6] and [7]. In addition, we
show how the conditions in [6] and [7] are recovered from the
conditions proposed in this section.

The benefit of these sufficient conditions for power flow
feasibility over a necessary and sufficient condition such as
Theorem 5.1 is that they are cheaper to compute, and may,
therefore, be more suitable for practical applications. However,
since these sufficient condition are not necessary, they cannot
guarantee that a power demand is not feasible.

This section is structured as follows. First, we show that
each feasible vector of power demands gives rise to a sufficient
condition for power flow feasibility (see Lemma 7.1), and derive
a sufficient condition from Theorem 6.15 (Corollary 7.3). Next,
we propose a weaker sufficient condition (see Theorem 7.5),
which generalizes the condition in [7] and identifies for which
vectors the latter condition is tight. Finally, we show that The-
orem 7.5 generalizes the sufficient condition in [6], and argue
why the latter condition is not tight in general (see Lemma 7.9).

A. Sufficient Conditions by Element-Wise Domination

Lemma 7.1 (M9): Let P̃c be a feasible power demand (i.e.,
P̃c ∈ F). If a power demand P̂c satisfies P̂c � P̃c, then P̂c is
feasible under small perturbation (i.e., P̂c ∈ int(F)).

Proof: Since P̃c ∈ F we have by Theorem 3.18 that

λ�P̃c ≤ ‖ϕ(λ)‖2h(λ)
for all λ ∈ λ, where we used (42). Note that λ > 0 for λ ∈ Λ

by Lemma B.6. Since P̂c � P̃c, we have

λ�P̂c < λ�P̃c ≤ ‖ϕ(λ)‖2h(λ) (96)

for all λ ∈ Λ. Hence, P̂c ∈ F by Theorem 3.18 and (42).
Since the inequality in (96) is strict, Lemma 40 implies that
P̂c �= Pc(ϕ(λ)) for all λ ∈ Λ, and therefore, P̂c �∈ ∂F by Corol-
lary 3.20 and Theorem 3.7. �

Lemma 7.1 shows that any feasible power demand gives rise
to a sufficient condition for power flow feasibility. In particu-
lar, note that the power demand 0 = Pc(V

∗
L) is feasible under

small perturbation. Lemma 7.1, therefore, implies the following
corollary.

Corollary 7.2: Any nonpositive power demand is feasible
under small perturbation.

We remark that a vector of nonpositive power demands cor-
responds to a case in which none of the power loads drain
power from the grid and, therefore, behave as sources. Intuitively
it is clear that such a vector of power demands is feasible.
Consequently, some of the sources may act as loads and drain
the power that is not dissipated in the lines.

Recall that Theorem 6.15 gives a necessary and sufficient
condition for the feasibility of a nonnegative power demand.
Lemma 7.1 allows us to extend Theorem 6.15 to a sufficient
condition for vectors of power demands which have negative
entries. We define max(a, b) ∈ Rn as the vector obtained by
taking the element-wise maximum of a, b ∈ Rn, i.e.,

max(a, b)i := max(ai, bi).

Note for P̃c ∈ Rn that max(P̃c,0) is nonnegative, and that
P̃c ≤ max(P̃c,0). Hence, Theorem 6.15 and Lemma 7.1 di-
rectly imply the following sufficient condition for the feasibility
of a vector of power demands.

Corollary 7.3 (M10): A vector of power demands P̃c ∈ Rn

is feasible (i.e., P̃c ∈ F) if

χ(ν)�max(P̃c,0) ≤ 1
2ν

�V ∗
L

for all ν ∈ N1, or equivalently, if

‖max(P̃c,0)‖• ≤ 1
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where ‖ · ‖• was defined in (92).
Note that Corollary 7.3 is necessary and sufficient for non-

negative power demands by Theorem 6.15.

B. Generalization of the Sufficient Condition of
Simpson-Porco et al. (2016)

We proceed by studying known sufficient conditions in the
literature and comparing them to Corollary 7.3. The paper [7]
studies the decoupled reactive power flow equations for lossless
ac power grids with constant power loads. The analysis and
results in [7] translate naturally to dc power grids. In [7], a
sufficient condition for the feasibility of a vector of constant
power demands is proposed, which we state in the context of dc
power grids.

