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Abstract: Wearable technology can be employed to elevate the abilities of humans to perform
demanding and complex tasks more efficiently. Armbands capable of surface electromyography
(sEMG) are attractive and noninvasive devices from which human intent can be derived by leveraging
machine learning. However, the sEMG acquisition systems currently available tend to be prohibitively
costly for personal use or sacrifice wearability or signal quality to be more affordable. This work
introduces the 3DC Armband designed by the Biomedical Microsystems Laboratory in Laval University;
a wireless, 10-channel, 1000 sps, dry-electrode, low-cost (∼150 USD) myoelectric armband that also
includes a 9-axis inertial measurement unit. The proposed system is compared with the Myo Armband
by Thalmic Labs, one of the most popular sEMG acquisition systems. The comparison is made by
employing a new offline dataset featuring 22 able-bodied participants performing eleven hand/wrist
gestures while wearing the two armbands simultaneously. The 3DC Armband systematically and
significantly (p < 0.05) outperforms the Myo Armband, with three different classifiers employing
three different input modalities when using ten seconds or more of training data per gesture. This new
dataset, alongside the source code, Altium project and 3-D models are made readily available for
download within a Github repository.

Keywords: acquisition system; surface electromyogram; sEMG; wearable sensors; gesture recognition

1. Introduction

The way people interface with machines is constantly evolving with the aim of bridging the gap
between human intention and machine action. Improved interfaces can profoundly alter the way
entertainment is consumed or even change lives by elevating the autonomy of people living with
disabilities. In certain situations, physical interfaces (e.g., touch screen and keyboard) can be replaced
with the conscious modulation of biological signals by the user.

In the context of upper-limb amputees, the signals provided by muscular activity offer an
attractive modality from which a user’s intention can be derived. Surface electromyography (sEMG)
can also be leveraged to achieve intuitive interfaces in a vast array of domains for able-bodied
participants [1–3]. sEMG signals are non-stationary and represent the sum of subcutaneous motor
action potentials generated through muscular contraction [4]. In contrast with intramuscular EMG
signals, which are recorded using needles that penetrate the muscle, sEMG signals are recorded directly
on the participant’s skin surface [1]. While the latter has the advantage of being noninvasive, important
noise is introduced when going further away from the muscle fibers, especially when nonintrusive
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dry electrodes are employed instead of their more intrusive and robust gel-based counterpart [5].
The quality of the sEMG acquisition system is thus crucial in obtaining as clear of a signal as possible.
However, current systems tend to be expensive, often costing several thousands of dollars per channel
or making noticeable compromises on the quality of the recorded signal (see Section 2 for details).

As such, the main contribution of this work is to present a new 3-D-printed wireless sEMG
acquisition system based on an application-specific integrated circuit (ASIC). This armband aims at
providing state-of-the-art recording while being low cost to produce and small enough to be easily
wearable. The proposed device is referred to in this work as the 3DC Armband and was designed by
the Biomedical Microsystems Laboratory in Laval University (BML-UL). Additionally, while comparisons
of different sEMG acquisition system have been done in the past [6], these comparisons are made
across different datasets and are thus generated from different conditions. Other works have explored
the impact of sampling rate on gesture classification accuracy [7], but they did so by downsampling the
signal of an acquisition system. While this allows for a direct comparison of the impact of the signal
bandwidth on classification performance, such comparisons do not take into account the technical
limitations associated with a higher bandwidth when building sEMG acquisition systems. To the
best of the authors’ knowledge, this is the first time that a direct comparison between two different
armbands cadenced at different sampling rates (200 vs. 1000 sps)is made on the same dataset. Finally,
an additional contribution of this work is the publication of a new dataset recorded with both the Myo
Armband and the proposed acquisition system on 22 able-bodied participants for eleven hand/wrist
gestures. The dataset, alongside the 3-D models, Altium project, and the source code used in this article,
are made readily available to the community (https://github.com/UlysseCoteAllard/3DC-Armband).

This paper is organized as follows. An overview of different sEMG acquisition systems is given
in Section 2. Section 3 presents the proposed 3-D-printed sEMG armband in detail. The new dataset is
detailed in Section 4. The methods employed for the comparison between the Myo armband and the
proposed system are detailed in Section 5, and the results of this comparison are presented in Section 6.
Finally, this work’s outcomes and possible improvements are discussed in Section 7.

2. Overview of Surface EMG Acquisition Systems

By their nature, sEMG signals are recorded with multiple layers of material between the electrode
site and the muscle fibers generating the signal. As such, particularly robust acquisition systems have
been developed over the years to contend with the different types of contaminants associated with
such signals (e.g., power line interference, motion artifact, and biosignal crosstalk) [8].

One such system employed for clinical research is the Ultium EMG by Noraxon systems [9]
which can record up to 32 channels simultaneously at a rate of ∼2 ksps and a baseline noise of less
than 1 µV. Each channel is fully self-contained and wireless, allowing researchers to target multiple
recording sites. Each module also integrates a 9-axis Inertial Measurement Unit (IMU) sensor. Similar
systems such as the Trigno Avanty by Delsys Systems [10] and DataLITE sEMG by Biometrics [11] are
also available. While these systems are highly accurate, they necessitate preparation of the recording
site (i.e., washing and sometimes shaving the subject’s skin) before fixing each module to the skin,
often using medical tape. This, coupled with their high cost ranging between ∼$17,000–20,000 USD,
often renders such systems impractical for consumer-grade applications.

