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A B S T R A C T

We develop exact distribution-free test procedures for joint inference about the forward rate
unbiasedness hypothesis (FRUH) across multiple currencies. The procedures can be applied
with either levels or differences specifications. This unified approach proceeds with sign and
signed rank tests for each currency and then uses Monte Carlo resampling to control the overall
Type I error rate of either: (i) global FRUH tests obtained via combinations of the 𝑝-values;
or (ii) individual FRUH tests using multiplicity adjusted 𝑝-values. Our framework allows for
missing data and for the presence of time-varying conditional covariances between currencies.
The usefulness of the new procedures is illustrated with a simulation study and with assessments
of the FRUH across 13 currencies in an unbalanced panel. Multiplicity adjusted 𝑝-values reveal
that the joint FRUH rejections are primarily driven by just a few of the more minor currencies.

1. Introduction

The FRUH states that if foreign exchange market participants are risk neutral and have rational expectations, and the market is
erfectly competitive, then the forward rate should be an unbiased predictor of the future spot rate. To introduce this hypothesis
ore formally, let 𝑓𝑖,𝑡 denote the log forward rate of currency 𝑖 at time 𝑡 for delivery one period later and let 𝑠𝑖,𝑡+1 denote the

corresponding log spot rate at time 𝑡 + 1. The FRUH asserts that

𝐸𝑡[𝑠𝑖,𝑡+1] = 𝑓𝑖,𝑡, (1)

where 𝐸𝑡 denotes expectation conditional on 𝑡, the information available to market participants at time 𝑡.1 Once the forward rate
has been determined by the market participants, a random shock that was unpredictable at time 𝑡 will occur before the spot rate is
observed at time 𝑡 + 1. This means that under (1) the spot rate is given by

𝑠𝑖,𝑡+1 = 𝑓𝑖,𝑡 + 𝑢𝑖,𝑡+1, (2)

where 𝐸𝑡[𝑢𝑖,𝑡+1] = 0, i.e., 𝑢𝑖,𝑡+1 is orthogonal to 𝑡. If the unbiasedness condition in (1) fails, then it is possible to implement a carry
trade strategy that earns a positive average excess return.2 There is a large body of literature on testing the FRUH. The various
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1 As Delcoure et al. (2003) explain, taking the natural logarithms of the spot and forward rates ensures that the FRUH relationship can hold true on both

ides of the market; i.e., both 𝐸𝑡[𝑠𝑖,𝑡+1] = 𝑓𝑖,𝑡 and 𝐸𝑡[1∕𝑠𝑖,𝑡+1] = 1∕𝑓𝑖,𝑡 can hold simultaneously. Owing to Jensen’s inequality, those relationships cannot both hold
true simultaneously with the raw spot and forward rates.

2 In a currency carry trade, investors sell forward currencies that are at a forward premium (i.e., the forward rate exceeds the spot exchange rate) and
buy forward currencies that are at a forward discount. Transactions costs aside, this strategy is equivalent to borrowing low interest rate currencies, lending
high interest rate currencies, and not hedging exchange rate risk (Burnside et al., 2008). A second profit opportunity in currency arbitrage is available through
violations of triangular parity; see Gradojevic et al. (2020).
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approaches that have been proposed can be classified according to whether they assess the FRUH relationship: (i) in levels or
differences; and (ii) with one currency at a time or with multiple currencies jointly.

The early literature (e.g., Frenkel, 1976; Cornell, 1977; Levitch, 1979) focused on the levels specification

𝑠𝑖,𝑡+1 = 𝑎𝑖 + 𝛽𝑖𝑓𝑖,𝑡 + 𝑢𝑖,𝑡+1, (3)

which is consistent with the FRUH in (1) when: 𝑎𝑖 = 0, 𝛽𝑖 = 1, and 𝐸[𝑢𝑖,𝑡+1 | 𝑓𝑖,𝑡] = 0. If 𝐸[𝑢𝑖,𝑡+1 | 𝑓𝑖,𝑡] = 0 is assumed, then the
implied moment condition 𝐸[𝑢𝑖,𝑡+1𝑓𝑖,𝑡] = 0 provides the basis for OLS estimation in (3). The OLS estimates of 𝛽𝑖 in such regressions
are typically close to 1, in line with the FRUH. The levels data {𝑠𝑖,𝑡, 𝑓𝑖,𝑡}, however, are usually found to be non-stationary, which

eans that traditional inference methods are inappropriate for testing the FRUH; see Meese and Singleton (1982), Meese (1989),
nd Baillie and Bollerslev (1989).

The other form that has been widely used in the literature (e.g., Bilson, 1981; Fama, 1984; Froot and Frankel, 1989; Liu and
aynard, 2005) is the differences specification

𝑠𝑖,𝑡+1 − 𝑠𝑖,𝑡 = 𝑎𝑖 + 𝛽𝑖(𝑓𝑖,𝑡 − 𝑠𝑖,𝑡) + 𝑢𝑖,𝑡+1, (4)

hich avoids working with the non-stationary levels data. This specification is consistent with the FRUH when: 𝑎𝑖 = 0, 𝛽𝑖 = 1,
nd 𝐸[𝑢𝑖,𝑡+1 | 𝑓𝑖,𝑡, 𝑠𝑖,𝑡] = 0. Levels versus differences regressions have been studied in Phillips and McFarland (1997), Goodhart et al.
1997), Maynard and Phillips (2001), and Maynard (2003). These studies show that differences regressions have some disadvantages
n comparison to levels regressions.3

Besides the econometric issues with OLS regressions, it is important to recognize that levels and differences specifications are
quivalent only when 𝛽𝑖 = 1. Otherwise, as Goodhart et al. (1997) point out, (3) and (4) will have power in different directions
way from 𝛽𝑖 = 1. To see this, note that the differences specification in (4) can be rewritten as

𝑠𝑖,𝑡+1 = 𝑎𝑖 + 𝛽𝑖𝑓𝑖,𝑡 + (1 − 𝛽𝑖)𝑠𝑖,𝑡 + 𝑢𝑖,𝑡+1,

aking clear that 𝐸𝑡[𝑠𝑖,𝑡+1] is a restricted linear combination of 𝑓𝑖,𝑡 and 𝑠𝑖,𝑡. Therefore, the levels specification in (3) will detect
epartures from the FRUH in which 𝐸𝑡[𝑠𝑖,𝑡+1] depends on 𝛽𝑖𝑓𝑖,𝑡 (for some 𝛽𝑖 ≠ 1) and not at all on 𝑠𝑖,𝑡. On the other hand, the
ifferences specification in (4) will tend to have better discriminatory power when the term (1 − 𝛽𝑖)𝑠𝑖,𝑡 plays an important role in
𝑡[𝑠𝑖,𝑡+1] and 𝑓𝑖,𝑡 ≠ 𝑠𝑖,𝑡. However when 𝑎𝑖 is zero and 𝑓𝑖,𝑡 ≈ 𝑠𝑖,𝑡 (as often found empirically), 𝛽𝑖 will be poorly identified in (4) and

he differences specification will be lacking in power since then 𝐸𝑡[𝑠𝑖,𝑡+1] ≈ 𝑓𝑖,𝑡, even if 𝛽𝑖 ≠ 1.
Another view of the FRUH can be gleaned from models of cointegration between spot and forward rates (e.g., Hakkio and

ush, 1989; Barnhart and Szakmary, 1991; Hai et al., 1997; Zivot, 2000). Indeed considering that spot and forward prices are
enerally found to be non-stationary each with a unit root, then in the levels specification (3) the FRUH requires that 𝑠𝑖,𝑡+1 and
𝑖,𝑡 be cointegrated with cointegrating vector (1,−1) and that 𝑢𝑖,𝑡+1 be stationary. If 𝑎𝑖 = 0 and 𝐸[𝑢𝑖,𝑡+1] = 0 unconditionally, then
he forward rate will not systematically under- or over-predict the future spot rate in the long run. When the short-run restriction
𝑡[𝑢𝑖,𝑡+1] = 0 holds, the forward rate is a conditionally unbiased predictor.

The differences specification (4) could detect short-run deviations from the FRUH in which (1,−1) cointegration holds and 𝑢𝑖,𝑡+1
s stationary, but 𝐸𝑡[𝑢𝑖,𝑡+1] ≠ 0. For instance, consider the differences specification with 𝛽𝑖 = 1 and 𝑢𝑖,𝑡+1 = 𝛾𝑖(𝑓𝑖,𝑡 − 𝑠𝑖,𝑡) + 𝑒𝑖,𝑡+1 where
𝑡[𝑒𝑖,𝑡+1] = 0. In this case, (4) garners power since it can be rewritten as

𝑠𝑖,𝑡+1 = 𝑎𝑖 + (1 + 𝛾𝑖)𝑓𝑖,𝑡 − 𝛾𝑖𝑠𝑖,𝑡 + 𝑒𝑖,𝑡+1,

eaning that 𝐸𝑡[𝑠𝑖,𝑡+1] takes once more the form of a restricted linear combination between 𝑓𝑖,𝑡 and 𝑠𝑖,𝑡 when 𝛾𝑖 ≠ 0. Again the
arameter of interest, 𝛾𝑖 in this case, will be poorly identified when 𝑓𝑖,𝑡 and 𝑠𝑖,𝑡 are close.