Proposition 7.4 (see[7, Supplementary Theorem 1]): Let P̃c

be a nonnegative vector of power demands (i.e., P̃c ∈ N ), then
P̃c is feasible under small perturbation (i.e., P̃c ∈ int(F)) if

‖( 14 [V ∗
L]YLL[V

∗
L])

−1P̃c‖∞ < 1. (97)

This sufficient condition for feasibility is tight since we have

‖( 14 [V ∗
L]YLL[V

∗
L])

−1Pmax‖∞ = 1

where Pmax ∈ ∂F is the maximizing power demand defined in
Lemma 2.18, and lies on the boundary of F .

Proposition 7.4 applies only to nonnegative power demands
and is not necessary in general. It is, therefore, weaker than
Theorem 6.15 and Corollary 7.3. The proof of Proposition 7.4
in [7] relies on a fixed point argument. The following result
generalizes Proposition 7.4, and identifies all power demands
for which condition (97) is tight (i.e., the power demands on the
boundary of F so that equality in (97) holds).

Theorem 7.5 (M10): A vector of power demands P̃c is feasi-
ble (i.e., P̃c ∈ F) if

( 14 [V
∗
L]YLL[V

∗
L])

−1max(P̃c,0) ≤ 1 (98)

and feasible under small perturbation (i.e., P̃c �∈ int(F)) if P̃c

is not of the form

(P̃c)[α] =
1
4 [(V

∗
L)[α]]((YLL/(YLL)[αc,αc])(V

∗
L)[α]

(P̃c)[αc] = 0 (99)

for all nonempty α ⊆ n.
The proof of Theorem 7.5 is found in Appendix F. Note that

Theorem 7.5 is weaker than Corollary 7.3, but is cheaper to
compute. Proposition 7.4 is recovered from Theorem 7.5 as
follows.

Proof of Proposition 7.4: Let P̃c ∈ N which implies that
P̃c = max(P̃c,0). Let P̃c satisfy (97), which is therefore equiv-
alent to

−1 < ( 14 [V
∗
L]YLL[V

∗
L])

−1max(P̃c,0) < 1. (100)

It follows from Theorem 7.5 that P̃c ∈ F . The latter inequality
in (100) is strict, and therefore, P̃c lies in the interior of the set
described by (98), and hence, P̃c ∈ int(F). �

Theorem 7.5 states that the power demands described by (99)
are the only power demands which satisfy (98) and lie on the

boundary of F . The condition in (97) is therefore tight for such
power demands.

Remark 7.6: Note that if α = n in (99), we obtain the maxi-
mizing power, since

1
4 [V

∗
L]YLL[V

∗
L]1 = 1

4 [V
∗
L]I∗

L = Pmax

by (6) and (23). The proof of Theorem 7.5 shows that the power
demands described by (99) correspond to the maximizing power
demands of all power grids obtained by Kron-reduction (see,
e.g., [13]). The power flow of such power grids is equivalent
to power flow of the full power grid, with the additional re-
striction that the currents at the loads indexed by α vanish (i.e.,
(IL)[α] = 0).

C. On the Sufficient Condition of Bolognani and
Zampieri (2015)

We conclude this section by showing that Theorem 7.5 also
generalizes the sufficient condition in [6]. The paper [6] studies
the power flow equation of an ac power grid with constant power
loads and a single source node. The analysis and results in [6]
translate naturally to dc power grids with a single source node.
The next lemma show that the results in [6] apply to dc power
grids with multiple sources as well, which allows us to compare
Theorem 7.5 and [6].

Lemma 7.7: Let P denote a dc power grid with constant
power loads with n loads and m sources. Let P̂ denote the
dc power grid with n loads and a single source, of which the
Kirchhoff matrix satisfies

Ŷ =

(
ŶLL ŶLS

ŶSL ŶSS

)
=

(
[V ∗

L]YLL[V
∗
L] −[V ∗

L]I∗
L

−(I∗
L)

�[V ∗
L] (V ∗

L)
�I∗

L

)
. (101)

and where the source voltage equals V̂S = 1. The feasibility of
the power flow equations of P and P̂ is equivalent.

