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Existing research on myoelectric control systems primarily focuses on extracting

discriminative characteristics of the electromyographic (EMG) signal by designing

handcrafted features. Recently, however, deep learning techniques have been applied

to the challenging task of EMG-based gesture recognition. The adoption of these

techniques slowly shifts the focus from feature engineering to feature learning.

Nevertheless, the black-box nature of deep learning makes it hard to understand the

type of information learned by the network and how it relates to handcrafted features.

Additionally, due to the high variability in EMG recordings between participants, deep

features tend to generalize poorly across subjects using standard training methods.

Consequently, this work introduces a new multi-domain learning algorithm, named

ADANN (Adaptive Domain Adversarial Neural Network), which significantly enhances

(p = 0.00004) inter-subject classification accuracy by an average of 19.40% compared

to standard training. Using ADANN-generated features, this work provides the first

topological data analysis of EMG-based gesture recognition for the characterization

of the information encoded within a deep network, using handcrafted features as

landmarks. This analysis reveals that handcrafted features and the learned features (in the

earlier layers) both try to discriminate between all gestures, but do not encode the same

information to do so. In the later layers, the learned features are inclined to instead adopt

a one-vs.-all strategy for a given class. Furthermore, by using convolutional network

visualization techniques, it is revealed that learned features actually tend to ignore the

most activated channel during contraction, which is in stark contrast with the prevalence

of handcrafted features designed to capture amplitude information. Overall, this work

paves the way for hybrid feature sets by providing a clear guideline of complementary

information encoded within learned and handcrafted features.
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1. INTRODUCTION

Surface Electromyography (sEMG) is a technique
employed in a vast array of applications from assistive
technologies (Phinyomark et al., 2011c; Scheme and Englehart,
2011) to bio-mechanical analysis (Andersen et al., 2018), and
more generally as a way to interface with computers and
robots (Zhang et al., 2009; St-Onge et al., 2019). Traditionally,
the sEMG-based gesture recognition literature primarily focuses
on feature engineering as a way to increase the information
density of the signal to improve gesture discrimination (Oskoei
and Hu, 2007; Scheme and Englehart, 2011; Phinyomark et al.,
2012a). In the last few years, however, researchers have started
to leverage deep learning (Allard et al., 2016; Atzori et al., 2016;
Phinyomark and Scheme, 2018a), shifting the paradigm from
feature engineering to feature learning.

Deep learning is a multi-level representation learning method
(i.e., methods that learn an embedding from an input to facilitate
detection or classification), where each level generates a higher,
more abstract representation of the input (LeCun et al., 2015).
Conventionally, the output layer (i.e., classifier or regressor) only
has direct access to the output of the highest representation
level (LeCun et al., 2015; Alom et al., 2018). In contrast, several
works have also fed the intermediary layers’ output directly to the
network’s head (Sermanet et al., 2013; Long et al., 2015; Yang and
Ramanan, 2015). Arguably, the most successful approach using
this design philosophy is DenseNet (Huang et al., 2017), a type of
convolutional network (ConvNet) where each layer receives the
feature maps of all preceding layers as input. Features learned by
ConvNets were also extracted to be employed in conjunctionwith
(or replace) handcrafted features when training conventional
machine learning algorithms (e.g., support vectormachine, linear
discriminant analysis, decision tree) (Poria et al., 2015; Nanni
et al., 2017; Chen et al., 2019; Liu et al., 2019). Within the context
of sEMG-based gesture recognition, deep learning was shown
to be competitive with the current state of the art (Côté-Allard
et al., 2019a) and when combined with handcrafted features,
to outperform it (Chen et al., 2019). This last result seems to
indicate that, for sEMG signals, deep-learned features provide
useful information that may be complementary to those that have
been engineered throughout the years. However, the black box
nature of these deep networks means that understanding what
type of information is encapsulated throughout the network, and
how to leverage this information, is challenging.

The main contribution of this work is, therefore, to
provide the first extensive analysis of the relationship between
handcrafted and learned features within the context of sEMG-
based gesture recognition. Understanding the feature space
learned by the network could shed new insights on the type of
information contained in sEMG signals. In turn, this improved
understanding will allow the creation of better handcrafted
features and facilitate the creation of new hybrid feature sets
using this feature learning paradigm.

An important challenge arises when working with biosignals,
as extensive variability exists between subjects (Guidetti et al.,
1996; Batchvarov and Malik, 2002; Meltzer et al., 2007; Castellini
et al., 2009; Halaki and Ginn, 2012). Especially within the

context of sEMG-based gesture recognition (Castellini et al.,
2009; Halaki and Ginn, 2012). Consequently, features learned
using traditional deep learning training methods can be highly
participant-specific, which would hinder the goal of this work
of learning a general feature representation of sEMG signals.
By defining each participant as a different domain, however,
this issue can be framed as a Multi-Domain Learning problem
(MDL) (Yang and Hospedales, 2014), with the added restriction
that the network’s weights should be participant-agnostic.
Multiple popular and effective MDL algorithms have been
proposed over the years (Nam and Han, 2016; Rebuffi et al.,
2018). For example, Nam and Han (2016) proposed to use a
shared network across multiples domains with one predictive
head per domain. In Yang and Hospedales (2014), a single
head was shared across two parallel networks with one of them
receiving the example’s representation as input, while the other
receives a vector representation of the associated domain of
the example. These algorithms however are ill-suited for this
work’s context as they: do not explicitly impose domain-agnostic
weight learning (Yang and Hospedales, 2014), can scale poorly
with the number of domains (i.e., participants) (Nam and Han,
2016), or are restricted to encode a single domain within their
learned features (and use adaptor blocks to bridge the gap
between domains) (Rebuffi et al., 2018). Unsupervised domain-
adversarial training algorithms (Ajakan et al., 2014; Ganin et al.,
2016; Tzeng et al., 2017; Shu et al., 2018) predict an unlabeled
dataset by learning a representation on a labeled dataset that
makes it hard to distinguish between examples from either
distribution. However, these algorithms are often not designed
to learn a unique representation across more than two domains
simultaneously (Ajakan et al., 2014; Ganin et al., 2016; Tzeng
et al., 2017; Shu et al., 2018), can be destructive to the source
domain representation (through iterative process) (Shu et al.,
2018), and by nature of the problem they are trying to solve,
do not leverage the labels of the target domains. As such,
this work presents a new multi-domain adversarial training
algorithm, named ADANN (Adaptive Domain Adversarial
Neural Network). ADANN trains a network across multiple
domains simultaneously while explicitly penalizing any domain-
variant representations to study learned features that generalize
well across participants.

In this work, the sEMG information encapsulated within
the general deep learning features learned by ADANN, is
characterized using handcrafted features as landmarks in a
topological network. This network is generated via the Mapper
algorithm (Singh et al., 2007), with t-Stochastic Neighbor
Embedding (t-SNE) (Maaten and Hinton, 2008), a non-linear
dimensionality reduction visualization method, as the filter
function. Mapper is a Topological Data Analysis (TDA) tool
that excels at determining the shape of high dimensional
data, by providing a faithful representation of it through a
topological network. This TDA tool has been applied as a solution
to numerous challenging applications across a wide array of
domains; for example, uncovering the dynamic organization
of brain activity during various tasks (Saggar et al., 2018) or
identifying a subgroup of breast cancer with 100% survival rate
and no metastasis (Nicolau et al., 2011). Mapper has also been
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FIGURE 1 | Diagram of the workflow of this work. The 3DC Dataset is first preprocessed before being used to train the network using standard training and the

proposed ADANN training procedure. The handcrafted features are directly calculated from the preprocessed dataset, while the deep features are extracted from the

ConvNet trained with ADANN. In the diagram, the blue rectangles represent experiments and the arrows show which methods/algorithms are required to

perform them.

applied to determine relationships between feature space for
physiological signal pain recognition (Campbell et al., 2019b),
and EMG-based gesture recognition (Phinyomark et al., 2017).
However, to the best of the authors’ knowledge, the use of TDA
to interpret information harnessed within deep-learned features
using handcrafted features as landmarks has yet to be explored.