In practice, it is often the case that the investigator has data on several currencies 𝑖 = 1,… , 𝑁 and wishes to test the FRUH for
ll of them. The joint FRUH null hypothesis then becomes

𝐸𝑡[𝑠𝑖,𝑡+1] = 𝑓𝑖,𝑡, for 𝑖 = 1,… , 𝑁. (5)

he simultaneous testing of the 𝑁 individual-currency null hypotheses comprising (5) gives rise to a multiple comparisons problem.
ndeed if the multiplicity of tests is not taken into account, then the probability that some of the true null hypotheses are rejected
y chance alone may be unduly large; see Hochberg and Tamhane (1987) and Hsu (1996) for textbook treatments of multiple
omparisons.

One way to control the overall significance level is to conduct a joint test in the context of a system of equations. Seemingly
nrelated regressions (SUR) models have been used by Bilson (1981), Fama (1984), Cornell (1989), Barnhart and Szakmary (1991),
nd Hodgson et al. (2004) to test the differences formulation of the joint FRUH. With a set of simultaneous levels regressions, SUR
echniques have also been used by Bailey et al. (1984), Barnhart and Szakmary (1991), Evans and Lewis (1995), and Hodgson
t al. (2004). Cointegrated panel regression techniques have been used by Ho (2002), McMillan (2005), Delcoure et al. (2003),
nd Westerlund (2007) in order to further assess the levels formulation of the joint FRUH.

An important advantage of such systems approaches is that they take into account the cross-sectional dependence that exists
etween the equations’ error terms. The presence of this dependence is to be expected when testing the joint FRUH given the

3 For instance, Phillips and McFarland (1997) show that differences regressions lead to a lower rate of estimator convergence under the null hypothesis; and,
hen 𝛽 ≠ 1, the OLS estimator of 𝛽 converges in probability to zero, even when the forward rate has predictive ability in the levels specification.
𝑖 𝑖
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integration of world financial markets and the mere fact that most exchange rates are quoted against a common currency (i.e., the
US dollar). Moreover, as Geweke and Feige (1979) argue, a test that accounts for the information contained in all 𝑁 currencies is
expected to be more decisive than a test based on each individual currency treated in isolation.

A practical limitation, however, when performing a joint FRUH test in the context of a system of equations is that the analysis is
usually limited to time periods over which all the currencies have joint observations (balanced panels). This precludes joint FRUH
tests with currencies observed over differing time periods. For example, suppose the euro (which was officially introduced in 1999)
is considered along with other currencies whose observation period began prior to 1999. In order to exploit the contemporaneous
correlation structure of the error terms, systems approaches would typically require the investigator to drop the observations on
those other currencies prior to 1999 and perform a joint FRUH test using only the data observed jointly since the euro’s inception.
The resulting loss of information is obviously undesirable.

In this paper, we develop exact distribution-free test procedures for simultaneous inference about the FRUH either in levels or
in differences with currencies that may be observed over differing time periods (i.e., with unbalanced panels). We achieve this
by using test statistics for each currency along with Monte Carlo resampling to control the overall Type I error rate of either:
(i) global FRUH tests obtained via combinations of the 𝑝-values; or (ii) individual FRUH tests using multiplicity adjusted 𝑝-values.
The developed procedures are based on the sign and signed rank statistics proposed in Campbell and Dufour (1997) and further
extended in Gungor and Luger (2020). These tests make no assumptions whatsoever about the process governing the forward rates,
𝑓𝑖,𝑡. A related application of the sign test is given in Maynard (2006), who uses the Campbell and Dufour (1997) methodology for
individual FRUH assessments.

Our approach is in line with Westfall and Young (1993) who advocate at length the use of resampling-based methods to obtain
multiple testing procedures which take into account the dependence structure between test statistics and achieve control of the
familywise error rate. Our resampling scheme assumes that the error terms either have a zero median or they are symmetric, both
in a conditional multivariate sense. These assumptions allow for missing data and for the presence of multivariate conditional
heteroskedasticity of unknown form in the spot and forward rates. The Monte Carlo resampling technique accounts for the possibly
time-varying cross-sectional dependence across currencies in the unbalanced panel.

The rest of the paper is organized as follows. Section 2 develops the simulation-based inference procedures for joint FRUH
testing. Section 3 presents the results of simulation experiments designed to compare the empirical Type I rejection rates and
discriminatory power of the test procedures. Section 4 presents an empirical application with 13 major currencies and Section 5
offers some concluding remarks.

2. Simulation-based inference

For 𝑖 = 1,… , 𝑁 , the bivariate time series {(𝑠𝑖,𝑡, 𝑓𝑖,𝑡)} is observed over time index values 𝑡 = 𝜏𝑖,1,… , 𝜏𝑖,𝑇𝑖 , where we use the
convention min𝑖 𝜏𝑖,1 = 1, max𝑖 𝜏𝑖,𝑇𝑖 = 𝑇 , and 1 ≤ 𝜏𝑖,1 < 𝜏𝑖,𝑇𝑖 ≤ 𝑇 . This setup will be especially useful when dealing with currencies
observed over differing time periods. A leading example is the euro, which was launched in January 1999 and subsequently replaced
a number of national currencies. Our empirical application examines the British pound (GBP) and the euro (EUR), among other
currencies. The GBP series comprises 𝑇GBP = 453 observations from October 1983 (𝜏GBP,1 = 1) to June 2021 (𝜏GBP,𝑇GBP = 453), while
the EUR series has 𝑇EUR = 270 observations from January 1999 (𝜏EUR,1 = 184) to June 2021 (𝜏EUR,𝑇EUR = 453).

2.1. Sign and signed rank tests

The FRUH in (1) for currency 𝑖 can be expressed as 𝐻0,𝑖 ∶ 𝛽𝑖 = 1 in the specification

𝑦𝑖,𝑡+1 = 𝛽𝑖𝑥𝑖,𝑡 + 𝑢𝑖,𝑡+1, (6)

for 𝑖 = 1,… , 𝑁 , and where we will assume two-sided alternatives 𝛽𝑖 ≠ 1. This corresponds to a levels specification when 𝑦𝑖,𝑡+1 = 𝑠𝑖,𝑡+1
and 𝑥𝑖,𝑡 = 𝑓𝑖,𝑡; and to a differences specification when 𝑦𝑖,𝑡+1 = 𝑠𝑖,𝑡+1 − 𝑠𝑖,𝑡 and 𝑥𝑖,𝑡 = 𝑓𝑖,𝑡 − 𝑠𝑖,𝑡. As we already mentioned, the choice of
a levels or differences specification depends on the alternative for which power is desired. By not including an intercept term, (6)
imposes the risk neutrality assumption.4 Notice also that (6) makes no assumptions about the process governing the forward rates,
𝑓𝑖,𝑡. This means that the forward rates may exhibit any degree of persistence and may be subject to unmodelled structural breaks,
time-varying parameters, or any other non-linearities.

The simultaneous treatment of the 𝑁 currencies will be facilitated by defining a generic fill-in variable 𝑧+𝑖,𝑡 that equals 𝑧𝑖,𝑡 when
𝜏𝑖,1 ≤ 𝑡 ≤ 𝜏𝑖,𝑇𝑖 , and 0 otherwise. The added zeros are not used as data; they are merely used to make dimensionality adjustments.
With such definitions for 𝑦+𝑖,𝑡, 𝑥

+
𝑖,𝑡, and 𝑢+𝑖,𝑡, 𝑡 = 1,… , 𝑇 , the column vectors

𝐲+𝑖 =

⎡

⎢

⎢

⎢

⎣

𝑦+𝑖,2
⋮

𝑦+𝑖,𝑇

⎤

⎥

⎥

⎥

⎦

, 𝐱+𝑖,−1 =
⎡

⎢

⎢

⎢

⎣

𝑥+𝑖,1
⋮

𝑥+𝑖,𝑇−1

⎤

⎥

⎥

⎥

⎦

, 𝐮+𝑖 =

⎡

⎢

⎢

⎢

⎣

𝑢+𝑖,2
⋮
𝑢+𝑖,𝑇

⎤

⎥

⎥

⎥

⎦

,

4 If one does not wish to assume 𝑎𝑖 = 0, then an asymptotically justified approach is to replace 𝑦𝑖,𝑡 − 𝑥𝑖,𝑡−1 in the proposed tests by 𝑦𝑖,𝑡 − 𝑥𝑖,𝑡−1 − 𝑎̂𝑖, where 𝑎̂𝑖
s a consistent estimate of 𝑎 under 𝐻 .
𝑖 0,𝑖
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for 𝑖 = 1,… , 𝑁 , each have 𝑇 − 1 rows. This is ensured by having zeros in positions 1 ≤ 𝑡 < 𝜏𝑖,1 and 𝜏𝑖,𝑇𝑖 < 𝑡 ≤ 𝑇 ; i.e., when
currency 𝑖 did not yet exist or ceased to exist. The collection of time series can then be arranged to get the horizontal stacked form
representation

𝐘+ = 𝐗+
−1𝜷 + 𝐔+, (7)

where 𝐘+ = [𝐲+1 ,… , 𝐲+𝑁 ], 𝐗+
−1 = [𝐱+1,−1,… , 𝐱+𝑁,−1], and 𝐔+ = [𝐮+1 ,… ,𝐮+𝑁 ] are each (𝑇 − 1) ×𝑁 matrices; and 𝜷 = diag(𝛽1,… , 𝛽𝑁 ) is an

𝑁 ×𝑁 diagonal matrix. Note that row 𝑡 of 𝐔+ corresponds to 𝐮+𝑡 = (𝑢+1,𝑡,… , 𝑢+𝑁,𝑡), the vector of cross-sectional filled-in error terms.
In the context of representation (7), the joint FRUH in (5) across currencies can be stated as