In 2015, the Myo Armband by Thalmic Labs [12] was released as a new consumer-grade sEMG
acquisition system. This wireless armband offering eight channels was retailed for several orders of
magnitude less than medical-grade acquisition systems ($200 USD). The armband is also nonintrusive,
requiring no preparation of the recording site of any sort. However, to attain this, concessions were
made both in terms of data quality and signal bandwidth. Most notably, the armband is limited to
a sampling rate of 200 sps with 8-bit precision and comprised of only 8 channels. Regardless of these
limitations, the Myo Armband has been widely utilized in a wide array of research topics (e.g., robotic
arm control [2], video game control [13], motor imagery [14], and sign language recognition [15]).

https://github.com/UlysseCoteAllard/3DC-Armband
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More recently, the gForce-Pro from Oymotion [16] was released. The armband is sampled at
1000 sps, enabling it to leverage the full spectra of the sEMG signal [7]. However, this sampling rate
increase made the gForce-Pro six times more expensive than the Myo armband for the same amount of
channels and recording resolution.

Several sEMG acquisition systems have been presented in the literature such as in
Refs. [17–21]. However, these systems tend to not offer a fully developed wearable form factor [19] or
are simply too bulky to be embedded within an armband [17,18,20,21].

A technical comparison of the main sEMG acquisition systems previously mentioned alongside
the proposed 3DC Armband is given in Table 1. Note that, for the rest of this work, the Myo Armband
will be used for comparison with the proposed sEMG acquisition system. The system by Thalmic Labs
was selected as it is “arguably the most widely known EMG armband in research” [7] (mentioned
in more than 1250 articles on Google scholar). Additionally, its price range is in the same order of
magnitude as the one estimated for the proposed 3DC armband.

Table 1. Characterization of different surface electromyography (sEMG) acquisition systems. Values of
N.A. mean that the information is not available. Note that, while the Hercules system [19] is included
for completeness, it does not possess a wearable form factor.

Delsys Systems
Trigno Avanti

Biometrics
DataLITE

sEMG

Noraxon
Ultium EMG

Oymotion
gForce-Pro

Thalmic Lab
Myo Armband Hercules 3DC Armband

sEMG channels up to 16 up to 16
up to 32 (at 2000 sps)

or 16 (at 4000 sps) 8 8 8 10

sEMG ADC * 16 bits 13 bits 16 bits 8 bits 8 bits 12 bits
10 bits (ENOB *)

(data sent on 16 bits)

sEMG
Sampling rate 1960 sps 2000 sps 4000 sps 1000 sps 200 sps 1000 sps 1000 sps

Bandwidth or
Built-in Filters

20–450 Hz or
10–850 Hz 10–490 Hz

5/10/20–
500/1000/1500 Hz 20–500 Hz ∼5–100 Hz 20–500 Hz 20–500 Hz

Contact Dimensions 5 mm2 78 mm2 N.A. ∼66 mm2 100 mm2 78 mm2 50 mm2

Contact Material Silver Stainless Steel N.A.
Stainless steel
silver coated Stainless Steel

Gold plated
Copper

Electroless nickel
immersion gold (ENIG)

Full Scale
(Peak to Peak)

+/−11 sps or
+/−22 sps +/−6 sps +/−24 sps N.A.

∼+/−1 sps
(measured) +/−6 sps +/−3 sps

Input referred-noise
(On system bandwith) N.A. <5µV <1 µV N.A. N.A. N.A. 2.2 µV

IMU * sensors
9-axis

Acc, Gyro, Mag No

9-axis
Acc, Gyro, Mag
(if EMG set at

2000 sps or below)

9-axis
Acc, Gyro, Mag

9-axis
Acc, Gyro, Mag No

9-axis
Acc, Gyro, Mag

IMU
Sampling rate

24–470 Hz (Acc),
24–360 Hz (Gyro),

50 Hz (Mag)
- 200 Hz 50 Hz 50 Hz - 50 Hz

Transmitter BLE 4.2 WiFi 2.4 GHz BLE 4.1 BLE 4.0 Wi-Fi
Enhanced

Shockburst **

Autonomy 4 to 8 h 8 h 8 h N.A. 16 h N.A. 6 h

Weight
14 g

(per channel)
17 g

(per channel)
14 g

(per channel) 80 g 93 g N.A. 62 g

Price
∼$20,000 USD

(for 16 channels)
∼$17,000 USD

(for 16 channels)

∼$20,000 USD
(for 16 channels
and free battery

replacement)

$1250 USD $200 USD N.A. ∼$150 USD ***

* ADC: Analog-to-digital converter; ENOB: effective number of bits; IMU: inertial measurement unit; BLE:
Bluetooth low energy. ** 2.4 GHz low-power custom protocol (similar to BLE*) from Nordic Semiconductor,
Norway. *** The cost of the System-on-Chip was replaced by the cost of a comparable product: the ADS1298
from Texas Instruments, USA.

3. The 3DC Armband (Prototype)

The 3DC Armband, which is depicted in Figure 1, features ten sEMG recording channels cadenced
at 1000 sps alongside a 9-axis Inertial Measurement Unit (IMU). The proposed armband weighs
63 g and is assembled with a custom System-on-Chip (SoC), featuring competitive performance for
sEMG recording: input referred noise of 2.2 µVrms, resolution of 10 bits, dynamic range of 6 mVpp,
and a bandwidth of 20–500 Hz. The 3DC Armband consists of two interconnected parts. The first is
the sensor printed circuit board (PCB) that includes all the electronic components for multichannel
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sEMG signal conditioning and multichannel sEMG data acquisition through a custom ASIC, IMU
data acquisition, and wireless data transmission. The second part is the armband receptacles holding
the sEMG electrodes. Both parts are interconnected using a detachable Molex connector, enabling
easy electronic and software updates outside the armband. The following subsections detail each
component of the proposed sEMG acquisition system.

