

DePaul University
Digital Commons@DePaul

College of Science and Health Theses and Dissertations

College of Science and Health

Summer 8-22-2021

Patterns of torso morphology in extant quadrupedal amniotes and their paleontological applications

Myles M.A. Walsh DePaul University, mwalsh50@mail.depaul.edu

Follow this and additional works at: https://via.library.depaul.edu/csh_etd

Part of the Biology Commons

Recommended Citation

Walsh, Myles M.A., "Patterns of torso morphology in extant quadrupedal amniotes and their paleontological applications" (2021). *College of Science and Health Theses and Dissertations*. 454. https://via.library.depaul.edu/csh_etd/454

This Thesis is brought to you for free and open access by the College of Science and Health at Digital Commons@DePaul. It has been accepted for inclusion in College of Science and Health Theses and Dissertations by an authorized administrator of Digital Commons@DePaul. For more information, please contact digitalservices@depaul.edu.

Patterns of torso morphology in extant quadrupedal amniotes and their paleontological

applications

A Thesis Presented in

Partial Fulfillment of the

Requirements for the Degree of

Master of Science

July 2021

By

Myles M.A. Walsh

Thesis Advisor: Kenshu Shimada, Ph.D.

Department of Biological Sciences

College of Science and Health

DePaul University

Chicago, Illinois

Table of Contents

Table of Contentsii
List of Tablesiv
List of Figuresv
List of Appendicesvi
Acknowledgementsvii
Abstractviii
I. INTRODUCTION1
II. MATERIALS AND METHODS4
A. EXAMINED SPECIMENS4
B. DATA COLLECTION AND TORSO SHAPE CONCEPTUALIZATION5
C. DEFINING TORSO SHAPES AND TORSO SHAPE GROUPS6
D. VOLUME CALCULATION AND MODEL VALIDATION8
E. DIET TYPE ASSIGNMENT9
F. HYPOTHESIS TESTING9
G. CHARACTER MAPPING10
III. RESULTS12
A. Model Validation Results12
B. Torso Shape Groupings12
C. Principal Component Analysis14
D. Effect of Diet on Torso Shape15
E. Effect of Limb Bone Length on Torso Shape16

a. Effects of Humerus Length on Torso Shape16
b. Effects of Femur Length on Torso Shape17
F. Character Mapping18
IV. DISCUSSION
A. A novel method for investigating the amniote torso
B. Relationships associated with the shape of the amniote torso and their significance21
C. Evolutionary patterns of amniote torso shape23
D. Factors that could influence torso shape25
E. Potential future research
V. CONCLUSIONS
VI. LITERATURE CITED

List of Tables

Table 1. Summary of cluster means for torso shape variables
Table 2. Summary of cluster (torso shape group) assignments
Table 3. Means and standard error of average MHL and MFL for original torso shape groups47
Table 4. Means and standard error of average MHL and MFL for consolidated torso shape
groups
Table 5. Post hoc results for average MHL by original ten torso shape groups
Table 6. Post hoc results for average MHL by consolidated eight torso shape groups
Table 7. Post hoc results for average MHL by consolidated seven torso shape groups
Table 8. Results of ANOVA for average MFL by original 10 torso shape group
Table 9. Post hoc results for average MFL by original 10 torso shape groups
Table 10. Results of ANOVA for average MFL by consolidated eight torso shape groups54
Table 11. Post hoc results for average MFL by consolidated eight torso shape groups55
Table 12. Results of ANOVA for average MFL by consolidated seven torso shape groups56
Table 13. Post hoc results for average MFL by consolidated seven torso shape groups

List of Figures

Figure 1. Schematic conceptual model for complex amniote torso morphology	
Figure 2. Elliptic conical frustum	59
Figure 3. 'Elbow Curve' used to determine optimal number of clusters	60
Figure 4. Conceptual model validation results	61
Figure 5. Schematic approximation of original 10 torso shapes	62
Figure 6. PCA scatter plot of 10 original torso shape groupings	63
Figure 7. PCA scatter plot of amniotes by diet type	64
Figure 8. PCA scatter plot of amniotes by taxonomy (class)	65
Figure 9. Distribution of torso shapes across diet types	66
Figure 10. Average standardized volume for diet types	67
Figure 11. Torso shapes mapped on phylogenetic tree of Reptilia	68
Figure 12. Torso shapes mapped on phylogenetic tree of Monotremata, Marsupialia,	
Afrotheria, and Xenarthra	69
Figure 13. Torso shapes mapped on phylogenetic tree of Eurachontoglires	70
Figure 14. Torso shapes mapped on phylogenetic tree of Laurasiatheria	71
Figure 15. Torso shapes mapped on phylogenetic tree of Carnivora	72

List of Appendices

Appendix 1. Photographs of examined specimens	.73
Appendix 2: List of examined taxa from this study	79
Appendix 3. Raw torso shape measurements for the amniote specimens measured	82
Appendix 4. List of catalog numbers, diet assignment, and other categories	.86
Appendix 5. Raw coordinate data for principal component analysis on torso shape group	90
Appendix 6. Loadings for principal components by torso shape variable	94

Acknowledgements

I received a tremendous amount of assistance and support throughout the duration of this research. A large portion of this study took place as we navigated a challenging time due to the COVID-19 pandemic, yet so many people rose to the occasion and were integral in helping me get to this point. I would first like to thank my professors from DePaul University's Department of Biological Sciences and the College of Science and Health for the financial support and for providing a foundational framework and challenging me to achieve academic success. Thank you to my committee members, Drs. Windsor Aguirre and Timothy Sparkes, for their feedback and help with developing this project. I would also like to thank my advisor, Dr. Kenshu Shimada, for his guidance and insights during every stage of this project and for allowing me to explore my own interests. Your generosity and willingness to accompany me on data collecting excursions was absolutely a highlight of my research experience. Thank you to Ashley Mason-Burns-Meerschaert and Jay Villemarette (Museum of Osteology), Dr. Alan Resetar and Dr. Adam Ferguson (FMNH), and Katherine Doyle (MNHC) for granting me access to their wonderful collections and providing additional information which made collecting the data for this project an efficient and enjoyable process. I thank my graduate cohort, The Devil Dawgz, and members of the Shimada Lab for providing academic and moral support. Finally, I am indebted to my family and friends for pushing me to pursue my passions and for always being there to listen to me talk about bones and shapes. In particular, a huge thank you to my sister, Catherine Walsh, for numerous R Studio filled sessions. Thank you to all!