𝐻0 ∶ 𝜷 = 𝐈𝑁 , (8)

where 𝐈𝑁 is the 𝑁 × 𝑁 identity matrix. The general alternative is 𝛽𝑖 ≠ 0 for at least one 𝑖. For further reference, define the sign
function as sign(𝑧) = 1, if 𝑧 > 0; sign(𝑧) = −1, if 𝑧 < 0; and sign(𝑧) = 0, if 𝑧 = 0. When 𝐀 is a vector or a matrix, sign(𝐀) applies
the sign function element-wise. We also let 𝐫 = (𝑟2,… , 𝑟𝑇 )′ be a vector of independent Rademacher random variables such that
Pr(𝑟𝑡 = 1) = Pr(𝑟𝑡 = −1) = 1∕2, for all 𝑡, and we use the symbol 𝑑

= to denote an equality in distribution.5
Observe that any 𝑧 ∈ R can be decomposed as 𝑧 = sign(𝑧)|𝑧|. For one group of tests, we merely assume that the error terms in

(7) are continuous with a conditional ‘‘multivariate median’’ (Small, 1990) at the origin such that

sign(𝑢+1,𝑡,… , 𝑢+𝑁,𝑡)
𝑑
= sign

(

𝑟𝑡(𝑢+1,𝑡,… , 𝑢+𝑁,𝑡)
)

, (9)

given 𝑡−1. We also propose tests under the stronger assumption that the error terms in (7) are continuous and symmetrically
distributed (Serfling, 2006) in the sense that, conditional on 𝑡−1, we have

(𝑢+1,𝑡,… , 𝑢+𝑁,𝑡)
𝑑
= 𝑟𝑡(𝑢+1,𝑡,… , 𝑢+𝑁,𝑡). (10)

The assumed continuity of the actual error terms entails that Pr(𝑢𝑖,𝑡 = 0) = 0, so that 𝑢+𝑖,𝑡 = 0 occurs only because currency 𝑖 is
not observed in period 𝑡. It is obvious that (10) implies (9), but not vice versa, since (9) restricts only the joint behaviour of the
contemporaneous sign vector (sign(𝑢+1,𝑡),… , sign(𝑢+𝑁,𝑡)) and leaves free the corresponding vector of absolute values (|𝑢+1,𝑡|,… , |𝑢+𝑁,𝑡|).

From Randles and Wolfe (1979, Lemma 1.3.28), the assumption in (9) implies that the signs of the error terms are uncorrelated
over time. The tests derived under (9) should thus be interpreted as tests of whether the conditional median of 𝑠𝑖,𝑡+1 equals 𝑓𝑖,𝑡
(i.e., median unbiasedness). Under the symmetry assumption in (10), the conditional mean and median of 𝑢+𝑖,𝑡+1 both equal zero,
and the errors are serially uncorrelated; i.e., 𝐸𝑡[𝑢+𝑖,𝑡+1] = 0. In this case, the tests that rest on (10) yield an assessment of 𝐸𝑡[𝑠𝑖,𝑡+1] = 𝑓𝑖,𝑡
(i.e., mean unbiasedness), assuming of course that the first moments are well defined.

Note that the reflective symmetry assumption in (10) allows for an arbitrary (possibly time-varying) contemporaneous covariance
structure among (𝑢+1,𝑡,… , 𝑢+𝑁,𝑡). In fact, (10) is compatible with a large class of multivariate GARCH (Silvennoinen and Teräsvirta,
2009) and multivariate stochastic volatility models (Chib et al., 2009). Indeed, a typical starting point for these models is to write
the conditional cross-sectional covariance matrix of model errors at time 𝑡 as 𝜮𝑡 and to assume that the errors are governed by

𝐮′+𝑡 = (𝜮1∕2
𝑡 𝜼′𝑡)

+,

where the elements of the 𝑁×1 vector 𝜼′𝑡 = (𝜂1,𝑡,… , 𝜂𝑁,𝑡)′ correspond to a joint draw from a symmetric distribution (e.g., multivariate
normal or multivariate Student-𝑡). In the present context, the fill-in elements of (𝜮1∕2

𝑡 𝜼′𝑡)
+ equal the corresponding realized values

of 𝜮1∕2
𝑡 𝜼′𝑡 when 𝜏𝑖,1 ≤ 𝑡 ≤ 𝜏𝑖,𝑇𝑖 , and 0 otherwise. Here 𝜮1∕2

𝑡 is an 𝑁 ×𝑁 ‘‘square root’’ matrix such that 𝜮1∕2
𝑡 𝜮1∕2

𝑡 = 𝜮𝑡. If 𝜮1∕2
𝑡 and

𝜼′𝑡 are conditionally independent given past information, then (10) is satisfied.6
Consider the following non-parametric analogue of the 𝑡-statistic:

𝑖 =
𝜏𝑖,𝑇𝑖
∑

𝑡=𝜏𝑖,2

1
2
(

sign
[

(𝑦𝑖,𝑡 − 𝑥𝑖,𝑡−1)𝑥𝑖,𝑡−1
]

+ 1
)

. (11)

This sign statistic belongs to a broader class of linear signed rank statistics defined by

𝑖 =
𝜏𝑖,𝑇𝑖
∑

𝑡=𝜏𝑖,2

1
2
(

sign
[

(𝑦𝑖,𝑡 − 𝑥𝑖,𝑡−1)𝑥𝑖,𝑡−1
]

+ 1
)

𝜑𝑖(𝑅𝑖,𝑡), (12)

where 𝑅𝑖,𝑡 is the rank of |𝑦𝑖,𝑡 − 𝑥𝑖,𝑡−1| when |𝑦𝑖,𝜏𝑖,2 − 𝑥𝑖,𝜏𝑖,1 |,… , |𝑦𝑖,𝜏𝑖,𝑇𝑖 − 𝑥𝑖,𝜏𝑖,𝑇𝑖−1 | are placed in ascending order. Note that 𝑅𝑖,𝜏𝑖,2 ,… , 𝑅𝑖,𝜏𝑖,𝑇𝑖is an arrangement of the first 𝑇𝑖 − 1 = 𝜏𝑖,𝑇𝑖 − 𝜏𝑖,1 positive integers: 1,… , 𝑇𝑖 − 1. The set of scores 𝜑𝑖(𝑡), 𝑡 = 1,… , 𝑇𝑖 − 1, are such that
0 ≤ 𝜑𝑖(1) ≤ ... ≤ 𝜑𝑖(𝑇𝑖 − 1) with 𝜑𝑖(𝑇𝑖 − 1) > 0. The sign statistic in (11) is obtained from the constant scores 𝜑𝑖(𝑡) = 1. Another
familiar member of this class is the Wilcoxon signed rank statistic

𝑖 =
𝜏𝑖,𝑇𝑖
∑

𝑡=𝜏𝑖,2

1
2
(

sign
[

(𝑦𝑖,𝑡 − 𝑥𝑖,𝑡−1)𝑥𝑖,𝑡−1
]

+ 1
)

𝑅𝑖,𝑡, (13)

obtained by setting 𝜑𝑖(𝑡) = 𝑡, for 𝑡 = 1,… , 𝑇𝑖 − 1.

5 For further discussion about the ‘equal in distribution’ technique, the reader may consult Randles and Wolfe (1979, §1.3).
6 In a similar context, Hodgson et al. (2004) develop joint FRUH tests within a SUR system with error terms assumed to be i.i.d. according to a multivariate

ymmetric distribution. That is far more restrictive than (10) since assuming i.i.d. errors rules out the possibility of time-dependent variances and covariances.
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For notational convenience let 𝐔̃+ = [𝐮̃+1 ,… , 𝐮̃+𝑁 ] = 𝐫̃⊙𝐔+
0 , where 𝐔+

0 = 𝐘+−𝐗+
−1𝜷0 with 𝜷0 = 𝐈𝑁 . Here the vector 𝐫̃ = (𝑟2,… , 𝑟𝑇 )′

comprises random draws from the Rademacher distribution and the symbol ⊙ means that the scalar element 𝑟𝑡 of 𝐫̃ multiplies every
lement on row 𝑡 of 𝐔+

0 , yielding rows (𝑢̃+1,𝑡,… , 𝑢̃+𝑁,𝑡) = (𝑟𝑡𝑢+1,𝑡,0,… , 𝑟𝑡𝑢+𝑁,𝑡,0), for 𝑡 = 2,… , 𝑇 . This randomization scheme preserves the
cross-sectional covariance structure.7

From Proposition 1 in Gungor and Luger (2020) it is straightforward to see that if 𝐻0 is true, then, for 𝑖 = 1,… , 𝑁 , we have

𝑖
𝑑
=

𝜏𝑖,𝑇𝑖
∑

𝑡=𝜏𝑖,2

1
2

(

sign
[

𝑢̃+𝑖,𝑡𝑥𝑖,𝑡−1
]

+ 1
) 𝑑
=

𝜏𝑖,𝑇𝑖
∑

𝑡=𝜏𝑖,2

𝑡, (14)

when assumption (9) holds, and, given |𝑦𝑖,𝜏𝑖,2 − 𝑥𝑖,𝜏𝑖,1 |,… , |𝑦𝑖,𝜏𝑖,𝑇𝑖 − 𝑥𝑖,𝜏𝑖,𝑇𝑖−1 |, we furthermore have

𝑖
𝑑
=

𝜏𝑖,𝑇𝑖
∑

𝑡=𝜏𝑖,2

1
2

(

sign
[

𝑢̃+𝑖,𝑡𝑥𝑖,𝑡−1
]

+ 1
)

𝜑𝑖(𝑅𝑖,𝑡)
𝑑
=

𝜏𝑖,𝑇𝑖
∑

𝑡=𝜏𝑖,2

𝑡𝜑𝑖(𝑡), (15)

when assumption (10) holds. Here 𝜏𝑖,2 ,… ,𝜏𝑖,𝑇𝑖
are independent Bernoulli variables such that Pr(𝑡 = 1) = Pr(𝑡 = 0) = 1∕2,

𝑡 = 𝜏𝑖,2,… , 𝜏𝑖,𝑇𝑖 . Notice in (14) and (15) that the characterizations in the middle (involving the terms 𝑢̃+𝑖,𝑡) capture the dependence
across currencies, while the characterizations on the right (involving the Bernoulli variables) do not. Both these characterizations
are used next to obtain joint FRUH tests.