Proof: We first verify that Ŷ is indeed a Kirchhoff matrix.
Note that [V ∗

L]YLL[V
∗
L]1 = [V ∗

L]I∗
L by (6), and so Ŷ 1 = 0. Also,

since YLL is an irreducible Z-matrix, and V ∗
L > 0 and I∗

L � 0,
Ŷ is also an irreducible Z-matrix, and therefore, a Kirchhoff
matrix. The powers injected at the loads in power grid P̂ satisfy

P̂L(V̂L) = [V̂L](ŶLLV̂L + ŶLS V̂S)

= [V̂L]([V
∗
L]YLL[V

∗
L]V̂L − [V ∗

L]I∗
L)

= [V̂L][V
∗
L](YLL[V

∗
L]V̂L − YLLV

∗
L) = PL([V

∗
L]V̂L).

where we used (6) and (4). We, therefore, have P̂L(V̂L) =

PL(VL) by taking VL = [V ∗
L]V̂L. Hence, given Pc ∈ Rn, we

have that P̂L(V̂L) = Pc is feasible for some V̂L > 0 if and only
if PL(VL) = Pc is feasible for some VL > 0. �

We continue by formulating the sufficient condition in [6].
We follow [6] and define for p ∈ [1,∞] the matrix norm

‖A‖�p := max
j

{‖A[j,n]‖p} (102)

where A[j,n] denotes the jth row of A. The sufficient condition
for power flow feasibility of [6] in the context of dc power grids
is given as follows.
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Proposition 7.8 (see[6, Th. 1]): Let P̃c ∈ Rn be a vector of
power demands, then P̃c is feasible under small perturbation
(i.e., P̃c ∈ int(F)) if for some p, q ∈ [1,∞] such that 1

p + 1
q = 1

we have

‖( 14 [V ∗
L]YLL[V

∗
L])

−1‖�q ‖P̃c‖p < 1. (103)

The proof of Proposition 7.8 in [6] also relies on a fixed point
argument. Proposition 7.8 is recovered from Lemma 7.1 and
Proposition 7.4 as follows.

Proof: Let P̃c satisfy (103). Let P̂c ∈ N be such that (P̂c)i =

|(P̃c)i|. It follows that ‖P̂c‖p = ‖P̃c‖p, and hence P̂c satisfies
(103). The matrix YLL is an M-matrix, and hence, [V ∗

L]YLL[V
∗
L]

is a M-matrix by Proposition A.3.5. Its inverse is a positive
matrix by [10, Th. 5.12]. Let vj ∈ Rn be such that (vj)� is
the jth row of ( 14 [V

∗
L]YLL[V

∗
L])

−1. We have vj > 0. By (102) it
follows from (103) that for all j

‖vj‖q‖P̂c‖p < 1.

By Hölder’s inequality (see, e.g., [14, pp. 303]) we have

‖[vj ]P̂c‖1 ≤ ‖vj‖q‖P̂c‖p < 1.

Since [vj ]Pc ≥ 0 we know that ‖[vj ]P̂c‖1 = (vj)�P̂c. This
implies that (vj)�P̂c < 1 for all i, and hence

( 14 [V
∗
L]YLL[V

∗
L])

−1P̂c < 1.

Hence, (97) holds for P̂c, and P̂c ∈ int(F) by Proposition 7.4.
Since P̃c ≤ P̂c, Lemma 7.1 implies that P̃c ∈ int(F). �

Our proof of Proposition 7.8 shows that the sufficient condi-
tion in [6] for nonnegative power demands is more conservative
in comparison to the sufficient condition in [7]. This also shows
that Theorem 7.5 generalizes both results. The following lemma
gives a more intuitive interpretation of condition (103), by
showing that (103) describes the largest open p-ball such that
(97) holds for nonnegative power demands.

Lemma 7.9: Let p, q ∈ [1,∞] such that 1
p + 1

q = 1. The suffi-
cient condition for power flow feasibility (103) in Proposition 7.8
describes the open ball centered at 0

B := { y ∈ Rn | ‖y‖p < r }
where the radius r = (‖( 14 [V ∗

L]YLL[V
∗
L])

−1‖�q)−1 > 0 is the

largest scalar such that (97) holds for all P̃c ∈ B ∩ N .
Proof: We show that there exists a nonnegative vector of

power demands on the boundary of B such that such that
equality in (97) holds, which therefore defines the radius r.
We continue our proof of Proposition 7.8. Let j be such
that ‖vj‖q = ‖( 14 [V ∗

L]YLL[V
∗
L])