In this paper, convNet visualization techniques are also
leveraged as a way to highlight how the network makes
class-discriminant decisions. Several works (Simonyan et al.,
2013; Springenberg et al., 2014; Zeiler and Fergus, 2014; Gan
et al., 2015) have proposed to visualize network’s predictions
by emphasizing which input-pixels have the most impact
on the network’s output, consequently, fostering a better
understanding of what the network has learned. For example,
Simonyan et al. (2013) used partial derivatives to compute pixel-
relevance for the network output. Another example is Guided
Backpropagation (Springenberg et al., 2014), which modifies
the computation of the gradient to only include paths within
the network that positively contribute to the prediction of a
given class. When compared with saliency maps (Simonyan
et al., 2013), Guided Backpropagation results in qualitative
visualization improvements (Selvaraju et al., 2017). While these
methods produce resolutions at a pixel level, the images produced
with respect to different classes are nearly identical (Selvaraju
et al., 2017). Other types of algorithms provide highly class-
discriminative visualizations, but at a lower resolution (Selvaraju
et al., 2016; Zhou et al., 2016) and sometimes require a specific
ConvNet architecture (Zhou et al., 2016) to use. Within this
work, Guided Gradient-weighted Class Activation Mapping
(Guided Grad-CAM) (Selvaraju et al., 2017) is employed
as it provides pixel-wise input resolution while being class-
discriminative. Another advantage of this technique is that it
can be implemented on any ConvNet-based architecture without

requiring re-training. To the best of the authors’ knowledge, this
is the first time that deep learning visualization techniques are
applied to EMG signals.

2. MATERIALS AND METHODS

A flowchart of the material, methods and experiment is shown
in Figure 1. This section is divided as follows: first, a description
of the dataset and preprocessing used in this work is given
in section 2.1. Then, the handcrafted features are presented
in section 2.2. The ConvNet architecture and the new multi-
domain adversarial training algorithm (ADANN) are presented
in sections 2.3.1 and 2.3.2, respectively. A brief overview of
Guided Grad-CAM is given in section 2.3.3, while sections 2.3.4
and 2.3.5 present single feature classification and handcrafted
feature regression, respectively. Finally, the Mapper algorithm is
detailed in section 2.4.

2.1. EMG Data
The dataset employed in this work is the 3DC Dataset (Côté-
Allard et al., 2019b), featuring 22 able-bodied participants
performing ten hand/wrist gestures + neutral (see Figure 2

for the list of gestures). This dataset was recorded with the
3DC Armband; a wireless, 10-channel, dry-electrode, 3D printed
sEMG armband. The device samples data at 1,000 Hz per
channel, allowing the feature extraction to take advantage of the
full spectra of sEMG signals (Phinyomark and Scheme, 2018b).
Informed consent was obtained from all participants, as approved
by Laval University’s Research Ethics Committee (Côté-Allard
et al., 2019b).

The dataset was built as follows: Each participant was asked to
perform and hold each gesture for a period of 5 s starting from
the neutral position to produce a cycle. Three more cycles were
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FIGURE 2 | The eleven hand/wrist gestures recorded in the 3DC Dataset (image re-used from Côté-Allard et al., 2019b).

recorded to serve as the training dataset. After a 5 min break, four
new cycles were recorded to serve as the test dataset. Note that
the validation set and hyperparameter selection are made from
the training dataset.

As this work aims to understand the type of features learned
by deep network in the context of myoelectric control systems,
a critical factor to consider is the input latency. Smith et al.
(2010) showed that the optimal guidance latency was between
150 and 250 ms. As such, the data from each participant was
segmented into 151ms frames with an overlap of 100ms. The raw
data was then band-pass filtered between 20 and 495 Hz using a
fourth-order Butterworth filter.

2.2. Handcrafted Features
Handcrafted features are characteristics extracted from windows
of the EMG signal using establishedmathematical equations. The
purpose of these feature extraction methods is to enhance the
information density of the signal so as to improve discrimination
between motion classes (Oskoei and Hu, 2007; Phinyomark
et al., 2012a). Across the myoelectric control literature,
hundreds of handcrafted feature extraction methods have been
presented (Oskoei and Hu, 2007; Phinyomark et al., 2012a,
2013). As such, implementing the exhaustive set of features that
has been proposed is impractical. Instead, within this study
a comprehensive subset of 79 of the most commonly used
features is employed. With a comprehensive set of features, past
literature has identified five functional groups that summarize
all sources of information current handcrafted feature extraction
techniques describe: signal amplitude and power (SAP), non-
linear complexity (NLC), frequency information (FI), time-series
modeling (TSM), and unique (UNI) (Phinyomark et al., 2017;
Campbell et al., 2019a). The SAP functional group includes time-
domain energy or power features (e.g., Root Mean Squared,
Mean Absolute Value). The FI functional group generally
refers to features extracted from the frequency domain, or

features that describe spectral properties (e.g., Mean Frequency,
Zero Crossings). The NLC functional group corresponds to
features that describe entropy or similarity based information
(e.g., Sample Entropy, Maximum Fractal Length). The TSM
functional group represents features that attempt to reconstruct
the data provided through stochastic or other algorithmic models
(e.g., Autoregressive Coefficients, Cepstral Coefficients). Finally,
the UNI functional group represents features that capture
various other modalities of information, such as measures of
signal quality or a combination of other functional groups
(e.g., Signal to Motion Artifact Ratio, Time Domain Power
Spectral Descriptors).

Table 1 presents the 56 handcrafted feature methods
considered in this work. Note that some methods produce
multiple features (e.g., Cepstral Coefficients, Histogram),
resulting in a total of 79 features. The SAP, FI, NLC, TSM, and
UNI feature groups are represented here by 25, 5, 6, 7, and 13
feature extraction methods, respectively. In the TDA of the deep
learned features (see section 2.4), these handcrafted features
serve as landmarks for well-understood properties of the EMG
signal. In the regression model analysis (see section 2.3.5),
the flow of information through the ConvNet is visualized by
employing the handcrafted features methods as the target of
the network.

2.3. Convolutional Network
The following subsections present the deep learning architecture,
training methods and visualization techniques employed in
this paper. The PyTorch (Paszke et al., 2017) implementation
employed in this work is available at: https://github.com/
UlysseCoteAllard/sEMG_handCraftedVsLearnedFeatures.

2.3.1. Architecture
Recent works on sEMG-based gesture recognition using deep
learning have shown that ConvNets trained with the raw sEMG
signal as input were able to achieve similar classification accuracy
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TABLE 1 | Handcrafted features extracted for topological landmarks sorted by functional group.