Figure 1. The proposed 3DC Armband. The system and the battery are held in the receptacles identified
by 1 and 10 respectively. The label on each part of the armband corresponds to the channels’ order that
are recorded for the dataset described in Section 4.

3.1. System Overview

The proposed sensor, of which the system-level concept is shown in Figure 2, consists of six main
building blocks:

1. A custom 0.13-µm complementary metal oxide semi-conductor (CMOS) mixed signal (i.e., analog
and numeric circuits on the same die) SoC that can record 10 sEMG channels in parallel [22,23].

2. An ICM-20948 low-power 9-axis IMU from InvenSense, USA. This component has a 3-axis
gyroscope, a 3-axis accelerometer, and a 3-axis magnetometer.

3. An nRF24L01+ low-power wireless transceiver from Nordic Semiconductors, Norway, which
sends the sEMG and IMU data to a base station at a 1 Mbps datarate.

4. An MSP430F5328 low-power microcontroller unit (MCU) from Texas Instruments, USA.
This MCU is mainly used for interfacing the SoC, the IMU, and the wireless transceiver.

5. The power management unit (PMU), which includes a 1.9-V low-dropout regulator (LDO) for
powering the MCU, the wireless transceiver, and the IMU. The highest voltage in the sEMG
sensor is 1.9-V, which is optimized for low-power consumption since it is the smallest viable
voltage for powering the MCU, the IMU, and the wireless transceiver, yielding around half the
power consumption compared with a typical 3.3-V power supply. The PMU also includes a 1.2-V
LDO for powering the SoC, which is the recommend supply voltage for the 0.13-µm technology
used in the SoC. The system is powered with a 100-mAh LiPo battery.

6. The Molex connector (# 0529910308) used for connecting with the Armband and for programming
the MCU.

Note that the SoC was originally developed for neural electrophysiological signal acquisition and
is detailed in previous publications [22,23]. Additionally, this SoC was shown to be able to successfully
acquisition sEMG data [24].



Sensors 2019, 19, 2811 5 of 24

1.2 V

PMU

PWM

Ceramic 2.4 Ghz antenna

Programmable 

Band-Pass Filter

Low-noise 

Amplifier

Gm-C filter

Pseudo 

resistor bank

Integrators 

stages

COMB stages

50

External low-power 

microcontroller

SPI 

module

PWM 

module

SPI 

module

MCU core 

(MSP430F5328)SPI 

Circuits duplicated 10x

Δ∑ MASH 1-1-1 

ADC

CIC4 decimation 

filter

Stage 1

Stage 2

Stage 3

P
re-p

ro
cessin

g

C
o

n
tro

l m
o

d
u

le
S

P
I slave

0.13-µm SoC

ICM-20948 9-axis IMU

nRF24L01+  Module

SPI 

module

SPI SPI 

T
o

 t
h

e
 e

le
c

tr
o

d
e

s

LDO

1.9 V

LDO

Figure 2. System-level concept of the multichannel wireless sEMG sensor: The sensor is built around
a custom 0.13-µm SoC that includes 10× sEMG channels, each of which encompasses a bioamplifier,
a ∆Σ analog-to-digital converter (ADC), and a 4th order decimation filter. The SoC, the nRF24L01+
low-power wireless transceiver, and the ICM-20948 9-axis IMU are interfaced with an MSP430F5328
low-power MCU.

The complete sensor is shown in Figure 3a with the main building blocks identified. The sensor
has a flexible part, allowing it to fold the rigid parts on top of each other to save space
(See Figure 3c). When folded, the PCB occupies 1.25 cm3. Finally, the 3DC sensor communicates
with a custom-based base station consisting of (i) an nRF24L01+ low-power wireless transceiver from
Nordic Semiconductors, (ii) an ARM cortex M4 MCU from Texas Instruments for managing the data,
and (iii) an FT232RL UART-to-USB chip from FTDI, United Kingdom, for sending the sEMG data to
the computer. The following Sections 3.2 and 3.3 give more details about the SoC, MCU firmware,
and the IMU, while Section 3.5 presents the 3-D models that contain the armband’s electronics.

Top view SoC

MCU

IMU

1.2-V LDOFlex

Packaged 

integrated 

circuit

25 µm 

gold 

bonds

1
 m

m

Folded system
Bottom view

Mollex 
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connector

Wireless 

transceiver

1.9-V LDO

7
.5

 m
m

(a) (c)

(b)

Epotek-301 

globtop

Figure 3. (a) Two-sided view of the sEMG sensor with each part identified: The printed circuit board
(PCB) has a flexible region to fold the two rigid parts on top of each other to save space. (b) The
packaged SoC which is wirebonded directly on a PCB substrate. (c) The system folded in its final
position beside a Canadian quarter coin (diameter of 23.88 mm).