vii

Abstract

The relationship between form and function is an overarching theme in the field of biology. Specifically, body size and shape are important factors when considering the biology of an organism. This study examined the torso morphology of a diverse set of 124 extant terrestrial and semi-aquatic amniote taxa using a novel approach to construct approximated torso shape groupings. My study shows the presence of 10 distinct torso shapes within the examined amniotes, and these torso shape groupings were used to evaluate hypotheses associated with diet and limb bone length as well as explore potential evolutionary patterns. Herbivores had a more voluminous torso and were most commonly found to exhibit a torso shape with a wider girth. Also, a statistically significant relationship of certain torso shapes with limb bone lengths was found. These results can be useful for reconstructing extinct taxa. If a relatively complete skeleton is discovered that includes a well-preserved humerus or femur and a torso length is able to be determined, then a torso shape can be approximated using the results of this study. Phylogenetic character mapping identified potential homologous torso shapes in lagomorphs and rodents as well as in artiodactyls and perissodactyls given shared ancestry in these groups. Additionally, potential homoplasious shapes in reptiles and some semi-aquatic mammals were found. This study explored factors that might affect the shape of the amniote torso and provides additional evidence to support that herbivores have large and voluminous torsos to accommodate a gastrointestinal tract needed to digest plant material. Other factors that might influence torso shape include cursoriality, mode of thermoregulation, habitat, life-history, and behavioral or morphological adaptations in response to large scale environmental changes. This study represents a relatively simple and novel approach to investigating a seemingly understudied aspect of the amniote body plan, the shape of the torso.

viii

I. INTRODUCTION

The sizes and shapes of animals have been observed and studied using many different perspectives. Yet, even the earliest physiologists, zoologists, and morphologists identified a possible link between form and function: an overarching theme in the field of biology (Russell, 1916). This theme was explored further in the beginning of the 20th century and morphologists continued to investigate biological processes which impact the growth and form of organisms, combining aspects of developmental biology and embryology in their approach to assess questions associated with form (Russell, 1916; Thompson. 1917). Research in recent years has supplemented this central theme and has introduced newer questions and avenues with which to address the influence of form as it relates to function (Sommerfeldt and Rubin, 2001; Woronowicz and Schneider, 2019; Jones et al., 2020).

Early and current research has determined that body size and form are fundamentally important properties when considering an organism's biology. These morphologically based attributes can have implications on the ecological and physiological traits of an individual. In extant vertebrate taxa, relationships exist between body size and aspects of spatial organization including geographic range size (Arita et al., 1990; Gaston and Blackburn, 1996), abundance (Damuth, 1981; Pyron, 1999), and population size (Swihart et al., 1988). For example, there appears to be an inverse relationship between the size of an animal species and its local abundance (Damuth, 1981). From the physiological standpoint, body size is related to biomechanical functions of vertebrates, especially locomotion (Christiansen, 2002) and an organism's ability to travel long distances more efficiently (Kram and Taylor, 1990). Larger bodied animals, with larger and longer limbs, have been shown to exhibit more efficient and less

energetically costly locomotion (Kram and Taylor, 1990). These relationships associated with body size can also contribute to each organism's ability to withstand changing or extreme environmental conditions (Olden et al., 2007) and are able to impact interspecific interactions (Cohen et al., 1993; Hone and Benton, 2005). Body size and metabolic rates can be considered critical constraints for a given organism's characteristics including behavior and life history (Healy et al., 2013). Ultimately, given a range of implications associated with relationships driven by an individual's morphology, an understanding of animal body size and form becomes important in the context of ecology and evolution of any given species.

Body sizes and shapes have diversified and differentiated at various levels of organismal design. An example of such variation is how the gastrointestinal tract (GIT) is adapted in shape and size to accommodate different diets (Treves, 1886; Stevens and Hume, 1998). In general, herbivores require larger and longer GITs to allow time and space for the microbiota needed to consume difficult to digest plant material (Stevens and Hume, 1998; Clauss et al., 2017). This trend has been demonstrated in certain invertebrate (Griffen and Molsblack, 2011), fish (Wagner et al., 2009), lizard (O'Grady et al., 2005), and mammal (Barry, 1977; Wang et al., 2003) taxa, and at least for herbivorous mammals, the need for digesting plant material has been demonstrated to generally require a more voluminous body cavity (Clauss et al., 2017). Such a relationship between diet and torso volume suggests that there may also be a relationship between diet and the shape of the torso.

Torso morphology, that would have a significant implication for body mass, is considered an indication for diet type in both extant and extinct quadruped taxa (Hotton et al., 1997; Sues and Reisz, 1998). In addition, the length of limb bones (e.g., humeri and femurs) are known to exhibit linear relationships with body mass and thus are commonly used to reconstruct or

approximate aspects of extinct taxa (Campione and Evans, 2012). The torso is also associated with other important physiological traits within amniotes. For example, the ribs and intercostal muscles are integral to locomotion in tetrapods but also play a role in and have influenced the evolution of aspiration breathing in amniotes (Carrier, 1996; Cieri et al., 2020). In addition to the respiratory system, the ribcage and rest of the torso house and protect the viscera and the reproductive systems. Yet, variations of torso morphology among diverse vertebrates, including the shape and its relation to torso volume or body mass, lacks systematic and quantitative investigations throughout the literature (Seebacher, 2001; Clauss et al., 2017). Therefore, the goal of this study is to examine torso shape of diverse extant quadrupedal amniote taxa (i.e., small to large sized, terrestrial and semi-aquatic reptiles and mammals). Specifically, I test the following two hypotheses: 1) "Herbivorous quadrupedal amniotes have a girthier torso for a given body size"; and 2) "There is a relationship between torso shape and limb length in quadrupedal amniotes." If these hypotheses can be supported, my data would provide a new way to infer the torso morphology of extinct quadrupedal amniotes, including non-bipedal dinosaurs that are represented primarily by skeletal remains in the fossil record, because soft tissues are generally not preserved during the fossilization process.