References Feature extraction method Name Group

Phinyomark et al. (2012a) Amplitude of the first burst AFB SAP

Kim et al. (2011) Difference absolute mean value DAMV SAP

Kim et al. (2011) Difference absolute standard deviation value DASDV SAP

Zardoshti-Kermani et al. (1995) Difference log detector DLD SAP

Phinyomark et al. (2012a) Difference temporal moment DTM SAP

Zardoshti-Kermani et al. (1995) Difference variance value DVARV SAP

Zardoshti-Kermani et al. (1995) Difference v-order DV SAP

Park and Lee (1998) Integral of electromyogram IEMG SAP

Zardoshti-Kermani et al. (1995) Log detector LD SAP

Al-Timemy et al. (2015) Second-order moment M2 SAP

Oskoei and Hu (2008) Modified mean absolute value 1 MMAV1 SAP

Oskoei and Hu (2008) Modified mean absolute value 2 MMAV2 SAP

Saponas et al. (2008) Mean absolute value MAV SAP

Phinyomark et al. (2012a) Maximum MAX SAP

Du and Vuskovic (2004) Multiple hamming windows MHW SAP

Du and Vuskovic (2004) Mean power MNP SAP

Du and Vuskovic (2004) Multiple trapezoidal windows MTW SAP

Saponas et al. (2008) Root mean squared RMS SAP

Du and Vuskovic (2004) Spectral moment SM SAP

Du and Vuskovic (2004) Sum of squared integral SSI SAP

Phinyomark et al. (2012a) Temporal moment TM SAP

Du and Vuskovic (2004) Total power TTP SAP

Zardoshti-Kermani et al. (1995) Variance VAR SAP

Zardoshti-Kermani et al. (1995) v-Order V SAP

Phinyomark et al. (2012a) Waveform length WL SAP

Oskoei and Hu (2006, 2008) Frequency ratio FR FI

Thongpanja et al. (2013, 2015) Median frequency MDF FI

Thongpanja et al. (2013, 2015) Mean frequency MNF FI

Phinyomark et al. (2012a) Slope sign change SSC FI

Zardoshti-Kermani et al. (1995) Zero crossings ZC FI

Phinyomark et al. (2013) Sample entropy SAMPEN NLC

Phinyomark et al. (2013) Approximate entropy APEN NLC

Zardoshti-Kermani et al. (1995) Willison’s amplitude WAMP NLC

Gitter and Czerniecki (1995) Box-counting fractal dimension BC NLC

Gupta et al. (1997) Katz fractal dimension KATZ NLC

Arjunan and Kumar (2010) Maximum fractal length MFL NLC

Park and Lee (1998) Autoregressive coefficients AR TSM

Park and Lee (1998) Cepstral coefficients CC TSM

Park and Lee (1998) Difference autoregressive coefficient DAR TSM

Park and Lee (1998) Difference cepstral coefficients DCC TSM

Phinyomark et al. (2011d, 2012b) Detrend fluctuation analysis DFA TSM

Qingju and Zhizeng (2006) Power spectrum ratio PSR TSM

Sinderby et al. (1995) and McCool et al. (2014) Signal to noise ratio SNR TSM

Phinyomark et al. (2011a,b) Critical exponent CE UNI

Sinderby et al. (1995) and McCool et al. (2014) Maximum to minimum drop in power density ratio DPR UNI

Phinyomark et al. (2012a) Histogram HIST UNI

Thongpanja et al. (2016) and Van Den Broek et al. (2006) Kurtosis KURT UNI

Phinyomark et al. (2012a) Mean absolute value slope MAVS UNI

Sinderby et al. (1995) and McCool et al. (2014) Power spectrum deformation OHM UNI

Phinyomark et al. (2013) Peak frequency PKF UNI

Talebinejad et al. (2009) Power spectrum density fractal dimension PSDFD UNI

Thongpanja et al. (2016) and Van Den Broek et al. (2006) Skewness SKEW UNI

(Continued)
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TABLE 1 | Continued

References Feature extraction method Name Group

Sinderby et al. (1995) and McCool et al. (2014) Signal to motion artifact ratio SMR UNI

Al-Timemy et al. (2015) Time domain power spectral descriptors TSPSD UNI

Phinyomark et al. (2012a) Variance of central frequency VCF UNI

Phinyomark et al. (2013) Variance fractal dimension VFD UNI

to the current state of the art (Zia ur Rehman et al., 2018;
Côté-Allard et al., 2019a). Consequently, and to reduce bias, the
preprocessed raw data (see section 2.1) is passed directly as an
image of shape 10 × 151 (Channel× Sample) to the ConvNet.

The ConvNet’s architecture, which is depicted in Figure 3,
contains six blocks followed by a fully connected layer for gesture-
classification. The network’s topology was selected to obtain a
deep network with a limited number of learnable parameters
(to avoid overfitting) with simple layer connections to enable an
easier, and thus more thorough analysis. All architecture choices
and hyperparameter selection were performed using the training
set of the 3DC Dataset or inspired by previous works (Côté-
Allard et al., 2019a,b). Each block encapsulates a convolutional
layer (LeCun et al., 2015), followed by batch normalization
(BN) (Ioffe and Szegedy, 2015), leaky ReLU (slope = 0.1) (Xu
et al., 2015) and dropout (Gal and Ghahramani, 2016) (with a
drop rate set at 0.35 following Côté-Allard et al., 2019a). The
number of blocks within the network was selected to obtain
a sufficiently deep network to study how the type of learned
features evolve with respect to their layer. The depth of the
network was limited by the number of examples available for
training and more complex layer connections [e.g., residual
network (He et al., 2016), dense network (Huang et al., 2017)]
were avoided to not ambiguate the analysis performed in this
work. The number of feature maps (64) was kept uniform for
each layer, allowing for easier comparisons of learned features
across the convolutional layers. The filter size was 1 × 26 so
that, similarly to the handcrafted features, the learned features
are channel independent. Due to the selected filter size, the
dimensions of feature maps at the final layer is 10× 1.

Adam (Kingma and Ba, 2014) was employed to optimize the
ConvNet with an initial learning rate of 0.0404709 and batch
size of 512 (as used in Côté-Allard et al., 2019b). The training
dataset was divided into training and validation sets using the
first three cycles and last cycle, respectively. Employing this
validation set, learning rate annealing was applied with a factor
of five and a patience of fifteen with early stopping applied when
two consecutive annealings occurred without achieving a better
validation loss.

For the purpose of the TDA, featuresmaps were extracted after
the non-linearity using per feature-map channel-wise average
pooling. That is, the number of feature maps remained the same,
but the feature map’s value per channel was averaged to a single
scalar (as is common with handcrafted features).

2.3.2. Multi-Domain Adversarial Training
To better understand what type of features are commonly
learned at each layer of the network, it is desirable that the

model generalizes well across participants. This feature generality
principle also motivates the design of the handcrafted features
(presented in section 2.2), as it would be impractical to create
new features for each new participant. Learning a general feature
representation across participants, however, cannot be achieved
by simply aggregating the training data of all participants and
then training a classifier normally. As, even when precisely
controlling for electrode placement, cross-subject accuracy using
standard learning methods is poor (Castellini et al., 2009). This
problem is compounded by the fact that important differences
exist between subjects of the 3DC Dataset (i.e., position and
rotation of the armband placed on the left or right arm).