3.2. sEMG Acquisition Interface

Each recording channel of the SoC encompasses a low-noise and low-power fully differential
bioamplifier, followed by a fully differential third-order Delta-Sigma (∆Σ) multi-stage noise shaping
(MASH) analog-to-digital converter (ADC) and an on-chip fourth-order cascaded integrator-comb
(CIC) decimation filter [22,23]. The use of fully differential topologies (amplifier and ADC) doubles the
dynamic range of the SoC (6-dB increase) while being more robust to external noise sources compared
to a single-ended solution [25]. In this design, the bioamplifier is a single stage AC-coupled operational
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transconductance amplifier (OTA) which rejects any DC offsets generated at the electrode–skin
interface. This topology also features pseudo-resistors in the feedback path to produce a high-pass
analog cutoff frequency of ∼1 Hz.

Conventional ADCs require strict analog anti-aliasing filtering. This analog filtering is commonly
performed with 2–3rd or higher order filtering, which increases the bioamplifier’s complexity, size,
and power consumption. One advantage of using a ∆Σ ADC is to relax the constraints on the analog
anti-aliasing filter. The proposed system performs an implicit fourth-order CIC anti-aliasing digital
filter before decimation. Indeed, the ∆Σ pushes the Nyquist frequency at Fdecim × OSR/2, where Fdecim
is the sampling frequency after decimation and OSR is the oversampling ratio; thus, less restrictive
filtering between Fdecim/2 and Fdecim × OSR/2 is required to avoid aliasing with this type of ADC.

As it can be seen in Figure 4a, the oversampling of the ∆Σ pushes the Nyquist frequency far
from the bandwidth after decimation. For this application, an oversampling ratio (OSR) of 50 is
employed to achieve an effective number of bits (ENOB) of 10 bits, pushing the Nyquist frequency
to 25 kHz. The analog low-pass filtering is performed implicitly by the internal analog G-mC filter
of the OTA [22,23] inside the bioamplifier, which cuts at −3 dB at ∼7 kHz (black curve in Figure 4a),
leading to almost no aliasing, as there is a −12-dB attenuation at 25 kHz. The final low-pass filtering is
performed by the fourth-order CIC decimation filter, which has a −3-dB low-pass cutoff frequency
of 460 Hz, which is close to the ideal cutoff frequency of 500 Hz, and with a −80-dB attenuation per
decade before the signal is downsampled to 1 kHz (blue curve in Figure 4a). Figure 4a also illustrates
the Myo bandwidth for comparison. As can be seen, only a small portion (<100 Hz) of the proposed
sensor bandwidth is covered by the Myo. The bioamplifier noise spectrum over a 500 Hz bandwidth is
shown in Figure 4b. The total input referred noise is of 2.2 µVrms (20–500 Hz), which is smaller than
the quantifying step of the ADC (resolution of 7 µV). The SoC communicates with an external MCU
using a dedicated serial peripheral interface (SPI) bus and using a custom protocol to extract the data
from all the channels.

The custom SoC employed for sEMG acquisition is wire-bonded onto a PCB substrate using
25 µm gold bonds and protected by an EPO-TEK 301 Glob-Top that was held in place during the curing
phase using an AD1-10S dam from ChipQuick. An enlargement of the packaged SoC is depicted in
Figure 3b.
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Figure 4. (a) Analog bandwidth of the bioamplifier (in black), digital bandwidth of the decimation
filter (in blue), Myo bandwidth comparison (in orange), and (b) noise spectrum of the bioamplifier.
The input referred noise is of 2.5 µVrms over a 500-Hz bandwidth.

3.3. MCU Firmware

The MSP430F5328 MCU controls the SoC, the IMU, and the wireless transceiver together by
using three dedicated SPI busses. To use the least amount of hardware components as possible,
the oversampling clock signal driving the SoC ∆Σs is provided by a pulse-width modulation (PWM)
module within the MCU (set at 50% duty-cycle). The sEMG sampling is triggered by the PWM timer
interruption when 50 clock cycles (OSR of 50, interruptions at 1 kHz) have been issued. Then, the MCU
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triggers one of the direct memory access (DMA) module channels to send commands to the SoC as to
read all the 10 SoC channels one after the other. The acquired sEMG data is pushed automatically by
the DMA within a First-in, First-out (FIFO) structure and sent to the wireless transceiver by another
DMA channel when 20 or more bytes are available (10 × 2 bytes packets). Since the DMA module
performs all the work, the MCU is idle most of the time. It is woken up at a 50-Hz frequency to get
and forward the IMU data to the transceiver.

3.4. Inertial Measurement Unit

An IMU is a device consisting of accelerometers and gyroscopes from which the tracking of the
device’s orientation can be derived. A tri-axis magnetometer can be added to form a hybrid IMU,
sometimes referred to as a Magnetic, Angular Rate, and Gravity (MARG) sensor [26], to reduce the
orientation accumulated error. Information from an IMU system is widely employed in the domain of
rehabilitation [27]. Additionally, for dynamic sEMG-based gesture recognition, orientation information
from IMU devices can be leveraged to obtain higher performances than with EMG alone [20,28,29].
Furthermore, IMUs have been employed to increase the number of gestures that can be detected by
combining the orientation of the forearm with static hand gestures [30,31].