II. MATERIALS AND METHODS

A. EXAMINED SPECIMENS

This study is based on measurements taken from fully or partially mounted articulated skeletal specimens of a diverse set of quadrupedal amniotes, except one preserved specimen in ethanol (Appendix 1). The specimens came from three museum collections in the U.S.: Field Museum of Natural History (FMNH), Chicago, Illinois; Massachusetts Natural History Collections (MNHC), University of Massachusetts, Amherst, Massachusetts; and Museum of Osteology (MoO), Oklahoma City, Oklahoma. For the purpose of this study, I chose to measure specimens with ribs that were in a fixed natural position, maintaining an articulated ribcage. Exactly how they were mounted (e.g., resting, standing, or running posture) or what conditions other parts of the skeleton (e.g., head, neck, or tail) were in had little effect on measurements. In total, I measured 132 skeletal specimens and this resulted in a dataset comprising 124 extant terrestrial and semi-aquatic amniote taxa (Appendix 2), consisting of 24 reptiles (three orders, 12 families, and 17 genera) and 100 mammals (21 orders, 61 families, and 92 genera). In some cases, I measured multiple specimens of the same taxon, and in these cases, I used the average of the torso shape measurements for analyses. The dataset excluded taxa that were fully aquatic and lacked hindlimbs such as cetaceans (whales and dolphins) and sirenians (manatees and dugongs), that had an unconventional torso architecture for tetrapods such as testudines (turtles), or that possessed highly modified forelimbs such as chiropterans (bats).

B. DATA COLLECTION AND TORSO SHAPE CONCEPTUALIZATION

Many quadrupeds exhibit complex body shapes. Complex torso morphology was conceptually simplified to represent two 'elliptic conical frustum' shapes (Fig. 1) defined by nine basic variables: total, anterior, and posterior torso length (TTL, ATL, PTL), maximum torso width and height (MTW, MTH), anterior torso width and height (ATW, ATH), and posterior torso width and height (PTW, PTH). All measurements (Appendix 3) were collected using hand measuring tools (rulers, calipers and tape measures) to the nearest millimeter. TTL was measured as the linear distance from the assumed level of the first paired ribs to the mid-dorsal acetabulum. ATL was the linear distance from the assumed level of the first paired ribs to the widest part of the rib cage. PTL was the calculated difference between TTL and ATL. MTW was the distance between the distal parts of the widest part of the rib cage. MTH was the vertical distance from the top of the head of the rib at the widest point of the rib cage to the top of the most ventral part of the torso. The MTH measurement can vary depending on the preservation of the sternum or costal cartilage of the mounted skeleton. If there was no sternum or costal cartilage preserved, MTH was measured as the vertical distance from the top of the rib at the widest point of the rib cage to an extrapolated ventral surface from the bottom of the longest rib extended. ATW was the linear distance between the most distal points of the first paired ribs. ATH was the vertical height of the first paired ribs. PTW was the linear distance between the junction of the femurs and acetabula. PTH was the vertical height from the ventral side of the pubic symphysis to the most dorsal point of the pelvic bone.

Besides torso morphology, this study examined two additional variables pertaining to forelimbs and hindlimbs in order to elucidate potential relationships and predictive values within

the quadrupedal body plan. Limb measurements included maximum humerus length (MHL) and maximum femur length (MFL). These limb bone measurements were measured as the maximum distance from distal to proximal ends of each respective bone.

The described torso morphology measurements were used to construct two elliptic conical frusta designed to represent the anterior and posterior portions of the torso. The two frusta were constructed separately as an anterior and a posterior frustum and subsequently combined as there was expected variability in anterior and posterior dimensions (Fig. 2). Once combined, these two frusta produced a conceptually simplified model for the complex torso morphology. Simplifying aspects of an individual's morphology is a common practice when estimating body mass using osteological measurements (e.g., Hurlburt, 1999; Seebacher, 2001).

C. DEFINING TORSO SHAPES AND TORSO SHAPE GROUPS

I used *k*-means clustering to determine clusters, or groups, of amniotes based on similarities and differences related to the nine torso shape variables previously described. Prior to clustering, the torso measurements were log-transformed to account for the range of values within the data. Additionally, I corrected for size in the data by generating a ratio with the TTL as the denominator for the remaining eight torso shape variables. From there, I determined the optimal number of clusters, *k*, using the Elbow Method which minimizes the total intra-cluster variation [or total within-cluster sum of square (WSS)]. The Elbow Method represents one of the most commonly used methods for determining an optimal number of clusters and has been shown to be effective in cluster determination (Marutho et al., 2018). In such partitioning methods, the Elbow Method produces a plot (Fig. 3) of a curve that shows the total WSS as a

function of the total number of clusters. The location of a bend ('knee') in the plot marks the point where adding an additional cluster does not significantly impact the total WSS. In my analysis, the bend occurs around group numbers 9-13, but the point where the total group number of 10 was determined to be a reasonable cut-off position because further partitioning would yield additional shapes that would be unnecessarily redundant (see below for the need of 'consolidation' of some torso shapes even with 10 groups). The output from the k-means clustering produced average values for the standardized and size-corrected torso shape variables within each group (Table 1), and these values were used to generate an approximate shape for the individuals assigned to each group (Table 2). As k-means clustering represents an objective and mathematical approach to partitioning, the clusters, interpreted as torso shape groups, were assessed for biological patterns and in some cases consolidated to account for overlapping permutations of the torso shape variables. The resulting clusters and approximate torso shapes were then used for subsequent analyses to assess the original hypotheses related to the shape of the amniote torso. Subsequent analyses were separated to observe potential patterns across the original and consolidated torso shape groups.