Learning a participant-agnostic representation can be framed
as a multi-domain learning problem (Nam and Han, 2016).
In the context of sEMG-based gesture recognition, AdaBN, a
domain adaptation algorithm presented in Li et al. (2016), was
successfully employed as a way to learn a general representation
across participants in Cote-Allard et al. (2017), Côté-Allard
et al. (2019a). The hypothesis of AdaBN is that label-related
information (i.e., hand gestures) will be contained within the
network’s weights, while the domain-related information (i.e.,
participants) are stored in their BN statistics. Training is thus
performed by sharing the weights of the network across the
subjects dataset while tracking the BN statistics independently for
each participant.

To inhibit the shared network’s weights from learning subject-
specific representation, Domain-Adversarial Neural Networks
(DANN) training (Ganin et al., 2016) is employed. DANN is
designed to learn domain-invariant features across two domains
from the point of view of the desired task. The approach used
by DANN to achieve this objective consists of adding a second
head (referred to as the domain classification head) to the network
presented in section 2.3.1, which receives the output of block
B6. The goal of this second head is to learn to discriminate
between the domains. However, during backpropagation, the
gradient computed from the domain loss is multiplied by a
negative constant (set to -1 in this work) as it exits the domain
classification head. This gradient reversal explicitly forces the
feature distributions over the domains to be similar. Note that
the backpropagation algorithm proceeds normally for the first
head (gesture classification head). The loss function used for both
heads is the cross-entropy loss. The two losses are combined
as follows: Ly + λLd, where Ly and Ld are the prediction and
domain loss, respectively (see Figure 4), while λ is a scalar that
weights the domain loss (set to 0.1 in this work).

Using this approach, each participant of the 3DC Dataset
represents a different domain (n=22). A direct application of
DANN would thus initialize the domain classification head
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FIGURE 3 | The ConvNet’s architecture, employing 543,629 learnable parameters. In this figure, Bi refers to the ith feature extraction block (i∈{1,2,3,4,5,6}). Conv

refers to Convolutional layer. As shown, the feature extraction is performed after the non-linearity (leaky ReLU).

FIGURE 4 | Overview of the training steps of ADANN (identical to DANN) for one labeled batch from the source ({xs, ys}, blue lines) and one unlabeled batch from the

target ({xt}, red dashed lines). The purple dotted lines correspond to the backpropagated gradient. The gradient reversal operation is represented by the

purple diamond.

with 22 output neurons. This, however, could create a pitfall
where the network is able to differentiate between the domains
perfectly while simply predict one of the 21 other domains
to maximize Ld. Instead, the domain classification head is
initialized with only two output neurons. At each epoch, a
batch is created that contains examples from a single participant
(this batch is referred to as the source batch, and is assigned
the domain label 0). A second batch, referred to as the target
batch, is also created that contains examples from one of
the other participants selected at random, and is assigned the
domain label 1. As every participants data is used as the

source batch at each epoch, this ensures that the network is
forced to learn a domain-independent feature representation.
ADANN’s goal is thus to force the network to be unable to
accurately associate a participant with their examples while
achieving a highly discriminative gesture representation across
all participants. During training, the BN statistics are tracked
individually for each subject. Therefore, when learning from
a source or target batch, the network uses the BN statistics
associated with the corresponding participant. Note that, by
construction, the participant associated with the source is
necessarily different from the participant associated with the
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target. Consequently, the network is fed the source and target
batch consecutively (i.e., not both batch simultaneously). Also
note that the BN statistics are updated only in association with
the source batch to ensure equal training updates across all
participants. For a given iteration, once the source and target
batch are constructed, the training step proceeds as described for
DANN (see Figure 4).

To assess the performance of the proposed MDL algorithm,
two identical ConvNet (as described in section 2.3.1) were
created. One of the ConvNets was trained with ADANN,
whereas the other used a standard training loop (i.e., aggregating
the data from all participants), with both using the same
hyperparameters. The networks trained with both methods were
then tested on the test dataset with no participant-specific
fine-tuning.

2.3.3. Learning Visualization
One of the main problems associated with deep learning is
interpretability of how and why a model makes a prediction
given a particular input. A first step in understanding a network
prediction is through the visualization of the learned weights,
feature maps and gradients resulting from a particular input.
Consequently, several sophisticated visualization techniques
have been developed, which are aimed at facilitating a better
comprehension of the hierarchical learning that takes place
within a network (Simonyan et al., 2013; Springenberg
et al., 2014; Zhou et al., 2016). One popular such technique
is Guided Grad-CAM, which combines high resolution
pixel-space gradient visualization and class-discriminative
visualization (Selvaraju et al., 2017). Guided Grad-CAM is thus
employed to visualize how the ConvNet trained with ADANN
makes its decisions, both on real examples from the 3DC Dataset
and on an artificially generated signals.

Given an image that was used to compute a forward pass in
the network and a label y, the output of Guided Grad-CAM is
calculated from four distinct steps (note that steps two and three
are computed independently from each other using the output of
step one):

1. Set all the gradients of the output neurons to zero, except for
the gradient of the neuron associated with the label y (which is
set to one) and name the gradient of the neuron of interest yg .

2. Set all negative activations to zero. Then, perform
backpropagation, but before propagating the gradient at
each step, set all the negative gradients to zero again.
Save the final gradients corresponding to the input
image. This step corresponds to computing the guided
backpropagation (Springenberg et al., 2014).

3. Let Fj,i be the activation of the ith feature map of the jth layer
with feature maps of the network. Select a layer Fj of interest
(in this work Fj correspond to the rectified convolutional layer
of B6). Backpropagate the signal from the output layer to Fj,i

(i.e., ∂y
g

∂Fj,i
). Then for each i compute the global average pooling

of ∂y
g

∂Fj,i
and name it wj,i. Finally, compute: ReLU

(
∑

i wj,iFj,i
)

.

This third step corresponds to computing the
Gradient-weighted Class Activation Mapping
(Grad-CAM) (Selvaraju et al., 2016).

4. Finally, fuse the output of the two previous steps using point-
wise multiplication to obtain the output of Guided Grad-
CAM (Selvaraju et al., 2017).

2.3.4. Learned Feature Classification
Similarly to Chen et al. (2019), the learned features were extracted
to train a Linear Discriminant Analysis (LDA) classifier to
show the discriminative ability of the learned features. LDA was
selected as it was shown to provide robust classification within
the context of sEMG-based gesture recognition (Campbell et al.,
2019c), does not require hyperparameter tuning, and creates
linear boundaries within the input feature space. LDAwas trained
in a cross-subject framework on the training dataset and tested on
the test dataset. For comparison purposes, LDA was also trained
on the handcrafted features described in section 2.2. Note that the
implementation was from scikit-learn (Pedregosa et al., 2011).

2.3.5. Regression Model
One method of highlighting the information content encoded
throughout a network is to see how well-known handcrafted
features can be predicted from the network’s feature maps at
different stages. This can be achieved using an added output
neuron (regression head) at the feature extraction stage [i.e., after
the non-linearity, but before the average pooling (before the
green trapezoid of Figure 3)] of each block. The goal of this
output is to map from the learned features to the handcrafted
features of interest. As all the features considered in section 2.2
are calculated channel-wise, only the information from the first
sEMG channel (arbitrarily selected) of the feature maps will be
fed to the regression head.