−1‖�q . If p �= 1, then equality in

Hölder’s inequality ‖[vj ]P̃c‖1 ≤ ‖vj‖q‖P̃c‖p holds if (P̃c)i =
c((vj)i)

q−1 for all i and for any c ∈ Rn. Consider the positive
vector of power demands P̂c given by (P̂c)i = c((vj)i)

q−1

and where c−1 = ‖vj‖qq . For this vector, we have ‖[vj ]P̂c‖1 =

‖vj‖q‖P̂c‖p = 1. Hence, by following proof of Proposition 7.8,
P̂c satisfies equality in both (97) and (103). Thus, P̂c ∈ ∂B ∩ N ,
and ‖P̂c‖p = (‖vj‖q)−1 = r. If p = 1, the same holds when
we take P̂c = ei‖vj‖−1

∞ , where i is a single index such that
(vj)i = ‖vj‖∞, and (P̂c)i = 0 otherwise. �

Fig. 2. Depiction of the set F of feasible power demands for a power
grid with two loads. The yellow area corresponds to the sufficient
condition in Theorem 7.5. The green shaded area corresponds to the
set described by the sufficient condition in [7] (see Proposition 7.4),
and does not include the yellow boundary. The black points are the
power demands for which the condition in [7] is tight, and correspond
to the black operating points in Fig. 1. The red area corresponds to the
sufficient condition in [6] (see Proposition 7.8). The red point indicates
a point of intersection of the boundary of the condition in [6] with either
the boundary of the condition in [7], or the boundary of the condition in
Theorem 7.5.

Note that P̂c constructed in the proof of Lemma 7.9 is not
necessarily of the form (99). Since (97) is tight only for such
points, this suggests that condition (103) is not tight in general.
This is can be observed for p = q = 2 in Fig. 2 by the red dot,
which does not lie on the boundary of F .

VIII. DESIRABLE OPERATING POINTS

We conclude this article by showing that for each feasible
vector of power demands the different definitions of desirable
operating points in Part I (Definitions 2.10–2.13) identify the
same unique operating point. It was shown in [9] that for each
feasible power demand there exists a unique operating point,
which is a high-voltage solution, and that this operating point is
“almost surely” long-term voltage stable. In addition, Matveev
et al. [9] state that this operating point is the unique long-term
voltage stable operating point if all power demands have the
same sign. The following theorem sharpens these results by
showing that the long-term voltage stable operating point associ-
ated to a feasible vector of power demands is a strict high-voltage
solution.

Theorem 8.1 (M11): Let P̃c be a feasible vector of power
demands (i.e., P̃c ∈ F). Let ṼL ∈ cl(D) be such that ṼL is
an operating point associated to P̃c (i.e., P̃c = Pc(ṼL)), which
exists and is unique by Theorem 3.17. Suppose there exists
a vector Ṽ ′

L ∈ Rn such that Ṽ ′
L �= ṼL and P̃c = Pc(Ṽ

′
L), then

Ṽ ′
L < ṼL. Hence, ṼL is a strict high-voltage solution. Moreover,

1
2 (Ṽ

′
L + ṼL) lies on the boundary of D.

Proof: If P̃c ∈ ∂F , then by Corollary 3.20, the operating
point ṼL ∈ ∂D is the unique operating point associated to
P̃c. Hence, a second operating point Ṽ ′

L does not exist. The
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uniqueness of ṼL implies that ṼL is a high-voltage solution and
is dissipation-minimizing.

If P̃c ∈ int(F), then by Corollary 3.21, we have ṼL ∈ D. We
define the vectors v := 1

2 (ṼL + Ṽ ′
L) and μ := 1

2 (ṼL − Ṽ ′
L), and

the line γ(θ) := v + θμ. Note that γ(1) = ṼL and γ(−1) = Ṽ ′
L.

Since ṼL ∈ D and Ṽ ′
L �∈ cl(D)we have ṼL �= Ṽ ′

L, and soμ �= 0.
Lemma 3.9 implies that

Pc(γ(θ)) = Pc(v + θμ)

= Pc(v) + θ
∂Pc

∂VL
(v)μ− θ2[μ]YLLμ. (104)

Since P̃c = Pc(γ(1)) = Pc(γ(−1)), it follows from (104) that

∂Pc

∂VL
(v)μ = 0. (105)