In addition to *k*-means clustering, a Principal Component Analysis (PCA) was used to investigate and visualize potential patterns associated with the shape of the amniote torso. Principal Components (PCs) were also calculated using the log-transformed and size-corrected data described previously. PCA attempts to reduce dimensionality and generates scatter plots which identify the amount of variation each new 'dimension' accounts for as well as how strongly each variable influences the PCs. I conducted *k*-means clustering and PCA using R version 4.0.0 (R Core Team, 2021).

D. VOLUME CALCULATION AND MODEL VALIDATION

Once a conceptualized shape of each individual had been determined, a total volume of each shape was calculated and compared for taxa also examined by Clauss et al. (2017). This comparison was to assess the accuracy of my conceptual model of torso shape. The torso volume (V) of each examined specimen was calculated using the equation for the volume of an elliptic conical frustum (Fig. 2) (Vanover, 2014):

$$V = \frac{1}{3}\pi[(ab)H - (cd)(H - h)]$$

Where

$$H = \frac{\sqrt{ab}h}{\sqrt{ab} - \sqrt{cd}} = \frac{ah}{a - c} = \frac{bh}{b - d}$$

In these equations, the variable H is calculated first as the elliptic nature of the frusta and each axis of the bases need to be considered. In the equation to determine H, a always represents the semi-major axis of the large base, b the semi-minor axis of the large base, c the semi-major axis of the small base, and d the semi-minor axis of the small base. H is calculated using these same variables as well as h which represents the height of the frustum. The measured torso morphology variables were used to calculate the volumes of two elliptic conical frusta which, when combined, represent the total volume of the torso. For the anterior torso volume calculations, c was always the longer measurement between ATW and ATH, and d was the shorter measurement between ATW and ATH. For posterior torso volume, c was the longer measurement between PTW and PTH, whereas d was the shorter measurement. For both anterior and posterior torso volume calculations, a was always the longer measurement between MTW and MTH, whereas b was the shorter of the two measurements. ATL and PTL represent h for their respective frustum calculations. These distinctions allowed for appropriate calculations and accounted for variation in the torso morphology of different amniote taxa.

Once volumes were calculated for each measured specimen, a paired *t*-test was performed on log-transformed data. This was to determine whether there was a significant difference between the mean torso volumes I calculated and the torso volumes reported by Clauss et al. (2017) for respective taxa.

E. DIET TYPE ASSIGNMENT

To assess potential relationships associated with diet, organisms were assigned to one of three diet types: carnivore, herbivore, or omnivore. Species were classified based on the largest proportion of diet items, using a variety of sources (Appendix 4), including a combination of MammalDIET and MammalDIET2 metadata (Kissling et al., 2014; Gainsbury et al., 2017). These datasets represent a compilation of species-specific diet preferences of mammals covering 38% of a total of 5,364 terrestrial mammalian species assessed for the International Union for Conservation of Nature's Red List (Kissling et al., 2014). My dataset comprises 17 carnivores, five herbivores, and two omnivores among the 24 reptile taxa examined, and 39 carnivores, 48 herbivores, and 13 omnivores among the 100 mammal taxa examined (Appendix 4).

F. HYPOTHESIS TESTING

Pearson chi-square tests for independence were used to examine associations between diet type and torso shape. Degrees of freedom for this chi-square test were defined as follows: (*r* $(-1) \times (c-1)$, where *r* = the number of rows and *c* = the number of columns. Significance level was set at *p* < 0.05.

I conducted a series of statistical tests including the parametric One-way Analysis of Variance (ANOVA) and the non-parametric Kruskal-Wallis *H* test to compare the effect of limb bone length (MHL and MFL) on torso shape groups. Original and consolidated torso shape groups were separately assessed for normality using a Shapiro-Wilks Test (p < 0.05). Depending on the results of the tests for normality, I used ANOVA if the standardized limb bone lengths were normally distributed across torso shape groups, whereas I used Kruskal-Wallis to test groups with non-normal distributions. Post hoc tests were used to further explore which torso shape groups exhibited statistically significant differences. Following the ANOVAs, I used Tukey's honestly significant difference (HSD) post hoc tests, whereas following the Kruskal-Wallis tests, I used Dunn's test. For all tests, significance level was set at 0.05. Data were analyzed using the Real Statistics Resource Pack software (Release 7.6) (Zaiontz, 2021).

G. CHARACTER MAPPING

Phylogenetic character mapping (e.g., Harvey and Pagel, 1991) was used to examine potential evolutionary patterns of torso shapes within amniotes. The torso shape groupings were mapped for the taxa represented in this study on a tree generated using the National Center for Biotechnology Information (NCBI) Common Tree online tool based on the NCBI taxonomy database (Schoch et al., 2020). This database is derived from a diverse array of phylogenetic resources and produced a simplified molecular-based phylogenetic tree that included only the taxa measured as a part of this study. The trees generated using this tool represent graphically

presentable trees that are not strictly phylogenetic; however, I compared those trees with previously published molecular-based phylogenetic trees for both mammals and reptiles to confirm the congruency in tree topology (e.g., Delsuc et al., 2002; Flynn et al., 2005; Springer et al., 2004; Green et al., 2014; Simões et al., 2018). The use of molecular-based trees, rather than morphology-based trees, for my character mapping is deliberate because the torso morphology is completely independent of the construction of those molecular-based trees.

III. RESULTS

A. Model Validation Results

A paired *t*-test was conducted on a sample of 20 measured amniotes (17 mammals and three reptiles) which overlapped between my dataset and those reported from Clauss et al. (2017). The goal of this *t*-test was to determine whether there was a statistically significant mean difference between the torso volumes (cm³) calculated using my torso shape model (Fig. 1) compared to the volumes of the same species as reported by Clauss et al. (2017). Both sets of volumetric data were log-transformed to account for large variation in the values. Figure 4 depicts a graph with plots of the standardized average torso volumes calculated for the 20 amniote taxa based on each of the two methods, where each plot pair for the same taxon is connected with a line. The slopes of the lines in Figure 4 show that my method generally gives a slightly underestimated torso volume than Clauss et al.'s (2017) method with a few exceptions, but my *t*-test [i.e., ($\bar{x} = 4.15$, SD = 0.95), t(19) = -1.56, p = 0.06] indicated that there was no significant difference in mean torso volumes calculated from my shape model ($\bar{x} = 4.03$, SD = 1.07) and from those based on the digital convex hull method used by Clauss et al. (2017).