From Randles and Wolfe (1979, §10.2), we know that the distribution of the standardized signed rank statistic

∗
𝑖 =

(

𝑖 − 𝐸(𝑖)
)/

√

Var(𝑖),

with

𝐸(𝑖) =
1
2

𝜏𝑖,𝑇𝑖
∑

𝑡=𝜏𝑖,2

𝜑𝑖(𝑡), Var(𝑖) =
1
4

𝜏𝑖,𝑇𝑖
∑

𝑡=𝜏𝑖,2

𝜑2
𝑖 (𝑡),

converges to a standard normal as the sample size grows. For the sign statistic in (11) we have 𝐸(𝑖) = (𝑇𝑖−1)∕2, Var(𝑖) = (𝑇𝑖−1)∕4;
hile for the Wilcoxon signed rank statistic in (13) the needed moments are 𝐸(𝑖) = 𝑇𝑖(𝑇𝑖 −1)∕2, Var(𝑖) = 𝑇𝑖(𝑇𝑖 −1)(2𝑇𝑖 −1)∕24. If

we let 𝛷(⋅) denote the standard normal cumulative distribution function, the associated two-sided marginal 𝑝-values can be defined
as 𝑝𝑖 = 2

(

1 −𝛷(|∗
𝑖 |)

)

, for 𝑖 = 1,… , 𝑁 .

2.2. Combined 𝑝-values

We now consider combining the attained significance levels 𝑝1 ,… , 𝑝𝑁 in order to obtain a global test of the joint FRUH in (8).
To do so, we apply test procedures based on two well-known combination rules (originally proposed for independent statistics):

1. Procedures based on the minimum 𝑝-value (Tippett, 1931; Wilkinson, 1951):

min = min{𝑝1 ,… , 𝑝𝑁}.

2. Procedures based on the product of the individual 𝑝-values (Fisher, 1932; Pearson, 1933):

× =
𝑁
∏

𝑖=1
𝑝𝑖 .

These rules will lead us to reject 𝐻0 when min (or ×) is sufficiently small. Even though the marginal 𝑝-values 𝑝1 ,… , 𝑝𝑁 may have
a very complex dependence structure, their distribution is easy to simulate under the joint FRUH. For further discussion and other
examples of test combination rules, see Folks (1984), Dufour et al. (2015), and Gungor and Luger (2015, 2020).

For a random draw (𝑢̃+1,𝑡,… , 𝑢̃+𝑁,𝑡), let the associated values appearing in (15) be denoted as

̃𝑖 =
𝜏𝑖,𝑇𝑖
∑

𝑡=𝜏𝑖,2

1
2

(

sign
[

𝑢̃+𝑖,𝑡𝑥𝑖,𝑡−1
]

+ 1
)

𝜑𝑖(𝑅𝑖,𝑡), 𝑖 = 1,… , 𝑁. (16)

In turn, these yield the simulated raw (unadjusted) 𝑝-values

𝑝̃𝑖 = 2
(

1 −𝛷(|̃∗
𝑖 |)

)

, (17)

where

̃∗
𝑖 =

(

̃𝑖 −
1
2

𝜏𝑖,𝑇𝑖
∑

𝑡=𝜏𝑖,2

𝜑𝑖(𝑡)

)/

√

√

√

√

√

1
4

𝜏𝑖,𝑇𝑖
∑

𝑡=𝜏𝑖,2

𝜑2
𝑖 (𝑡),

7 Observe that the resampling proceeds conditional on the absolute values of the error terms, since only their signs are randomized.
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for 𝑖 = 1,… , 𝑁 . If 𝑖 is the sign statistic 𝑖 in (11), then from Proposition 2 in Gungor and Luger (2020) we have under 𝐻0 that

min
𝑑
= ̃min = min{𝑝̃1 ,… , 𝑝̃𝑁},

×
𝑑
= ̃× =

𝑁
∏

𝑖=1
𝑝̃𝑖 ,

(18)

when assumption (9) holds. Furthermore if 𝑖 involves ranks, then we have under 𝐻0 that

min
𝑑
= ̃min = min{𝑝̃1 ,… , 𝑝̃𝑁},

×
𝑑
= ̃× =

𝑁
∏

𝑖=1
𝑝̃𝑖 ,

(19)

given the absolute values |𝑦𝑖,𝜏𝑖,2 − 𝑥𝑖,𝜏𝑖,1 |,… , |𝑦𝑖,𝜏𝑖,𝑇𝑖 − 𝑥𝑖,𝜏𝑖,𝑇𝑖−1 |, 𝑖 = 1,… , 𝑁 , when assumption (10) holds.
Let ∙ denote either min or × computed with the actual data. The characterization of their exact distributions in (18) and (19)

paves the way for the computation of Monte Carlo (MC) 𝑝-values (Dwass, 1957; Barnard, 1963; Birnbaum, 1974), as follows:

1. Choose 𝐵 so that 𝛼𝐵 is an integer, where 𝛼 ∈ (0, 1) is the desired significance level.8
2. Using draws from the Rademacher distribution, generate 𝐵 − 1 simulated statistics ̃∙,1,… , ̃∙,𝐵−1 following (16)–(19).
3. Compute the global MC 𝑝-value of ∙ as

𝑝̃(∙) =
𝐺(∙; ̃∙,1,… , ̃∙,𝐵−1)

𝐵
,

where 𝐺(∙; ̃∙,1,… , ̃∙,𝐵−1) = 1 +
∑𝐵−1

𝑏=1 I[̃∙,𝑏 < ∙], with I denoting the indicator function.

The decision rule is then to reject 𝐻0 in (8) at level 𝛼 if 𝑝̃(∙) ≤ 𝛼; otherwise, retain the joint FRUH. Note that 𝐺(∙; ̃∙,1,… , ̃∙,𝐵−1)
is the rank achieved by ∙ when the values ̃∙,1,… , ̃∙,𝐵−1,∙ are sorted in ascending order. The unlikely occurrence of ties can be
ealt with using lexicographic (tie-breaking) ranks. It is easy to see that the 𝐵 random variables ̃∙,1,… , ̃∙,𝐵−1,∙ are exchangeable.

From Dufour (2006), we therefore have that Pr
(

𝑝̃(∙) ≤ 𝛼 |𝐻0 is true
)

= 𝛼. We refer the reader to Dufour and Khalaf (2001)
and Kiviet (2012) for a general overview of MC test techniques and further references.

2.3. Multiplicity adjusted 𝑝-values

Besides the global inference based on the test combination rules, we can also test the FRUH for each currency given a suitably
defined overall Type I error rate. We do so by testing 𝐻0,1,… ,𝐻0,𝑁 individually while keeping under control the familywise error
rate (FWER), i.e., the probability of falsely rejecting at least one true FRUH. Westfall and Young (1993) propose several resampling-
based methods to adjust individual 𝑝-values so as to account for the multiplicity effect. These methods yield FWER adjusted 𝑝-values
for 𝐻0,𝑖, generically defined by 𝑝𝑖,Adj = inf{𝛼 ∶ 𝐻0,𝑖 is rejected at FWER = 𝛼}. In comparison with a global 𝑝-value, the advantage of
djusted 𝑝-values is that they pinpoint the currencies standing in violation of the FRUH. Next we describe how to obtain adjusted
C 𝑝-values.

.3.1. Single-step adjustments
The Westfall and Young (1993) single-step (SS) adjusted 𝑝-values are defined in the present context by

𝑝𝑖,SS = Pr
(

min
1≤𝑗≤𝑁

𝑝̃𝑗 ≤ 𝑝𝑖 |𝐻0 is true
)

,

hich is the probability that the minimum 𝑝-value in the resampling distribution is smaller than the 𝑝-value observed with the
actual data, under the joint FRUH. Based on Westfall and Young (1993, Algorithm 2.5), the MC version of this adjusted 𝑝-value is
computed as follows:

1. Choose 𝐵 so that 𝛼𝐵 is an integer, where 𝛼 ∈ (0, 1) is the desired FWER.
2. For 𝑏 = 1,… , 𝐵 − 1, repeat the following steps:

(a) Using draws from the Rademacher distribution, simulate raw 𝑝-values 𝑝̃1,𝑏,… , 𝑝̃𝑁,𝑏 according to (16)–(17).
(b) Find 𝑚̃

𝑏 = min1≤𝑗≤𝑁 𝑝̃𝑗,𝑏.