We, therefore, have

Pc(γ(θ)) = Pc(v)− θ2[μ]YLLμ (106)

which describes a half-line contained in F . Note also that
Pc(γ(θ)) = Pc(γ(−θ)) and γ(θ) �= γ(−θ) if θ �= 0, which
shows that the map Pc(VL) gives rise to a two-to-one cor-
respondence between the line γ(θ) and the half-line (106)
for θ �= 0. The line γ(θ) crosses the boundary of D since
γ(1) ∈ D and γ(−1) �∈ D. Let θ̂ be such that γ(θ̂) ∈ ∂D. Corol-
lary 3.20 implies that there does not exists V̂L �= γ(θ̂) such that
Pc(γ(θ̂)) = Pc(V̂L). Hence, due to the two-to-one correspon-
dence between γ(θ) and (106) for θ �= 0, we conclude that θ̂ = 0

and γ(0) = v ∈ ∂D. Corollary 3.4 implies that − ∂Pc

∂VL
(v) is a

singular M-matrix. Note that μ lies in the kernel of − ∂Pc

∂VL
(v)

due to (105), and it follows from Lemma E.2 that ±μ > 0 and
that μ spans the kernel of − ∂Pc

∂VL
(v). Since γ(θ) intersects ∂D

only when θ = 0, and since γ(1) ∈ D and γ(−1) �∈ cl(D), it
follows that γ(θ) ∈ D if and only if θ > 0. However, if μ < 0
then γ(θ) = v + θμ is a negative vector for sufficiently large
θ, which contradicts that all vectors in cl(D) are positive. We
conclude that μ > 0, which by definition of μ implies that
ṼL > Ṽ ′

L. The operating point ṼL is a strict high-voltage solution
by Definition 2.13. �

We conclude by proving that the different types of desirable
operating points defined in Section II-B describe one and the
same operating point.

Theorem 8.2 (M11): Let P̃c be a feasible vector of power
demands, and let ṼL be an associated operating point (i.e., P̃c =

Pc(ṼL)). The following statements are equivalent:
i) ṼL is long-term voltage semistable (i.e., ṼL ∈ cl(D));

ii) ṼL is the unique long-term voltage semistable operating
point associated to P̃c;

iii) ṼL is dissipation-minimizing;
iv) ṼL is the unique dissipation-minimizing operating point

associated to P̃c;
v) ṼL is a high-voltage solution;

vi) ṼL is a strict high-voltage solution.
Proof: Theorem 3.17 guarantees the existence and unique-

ness of a long-term voltage semistable operating point V̂L asso-
ciated to P̃c. It therefore suffices to show that V̂L is the unique

operating point which satisfies statements iii)–vi) individually.
Theorem 8.1 implies that V̂L is a (strict) high-voltage solution.
Note that there exists at most one high-voltage solution, since
ṼL ≤ Ṽ ′

L and Ṽ ′
L ≤ ṼL imply that ṼL = Ṽ ′

L. Corollary 2.14
implies that V̂L is the unique dissipation-minimizing operating
point. �

Theorem 8.2 shows that the desirable operating points defined
in Section II-B coincide, and that we may speak of a single
desired operating point. Moreover, in the context of the dynam-
ical power grid (15) of Section II-C, Theorem 8.2 states that
there exists a stable equilibrium that always minimizes the total
dissipation at steady state among all equilibria, and elementwise
strictly dominates the voltage potentials of all other equilibria.

Remark 8.3: Note that none of the equivalent statements in
Theorem 8.2 depends on YSS , which is the matrix that de-
scribes the interconnection of lines between the sources. Indeed,
recall that YSS does not appear in (9), and recall from the
proof of Proposition 2.12 that YSS is not relevant for finding a
dissipation-minimizing operating point. However, from (14), we
recall that the matrix YSS does affect the total dissipated power
in the grid. Consequently, YSS does affect the total power that is
dissipated when the operating point of Theorem 8.2 is chosen.
Put differently, the minimal total power that is dissipated in the
lines for a given vector Pc of constant power demands is not
independent of the lines between the sources, despite the fact that
the operating point which achieves this minimum is independent
of these lines.

Remark 8.4: In [9], it was shown that for a feasible vector
of power demands the algorithm proposed in [9], converges to
a high-voltage solution. By Theorem 8.2, this means that this
algorithm converges to the unique long-term voltage semistable
operating point associated to these power demands.

IX. CONCLUSION

In this article, we constructed a framework for the analysis of
the feasibility of the power flow equations for dc power grids.
Within this framework, we unified and generalized the results
in the literature concerning this feasibility problem, and gave a
complete characterization of feasibility.