The training procedure to implement this is as follows: first,
pre-train the network using ADANN (presented in section 2.3.2).
Second, freeze all the weights of the network, except for the
weights associated with the regression head of the block of
interest. The Mean Square Error (MSE) is then employed as the
loss function with the target being the value of the handcrafted
feature of interest from the first sEMG channel. Due to the
stochastic nature of the algorithm, the training was performed
20 times for each participant and the results were given as
the average MSE computed on the test dataset across of all
participants. Note that the targets derived from multi-output
feature extraction methods (e.g., Autoregressive Coefficients)
corresponded to the first principal component returned by
Principal Component Analysis (PCA) (where singular value
decomposition was performed on the training and test set for the
training and test phase, respectively).

2.4. Topological Data Analysis—Mapper
Conventional TDA methods, such as Isomap (Balasubramanian
and Schwartz, 2002) produce a low dimensional embedding
by retaining geodesic distances between neighboring points.
However, they often have limited topological stability (Choi and
Choi, 2007) and lack the ability to produce a simplicial complex (a
ball-and-stick simplification of the shape of the dataset) with size
smaller than the original dataset (Singh et al., 2007). The Mapper
algorithm (Singh et al., 2007) is a TDA method that creates
interpretable simplifications of high-dimensional data sets that
remain true to the shape of the data set. Mapper can thus produce
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a stable representation of the topological shape of the dataset at
a specified resolution, where the shape of the network has been
simplified during a partial clustering stage. Further, the shape of
the dataset is defined such that it is coordinate, deformation, and
compression invariant. Consequently, this TDA algorithm can
be employed to better understand how handcrafted and deep-
learned features relate to one-another. In this work, Mapper is
employed on three scenarios; (A), (B), and (C). In scenario (A),
the algorithm only uses the handcrafted features as a way to
validate the hyperparameters selected by cross-referencing the
results with previous EMG works using Mapper (Phinyomark
et al., 2017; Campbell et al., 2019a). For scenario (B), only the
learned features are used to determine if features within the same
block extract similar or dissimilar sources of information (i.e., the
degree at which the features within the same block are dispersed
across the topological network). Finally, in scenario (C), Mapper
is applied to the combination of learned and handcrafted features
to better understand their relationship and to provide new
avenues of research for sEMG-based gesture recognition.

Sections 2.4.1–2.4.2, below, provide additional details about
the approach, mathematical basis and implementation ofMapper
in this work. Readers who are familiar with, or prefer to avoid
these details, may jump directly to section 3.

2.4.1. Mapper Algorithm
The construction of the topological network created using the
Mapper algorithm can be seen as a five stage pipeline:

1. prepare: organize the data set to produce a point cloud of
features in high dimensional space.

2. lens: filter the high dimensional data into a lower dimensional
representation using a lens.

3. resolution: divide the filtration into a set of regions.
4. partial clustering: for each region, cluster the contents in the

original high dimensional space.
5. combine: combine the region isolated clusters into a

single topological network using common points across
regions (Geniesse et al., 2019).

2.4.2. Mathematical Definition of Mapper
A mathematical definition of the Mapper algorithm for feature
extraction using a multi-channel recording device is as follows:

Let x
def
= (Ex1, . . . , ExC) be a series of samples for each C

channels, where Exc ∈ R
S,∀c ∈ {1, . . . ,C} and S is the length

of a consecutive series of data. Define X
def
= {xn}

N
n=1 a set of

N examples. Let also 8
def
= {φm}

M
m=1 be a set of M feature-

generating functions of the form φm :R
S → R. Given xn,c

the c th element of xn ∈ X , the resulting feature fmn,c ∈

R is obtained by applying φm such that fmn,c
def
= φm(xn,c).

Consequently, the vector Efm ∈ R
N×C is obtained such that Efm

def
=

(fm1,1, f
m
1,2, . . . , f

m
1,C, f

m
2,1, f

m
2,2, . . . , f

m
2,C, . . . , f

m
N,C).

The first step of the Mapper algorithm is to consider F
def
=

{Efm}
M
m=1, the transformed data points from X . Then define

ψ :R
N×C → R

Z , with 0 < Z ≪ N × C and consider the set

Z
def
= {ψ(Ef )|Ef ∈ F }. This dimensionality reduction (N × C → Z)

is employed to reduce the computational cost of the rest of the
Mapper algorithm and can be considered as a hyperparameter of
the Mapper algorithm.

In the second step of the algorithm, define σ :R
Z → R

W ,

with 0 < W ≪ Z and consider the set W
def
= {σ (Ez)|Ez ∈ Z }. In

the literature (Singh et al., 2007), the function σ is called filter
function andW is the image or lens.

Third, let C be the smallest hypercube of RW which coversW
entirely. As X is a finite set, each dimension ofC is a finite interval.
Let k ∈ N

∗, be a hyperparameter that subdivides C evenly into kW

smaller hypercubes. Note that the side lengths of these smaller
hypercubes are H = 1

k
× the length size of C. Denotes V the set

of all vertices of these smaller hypercubes. Next, fix D > H as
another hyperparameter. For each Ev ∈ V , consider the hypercube
cEv of length D centered on Ev. A visualization of step 3 is given
in Figure 5.

Fourth, define Z Ev
def
= {Ez ∈ Z |σ (Ez) ∈ cEv}, the set of all elements

of Z that is projected in the hypercube cEv. Let ξ be a clustering
algorithm and ξ (Z Ev) be the resulting set of clusters. Define B as
the set that consist of all so obtained clusters for all Z Ev.

Fifth, compute the topological graph G using each element
of B as a vertex and create an edge between vertices G i and G j
(i, j ∈ {1, . . . , |B |}, i 6= j) if G i ∩ G j 6= ∅.

2.4.3. Mapper Implementation Within This Work
In this work, as described in section 2.1 the dataset was recorded
using the 3DC Armband which offers 10 channel-recording
(C = 10) and an example is comprised of 151 data-points
(S = 151) for each channel. The number of considered features
in scenarios (A), (B), and (C), are 79, 384, and 465, respectively.
Note that multi-output feature extraction techniques (e.g., AR,
HIST), consider each component of that vector as a separate
feature. Each element of F is obtained by computing the result
of a feature from section 2.2 (corresponding to φm() in the
mathematical definition given previously) over each channel of
each example of the Training Dataset. The dataset undergoes
the first dimensionality reduction (9()) using PCA (Wold
et al., 1987), where the number of principal components used
corresponds to 99% of the total variance. For scenarios (A),
(B), and (C), 99% of the variance resulted in 44, 77, and
119 components, respectively, extracted from 971,860 channel-
wise examples.

A second dimensionality reduction is then performed
(σ ()), referred to as the filter function, with the goal of
representing meaningful characteristics of the relationship
between features (Singh et al., 2007). Within this study, t-
Stochastic Neighborhood Embedding (t-SNE) (Maaten and
Hinton, 2008) is used to encapsulate important local structure
between features. The two-dimensional (2D) t-SNE lens was
constructed with a perplexity of 30, as this configuration resulted
in the most stable visualization over many repetitions [tested
on scenario (A)]. Using t-SNE as part of the Mapper algorithm
instead of on its own leverages its ability to represent local
structure while avoiding the use of a low-dimensional manifold
to encapsulate global structure. Instead, the global structure
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FIGURE 5 | An example of step 3 of the Mapper algorithm with W = 2. The purple dots represent the elements of W . In (A), the red square corresponds to C. In (B),

C is subdivided using k2 squares of length H (with k = 2 in this case). The orange diamonds, in both (B,C), represent the elements of V . Finally, the square cEv of length

D is shown on the upper left corner of (C), overlapping other squares centered on other elements of V (dotted lines).

is predominantly incorporated into the topological network
produced by Mapper during the fifth stage.