As the inclusion of an IMU device alongside sEMG channels allows a wider range of dynamic
gestures to be detected, an armband featuring both modalities can be employed for a broader range
of applications. Consequently, the ICM-20948, consisting of a low-power IMU featuring a 3-axis
gyroscope, a 3-axis accelerometer, and a 3-axis magnetometer, was incorporated within the 3DC
Armband. This IMU was selected for its small footprint (3 × 3 mm2 24-QFN package), its low power
supply capability (1.9 V supported), and its high resolution of 16 bits. This chip communicates with
the MCU using a 4-wire serial peripheral interface (SPI) bus cadenced a 5 MHz. The MCU extracts
three <x, y, z> vectors from the IMU for the accelerometer, gyroscope, and magnetometer by reading
the first user bank of the IMU. This allows the MCU to read the data all at once (18 bytes block read).
The vectors are then stored in a dedicated packet and sent to the wireless transceiver for further ex situ
processing. The orientation data, in the form of a quaternion, is computed from the 9-axis IMU with the
Madgwick’s algorithm [26] using the x-IMU implementation (https://github.com/xioTechnologies/
Open-Source-AHRS-With-x-IMU) on the receiving computer.

3.5. 3-D Printing Models

The armband’s microelectronics are held by three different receptacles (shown in Figure 5) each
fulfilling diverse functions. The system’s holder, depicted in Figure 5A, shows the system’s receptacle,
which also houses the main electrode. The battery and a standard size electrode are stored in the
battery holder, which can be seen in Figure 5B.

Finally, the eight remaining standard electrodes are housed in eight small electrode receptacles.
The 3-D model of these receptacles is shown in Figure 5C. The hole in the top is there to facilitate the
assembly of the system.

The circular holes on all three receptacles serve to pass elastic cords through, that link the
different modules together and ensures that the armband can be worn by a wide variety of persons.
The rectangular holes serve to pass small elastic bands through, on which the different electrical cables
can be attached on to link the different microelectronic components together.

The overall armband price is valued at ∼$150 USD. The price was estimated using the ADS1298
from Texas Instrument as an estimation for the custom SoC and assuming the fabrication of 20 PCBs.

https://github.com/xioTechnologies/Open-Source-AHRS-With-x-IMU
https://github.com/xioTechnologies/Open-Source-AHRS-With-x-IMU
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Figure 5. (A) The system’s receptacle: The bottom of the unit is used to receive the main electrode,
while the system is stored inside. A cover slides on to enclose the system. (B) The battery holder:
This receptacle is used to house the power source of the armband and, as such, should be placed next
to the system’s holder. Once the battery is placed, the cover can then slide on to protect the system.
A standard electrode is placed on the bottom of this holder. (C) This holder houses a standard electrode.
For the proposed 3DC Armband, eight such receptacles are required.

4. Comparison Dataset

Beyond the technical description presented in the previous section, the usefulness of the proposed
armband must be assessed with real-life data. As such, a new dataset was recorded as to allow as close
of a direct comparison as possibles between the Myo and the proposed 3DC Armband. The dataset
is comprised of 22 able-bodied participants (7F/15M, 17/5 right/left handed) aged between 23 and
69 years old (average 34 ± 14 years old).

The data acquisition protocol was approved by the Comités d’Éthique de la Recherche avec des
êtres humains de l’Université Laval (approbation number: 2017-0256 A-1/10-09-2018), and informed
consent was obtained from all participants.

4.1. Data Acquisition Protocol

Before the recording started, both the Myo and the 3DC Armband were placed simultaneously on
the dominant arm of the participant. The highest armband (i.e., the one closest to the elbow) was set
to its maximum diameter and slid up until the armband’s circumference matched the participant’s
forearm circumference. For the first participant, the Myo Armband was the one placed closest to the
elbow. This process was replicated for each following participant but alternating the armband closest
to the elbow between each subject. The two possible armband configurations alongside examples of
the range of armband placements on participants’ forearm are shown in Figure 6. This method of
positioning was adopted as to better represent the wide range of positions that nonexperts might use
when wearing this type of hardware. The delay between putting the armband on the participant’s
forearm and the start of the experiment was approximately three minutes on average.
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The proposed dataset is made of eleven hand/wrist gestures, which are presented in Figure 7.
All gesture recordings were made with the participants standing up with their forearm parallel to the
floor supported by themselves. Starting from the neutral gesture, the participants were instructed,
with an auditory cue, to hold the next gesture for 5 s. The cue given to the participants were in the
following form: Gesture X, 3, 2, 1, Go. The recording of each movement began just before the movement
was started and held by the participant as to capture the ramp-up segment of the muscle activity
and always started with the neutral gesture. The recording of the eleven gestures for 5 s each totaled
55 s of data and is referred to as a cycle. A total of four cycles (220 s of data) were recorded with no
interruption between cycles. Then, a five min pause was observed, where the participant could relax
(without removing the armbands). After the pause, another four cycles of data were recorded. The first
four cycles of data are referred to and serves as the training dataset, while the second group of cycles
is referred to and serves as the test dataset. Note that the ramp-up period is included in the labeled
dataset for each gesture.

Myo Armband

3DC Armband

Figure 6. The two different armband configurations (left/right) employed in this work with the 3DC
being either above or below the Myo armband with respect to the participant’s wrist. This figure also
showcases the wide variety of armband positions recorded in the proposed dataset.

Neutral

Radial Deviation Wrist Flexion Ulnar Deviation Wrist Extension Supination 

Pronation Power Grip Open Hand Chuck Grip Pinch Grip

Figure 7. The eleven hand/wrist gestures employed in the proposed dataset.

4.2. Preprocessing

As the main use-case of the proposed armband is a real-time classification, a critical factor to
consider is the input latency. The optimal latency (taking into account both classification performance
and controller delay) was shown to be between 150–250 ms [32]. As the Myo Armband is limited to
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a sampling rate of 200 sps, a window size of 250 ms was selected as to not unduly give advantage to
the proposed armband. Note that while the preprocessing is made so that it could be implemented for
real-time classification, all results presented in this article are computed offline.