In Part II of this article, we showed that the feasibility (under
small perturbation) of a power demand can be decided by an
necessary and sufficient LMI condition. In addition, we gave a
necessary and sufficient condition for the feasibility (under small
perturbation) for nonnegative power demands, which provides
an alternative method to determine power flow feasibility. We
have presented two novel sufficient conditions for the feasibility
of a power demand, which were shown to generalize known
sufficient conditions in the literature. In addition, we proved
that any power demand dominated by a feasible power demand
is also feasible. Finally, we showed that the operating points
corresponding to a power demand which are long-term voltage
semistable, dissipation-minimizing, or a (strict) high-voltage
solution, are one and the same.

Further directions of research may concern the question if
and how the approach and/or results in this article generalize to
general ac power grids. Other interesting directions of research
concern, the feasibility of the power flow equations with uncer-
tain parameters, conditions for long-term voltage (semi)stability
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of an operating point, and the (non)convexity of the set of such
operating points. Furthermore, control schemes which imple-
ment the proposed conditions for power flow feasibility are of
particular interest. Finally, it would be interesting to see how the
approach of this twin article may be applied to problems outside
the topic of power systems.

APPENDIX

E. Properties of M
Lemma E.1: If μ ∈ M, then μ > 0. Moreover, M is an open

cone and is simply connected.
Proof: If μ ∈ M, then g(μ) = [μ]YLL + [YLLμ] is a non-

singular M-matrix, and therefore, a Z-matrix. Recall that YLL

is an irreducible Z-matrix, which implies that (YLL)[i,ic] � 0
for all i. If μi < 0, then g(μ)[i,ic] = μi(YLL)[i,ic] � 0, which
contradicts the fact that g(μ) is a Z-matrix. Hence, μ ≥ 0. We
will show that a vector μ, which contains zeros does not yield
an M-matrix. Suppose μ ∈ M such that μ[α] = 0 and μ[αc] > 0
for some nonempty set α ⊆ n. Since μ[α] = 0, the following
submatrices of [μ]YLL + [YLLμ] satisfy

([μ]YLL + [YLLμ])[α,αc] = [μ[α]](YLL)[α,αc] = 0 (107)

and

([μ]YLL + [YLLμ])[α,α]

= [μ[α]](YLL)[α,α] + [(YLLμ)[α]]

= 0 +
[
(YLL)[α,α]μ[α] + (YLL)[α,αc]μ[αc]

]
= [(YLL)[α,αc]μ[αc]]. (108)

It follows from (107) that [μ]YLL + [YLLμ] is block-triangular.
Hence, the eigenvalues of each diagonal block are also eigen-
values of [μ]YLL + [YLLμ]. The principal submatrix given in
(108) is such a diagonal block. Note from (108) that this block
is diagonal, and so its eigenvalues are the elements of the vector
(YLL)[α,αc]μ[αc]. Since YLL is an irreducible Z-matrix we have
(YLL)[α,αc] � 0. Recall that μ[αc] > 0, which implies that

(YLL)[α,αc]μ[αc] � 0

and so [μ]YLL + [YLLμ] has nonpositive eigenvalues. However,
since [μ]YLL + [YLLμ] is an M-matrix, its Perron root is positive
and is a lower bound for all other eigenvalues, which is a
contradiction. We conclude that μ > 0.

The matrix g(μ) is linear in μ. Hence, scaling of μ gives rise
to a scaling of the eigenvalues of g(μ), and in particular of the
Perron root of g(μ). Hence, M is a cone. The set of nonsingular
M-matrices is open, and so M is an open set.

The set ∂D is simply connected by Theorem 3.7. Theorem 6.6
shows that there exists a bicontinuous map between∂D andM1.
Topological properties are preserved by bicontinuous maps,
and hence, M1 is also simply connected. Its conic hull M is,
therefore, also simply connected. �

Lemma E.2: The set of long-term voltage semistable operat-
ing points is contained in M (i.e., cl(D) ⊆ M).