The 2D lens was then segmented into a set of overlapped
bins (the hypercubes centered on the elements of V ), called the
cover. A stable topological network was obtained when each
dimension was divided into 5 regions, forming a grid of 25
cubes that were overlapped by 65%. The number of regions
correspond to the topological network’s resolution, while the
overlap has an influence on the amount of connection formed
between nodes (Singh et al., 2007).

Data points in each region are then clustered in isolation to
provide insight into the local structure of the feature space (the
elements of Z Ev correspond to the data-point of a specific region).
For each region, Ward’s hierarchical clustering (ξ ) was applied
to construct a dendogram that grouped similar features together
according to a reduction in cluster variance (Ward, 1963).

Finally, the dendograms produced using neighboring regions
are combined to form the topological network (G ) using the
features that lie in the overlapped area to construct the edges
between the nodes.

The implementation of the Mapper algorithm was facilitated
by a combination of the Kepler Mapper (van Veen and
Saul, 2019) and the DyNeuSR (Dynamical Neuroimaging
Spatiotemporal Representations) (Geniesse et al., 2019) Python
modules. An extended coverage of processing pipelines for time-
series TDA is given in Phinyomark et al. (2018).

3. RESULTS

3.1. Handcrafted Features
Figure 6 shows the topological network produced using only the
handcrafted features. The Kullback-Leibler divergence of the t-
SNE embedding of the handcrafted features plateaued at 0.50,
indicating that the perplexity and number of iterations used was

appropriate for the dataset. The topological network consisted of
125 nodes and 524 edges.

The color of the nodes within the network indicates the
percentage of members that belong to the feature group of
interest [(A):SAP, (B): NLC, (C): FI, (D): TSM, and (E): UNI].
The presence of an edge symbolizes common features present
in the connected nodes, which can be used at a global scale
to verify that functional groups (similar information) cluster
together. Due to the topological nature of the graph, information
similarity between nodes is measured using the number of
edges that separate two nodes and not the length of the edges.
Detailed interpretation of the TDA networks are given in
the discussion.

3.2. Deep Features
The average cross-subject accuracy on the test set when using
the proposed ADANN framework was 84.43 ± 0.05%. Using
a Wilcoxon signed-rank test (Wilcoxon, 1992) with n = 22,
and considering each participant as a separate dataset, this was
found to significantly outperform (p < 0.0001) the average
accuracy of 65.03 ± 0.08% obtained when training the ConvNet
conventionally. Furthermore, based on Cohen’s d, this difference
in accuracy was considered to be huge (Sawilowsky, 2009). The
accuracy obtained per participant for each training method is
given in Figure 7A, and the confusion matrices calculated on the
gestures are shown in Figure 7B.

Figure 8A provides visualizations of the ConvNet trained with
ADANN using Guided Grad-CAM for several examples from the
3DC Dataset, These visualizations highlight what the network
considers “important” (i.e., which part of the signals had the
most impact in predicting a given class) for the prediction of a
particular gesture.

Instead of using Guided Grad-CAM to visualize how the
network arrived at a decision for a known gesture, Figure 8B
presents the results of the visualization algorithm when the
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FIGURE 6 | Topological network generated exclusively for the handcrafted features, where nodes are colored to indicate percent composition of: (A) signal amplitude

and power features (SAP), (B) non-linear complexity (NLC), (C) frequency information features (FI), (D) time series modeling features (TSM), and (E) unique features

(UNI). Dashed boxes highlight dense groupings of the specified functional group in each of the networks.

network is told to find a gesture that is not present in the input.
This is akin to using a picture of a cat as an input to the network
and displaying the parts of the image that most resemble a
giraffe. In Figure 8B, the input was randomly generated from a
Gaussian distribution of mean 0 and standard deviation of 450
(chosen to have the same scale as the EMG signals of the 3DC
Dataset). For six of the eleven gestures (Radial Deviation, Wrist

Extension, Supination, OpenHand, Chuck Grip, and Pinch Grip)
the network correctly identifies no relevant areas pertaining to
these classes. While the network does highlight features in the
input space associated with the other gestures, the magnitude
of these contributions was substantially smaller (half or less)
than when the requested gesture was actually present in the
input signal.
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FIGURE 7 | Classification results of deep learning architectures. (A) Per-participant test set accuracy comparison when training the network with and without ADANN,

(B) Confusion matrices on the test set for cross-subject training with and without ADANN.

The topological network produced using only the learned
features is given in Figure 9. The color of the nodes within the
network indicates the percentage of members that belong to the
feature group of interests [(A): B1, (B): B2, (C): B3, (D): B4, (E):
B5, and (F): B6]. Interpretation of the TDA network follows the
rational stated in section 3.1. The Kullback-Leibler divergence of
the t-SNE embedding of the handcrafted features plateaued at
0.37, again indicating that the perplexity and number of iterations
used was appropriate for the dataset. The topological network
consisted of 115 nodes and 672 edges.

3.3. Hybrid Features
The topological network produced using both handcrafted and
learned features is shown in Figure 10. The Kullback-Leibler
divergence of the t-SNE embedding of all features plateaued at
0.53, again indicating that the perplexity and number of iterations
used was appropriate for the dataset. The topological network
consisted of 115 nodes and 770 edges. From this network, only
a subset of nodes were occupied by both handcrafted and learned
features. Those nodes were indicated in Figure 10.

The color of the nodes within the network indicates the
percentage of members that belong to the feature group of
interests (learned features). Information similarity was shown
through a zoomed-in region of the network, where learned and
handcrafted features clustered together. The feature members of
the numbered nodes were listed in Table 2. Interpretation of the
TDA network follows the rational stated in section 3.1.

Table 3 shows the average accuracy (grouped by block for
the learned features and by group for the handcrafted features)
obtained when training an LDA on each feature and when
using all features within a category (i.e., within a block or

within a group of handcrafted feature). Note that for the learned
features, PCA is applied to the feature map and the first
component is employed to represent a given learned feature.
Figure 11 shows examples of confusion matrices computed from
the LDA classifications of singular features (both handcrafted
and learned). Figure 11, also shows some confusion matrices
obtained from the LDA’s classification result when using all
features within a category.

Figure 12 shows the average mean square error computed
when regressing from the ConvNet’s learned features (see
section 2.3.5) to fifteen handcrafted features (three per Functional
Group). Note that the mean squared error is obtained by
computing the regression using only the output of the block
of interest.

4. DISCUSSION

4.1. Handcrafted Features
The result of the Mapper algorithm applied to handcrafted
features (see Figure 6) showed that the handcrafted features
agglomerated mostly with their respective groups, and that
the topological graph is Y-shaped. This shows that the
hyperparameters selected in this work are consistent with those
found in previous EMG literature (Phinyomark et al., 2018;
Campbell et al., 2019a).