As mentioned in Section 3, the proposed 3DC Armband is band-pass filtered between 20–500 Hz.
However, to produce a dataset as close as possible to the raw sEMG signal, the high-pass filter
was instead set at ∼1 Hz using the SoC bioamplifier tunable pseudo-resistor bank. As such,
the preprocessing of the dataset involves a fourth-order butterworth high-pass filter at 20 Hz as
suggested in Ref. [7] for both armbands. An example of the signals recorded from both armbands after
filtering is given in Figure 8.

1

Figure 8. Comparison of the signals recorded with the Myo Armband and the proposed 3DC Armband.
The x-axis represents time in seconds, while the y-axis is the different channels of the armbands.
The three gestures recorded in order are the chuck grip, Open Hand, and Pinch Grip. Note that these
signals were not obtained using the Comparison Dataset recording protocol to show a wider array of
gestures in a continuous way.

5. Comparison Methods

The dataset previously described (Section 4) is employed to qualitatively discriminate between
the Myo and 3DC Armband. The comparison is rendered from three different input modalities:
a baseline feature set, the raw sEMG signals, and the signals represented in the time–frequency domain.
The remaining section describes the three classification methods in detail.

It should be noted that one of the goals of this work is to generate a comparison that is as fair
as possible between the proposed armband and the Myo Armband. As such, several choices were
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made to achieve this goal, sometimes to the detriment of the classification accuracy. These choices are
explicitly detailed below.

5.1. Baseline Method

The baseline method employs a feature set (Hudgins’ Time-Domain Feature Set [33]) and
a classifier (Linear Discriminant Analysis [1,34]) widely used in the literature. Both are described in
the following two subsections.

5.1.1. Hudgins’ Time-Domain Feature Set (H-TD)

Historically, the literature on sEMG-based gesture recognition primarily centers on feature-set
engineering as to characterize the sEMG signals in a discriminative way [4,35].

Among all the feature sets proposed in the literature, the most commonly employed one is
probably H-TD [7]. This set is comprised of four features from the time domain and are relatively
inexpensive to compute:

• Mean Absolute Value
• Zero Crossing
• Slope Sign Changes
• Waveform Length

Detailed descriptions of these four features are given in Ref. [36]. H-TD often serves as the basis
for bigger feature sets [4,7]. As such, it is particularly well-suited as a baseline comparison between
the Myo and the proposed armband.

5.1.2. Linear Discriminant Analysis

Several types of classifiers have been employed in the past for sEMG-based gesture recognition.
Some of the most commonly employed are the Support Vector Machine (SVM) [7], Artificial Neural
Networks (ANN) [4], and Linear Discriminant Analysis (LDA) [1,34].

The latter is widely employed in the domain as it is a timely and computationally efficient
classification technique both at training and prediction time while still being able to achieve high
classification accuracies [1,37].

While, SVM with has been shown in some work to be able to achieve higher classification
accuracies than LDA [7], it requires hyperparameter optimization, which could bias the results towards
one specific armband. On the contrary, LDA does not require any hyperparameter optimization and
can thus be employed to compare the armbands more fairly.

5.2. Raw sEMG Classification

With the recent advent of deep learning, the raw sEMG signal can be employed directly for
gesture classification [36,38], something which was considered “impractical" before [4].

The raw data is passed as an image of shape Channels X Samples (i.e., 8 × 50 for the Myo
Armband and 10× 250 for the 3DC Armband) to a ConvNet. Note that the raw signal is first band-pass
filtered as described in Section 4.2. The ConvNet architecture, which can be seen in Figure 9, is based
on the one presented in Ref. [36] as it was shown to be comparable to the current state-of-the-art.
The main difference between the two is the use of Global Average Pooling in lieu of the fully connected
layer to reduce the number of parameters.

The architecture used is the same for all armband configurations to not overly give advantage to
one over the other. Adam [39] is employed for the ConvNet’s optimization with an initial learning
rate of 0.0404709 (as used in Ref. [36]). Learning rate annealing is applied with a factor of five and
a patience of five epochs. Training is done with batch size of 512, and the dropout rate is set at 0.5.
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C1: feature maps 
32@5x5 

C3: feature maps 
64@4x4 

G4: Global 
 Average Pooling 

Output 
11 

P2: Max Pooling 
1x3 

Conv BN PReLU Dropout Conv BN PReLU Dropout 

50ms 200ms 250ms100ms 150ms0ms 

3DC Input Example 
10x250 

Softmax

Figure 9. The raw ConvNet architecture employing 34,667 parameters. In this figure, Conv refers to
Convolution and BN refers to Batch Normalization. While the input represented in this figure is that of
the 3DC, the architecture remains the same for all considered systems.

5.3. Time-Frequency Domain Classification

As to better investigate the potential impact of the greater sampling frequency of the 3DC
Armband, the classification performance using features of the time-frequency domain is investigated.

Similar to References [36,40], the short-time Fourier transform-based spectrograms are considered
for the characterization of the sEMG signals in the time-frequency domain. For both armbands,
the spectrograms are computed with Hann windows of 100 ms and an overlap of 50 ms.
These hyperparameters were chosen using the training dataset and to use a similar ConvNet architecture
for both armbands. As suggested in References [36,40] appropriate axis swaps are applied to yield
a final image of 4 × 8 × 11 and 4 × 10 × 51 (i.e., time × channel × frequency bins) for the Myo and
3DC Armband respectively. This example’s formatting allows the convolutions to be performed on
spatial X frequency information, while the time is considered as different viewpoints of the same event.