Proof: Recall from Corollary 3.4 that if ṼL ∈ cl(D), then
− ∂Pc

∂VL
(ṼL) is an M-matrix. This means that g(ṼL)− [I∗

L] is an

M-matrix by (69). By adding [I∗
L] to g(ṼL)− [I∗

L], Proposi-
tion A.3:6 implies that g(ṼL) is an M-matrix since I∗

L � 0. �

F. Proof of Theorem 7.5

For the sake of notation we follow Lemma 7.7 and define
ŶLL := [V ∗

L]YLL[V
∗
L], which is an irreducible nonsingular M-

matrix. It follows from [10, Th. 5.12] that the inverse of ŶLL is
positive. Let S be the set of P̃c defined by

P̃c ≥ 0; ŶLL
−1
P̃c ≤ 1

41 (109)

which corresponds to all P̃c ∈ N so that (98) holds. The set
S is convex and (109) describes the intersection of 2n closed
half-spaces. The normals to these half-spaces are given by the
canonical basis vectors e1, . . . , en and the rows of ŶLL

−1
. The

set S is bounded since ŶLL
−1

is positive. Weyl’s Theorem [15,
pp. 88] states that S is the convex hull of the points which lie on
the boundary of n half-spaces in (109) so that their correspond-
ing normals span Rn. To this end, we define P ∅

c := 0, which
lies on the boundary of the n half-spaces described by P̃c ≥ 0.
Similarly, we let α ⊆ n be nonempty and let Pα

c ∈ S be a point
described by Weyl’s Theorem for which (ŶLL

−1
P̃c)[α] =

1
41

and (ŶLL
−1
P̃c)[αc] <

1
41. The corresponding normals are given

by the rows of ŶLL
−1

indexed byα. Since ŶLL is positive definite

we know that (ŶLL)[α,α] is positive definite and, therefore,
nonsingular. The only choice of normals of the half-spaces,
which complete the span of Rn are ei for i ∈ αc, which implies
(Pα

c )[αc] = 0. Since (Pα
c )[αc] = 0, we have

1
41 = (ŶLL

−1
Pα
c )[α] = (ŶLL

−1
)[α,α](P

α
c )[α]

and therefore, (Pα
c )[α] =

1
4 (ŶLL

−1
)[α,α]

−1
1. By the block ma-

trix inverse formula [11, Eq. (0.8.1)], we observe that

(Pα
c )[α] =

1
4 (ŶLL/(ŶLL)[αc,αc])1. (110)

The abovementioned process exhaustively describes all points
specified by Weyl’s Theorem, and hence, we have

S = conv({ Pα
c | α ⊆ n }).

Recall that P ∅
c = 0 = Pc(V

∗
L) ∈ int(F). The points Pα

c for
nonempty α ⊆ n correspond to the power demands described
in (99) through substitution of ŶLL = [V ∗

L]YLL[V
∗
L]. We show

that these points lie on the boundary of F . Note that for α = n
we have by (110), (6), and (23) that

Pn
c = 1

4 ŶLL1 = 1
4 [V

∗
L]YLL[V

∗
L]1 = 1

4 [V
∗
L]I∗

L = Pmax

which lies on the boundary of F . Consider any feasible power
demand P̃c ∈ F such that (P̃c)[α] = 0 with α �= ∅,n. Let ṼL >

0 be so that P̃c = Pc(ṼL). By (10), we have

0 = Pc(ṼL)[αc] = [(ṼL)[αc]](YLL(V
∗
L − ṼL))[αc] (111)

where we used (6). Since (Ṽ α
L )[αc] > 0 it follows from (111) that

(YLL(V
∗
L − ṼL))[αc] = 0. Since (YLL)[αc,αc] is nonsingular, we

may solve for (ṼL)[αc]. Similar to [11, Eq. (0.7.4)], substitution
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of (ṼL)[αc] in Pc(ṼL)[αc] yields

Pc(ṼL)[α] = [(ṼL)[α]]YLL/(YLL)[αc,αc]((V
∗
L)[α] − (ṼL)[α])

which corresponds to the power flow equations of a Kron-
reduced power grid (see, e.g., [13], [16]). Analogous to
Lemma 2.18, the maximizing feasible power demand for the
Kron-reduced power grid is obtained by taking (ṼL)[α] =
1
2 (V

∗
L)[α], which corresponds in the power demand Pα

c . Hence,
Pα
c lies on the boundary of F . Since F is convex by Theo-

rem 3.18, and Pα
c ∈ F for all α ⊆ n, we have that S ⊆ F ∩N .

Each supporting half-space of F has a unique point of support
(see Theorem 3.12), and so the boundary ofF does not contain a
line piece. Consequently, the all points in S other than the points
Pα
c for α �= ∅ lie in the interior of F . Lemma 7.1 implies (98)

from (109). �
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