4.2. ADANN and Deep Learning
Visualization
Figure 7B shows that training the network with ADANN
outperforms the standard training method in cross-subject
classification. One advantage of ADANN in the context of this

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 12 March 2020 | Volume 8 | Article 158

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Côté-Allard et al. Handcrafted vs. Deep Learning Features

FIGURE 8 | Output of Guided Grad-CAM when asked to highlight specific gestures in an example. For all graphs, the y-axis of each channel are scaled to the same

range of value (indicated on the first channel of each graph). Warmer colors indicate a higher “importance” of a feature in the input space for the requested gesture.

The coloring use a logarithmic scale. For visualization purposes, only features that are within three order of magnitudes to the most contributing feature are colored.

(A) The examples shown are real examples and correspond to the same gestures that Guided Grad-CAM is asked to highlight. (B) A single example, generated using

Gaussian noise of mean 0 and standard deviation 450, is shown three times. While the visualization algorithm does highlight features in the input space (when the

requested gesture is not truly present in the input), the magnitude of these contributions is substantially smaller (half or less) than when the requested gesture is

present in the input.
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FIGURE 9 | Topological network generated for exclusively the learned features, where nodes are colored to indicate percent composition of: (A) Block 1’s features,

(B) Block 2’s features, (C) Block 3’s features, (D) Block 4’s features, (E) Block 5’s features, and (F) Block 6’s features. Dashed boxes highlight dense groupings of the

specified block features in each of the networks.

work is that the weights of the network have strong incentives
to be subject-agnostic. As such, the learned features extracted
from the network can be thought of as general features (and to
a certain extent subject-independent) for the task of sEMG-based
hand gesture recognition.

Applying Guided Grad-CAM, as in Figure 8, shows that the
network mostly focuses on different channels for the detection
of antagonist gestures. This suggests that the ConvNet was able
to extract spatial features despite having access only to one
dimensional convolutional kernels. Furthermore, it is notable
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FIGURE 10 | Topological network generated for all features, where nodes were colored to indicate percent composition of learned features. The dashed boxes

highlight dense grouping of handcrafted features with their associated type.

TABLE 2 | Members of nodes labeled in Figure 6. LeFX refers to a Learned Feature from block X.

# Summary Members

1 TSM+LeF5 AR2 AR4 DAR2 DAR4 CC1 CC4 DCC1

DCC3 SNR 8xLeF1 1xLeF2 4xLeF4 10xLeF5 13xLe5

2 TSM+UNI+LeF6 APEN AR2 AR4 DAR2 DAR4 CC1 CC4 DCC1 DCC3 DCC4 CE DFA DPR HIST123

SKEW MAVS OHM PSDFD PSR SMR SNR VCF VFD 1xLeF1 3xLeF2 3xLeF5 21xLeF6

3 TSM+UNI+LeF6 APEN AR2 AR4 DAR2 DAR4 CC1 CC4 DCC1 DCC3 DCC4 CE DFA DPR HIST12

SKEW MAVS OHM PSDFD PSR SMR SNR VCF VFD 1xLeF1 1xLeF2 1xLeF5 27xLeF6

4 UNI+LeF6 APEN DCC4 CE DFA DPR HIST123

SKEW MAVS OHM PSDFD PSR SMR VCF VFD 2xLeF2 2xLeF5 21xLeF6

2 TSM+UNI+LeF6 APEN CC1 CC4 DCC4 CE DFA DPR HIST123

SKEW MAVS OHM PSDFD PSR SMR SNR VCF VFD 37xLeF6

6 TSM+UNI+LeF6 CC1 CC4 DCC4 CE DPR HIST123 SKEW MAVS PSDFD SMR

SNR VCF VFD 5xLeF2 5xLeF4 1xLeF5 37xLeF6

7 UNI+LeF6 DCC4 CE DPR HIST123 SKEW MAVS

PSDFD SMR VCF VFD 2xLeF2 15xLeF6

8 UNI+LeF6 DCC4 CE DPR HIST123 SKEW MAVS PSDFD SMR

VCF VFD 5xLeF2 5xLeF4 1xLeF5 37xLeF6

9 UNI+LeF6 APEN DCC4 CE DFA DPR HIST2 SKEW MAVS

OHM PSDFD PSR SMR VCF VFD 15xLeF2 36xLeF6

10 All Handcrafted+LeF6 APEN CC14 DCC4 CE DFA DPR HIST123 KURT SKEW M2 MAVS MAX MHW23

MTW123 MNP TTP OHM PSDFD PSR SM SMR SNR SSI TM DTM VAR DVARV VCF VFD 11xLeF6

11 NLC+LeF6 APEN SAMPEN BC

KATZ 1xLeF6

that for all the examples given in Figure 8A, the most active
channel was not the primary channel used for the gesture
prediction. In fact, for the vast majority of gestures, the

channel with the highest amplitude did not contribute in a
meaningful way to the network’s prediction. This observation
held true while looking at several other examples from the
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TABLE 3 | Accuracy obtained on the test set using the handcrafted features and

the learned features from their respective block.

Single feature All features

Average accuracy (%) STD (%) Accuracy (%)

SAP 26.80 7.0 41.61

FI 19.95 2.87 34.80

NLC 22.32 7.15 31.49

TSM 22.24 3.33 37.18

UNI 15.32 5.11 48.37

Block 1 28.49 3.84 74.59

Block 2 28.28 4.66 78.26

Block 3 28.90 5.06 79.19

Block 4 29.21 5.15 78.77

Block 5 28.18 5.48 79.23

Block 6 26.62 6.19 81.38

The Single Feature accuracies are given as the average accuracy over all the features of

their respective block/category.

3DC Dataset. This might indicate that the common practice of
placing the recording channel directly on the most prominent
muscle for a given gesture within the context of gesture
recognition may not be optimal. One could thus use the type
of information provided by algorithms, such as Guided Grad-
CAM as another way of performing channel selection (instead of
simply using classification accuracy). The absence of importance
on amplitude characteristics is in contrast to conventional
practices of handcrafted feature engineering—where the feature
set typically relies heavily on amplitude characteristics. This
perhaps explains the growing interest in handcrafted feature
extraction techniques that do not capture amplitude information,
such as TDPSD, that have been demonstrated to outperform
conventional amplitude-reliant features in terms of accuracy and
robustness to confounding factors (Khushaba et al., 2016).

When applying Guided Grad-CAM on a noise input (one
where the target gesture is not present, as seen in Figure 8B),
the reported activation level is substantially lower, and in some
cases non-existent. When the standard deviation of the Gaussian
noise was increased by 33%, the network did not find any
features resembling any gesture. This is most likely due to the
fact that increasing the spread of the noise leads to a potentially
greater gap in value between two adjacent data-points (reduced
smoothness) fostering the condition for a more unrealistic
signal. One could thus imagine training a generative adversarial
network with the discriminative function based on the activation
level calculated by Guided Grad-CAM, and modulating the
difficulty by augmenting the signal’s amplitude. This could
facilitate training a network to not only be able to generate
realistic, synthetic EMG signal, but also have the signal resemble
actual gestures.

In contrast to the topological networks based on handcrafted
features, those based on the learned features appear as a long
flair with a loop. From Figure 9A, the learned features from
block 1 are concentrated in the left segment of the flare, and the
lower segment of the loop. From Figure 9B, the learned features

from block 2 were located slightly more central to the network
than the block 1 features. Additionally, a small subset of block
2 features appeared at the right segment of the flare, indicating
a second distinct source of information was being harnessed.
From Figures 9C–E, the features of block 3, 4, and 5 relocate
their concentration of features to converge in the center of the
network. Finally from Figure 9F, the concentration of all block 6
features lies in the center of the network. Thus, it can be seen that
learned features from the same block tend to cluster together and
remain close in the map to adjacent blocks in the network. The
only exception to this is from the first block to the second, where
substantially different features were generated by the latter. This
suggests that the first layer may serve almost as a preprocessing
layer which conditions the signal for the other layers.