3. For 𝑖 = 1,… , 𝑁 , compute the SS adjusted MC 𝑝-value as

𝑝̃𝑖,SS =
𝐺(𝑝𝑖 ; 𝑚̃


1 ,… , 𝑚̃

𝐵−1)
𝐵

,

where now 𝐺(𝑝𝑖 ; 𝑚̃

1 ,… , 𝑚̃

𝐵−1) = 1 +
∑𝐵−1

𝑏=1 I[𝑚̃
𝑏 < 𝑝𝑖 ].

8 For example, setting 𝐵 = 20 is sufficient to obtain a test with exact level 0.05. A larger number of replications decreases the test’s sensitivity to the
nderlying randomization and typically leads to power gains. Dufour et al. (2004), however, find that increasing 𝐵 beyond 100 has only a small effect on power.
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We can then reject an individual-currency null hypothesis 𝐻0,𝑖 at FWER 𝛼, whenever 𝑝̃𝑖,SS ≤ 𝛼. Since the adjusted
𝑝-values are computed under the joint FRUH, it should not be surprising that the FWER is controlled in the sense that
Pr
(

min1≤𝑖≤𝑁 𝑝̃𝑖,SS ≤ 𝛼 |𝐻0 is true
)

= 𝛼. This is obvious from the equivalence
{

min
1≤𝑖≤𝑁

𝑝̃𝑖,SS ≤ 𝛼
}

⟺
{

𝑝̃(min) ≤ 𝛼
}

, (20)

given the same underlying random draws of (𝑢̃+1,𝑡,… , 𝑢̃+𝑁,𝑡) in the computation of the 𝑝-values.

2.3.2. Step-down adjustments
The SS adjustments tend to be conservative since they are all based on a common critical value, obtained from the distribution

of the minimum of all 𝑝-values. Power improvements may be achieved with step-down (SD) procedures. Let 𝜋1,… , 𝜋𝑁 be the index
values that define the 𝑝-value ordering 𝑝𝜋1 ≤ 𝑝𝜋2 ≤ ... ≤ 𝑝𝜋𝑁 , and let 𝐻0,𝜋1 ,… ,𝐻0,𝜋𝑁 denote the corresponding null hypotheses.
The Westfall and Young (1993, p. 66) SD adjusted 𝑝-values are defined by

𝑝𝜋𝑖 ,SD = max
𝑘=1,…,𝑖

{

Pr
(

min
𝓁=𝑘,…,𝑁

𝑝̃𝜋𝓁 ≤ 𝑝𝜋𝑘 |𝐻0 is true
)}

,

where the minima are taken over successively more restricted sets of 𝑝-values as 𝑘 increases. This is the key that makes 𝑝𝜋𝑖 ,SD less
conservative than 𝑝𝑖,SS. Note also that taking successive maxima ensures the monotonicity of the adjusted 𝑝-values; i.e., 𝑝𝜋1 ,SD ≤
𝑝𝜋2 ,SD ≤ ... ≤ 𝑝𝜋𝑁 ,SD so a particular hypothesis in the ordering gets rejected only if all hypotheses with smaller adjusted 𝑝-values
were rejected beforehand. Adapting from Westfall and Young (1993, Algorithm 2.8) and Ge et al. (2003, Box 3), the SD adjusted
MC 𝑝-values are computed according to the following procedure:

1. With the actual raw 𝑝-values 𝑝1 ,… , 𝑝𝑁 , get the index values 𝜋1,… , 𝜋𝑁 that define the ordering 𝑝𝜋1 ≤ 𝑝𝜋2 ≤ ... ≤ 𝑝𝜋𝑁 .9

2. Choose 𝐵 so that 𝛼𝐵 is an integer, where 𝛼 ∈ (0, 1) is the desired FWER.
3. For 𝑏 = 1,… , 𝐵 − 1, repeat the following steps:

(a) Using draws from the Rademacher distribution, simulate raw 𝑝-values 𝑝̃1,𝑏,… , 𝑝̃𝑁,𝑏 according to (16)–(17).
(b) Find the successive minima of the simulated raw 𝑝-values as

𝑞𝑁,𝑏 = 𝑝̃𝜋𝑁 ,𝑏,

𝑞𝑖,𝑏 = min
(

𝑞𝑖+1,𝑏, 𝑝̃

𝜋𝑖 ,𝑏

)

, for 𝑖 = 𝑁 − 1,… , 1.

4. Compute the SD adjusted MC 𝑝-value as

𝑝̃𝜋𝑖 ,SD =
𝐺(𝑝𝜋𝑖 ; 𝑞


𝑖,1,… , 𝑞𝑖,𝐵−1)

𝐵
,

for 𝑖 = 1,… , 𝑁 , where 𝐺(𝑝𝜋𝑖 ; 𝑞

𝑖,1,… , 𝑞𝑖,𝐵−1) = 1 +

∑𝐵−1
𝑏=1 I[𝑞𝑖,𝑏 < 𝑝𝜋𝑖 ], and with the monotonicity of the 𝑝-values enforced by

setting

𝑝̃𝜋1 ,SD ← 𝑝̃𝜋1 ,SD,

𝑝̃𝜋𝑖 ,SD ← max
(

𝑝̃𝜋𝑖−1 ,SD, 𝑝̃

𝜋𝑖 ,SD

)

, for 𝑖 = 2,… , 𝑁.

The decision rule is then to reject hypothesis 𝐻0,𝜋𝑖 , 𝑖 = 1,… , 𝑁 , at FWER 𝛼 when 𝑝̃𝜋𝑖 ,SD ≤ 𝛼. For a general proof of FWER control
with SD procedures, we refer the reader to Westfall and Young (1993, §2.8). Compared to the SS adjustments, the SD approach can
improve power since it results in uniformly smaller (or equal) adjusted 𝑝-values, while retaining the same FWER protection.

3. Simulation experiments

In this section, we present the results of simulation experiments comparing the performance of the proposed test procedures. For
this purpose, we generate spot and forward rates data according to

𝑠𝑖,𝑡+1 = 𝛽𝑖𝑓𝑖,𝑡 + 𝛾𝑖𝑠𝑖,𝑡 + 𝑢𝑖,𝑡+1,

𝑓𝑖,𝑡+1 = 𝜙𝑖𝑓𝑖,𝑡 + 𝑣𝑖,𝑡+1,

or 𝑖 = 1,… , 𝑁 , with 𝛽𝑖 = 𝛽, 𝛾𝑖 = 𝛾, 𝜙𝑖 = 𝜙, and error terms 𝜺𝑡 = (𝑢1,𝑡,… , 𝑢𝑁,𝑡, 𝑣1,𝑡,… , 𝑣𝑁,𝑡) following a multivariate stochastic
volatility process (Chib et al., 2009) of the form:

𝜺′𝑡 = 𝐕1∕2
𝑡 𝜼′𝑡 , 𝐕1∕2

𝑡 = diag
(

exp(ℎ1,𝑡∕2),… , exp(ℎ2𝑁,𝑡∕2)
)

,

ℎ𝑗,𝑡+1 = 𝜙ℎℎ𝑗,𝑡 + 𝜎ℎ𝑒𝑗,𝑡, 𝑒𝑗,𝑡 ∼ 𝖭(0, 1), 𝑗 = 1,… , 2𝑁,

9 Note that the index values 𝜋 ,… , 𝜋 are fixed throughout the simulation steps.
1 𝑁
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Table 1
Empirical FWER and power of joint FRUH tests: Normal errors, 𝑇 = 100.
𝜙 𝜌 𝜎ℎ Levels Differences

𝑡 min × min × 𝑡 min × min ×

Panel A: 𝛽 = 1, 𝛾 = 0

0.95 0.15 0.1 13.6 5.1 5.3 5.2 5.1 5.4 5.0 4.8 5.0 5.4
0.95 0.15 0.5 9.6 4.9 5.3 5.2 5.3 13.0 4.6 4.9 4.6 4.8
0.95 0.85 0.1 13.4 4.7 4.6 4.9 4.9 5.3 5.0 4.9 4.5 4.6
0.95 0.85 0.5 9.3 5.1 4.9 4.8 4.6 12.9 4.7 5.0 4.6 5.0
1 0.15 0.1 30.1 5.0 5.4 5.0 4.8 4.5 4.6 4.8 5.0 4.9
1 0.15 0.5 21.1 5.6 5.2 5.2 5.3 13.2 4.6 4.9 4.5 4.7
1 0.85 0.1 29.2 4.5 4.7 4.8 4.7 4.6 5.1 5.1 4.8 4.8
1 0.85 0.5 20.4 4.9 4.7 4.7 4.6 12.9 4.9 4.7 4.4 4.4

Panel B: 𝛽 = 0.95, 𝛾 = 0

0.95 0.15 0.1 23.4 8.8 9.5 10.5 11.8 4.2 4.7 4.8 4.6 4.8
0.95 0.15 0.5 47.0 35.7 37.5 37.0 39.1 5.3 6.0 6.3 6.1 6.3
0.95 0.85 0.1 22.4 8.4 9.5 9.9 11.6 4.1 5.0 5.1 4.9 4.8
0.95 0.85 0.5 46.0 36.2 37.1 36.5 37.5 5.4 6.2 6.2 5.7 5.8
1 0.15 0.1 70.5 38.8 43.3 53.2 62.8 45.4 30.6 32.3 41.6 44.2
1 0.15 0.5 61.7 68.3 71.2 70.5 74.3 10.3 41.4 42.3 44.3 45.4
1 0.85 0.1 68.5 38.2 41.8 54.3 60.6 45.1 31.1 31.9 41.5 43.1
1 0.85 0.5 63.4 69.4 71.3 71.4 73.3 10.6 42.0 42.9 44.5 45.5