B. Torso Shape Groupings

The results of the Elbow Method suggest that the optimal number of clusters (k) is 10 as the curve of Total WSS according to the number of clusters k shows a bend at 10 clusters (Fig. 3). Therefore, the final k-means clustering analysis was performed, and results were extracted with k = 10. My *k*-means clustering using the standardized and size-corrected eight torso shape variables yielded ten groups containing a range of 1 to 27 individuals. The cluster assignments are summarized in Table 2. Also extracted from the *k*-means clustering were the cluster centers, or means, for the ten groups across the eight torso shape variables. These center values are summarized in Table 1 and were used to generate torso shape approximations shown in Figure 5.

Based on differences between the anterior, posterior, and maximum lengths, widths, and heights, I identified and approximated the shape of the torso for the members within a given group. Upon further review, the center values for groups 1 and 10 shared the same overall torso 'shape' (a short and wide anterior torso with a long, wide posterior torso and MTW greater than MTH). Given the observed similarities between groups 1 and 10 as well as similarities between groups 6 and 7, I opted to consolidate these pairs of torso shape groups to generate a total of eight torso shape groups. Additionally, the k-means clustering algorithm assigned a single taxon to group 2, the chameleon. For reasons described in further detail below, I removed group 2 from the dataset, resulting in just seven total torso shapes. The remaining analyses to assess relationships associated with the shape of the amniote torso used these three configurations and torso shape groupings were analyzed separately. These groupings are displayed in Figure 6, where the original 10 torso shape groups are coded by color. The scatterplot of the PCA coded for torso shape groupings (Fig. 6) shows that the groupings determined by PCA are consistent with the results from k-means clustering. There are distinct clusters based on torso shape present in the scatterplot. This consistency helps to demonstrate that the groupings determined by kmeans are robust.

Figure 6 shows a PCA scatter plot that is displayed using the first two principal component axes (PC1 and PC2) that accounted for 75.58% of the variation within the dataset.

The color-coding scheme was determined using the original ten torso shape groups assigned by *k*-means clustering (Table 2). This plot of the relationship between PC1 and PC2 highlights some of the patterns associated with the shape of the amniote torso. Of note is the clustering of torso shape groups 8 and 10 which are shapes most commonly seen in reptiles measured in this study. These torso shape groups occupy the upper portion of the morphospace due to the exceptionally wide torsos seen in many of the reptiles measured in this study, including the gharial and Yacare caiman. The cluster that represents torso shape group 5 occupies the right-most region of the morphospace and these animals have both tall and wide torsos, especially the African elephant and giraffe.

C. Principal Component Analysis

Appendix 5 shows my raw coordinate data from PCA. PCA revealed that the first two dimensions, or principal component axes, account for 75.58% of the variation in the data. The first dimension, which explains 64.79% of the variation, exhibited large positive associations with PTW, PTH, ATH, and ATW. The second dimension, which explains 10.70% of the variation, had a positive association with ATL and a negative association with PTL. Together, these two axes account for a large portion of the variation and appear to account for differences in general torso shape separated between anterior and posterior torsos. Appendix 6 shows the loadings of each torso shape variable for the first two dimensions. Scatter plots were generated to examine potential groupings based on both diet and taxonomic relationships with the loadings of each torso shape variable overlaid (Figs. 7, 8).

The scatterplot that displays the torso shape groupings coded by diet (Fig. 7) shows a relatively wide distribution and identifies a few potential patterns. In general, herbivores (green)

appear to clump on the right side of the morphospace due to their 'girthy' torsos that exhibit large height and width measurements. The carnivores (red) do not exhibit as much of a clear pattern, and omnivores (blue) also appear to be spread throughout the morphospace. Figure 8, a scatterplot coded by taxonomic relationship at the class rank, displays a major division between the reptiles (red) and mammals (blue) measured in this study. As described above, reptiles generally exhibit a wide overall torso shape that places them primarily in the upper portion of the morphospace. On the other hand, mammals exhibit more variation in the shape of the torso.

D. Effects of Diet on Torso Shape

Three separate chi-square tests of independence were performed to examine the relationship between diet and torso shape. The first test examined the original ten torso shape groups determined by *k*-means clustering and found that there is not enough evidence to conclude that these variables are associated, $x^2(18, n = 124) = 25.49, p > 0.05$. The second test examining the consolidated groups of eight total torso shapes yielded similar results and failed to reject the hypothesis that diet and torso shape are associated, $x^2(14, n = 124) = 23.40, p > 0.05$. The third test with consolidated torso shape groups and the chameleon removed demonstrated that the relationship between diet and torso shape was in fact significant, $x^2(12, n = 123) = 22.25$, p < 0.05. The distributions of each diet type as a function of the final consolidated seven torso shape groupings are shown in Figure 9.

Figure 9A shows the distribution of torso shape groups for the herbivores (n = 48) measured in this study. The combined group of torso shapes 6 and 7 is the most abundant with 14 individuals followed by torso shape groups 3 and 4 with 12 and 11 individuals respectively. The distribution of carnivores (n = 59, Fig. 9B) demonstrates that the combined group of torso shapes 1 and 10 is the most abundant with 14 individuals followed by the combined group of torso shapes 6 and 7 with 13 individuals. Lastly, Figure 9C shows the distribution of organisms classified as omnivores (n = 16). Torso shape 4 is the most common, with six omnivores exhibiting this torso shape.