The example is then fed to the ConvNet represented in Figure 10. Except for a learning rate of
0.00681292 (as used in Ref. [36]), all hyperparameters are as described in Section 5.2.

C1: feature maps 
32@3x3 

C3: feature maps 
64@3x3 

Conv BN PReLU Dropout 

Conv BN PReLU Dropout 

Output 
11 

Softmax

G6: Global 
 Average Pooling 

3DC Input Example 
4x10x51 

P2: Max Pooling 
1x2 

P4: Max Pooling 
1x2 

Conv BN PReLU Dropout 

C5: feature maps 
128@3x3 

Figure 10. The Spectrogram ConvNet architecture employing 95,627 parameters. In this figure, Conv
refers to Convolution and BN refers to Batch Normalization. The input represented comes from the
3DC Armband with the channels on the x-axis and the frequency bins on the y-axis. Due to the Myo
Armband associated input size, P4 and C5 were removed from the architecture when training on
Myo’s data.

6. Results

All results given in this section are computed from all four cycles of the test dataset. Training of
each classifier is done with one, two, three, and four training cycles (i.e., 5, 10, 15, and 20 s of training
data per gesture respectively). Additionally, due to the stochastic nature of the deep learning-based
algorithms considered in this work, all results from each participant for each amount of training cycles
are given as an average of 20 runs.

For statistical analysis purposes, each participant is considered as a separated dataset.
As suggested in Ref. [41], the Wilcoxon Signed Rank test [42] (n = 22) is applied to compare between
the Myo and 3DC Armband.

The comparison between the armbands with the LDA classifier is shown in Figure 11, while the
confusion matrices for four cycles of training with the LDA classifier are given in Figure 12. Similarly,
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the comparison and associated confusion matrices for the RAW and Spectrogram-based classifiers are
given in Figures 13–16 respectively. The rest of the training cycles’ confusion matrices are shown in
Appendix A.

Figure 11. Comparison between the Myo and the 3DC Armband employing LDA for classification:
The number of cycles corresponds to the amount of data employed for training (one cycle equals 5 s of
data per gesture). The Wilcoxon Signed Rank test is applied between the Myo and the 3DC Armband.
The null hypothesis is that the median difference between pairs of observations (i.e., accuracy from
the same participant with the Myo or the 3DC Armband) is zero. The p-value is shown when the null
hypothesis is rejected (significant level set at p = 0.05). The black line represents the standard deviation
calculated across all 22 participants.

Figure 12. Confusion Matrices for the Myo and the 3DC Armband employing linear discriminant
analysis (LDA) for classification and four cycles of training. A lighter color is better.
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Figure 13. Comparison between the Myo and the 3DC Armband employing Raw ConvNet for
classification: The number of cycles corresponds to the amount of data employed for training (one cycle
equals 5 s of data per gesture). The Wilcoxon Signed Rank test is applied between the Myo and
the 3DC Armband. The null hypothesis is that the median difference between pairs of observations
(i.e., accuracy from the same participant with the Myo or the 3DC Armband) is zero. The p-value is
shown when the null hypothesis is rejected (significant level set at p = 0.05). The black line represents
the standard deviation calculated across all 22 participants.

Figure 14. Confusion Matrices for the Myo and the 3DC Armband employing the Raw ConvNet for
classification and four cycles of training. A lighter color is better.
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Figure 15. Comparison between the Myo and the 3DC Armband employing the Spectrogram ConvNet
for classification: The number of cycles corresponds to the amount of data employed for training
(one cycle equals 5 s of data per gesture). The Wilcoxon Signed Rank test is applied between the Myo
and the 3DC Armband. The null hypothesis is that the median difference between pairs of observations
(i.e., accuracy from the same participant with the Myo or the 3DC Armband) is zero. The p-value is
shown when the null hypothesis is rejected (significant level set at p = 0.05). The black line represents
the standard deviation calculated across all 22 participants.

Figure 16. Confusion Matrices for the Myo and the 3DC Armband employing the Spectrogram ConvNet
for classification and four cycles of training. A lighter color is better.

7. Discussion

Figures 11, 13, and 15 show that, in all cases, the proposed armband outperforms the Myo
Armband. This difference is judged significant for all instances involving two or more cycles of training
by the two-tailed Wilcoxon signed-rank test. As expected, augmenting the amount of training examples
systematically improves the performance of all tested classifiers for both armbands, corroborating the
results in Ref. [36].
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The confusion matrices show that the hardest gestures to differentiates between for all three
classifiers and both armbands are the Chuck and Pinch Grip. This is expected considering they only
differ by the flexion of the middle finger. Additionally, the 3DC Armband tends to outperform the
Myo across all gestures. As such, one could expect that the higher spatial dimension and frequency
rate yield an advantage to the proposed armband that is not gesture-specific.

Overall, the Raw Convnet was the best performing classifier for both armbands, achieving an
average accuracy of 89.47% and 86.41% for four cycles of training with the 3DC and Myo Armband
respectively. For comparison, LDA obtained 84.81% and 80.00% for four cycles of training with the
3DC and Myo Armband respectively. While more sophisticated feature engineered sets exist [1,4],
these results support previous findings showing the exciting potential of feature learning within the
context of sEMG gesture recognition [36,43].