Panel C: 𝛽 = 1.2, 𝛾 = −0.2

0.95 0.15 0.1 5.4 4.0 3.8 4.0 4.0 10.8 6.7 7.4 7.2 7.9
0.95 0.15 0.5 3.9 3.7 3.8 3.5 3.3 41.4 37.3 39.3 39.3 41.5
0.95 0.85 0.1 5.5 4.4 3.8 3.6 3.6 11.0 6.4 6.6 6.8 7.1
0.95 0.85 0.5 4.0 3.4 3.6 3.4 3.3 41.8 37.3 38.7 39.7 41.5
1 0.15 0.1 4.5 5.0 5.3 4.7 4.7 9.2 6.1 6.1 7.1 7.1
1 0.15 0.5 3.7 5.6 5.5 5.3 5.5 39.0 35.9 37.9 38.4 40.6
1 0.85 0.1 4.6 4.9 4.7 4.7 4.5 7.7 6.6 6.5 7.5 7.0
1 0.85 0.5 3.6 5.0 5.3 4.9 4.8 38.9 36.1 37.1 38.3 39.9

This table reports the empirical probabilities (in percentages) of rejecting at least one individual FRUH given 𝛼 = 5% and 𝑁 = 2, where {(𝑠1,𝑡 , 𝑓1,𝑡) ∶ 𝑡 = 1,… , 𝑇 }
nd {(𝑠2,𝑡 , 𝑓2,𝑡) ∶ 𝑡 = 0.25𝑇 ,… , 0.75𝑇 }. Panel A reports the empirical FWER, while Panels B and C show the empirical power. The power results for the 𝑡-tests are
ased on FWER adjusted 𝑝-values.

here 𝜼′𝑡 is drawn either from a normal distribution, 𝖭(𝟎,𝜦), or from a Student-𝑡 distribution, 𝗍3(𝟎,𝜦), both of dimension 2𝑁 . We
resent results for 𝑁 = 2 currencies and set the corresponding variance–covariance matrix as

𝜦 =

⎡

⎢

⎢

⎢

⎢

⎣

1 𝜌 0.99 𝜌
𝜌 1 𝜌 0.99

0.99 𝜌 1 𝜌
𝜌 0.99 𝜌 1

⎤

⎥

⎥

⎥

⎥

⎦

o the within currency correlations equal 0.99, while in between currencies the correlations are determined by 𝜌. This structure reflects
hat we find empirically, i.e., the error correlations between spot and forward rates are nearly one for a given currency, whereas

hose correlations are lower and more variable between currencies.
We let the longest series {(𝑠1,𝑡, 𝑓1,𝑡)} range over 𝜏1,1 = 1,… , 𝜏1,𝑇1 = 𝑇 and we let the shorter bivariate series {(𝑠2,𝑡, 𝑓2,𝑡)} be

observed over 𝜏2,1 = 0.25𝑇 ,… , 𝜏2,𝑇2 = 0.75𝑇 . This setup serves to illustrate the fact that our statistical framework allows the series
to have different start and end dates. We consider 𝑇 = 100 and 200, and model parameters taking values as: (𝛽, 𝛾) = (1, 0) [the null
hypothesis], (0.95, 0), (1.2,−0.2) [the alternative hypotheses]; 𝜙 = 0.95, 1; 𝜌 = 0.15, 0.85; and 𝜙ℎ = 0.95, 𝜎ℎ = 0.1, 0.5. In each case,

e test the FRUH in levels and in differences. All the tests are performed with 𝛼 = 5% and with 𝐵 − 1 = 99 MC resampling draws;
nd the reported results are based on 5000 replications of each data-generating configuration.

As benchmark we use the standard 𝑡-statistics from regressions (3) and (4) obtained using the data observed over time index
= 𝜏𝑖,1,… , 𝜏𝑖,𝑇𝑖 . In order to control for the multiplicity of 𝑡-tests, we apply the Holm (1979) procedure which proceeds as follows:
et the 𝑡-statistics’ ordered raw 𝑝-values be denoted by 𝑝𝑡𝜋1 ≤ 𝑝𝑡𝜋2 ≤ ... ≤ 𝑝𝑡𝜋𝑁 , and reject 𝐻0,𝜋𝑖 if 𝑝𝑡𝜋𝑘 ≤ 𝛼∕(𝑁 − 𝑘 + 1), for 𝑘 = 1,… , 𝑖.

The corresponding Holm adjusted 𝑝-values are given by

𝑝𝑡𝜋𝑖 ,Holm = max
𝑘=1,…,𝑖

{

min
(

(𝑁 − 𝑘 + 1)𝑝𝑡𝜋𝑘 , 1
)}

, (21)

which is less conservative than the standard Bonferroni correction that would multiply the raw 𝑝-values by 𝑁 at each step;
see Westfall and Young (1993, p. 64) and Ge et al. (2003) for more details.

To compare the test procedures we compute the empirical probabilities of rejecting at least one individual FRUH. This yields
the empirical FWER when the joint FRUH holds, and provides a measure of test power when it does not hold. Tables 1 and 2 show
these rejection rates (in percentages) under normally distributed errors when 𝑇 = 100 and 𝑇 = 200, respectively; while Table 3
corresponds to the heavier-tailed 𝗍 setting when 𝑇 = 100. The power results for the 𝑡-tests are based on FWER adjusted 𝑝-values.
3
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F
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Table 2
Empirical FWER and power of joint FRUH tests: Normal errors, 𝑇 = 200.
𝜙 𝜌 𝜎ℎ Levels Differences

𝑡 min × min × 𝑡 min × min ×

Panel A: 𝛽 = 1, 𝛾 = 0

0.95 0.15 0.1 10.2 5.0 5.1 4.7 4.9 5.6 4.7 4.5 4.7 4.5
0.95 0.15 0.5 7.3 4.7 4.6 4.5 4.6 19.9 4.8 4.4 4.8 4.5
0.95 0.85 0.1 10.3 4.5 4.9 4.7 4.7 5.5 4.6 4.6 5.0 4.8
0.95 0.85 0.5 6.6 4.8 4.8 4.5 4.7 19.3 5.0 4.6 4.7 4.8
1 0.15 0.1 32.2 4.7 4.8 4.7 4.7 5.3 5.1 4.9 5.1 4.8
1 0.15 0.5 19.2 4.8 5.2 5.1 5.0 20.0 4.7 4.7 5.0 5.2
1 0.85 0.1 30.5 5.0 4.7 4.7 4.6 4.8 5.1 5.2 4.7 5.0
1 0.85 0.5 18.9 5.1 4.8 4.7 4.5 19.7 4.8 5.1 4.6 4.9

Panel B: 𝛽 = 0.95, 𝛾 = 0

0.95 0.15 0.1 60.0 20.3 24.0 27.8 35.6 4.6 4.8 4.6 4.9 4.9
0.95 0.15 0.5 69.9 63.4 67.9 63.0 66.9 5.4 7.2 7.5 7.4 7.4
0.95 0.85 0.1 58.1 19.4 23.1 25.8 32.8 4.5 5.0 5.1 4.9 4.8
0.95 0.85 0.5 71.9 62.5 66.0 62.3 65.7 5.5 6.7 6.8 7.0 7.3
1 0.15 0.1 99.6 91.4 95.1 98.8 99.8 85.8 78.5 82.2 88.0 90.7
1 0.15 0.5 90.8 96.8 98.1 97.4 98.5 22.2 80.4 82.0 81.0 82.1
1 0.85 0.1 99.5 91.1 94.8 99.0 99.6 84.7 77.7 80.9 86.9 89.5
1 0.85 0.5 91.3 97.1 98.0 97.5 98.2 22.0 80.2 81.2 80.0 81.3

Panel C: 𝛽 = 1.2, 𝛾 = −0.2

0.95 0.15 0.1 6.3 4.3 4.3 3.8 3.9 15.5 7.7 8.1 8.9 9.3
0.95 0.15 0.5 3.5 3.1 3.0 2.8 2.7 52.9 57.9 61.1 59.7 63.7
0.95 0.85 0.1 6.4 4.2 3.9 3.9 4.3 15.8 7.6 7.7 8.7 9.3
0.95 0.85 0.5 3.6 3.2 3.0 2.6 3.0 53.6 56.8 60.9 58.7 62.9
1 0.15 0.1 4.6 5.1 5.0 4.6 4.5 11.5 7.1 7.7 8.8 8.9
1 0.15 0.5 2.8 5.0 4.9 4.4 4.5 50.3 55.1 59.1 57.9 61.4
1 0.85 0.1 4.5 4.5 4.6 4.6 4.6 11.9 7.7 7.8 8.8 9.0
1 0.85 0.5 3.1 5.0 5.1 4.4 4.3 51.0 55.1 58.8 57.7 61.4

See notes of Table 1.

Note also that no results are explicitly reported in Tables 1–3 for the SS and SD 𝑝-value adjustment methods, since, as expected
from (20), these have the same probability of rejecting at least one 𝐻0,𝑖 as their global inference counterparts based on the minimum
𝑝-value rule. To further evaluate the power properties of the SS and SD adjustment methods, we consider the average power rate
(APR) defined as

APR =
𝐸
(

number of 𝐻0,𝑖’s rejected
)

number of false 𝐻0,𝑖’s
.

or normally distributed errors and 𝑇 = 200, Table 4 reports the empirical APRs (in percentages) obtained from SS and SD
djustments to the 𝑝-values of the proposed  and  statistics. The main takeaways from these simulation experiments are

summarized as follows:

1. From Panel A in Tables 1–3, we see that the FWER can be severely oversized with the Holm adjusted 𝑡-tests. When performed
with the levels specification, the over-rejection problem becomes worse as 𝜙 increases towards 1, while it is mainly effected
by increases in 𝜎ℎ in the differences specification. Table 2 reveals that these 𝑡-tests continue to be oversized even as the
sample size doubles to 𝑇 = 200. Comparing Tables 1 and 3 shows that the situation remains essentially the same whether the
errors are normally or 𝗍3 distributed. In accordance with the theory, the empirical FWER of the sign and signed rank tests is
close to the nominal 5% level, no matter the sample size, degree of tail heaviness, or the values of 𝜙, 𝜌, and 𝜎ℎ.