E. Effects of Limb Bone Length on Torso Shape

a. Effects of Humerus Length on Torso Shape

To test the effects of maximum humerus length (MHL) on torso shape, I first used Shapiro-Wilks tests to assess the normality of the distribution of standardized humerus values across the three torso shape groupings: 1) the original ten torso shapes, 2) the eight torso shapes after the first round of consolidation, and 3) the seven torso shapes after the removal of the chameleon. All three tests revealed non-normal distributions (p < 0.05) within the torso shape groups. Torso shape 3 exhibited non-normal distributions in each case as did the consolidated shape of 1 + 10. Based on the results of these Shapiro-Wilks tests, I opted to use a Kruskal-Wallis *H* test to test the null hypothesis that there is no difference in MHL values across torso shape groups determined by *k*-means clustering. The independent variables were the assigned torso shape groups and the dependent variable was the log-transformed and size-corrected MHL values. Tables 3 and 4 show the mean standardized MHL values and standard errors for the original and consolidated torso shape groupings.

The Kruskal-Wallis test of MHL for the original ten torso shapes revealed a statistically significant difference in mean MHL between the torso shape groups, H(9) = 70.26, p < 0.05. Results of post hoc comparisons using Dunn's test are summarized in Table 5 and indicate which torso shapes differed significantly. When consolidated to eight torso shape groups, their Kruskal-

Wallis test of MHL also showed that MHL values affects torso shape grouping, H(7) = 68.54, p < 0.05. Post hoc comparisons and significant differences between groups are summarized in Table 6. The third Kruskal-Wallis test also demonstrated statistically significant differences, H(6) = 66.8, p < 0.05 and the post hoc results from the third Dunn's test can be found in Table 7.

b. Effects of Femur Length on Torso Shape

Starting with the original ten torso shape groupings (Fig. 5), a set of Shapiro-Wilks tests were used to assess the normality of the distribution of log-transformed and size-corrected values of maximum femur length (MFL) across these torso shape groupings. Results of the first test with the original ten torso shapes indicated that MFL values for each of the torso shape groups were normally distributed (p > 0.05) except for groups with a single representative: torso shape groups 2 and 6 representing the chameleon and black lemur, respectively. Following the first round of consolidation down to eight torso shapes, a second Shapiro-Wilks test indicated normality (p > 0.05) across all groups besides torso shape group 2, the single chameleon. A final round of consolidation, which removed the chameleon, and subsequent Shapiro-Wilks test demonstrated once again that the MFL values for these seven torso shape groups were normally distributed (p > 0.05).

Three separate One-way Analysis of Variance (ANOVA) tests were used to examine whether MFL is a function of the torso shape group determined by *k*-means clustering. Multiple ANOVAs were used to examine the relationships in the original ten torso shape groupings as well as the groupings determined following the consolidation of similar shapes and removal of outlier shapes. The independent variables were the assigned torso shape groups and the dependent variable was the log-transformed and size-corrected MFL values. Tables 3 and 4 show

the mean standardized MFL values and standard errors for the original and consolidated torso shape groupings.

The One-way ANOVA of MFL for the original ten torso shapes (Table 8) revealed a statistically significant main effect, F(9, 114) = 22.5, p < 0.05, indicating that not all ten torso shape groups had the same MFL. Post hoc comparisons using Tukey's honestly significant difference procedures (HSD) were used to determine which pairs of the ten torso shapes were significantly different. These results are summarized in Table 9 and indicate several significantly different MFL values across torso shapes. When consolidated to eight torso shape groups, their One-way ANOVA of MFL (Table 10) also revealed a significant main effect, F(7, 116) = 23.2, p < 0.05. Post hoc comparisons yielded significant differences between several torso shape groups as well and these results are summarized in Table 11. The third One-way ANOVA of MFL in the seven torso shape groups (Table 12) revealed a statistically significant main effect, F(6, 116) = 25.8, p < 0.05. Table 13 summarizes which of the final seven torso shape groups demonstrated significantly different mean MFL values following Tukey's HSD post hoc comparisons.

F. Character Mapping

I used simplified versions of previously published molecular-based phylogenetic trees to examine the evolutionary patterns in torso shape within the amniote clades through character mapping. Based on the ten initial torso shape groupings determined by *k*-means clustering, the reptiles (Fig. 11) exhibited six different torso shapes with the most common being shapes 8 and 10, with ten individuals each. When consolidated, the most common shape becomes the combination of shapes 1 and 10, with eleven total reptiles sharing this torso shape. Members of the order Crocodylia were either shape 8 or 10 whereas the remaining reptiles of the superorder

Lepidosauria, including the Squamates and *Sphenodon*, contained individuals with other shapes as well.

Within the class Mammalia, the monotremes (Monotremata) and marsupials (Marsupialia) represent the most basal clades I measured. Five representatives (Fig. 12) of these two sister clades were measured and represented four different torso shapes, with the echidna and wallaby sharing the same shape 3. Five taxa of the clade Afrotheria (Fig. 12) were measured and exhibit three different shapes: shapes 3, 4 and 5. The afroinsectivorans, a clade within Afrotheria, measured in this study (elephant shrew and tenrec) shared the same shape 4. Sister to the Afrotheria are the xenarthrans (Fig. 12) that share the same three shapes exhibited in the afrotherians. The next most derived clade and superorder is the Euarchontoglires (Fig. 13), the living members of which belong to one of the following five groups: colugos, treeshrews, primates, lagomorphs, and rodents. Within this superorder, six shapes are represented: shapes 3, 4, 5, 6, 7, and 10. Just five are present when the single member of shape 6 (black lemur) is consolidated to shape 7. Shape 4 is the most common shape exhibited in this superorder and is shared by 13 members, including the one member of Dermoptera, three primates, two lagomorphs, and seven rodents. The final clade and superorder, Laurasiatheria (Fig. 14), is also the largest based on the examined taxa and contained 59 individuals representing seven different original shapes (1, 3, 4, 5, 7, 9, and 10) and six when shapes 1 and 10 are consolidated. In both cases, shape 7 is the most common with 23 individuals followed by shape 3 with 12. Within this superorder is the clade Euungulata, containing the groups Perrisodactyla and Artiodactyla. The 20 ungulates measured in this study have one of three shapes: 3, 5 or 7. The perrisodactyls (horse, rhinoceros, and tapir) all shared shape 5. Also within Laurasiatheria are the carnivorans (Fig. 15) and this order represents the largest group measured within this study with 35

individuals. Fifteen of these individuals exhibit shape 7, including six of eight canids and two of four felids, representing the most common shape of the carnivorans.