When comparing the performance of the Myo and 3DC Armband with a single training cycle,
the difference in accuracy is not judged statistically significant for both the LDA and Raw ConvNet
classifier. This might be due in part to the increased spatial and frequency information provided by the
3DC Armband which naturally increases within-class variability. However, another hypothesis could
be that the warm-up period (i.e., the time between putting the armband on the participant’s forearm
and the start of the experiment) was not long enough for the 3DC Armband [44]. Indeed, as the 3DC
electrodes are half the surface area of the Myo’s, a greater area of the skin was in contact with the Myo
Armband. Thus, our hypothesis is that the Myo requires less sweat and humidity per square centimeter
between the electrode and the skin to achieve a good ionic conduction. To verify this hypothesis,
all three classifiers were retrained with only the last cycle of training recorded for each participant.
This provides the longest warm-up period possible on the training dataset for both armbands.

For all three classifiers, the proposed sEMG acquisition system again outperforms the Myo
armband. However, this difference is judged significant by the two tailed Wilcoxon signed-rank test
only for the LDA classifier (p-value = 0.0309). This seems to suggest that while a longer warm up
period might help the 3DC Armband, it cannot, on its own, explain why the two systems perform
similarly when employing only a single cycle of training.Consequently, the proposed warm-up period
hypothesis cannot be confirmed with the available results. As such, it might be that, when very few
examples are available for training, the increase in computational cost is not worth augmenting the
spatial and frequency sampling rate resolution. It would be interesting to see how transfer learning
algorithms developed for sEMG data affect these results [36,40].

Future works will focus on slightly enlarging the contact area provided by 3DC Armband while
making sure to not design overly large electrodes which would increase the noise of the signal from
crosstalk [19]. A potential added benefit of enlarging the contact area is reducing the effect of electrode
shift [45]. The relationship between warm-up time and electrode size will also be characterized.
Additionally, shielding will be incorporated between the inter-connections of the electrodes.

8. Conclusions

This paper presents a new wearable sEMG acquisition system. The 3-D-printed armband features
10 sEMG recording channels and is cadenced at 1000 sps. The whole system is light (63 g) and
incorporates a 9-axis IMU and a custom SoC. This SoC features competitive performances for this
application with an input referred noise of 2.2 µVrms, resolution of 10 bits, dynamic range of 6 mVpp,
and a bandwidth of 20–500 Hz. The armband could be conceivably assembled for ∼$150 USD, making
it more affordable and widely accessible than clinical-grade systems currently available.

The 3DC Armband was shown to significantly outperform the most widely used consumer-grade
sEMG armband on a newly proposed dataset featuring 22 able-bodied participants performing
11 hand/wrist gestures.

Among the limitations of the proposed system is a possible longer warm up period than the
Myo Armband. The relationship between electrode size and warm-up time will be investigated to
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provides a better skin-electrode interface. Shielding between the interconnections of the electrodes of
the armband will also be added.
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The following abbreviations are used in this manuscript:

ADC Analog-to-digital converter
ANN Artificial Neural Network
ASIC Application-specific integrated circuit
BML-UL Biomedical Microsystems Laboratory in Laval University
CIC Cascaded integrator-comb
CMOS Complementary metal-oxide-semiconductor
ConvNet Convolutional Network
DMA Direct memory access
ENOB Effective number of bits
H-TD Hudgins’ Time-Domain Feature Set
IMU sample per second
LDA Linear Discriminant Analysis
LDO Low-dropout regulator
MARG Magnetic, Angular Rate, and Gravity
MCU Microcontroller unit
ms miliseconds
OSR Oversampling ratio
OTA Operational transconductance amplifier
sEMG Surface Electromyography
SNR Signal to Noise Ratio
SoC System-on-chip
SPI serial peripheral interface
sps sample per second
SVM Support Vector Machine
PCB Printed circuit board
PMU Power management unit
PWM Pulse-width modulation
USD United States dollar
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Appendix A. Confusion Matrices

Appendix A.1. LDA Classifier Confusion Matrices

Figure A1. Confusion Matrices for the Myo and the 3DC Armband employing LDA for classification
and one cycle of training. Lighter is better.

Figure A2. Confusion Matrices for the Myo and the 3DC Armband employing LDA for classification
and two cycles of training. Lighter is better.
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Figure A3. Confusion Matrices for the Myo and the 3DC Armband employing LDA for classification
and three cycles of training. Lighter is better.

Appendix A.2. Raw ConvNet Classifier Confusion Matrices

Figure A4. Confusion Matrices for the Myo and the 3DC Armband employing the Raw ConvNet for
classification and one cycle of training. Lighter is better.
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Figure A5. Confusion Matrices for the Myo and the 3DC Armband employing the Raw ConvNet for
classification and two cycles of training. Lighter is better.

Figure A6. Confusion Matrices for the Myo and the 3DC Armband employing the Raw ConvNet for
classification and three cycles of training. Lighter is better.
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Appendix A.3. Spectrogram ConvNet Classifier Confusion Matrices

Figure A7. Confusion Matrices for the Myo and the 3DC Armband employing the Spectrogram ConvNet
for classification and one cycle of training. Lighter is better.

Figure A8. Confusion Matrices for the Myo and the 3DC Armband employing the Spectrogram ConvNet
for classification and two cycles of training. Lighter is better.
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Figure A9. Confusion Matrices for the Myo and the 3DC Armband employing the Spectrogram ConvNet
for classification and three cycles of training. Lighter is better.
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