2. Panel B in Tables 1–3 makes clear that proceeding in levels delivers good power as the value of 𝛽 moves away from 1 and
𝛾 = 0, while the differences tests lag behind. From Panel C, however, we see that the levels tests have no power when 𝐸𝑡[𝑠𝑖,𝑡+1]
is a linear combination of both 𝑓𝑖,𝑡 and 𝑠𝑖,𝑡. As explained in the introduction, this can be interpreted as a short-run deviation
from the FRUH and we see that the differences tests have discriminatory power against such alternatives. In Panel B, power
rises markedly across the board as 𝜙 increases towards 1; while in Panel C the differences approach garners power as 𝜎ℎ
increases.

3. The sign and signed rank tests tend to be more powerful than the 𝑡-tests as 𝜙 and 𝜎ℎ increase (see Panels B and C in Tables 1–3)
and as tail-heaviness increases (compare Tables 1 and 3). In fact, the power of the 𝑡-tests is seen to decline in Panel B when
𝜙 = 1 and 𝜎ℎ increases from 0.1 to 0.5. Increasing 𝜌 from 0.15 to 0.85 appears to have little effect on test power. As expected,
we see power improving as 𝑇 grows from 100 in Table 1 to 200 in Table 2.

4. In Tables 1–3 we see the  statistics delivering better power than the  statistics, and that power gains are achieved by
combining 𝑝-values using their product instead of just using the minimum 𝑝-value. Turning to Table 4, we observe an overall
pattern of APRs mimicking the power patterns in Tables 1–3. The -based APRs tend to be higher than the -based ones,

and the SD adjustments are seen to improve the APR relative to the SS adjustments.
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Table 3
Empirical FWER and power of joint FRUH tests: 𝗍3 errors, 𝑇 = 100.
𝜙 𝜌 𝜎ℎ Levels Differences

𝑡 min × min × 𝑡 min × min ×

Panel A: 𝛽 = 1, 𝛾 = 0

0.95 0.15 0.1 12.8 5.3 5.4 5.0 5.0 4.9 4.7 5.1 4.7 4.9
0.95 0.15 0.5 8.5 5.0 5.2 5.1 5.1 10.4 4.6 5.0 4.6 5.0
0.95 0.85 0.1 12.2 4.7 4.6 4.6 4.7 5.2 5.0 5.1 4.9 4.9
0.95 0.85 0.5 8.5 4.4 4.4 4.7 4.5 10.0 4.7 4.7 4.8 4.5
1 0.15 0.1 30.2 5.6 5.3 5.1 5.3 4.2 4.8 4.8 4.8 5.2
1 0.15 0.5 20.7 5.2 5.3 4.9 5.2 10.3 5.4 5.2 4.9 4.6
1 0.85 0.1 28.8 4.9 4.6 4.3 4.0 4.6 4.6 4.7 5.1 5.2
1 0.85 0.5 20.5 4.9 4.6 4.6 4.9 10.2 5.1 4.7 4.5 4.7

Panel B: 𝛽 = 0.95, 𝛾 = 0

0.95 0.15 0.1 23.5 19.9 23.1 21.0 25.0 4.4 5.1 4.9 4.7 5.2
0.95 0.15 0.5 48.3 52.6 55.8 51.0 54.3 5.5 6.4 6.2 6.2 6.4
0.95 0.85 0.1 24.0 18.3 22.3 20.6 23.8 4.6 5.0 4.9 5.4 5.3
0.95 0.85 0.5 49.2 52.7 55.3 51.0 52.1 5.6 6.2 6.5 6.3 6.3
1 0.15 0.1 65.9 69.5 73.9 75.4 83.6 48.9 55.7 57.5 61.5 65.0
1 0.15 0.5 63.5 82.3 84.4 81.5 84.0 12.8 57.3 58.0 57.6 59.8
1 0.85 0.1 63.7 67.5 71.8 75.8 80.1 45.1 55.0 57.4 60.5 63.6
1 0.85 0.5 63.8 81.8 83.5 82.0 83.0 12.9 56.7 57.4 57.1 58.4

Panel C: 𝛽 = 1.2, 𝛾 = −0.2

0.95 0.15 0.1 5.5 4.4 4.6 3.9 3.9 10.2 7.7 8.1 7.8 8.7
0.95 0.15 0.5 3.6 3.9 3.8 3.3 2.9 44.5 42.8 46.2 42.9 45.9
0.95 0.85 0.1 5.4 3.8 4.0 3.5 3.7 9.6 7.7 8.5 8.2 8.6
0.95 0.85 0.5 4.1 3.5 3.6 2.9 2.8 44.7 43.1 46.2 42.5 45.9
1 0.15 0.1 4.8 5.3 5.2 4.8 5.1 7.9 7.0 7.5 7.3 7.9
1 0.15 0.5 3.5 5.7 5.2 5.2 5.2 42.1 40.2 42.9 40.7 42.7
1 0.85 0.1 4.9 4.6 4.7 4.4 3.9 6.7 7.2 7.3 7.6 8.3
1 0.85 0.5 3.7 4.8 4.6 5.0 4.5 41.7 40.4 43.1 40.1 43.1

See notes of Table 1.

Table 4
Empirical APR with multiplicity adjusted 𝑝-values: Normal errors, 𝑇 = 200.
𝜙 𝜌 𝜎ℎ Levels Differences

SS SD SS SD SS SD SS SD

Panel A: 𝛽 = 0.95, 𝛾 = 0

0.95 0.15 0.1 10.8 11.5 15.1 16.4 2.4 2.5 2.5 2.6
0.95 0.15 0.5 38.9 42.1 38.5 41.6 3.6 3.7 3.7 3.8
0.95 0.85 0.1 10.3 11.2 14.5 15.7 2.5 2.6 2.5 2.6
0.95 0.85 0.5 38.9 42.0 38.3 41.6 3.4 3.5 3.6 3.7
1 0.15 0.1 63.3 69.0 76.9 83.7 50.4 54.0 60.4 65.1
1 0.15 0.5 77.5 81.3 78.4 82.4 53.0 55.8 53.8 56.7
1 0.85 0.1 62.9 68.2 77.1 84.0 50.7 54.8 61.4 65.7
1 0.85 0.5 77.8 81.5 78.2 82.4 53.5 56.5 53.6 56.5

Panel B: 𝛽 = 1.2, 𝛾 = −0.2

0.95 0.15 0.1 2.2 1.9 2.2 1.9 3.9 4.5 4.1 4.7
0.95 0.15 0.5 1.5 1.4 1.6 1.4 34.8 35.8 37.3 38.5
0.95 0.85 0.1 2.1 2.0 2.2 2.1 3.9 4.4 4.0 4.6
0.95 0.85 0.5 1.6 1.3 1.6 1.3 34.3 35.7 36.8 38.3
1 0.15 0.1 2.6 2.4 2.7 2.4 3.7 4.5 3.8 4.6
1 0.15 0.5 2.5 2.2 2.6 2.3 32.8 34.4 35.3 37.0
1 0.85 0.1 2.3 2.4 2.5 2.5 4.0 4.5 4.1 4.6
1 0.85 0.5 2.5 2.3 2.6 2.4 32.8 34.6 35.0 37.1

This table reports the empirical APRs (in percentages) from SS and SD multiplicity adjustments to the 𝑝-values of the  and  statistics given 𝛼 = 5% and
𝑁 = 2, where {(𝑠1,𝑡 , 𝑓1,𝑡) ∶ 𝑡 = 1,… , 𝑇 } and {(𝑠2,𝑡 , 𝑓2,𝑡) ∶ 𝑡 = 0.25𝑇 ,… , 0.75𝑇 }.

4. Empirical application

Our empirical application uses end-of-month series of spot and one-month forward exchange rates for 𝑁 = 13 major currencies,
each relative to the US dollar. The included currencies are the Australian dollar (AUD), Canadian dollar (CAD), Swiss franc (CHF),
German deutschemark (DEM), Danish krone (DKK), European euro (EUR), French franc (FRF), British pound (GBP), Italian lira (ITL),
Japanese yen (JPY), Norwegian krone (NOK), New Zealand dollar (NZD), and Swedish krona (SEK). Table 5 gives a complete list
of the included countries along with the start and end dates for each currency’s data series. Note that the number of observations
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Table 5
Data overview.

Currency code Country Start date End date No. Obs.

AUD Australia Dec 1984 June 2021 439
CAD Canada Dec 1984 June 2021 439
CHF Switzerland Oct 1983 June 2021 453
DEM Germany Oct 1983 Dec 1998 183
DKK Denmark Dec 1984 June 2021 439
EUR Euro area Jan 1999 June 2021 270
FRF France Oct 1983 Dec 1998 183
GBP United Kingdom Oct 1983 June 2021 453
ITL Italy Mar 1984 Dec 1998 178
JPY Japan Oct 1983 June 2021 453
NOK Norway Dec 1984 June 2021 439
NZD New Zealand Dec 1984 June 2021 439
SEK Sweden Dec 1984 June 2021 439

Table 6
Marginal FRUH assessments.