IV. DISCUSSION

A. A novel method for investigating the amniote torso

Based on my results and subsequent comparisons to results reported in Clauss et al. (2017), the method proposed in this study represents a reasonable alternative approach for investigating patterns associated with the amniote torso. It also represents a simplified method that does not require sophisticated three-dimensional, computer-based modeling employed by Clauss et al. (2017). Hand measurements of the nine torso shape variables were sufficient to construct an approximation of the torso shape of a given individual and this approximation served as an effective model for further analyses. Three-dimensional models and reconstructions have become popular in similar studies (Mallison, 2010; Sellers et al., 2012; Clauss et al., 2017). Yet, these methods require access to software and hardware that can be limiting. This study demonstrates a novel, more accessible approach to investigating the amniote torso morphology.

B. Relationships associated with the shape of the amniote torso and their significance

The hypothesis that herbivores have a more voluminous or girthy torso shape is supported by the results of the third chi-square test of independence demonstrating a significant relationship between diet and torso shape (p < 0.05). Herbivores are most abundant in torso shapes 3, 4 and 7 with 12, 11 and 14 representatives, respectively (Fig 9A). Individuals within torso shape 3 possess a MTW greater than MTH. Torso shape 4 individuals have greater ATW and MTW relative to ATH and MTH. Lastly, torso shape 7 is categorized by a PTW greater than PTH. The three most common shapes within the herbivores represent shapes with ratios that can be interpreted as possessing a girthy torso. Additionally, within the dataset, herbivores have the largest average standardized volume when compared to carnivores and omnivores (Fig. 10).

The second hypothesis that there exists a relationship between torso shape and limb bone length is also supported based on the results of the series of ANOVA and Kruskal-Wallis tests as well as the associated post-hoc tests. The ANOVA and Kruskal-Wallis tests for the original and both consolidated torso shape groups show significant main effects (p < 0.05), indicating significant differences in MHL and MFL between and amongst the torso shapes.

The results of my hypothesis testing are significant from the standpoint of vertebrate paleontology. For example, limb bones are frequently used to estimate aspects of the biology of extinct taxa, and these results may allow for further estimations and reconstructions of the shape of the torso for extinct forms. Given a certain limb bone length and a determinable total torso length of an extinct individual which fits the parameters of the focal taxa for this study, that individual could be placed in one or more torso shape groups depending on those measurements. For example, a ceratopsian dinosaur *Pentaceratops sternbergi* (Ornithischia) is reported to have a femur length of approximately 1,000 mm and a TTL of about 4,100 mm (Lehman, 1998). When log transformed and corrected for size with TTL as the denominator, this ceratopsian dinosaur has a MFL that falls within the same range of MFL values found in torso shapes 4 and the combined group of shapes 6 and 7. Based on the post hoc analyses, there were no significant differences between the average MFL values for these two groups, so P. sternbergi could therefore exhibit either shape according to my results. Because much of the fossil record of nonavian dinosaurs is based on incomplete specimens (e.g., Dodson, 1990; Benton et al., 2011) the fact that my study can narrow down the possible torso shapes of extinct taxa from the limb length alone is significant.

C. Evolutionary patterns of amniote torso shape

Evolutionary patterns of torso shape based on character mapping are most apparent within the reptiles. Shapes 8 and 10 are most abundant in these groups and are the only shapes present within the order Crocodylia (Fig. 11). Individuals within these two torso shape groups exhibit torsos that are universally wider than they are tall with the only difference being the length of the anterior or posterior torso. Many extant reptiles, including crocodylians and lepidosaurs, are known for their wide torsos, and it is possible that this feature comes from the shared ancestry of these groups. Ectothermy is a trait seen in reptiles, and although there are behavioral adaptations which impact thermal regulation in these animals, an increased surface area defined by wider and longer torsos may also impact a reptile's ability to regulate its body temperature without affecting its metabolic rate.

My study shows that there is more variation of torso shapes within the mammals, and with more variation, there are fewer discernable patterns. Nevertheless, certain groups share the same torso shapes, and this may be evidence for certain torso shapes as either homologies or homoplasies. Of note are the three perissodactyls (horse, rhinoceros, and tapir) measured as a part of this study sharing torso shape 5 (Fig. 14). This shape is also seen in a number of large herbivorous mammals including the elephant, giraffe, bison, and hippopotamus amongst others. This shape exhibits a longer MTW than MTH but longer heights in the anterior and posterior torso regions. Within the rodents, seven of twelve measured as a part of this study possess torso shape 4, and this shape is also present in the sister group, the lagomorphs.

The examples described above can be interpreted to be potential homologies based on the positions of these groups on the phylogenetic trees (Figs. 13, 14). In both examples, the pairs of closely related groups (rodents and lagomorphs as well as perissodactyls and several

artiodactyls) exhibit similar or identical torso shapes (i.e., torso shapes 4 and 5 respectively), suggesting that the shape of the torso was derived from a common ancestry. On the other hand, there are examples of similar or identical torso shapes in taxa that are not closely related according to my character mapping. For example, torso shape 10 is most commonly seen in reptiles (Fig. 11), yet there are a few mammals that share this torso shape (e.g., platypus, sea lion and monk seal). In this case, the shape of the torso can be interpreted as a potential homoplasy.