4.3. Hybrid Features Visualization
The topological network generated from using both the
handcrafted and learned features (see Figure 10) followed two
orthogonal axes with the handcrafted features on one and the
learned features on the other. The middle of the graph (where
the two axis intercept) is where any nodes containing both
handcrafted and learned features are found. The vast majority
of these nodes are populated by features from block 6 and the
NLC, TSM and UNI functional groupings. No nodes in the graph
contained both handcrafted features and features from block 3,
suggesting that block 3 extracted features not captured by current
feature designs. Conversely, no learned features shared a node
with features from the FI family, suggesting that these features
may not have been extracted by the network.

While this topological network informs the type of
information encoded within each individual feature, it is
important to note that information can still be present but
encoded in a more complex way within the weights of the deep
network. This information flow can be visualized from the
regression graphs of Figure 12. Features from the SAP family are
more easily predicted within the early blocks whereas features
from the TSM and NLC family require the latter blocks of the
network to achieve the best predictions. Interestingly, while
features from the FI family did not share any nodes learned
features, one can see that the deep network is able to better
extract this type of information within the intermediary blocks.
This indicates (from Figures 10, 12) that, while frequency
information is not explicitly used by the ConvNet, this type
of information is nonetheless indirectly used to compute the
features from the latter blocks. An example of a feature for which
the ConvNet was unable to leverage its topology is the HIST
(see Figure 12).

4.4. Understanding Deep Features
Predictions
The topological network of Figure 10 showed that the type of
information encoded within the lower blocks of the ConvNet
tended to be highly dissimilar to what the handcrafted features
encoded. Interestingly, however, Figure 11 shows that the role
fulfilled by these features is similar. That is, both the handcrafted
and learned features (from the lower blocks) try to encode
general properties that can distinguish between all classes.
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FIGURE 11 | Confusion matrices using the handcrafted features and the learned features from the first, penultimate and last block as input and a LDA as the classifier.

The first column, denoted as All features, shows the confusion matrices when using all 64 learned features of Block 1, 5, and 6, respectively (from top to bottom) and

the set of UNI handcrafted features. The next five columns, denoted as Single Feature, show the confusions matrices for handcrafted feature examplars and from the

same network’s blocks but when training the LDA on a single feature. The subset of learned features was selected as representative of the typical confusion matrices

found at each block. The examplars of the handcrafted features were selected from each handcrafted features’ category (in order: SAP, FI, NLC, TSM, and UNI).

The confusion matrices obtained from training an LDA on a
single feature highlight this behavior (see Figure 11 for some
examples) as both the handcrafted features and the learned
features (before the last block) are able to distinguish between
gestures relatively equally. In contrast, the features extracted
from the last block (and to a lesser extent from the penultimate
block) have been optimized to be a gesture detector instead of
a feature detector. A clear visual of this behavior is illustrated
in Figure 11, where the main line highlighted in the confusion
matrices from block 6 was a single column (corresponding
to the prediction of a single gesture), instead of the typical
diagonal. In other words, during training, the neurons of the
final block are encoded to have maximum activation when a
particular class was provided in the input window and minimum
activation when other classes were provided; effectively creating
a one-vs.-all (OVA) classifier. This behavior is consistent with
the feature visualization literature found in image classification
and natural language processing, where semantic dictionaries or
saliency maps have depicted neuron representations becoming
more abstract at later layers (Simonyan et al., 2013; LeCun et al.,
2015). This also explains why the features from the last block
obtained the worst average accuracy when taken individually
while achieving the highest accuracy as a group (see Table 3).
That is, as each feature map of the last layer tries to detect a
particular gesture, its activation for the other gestures should

be minimal, making the distinction between the other gestures
significantly harder. The final decision layer of the network
can then be thought of as a weighted average of these OVA
classifiers to maximize the performance of the learned feature
maps. Note that in Table 3, the lower accuracies obtained from
the handcrafted features as a group were expected as each feature
within the same family provides similar type of information,
even more so than the learned features of the network (as seen
in Figures 6, 9, 10). Overall, the best performing handcrafted
feature set as a group was the features from the UNI family
despite the fact that they were the worst on average when alone.
This is most likely due to the fact that by definitions, features
within this family are more heterogeneous.

5. CONCLUSION

This paper presents the first in-depth analysis of features learned
using deep learning for EMG-based hand gesture recognition.
The type of information encoded within learned features and
their relationship to handcrafted features were characterized
employing a mixture of topological data analysis (Mapper),
network interpretability visualization (Guided Grad-CAM),
machine learning (feature classification prediction), and by
visualizing the information flow using feature regression.
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FIGURE 12 | Mean squared error of the regressions from learned features to handcrafted features, with respect to the number of blocks employed for the regression.

The features are grouped with their respective functional groups.
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As a secondary, but significant contribution, this work
presented ADANN, a novel multi-domain training algorithm
particularly suited for EMG-based gesture recognition shown
to significantly outperform traditional training on cross-subject
classification accuracy.

This manuscript paves the way for hybrid classifiers that
contain both learned and handcrafted features. An ideal
application for the findings of this work would rely on a mix
of handcrafted features and learned features taken from all
four extremities of the hybrid topological network, and at the
center to provide complementary, and general features to the
classifier. A network could then be trained to augment its
sensitivity to similar classes. For example, to alleviate ambiguity
between pinch grip and chuck grip, a learned feature that encodes
the one-vs.-all information of pinch grip could be included
into the original feature set or into an otherwise handcrafted
only feature set. Alternatively, handcrafted feature extraction
stages may be installed within the deep learning architecture by
means of neuroevolution of augmenting topologies (Chen and
Alahakoon, 2006), a genetic algorithm that optimizes the weights
and connections of deep learning architectures.

The main limitation of this study was the use of a single
architecture to generate the learned features. Though this
architecture was chosen to be representative of current practices
in myoelectric control and be extensible to other applications,
the current work did study the impact of varying the number
of blocks and the composition of these block on the different
experiments. Additionally, although the set of handcrafted
features was selected to be comprehensive over the sources
of information available from the EMG signal, explicit time-
frequency features, such as those based on spectrograms and
wavelet were not included in the current work, as they were ill-
adapted to the framework employed in this study. Furthermore,
an analysis including a larger amount of gestures should also be
conducted. Importantly, these results are presented for a single
1D electrode array, and may not be representative of larger 2D
arrays, such as those used in high density EMG applications.
Similarly, explicit spatio-temporal features, such as coherence
between electrodes, were not explored, and the convolutional
kernels were restricted to 1D (although as seen in Figure 8A the
network was still able to learn spatial information to a certain
extent). Omitting these type of complex features was a design
choice as this work represents a first step in understanding and
characterizing learned features within the context of EMG signal.
As such, using this manuscript as a basis, future works should
study the impact of diverse architectures on the type of learned
features and will incorporate spatio-temporal features (both

handcrafted and from 2D convolutional kernels). Additionally,
formal feature set generation and hybrid classifiers should be
investigated using the tools presented in this work.
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