Currency code Levels Differences

𝑡 𝑖 𝑖 𝑡 𝑖 𝑖

AUD 4.6 25.1 3.4 1.5 0.2 0.2
CAD 11.6 15.1 2.8 4.1 1.6 20.2
CHF 15.2 39.7 32.8 18.7 45.1 54.6
DEM 23.0 18.2 33.4 71.7 37.3 87.4
DKK 0.0 21.4 15.3 2.0 0.3 0.0
EUR 12.6 42.7 70.8 3.7 4.4 3.5
FRF 8.8 0.3 9.0 27.2 7.5 2.3
GBP 4.9 70.6 36.0 0.4 13.2 4.0
ITL 26.2 1.9 5.4 74.5 2.9 7.7
JPY 0.6 30.0 50.5 2.2 3.0 3.3
NOK 3.3 15.1 14.9 21.1 2.1 2.1
NZD 0.5 0.1 0.3 0.0 0.1 0.1
SEK 14.0 50.3 30.9 4.2 0.1 0.0

The reported results are the 𝑝-values (in percentages) of the 𝑡-test, the sign test and the Wilcoxon
signed rank test for marginal FRUH assessments. The entries in bold are instances of statistical
significance at the 5% level.

Table 7
Joint FRUH assessments.

Panel A: Multiplicity adjusted 𝑝-values

Currency code Levels Differences

𝑡 SS SD SS SD 𝑡 SS SD SS SD

AUD 42.2 93.0 80.2 25.4 21.6 16.5 4.0 3.4 2.8 2.2
CAD 69.8 77.0 71.7 21.9 20.5 29.9 19.0 13.6 91.0 48.8
CHF 69.8 99.4 84.7 95.7 82.0 93.5 100.0 62.6 100.0 77.4
DEM 69.8 84.6 72.9 96.3 82.0 100.0 99.6 62.6 100.0 87.2
DKK 0.2 89.1 75.9 69.7 54.6 20.6 5.0 3.7 1.0 1.0
EUR 69.8 99.5 84.7 100.0 82.0 29.9 40.4 19.2 33.7 23.0
FRF 62.1 3.4 3.2 50.3 38.6 93.5 61.0 27.6 24.4 17.7
GBP 42.2 100.0 84.7 97.6 82.0 5.3 80.7 35.7 37.7 23.0
ITL 69.8 19.3 17.1 35.4 27.8 100.0 31.1 18.0 57.7 26.8
JPY 7.3 97.5 82.5 99.6 82.0 20.6 32.1 18.0 32.8 23.0
NOK 33.7 77.0 71.7 68.6 54.6 93.5 24.0 15.7 21.7 17.4
NZD 6.6 1.1 1.1 2.8 2.8 0.1 1.9 1.7 2.2 2.0
SEK 69.8 99.8 84.7 94.9 82.0 29.9 1.2 1.2 0.3 0.3

Panel B: Combined 𝑝-values

Levels Differences

min × min × min × min ×

All currencies 1.1 2.0 2.8 4.9 1.2 0.1 0.3 0.1

This table reports the 𝑝-values (in percentages) for joint FRUH inferences across currencies. Panel A shows multiplicity adjusted
𝑝-values, which includes the Holm adjustments for the 𝑡-tests; and SS and SD adjustments for the sign and Wilcoxon signed rank
tests. Panel B reports the combined 𝑝-values based on the minimum and product rules. Entries in bold are instances of statistical
significance at the 5% level.
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Fig. 1. Monthly exchange rate data for the Canadian dollar, Japanese yen, New Zealand dollar, and French franc (prior to the euro) all relative to the US dollar.
or each currency, the plots in the left column show 𝑠𝑖,𝑡+1 (solid black line) along with 𝑓𝑖,𝑡 (dashed red line), while the plots in the right column show 𝑠𝑖,𝑡+1 −𝑓𝑖,𝑡.

aries across currencies, owing to differences in the time spans covered by each currency. The number of data points varies from a
ow of 178 with ITL to a high of 453 with CHF, GBP, and JPY. We obtained these data via the Datastream platform.

Fig. 1 illustrates the salient features of the data with CAD, JPY, NZD, and FRF as examples. For each of these currencies, the
lots in the left column show 𝑠𝑖,𝑡+1, the log spot rate (solid black line), and 𝑓𝑖,𝑡, the lagged value of the log forward rate (dashed red
ine). In each case we see the two rates tracking each other very closely, in accordance with the FRUH.10 The right column of Fig. 1
hows the difference between the log spot rate and the lagged value of the log forward rate; i.e., 𝑠𝑖,𝑡+1 − 𝑓𝑖,𝑡, which corresponds
o 𝑢𝑖,𝑡+1 in (6) when the FRUH holds true. We see episodes of increased volatility and prominent outliers in these series, which is
onsistent with the presence of time-dependent conditional variances. Note also that since the French franc was replaced by the
uro, the FRF data are missing from 1999 onwards.

We begin our assessment by testing the FRUH with each currency taken one at a time, thereby ignoring the dependencies between
urrencies. Table 6 reports the marginal 𝑝-values (in percentages) of the standard 𝑡-test, the sign test 𝑖 and the Wilcoxon signed
ank test 𝑖, for a single currency 𝑖. We see that the FRUH holds unambiguously in the levels and differences specifications only
ith CHF and DEM. At the other extreme, the FRUH is convincingly rejected in the case of NZD. In the 10 remaining cases, the
ecision to reject or not each individual-currency FRUH at the conventional 5% level varies wildly between tests and specifications.
here does however tend to be more rejections occurring with the differences specifications. In particular, the 𝑖 and 𝑖 tests agree
n non-rejections only in the levels specifications for DKK, EUR, GBP, JPY, NOK, and SEK.

A more coherent picture emerges from Table 7, which shows the results of the joint FRUH assessments. For each currency, Panel
reports the SS and SD multiplicity adjusted 𝑝-values of the  and  statistics; along with the Holm adjusted 𝑝-values 𝑝𝑡𝜋𝑖 ,Holm of

the standard 𝑡-statistics, given in (21).11 Panel B reports the combined 𝑝-values obtained with the minimum and product rules. Here
the MC 𝑝-values were computed using 𝐵 − 1 = 999 resampling draws.

10 The lines are so close together that the reader might need to zoom in to tell them apart.
11 In addition to Holm’s method, we also computed Šidák adjusted 𝑝-values (see, e.g., Ge et al., 2003, §3.2) and obtained essentially the same results.
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From the combined 𝑝-values in Panel B, the joint FRUH appears massively rejected across the board. A closer examination of
Panel A reveals the sources of those rejections.12 We see that NZD continues to be the currency with the most egregious 𝑝-values,
strongly rejecting the FRUH in both levels and differences. After that, the rejections from the sign and signed rank tests occur with
the differences specifications for AUD, DKK, and SEK, as in Table 6. For the 9 other currencies (CAD, CHF, DEM, EUR, FRF, GBP,
ITL, JPY, NOK), however, the sign and signed rank tests now show support for the FRUH with 𝑝-values well above the traditional
5% FWER cutoff. An exception is FRF for which SS and SD indicate rejections while all the other statistics do not.

As expected, the min (min) 𝑝-value in Panel B is identical to the minimum of the corresponding SS (SS) 𝑝-values in Panel
A; and all the SD multiplicity adjusted 𝑝-values are uniformly smaller or equal to their SS counterparts. Note also the quite general
agreement between the - and -based inferences. We know that inference based on the standard 𝑡-tests can be misleading even
after adjusting their 𝑝-values for the multiplicity effect, as seen in the simulation experiments. In light of this, the fairly broad
agreement in Table 7 between inferences based on the sign and signed rank tests and the 𝑡-tests is all the more interesting. The
striking contrast between Tables 6 and 7 illustrates the distinction between marginal and joint inference about the FRUH.

5. Concluding remarks

In this paper we have described how distribution-free Monte Carlo resampling can be used to ensure the simultaneous correctness
of a set of FRUH inferences. Our approach can be applied with specifications in levels or differences, and proceeds with sign and
signed rank tests for each currency. A resampling scheme is used to control the overall Type I error rate of either a global FRUH test
obtained via combinations of the marginal 𝑝-values, or individual FRUH tests using multiplicity adjusted 𝑝-values. This resampling
proceeds conditional on the absolute values of the error terms, since only their signs are randomized.

The Lehmann and Stein (1949) impossibility theorem shows that such sign-based tests are the only ones that yield valid inference
in the presence of non-normalities and heteroskedasticity of unknown form; see also Dufour (2003) for more on this point. Another
appealing feature of the proposed test procedures is that they allow for joint FRUH assessments with unbalanced panels comprising
currencies observed over differing time periods.

Of course, the test procedures developed in this paper rest on certain auxiliary statistical assumptions and these are maintained
along with the FRUH under the null. Indeed, as Meese (1989, p. 157) states:

Modern empirical work recognizes that any test concerning the behavior of exchange rate risk premiums is necessarily a joint
hypothesis test of an equilibrium model of exchange risk and return, an assumption about expectations formation, and a set
of auxiliary statistical assumptions under which formal inference proceeds.

This means in the present context that the test procedures provide joint assessments of the FRUH as predicted under rational
expectations and risk neutrality, along with the maintained zero median and symmetry assumptions for the error terms.
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