The reptiles measured in this study are represented by one of two clades: Lepidosauria and Crocodylia. Lepidosauria can be further separated into Rhynchocephalia and Squamata. Rhynchocephalia is currently represented by a single surviving genus, *Sphenodon*, and this genus represents the most 'ancestral' reptile examined in this study (Evans, 2009). Within squamates, a sister group to Rhynchocephalia, is the clade Iguania (iguanas, chameleons, and agamas). In this study, this group is represented by the green iguana, desert iguana, Fischer's chameleon, Bearded dragon, and Egyptian mastigure. Within these basal reptile groups, torso shape 10 is the most abundant and is shared by *Sphenodon* and members of Iguania, suggesting that this torso shape may be the ancestral state, whereas the other most abundant torso shape 8 may represent a more derived state.

Living mammals fall into three major groups: Monotremata, Marsupialia, and Eutheria. Of these three groups, the egg-laying monotremes are most basal followed by the pouched marsupials (Upham et al., 2019). Within the more diverse placentals (Eutheria), there exists some uncertainty as to which group represents the most basal lineage (Evans, 2009). Morphological data suggest that it is Xenarthra (sloths, armadillos, anteaters) but molecular studies identify Afrotheria (elephants, elephant shrews, tenrecs, aardvarks) as the most basal lineage (Asher et al., 2003). Nevertheless, the most common torso shape group across all of these

groups is torso shape 3 and is present in one of the most basal monotremes, represented by the short-nosed echidna (Fig. 12). Due to its prevalence in the more basal mammalian groups, torso shape 3 may represent a more ancestral state in regard to the shape of the torso for mammals.

D. Factors that could influence torso shape

There are a number of factors which may influence the shape of an individual's torso. This study explored the relationships between diet and torso shape and found evidence to support that a larger and more voluminous torso in herbivores is likely associated with a larger body cavity to accommodate lengthy alimentary canals thus increasing the capacity for digesting plant material (Clauss et al., 2017). There may be other factors that could impact the shape of an individual's torso. One such factor includes locomotion wherein the shape and size of the torso may limit the cursoriality of an animal (Bramble, 1987). Locomotion may also influence an animal's ability to capture or evade prey and can serve as a selective pressure for an adaptation towards a certain body shape. Interspecific competition has been shown to drive the evolution of certain morphological traits in bivalves and gastropods (West et al., 1991), and this may also apply to the groups examined in this study. Herbivores, both extant and extinct, may have adapted to grow larger in size to avoid predation. Conversely, others may have adapted other body forms to evade predation, such as smaller and thinner bodies ideal for hiding or burrowing which may point to a shared torso shape in the rodents and lagomorphs. Carnivorous animals may have also developed certain body shapes in order to more effectively obtain prey, such as the elongate bodies of weasels to capture burrowing prey (Brown and Lasiewski 1972). This idea of an 'evolutionary arms race' has suggested that prey species are more heavily impacted by selective pressures imposed by predators (Abrams, 1989; Vermeij, 1994; Brodie and Brodie,

1999). Therefore, phenotypic changes, including changes to the shape and size of the torso, may evolve in response to predation.

Evolutionary shifts in body size and shape can be attributed to a response to shifts in environmental conditions which can change adaptive zones and allow for proliferation of new body forms in response to new available niches (Law, 2019). As discussed above, thermoregulation in mammals and reptiles may also affect torso shape and can be considered a limiting factor on torso shape. Ectotherms rely on their environment to regulate internal body temperature and thus are generally confined to warmer environments. The results of this study demonstrate that some reptiles (e.g., tuatara, green iguana and bearded dragon) share similar torso shapes which may be related to their ability to thermoregulate. Whereas torso shape patterns in mammals appear to be less discernable, studies related to Bergmann's rule (Ashton and Feldman, 2003; Porter and Kearney 2009) suggest that increased endotherm (and some ectotherm) body size is associated with an increased latitude and decreasing environmental temperature as larger endothermic bodies conserve heat better. Many of the larger animals included in this study exhibited similar body shapes, so perhaps both size and shape are also related to an animal's ability to thermoregulate.

Habitat and lifestyle may also play a role in an animal's torso shape. This study included semi-aquatic amniotes, and results indicate that there may be a particular shape associated with animals adapted for life in the water. Torso shape 10 is more common in reptiles but is also found in three mammals: the platypus, sea lion, and monk seal. These semi-aquatic mammals exhibit a 'reptilian' torso shape of longer anterior, maximum, and posterior widths. Also found within this group were several crocodilians, suggesting that this particular body shape may represent a homoplasy associated with a more aquatic lifestyle. Another example is with the

chameleon that represented the only case of torso shape 2. Chameleons are the only truly arboreal reptiles and as such exhibit unique adaptations which allow for 'arboreal locomotion' (Fischer et al., 2010). This unique mode of travel on branches with small diameters has led to morphological and behavioral modifications especially within the limbs and axial motion, potentially explaining the assignment of the chameleon in its own torso shape group. These unique characteristics of the chameleon and subsequent unique torso shape assignment influenced the decision to omit it from some of the analyses described above.

Another limit to consider related to the torso shape is reproductive biology and lifehistory in that the size, frequency, and type of life-history may be constrained by the size and shape of an individual. The physical size of each neonate or egg as well as general litter or clutch size may also serve as a limiting factor for torso shape. Larger individuals tend to have larger offspring, and this represents a tradeoff as body size has been shown to be negatively correlated with litter size, breeding frequency, and the total number of offspring per year in terrestrial mammals (Janis and Carrano, 1992). These tradeoffs are not present in terrestrial non-passerine birds and that has been extended to non-avian dinosaurs, suggesting that the reproductive strategies of large terrestrial dinosaurs may have influenced their long-term evolutionary success (Janis and Carrano, 1992; Werner and Griebeler, 2011). Body size appears to play a role in the reproductive strategies and success of certain taxa, and as stated above these patterns may also extend to the shape of the amniote torso. Taxa of similar sizes measured in this study share a similar torso shape as demonstrated by the perissodactyls and other large herbivorous mammals as well as rodents and lagomorphs sharing similar shapes. These similarities may also reflect a connection between these shapes and similar reproductive strategies.
E. Potential future research

Based on the approach of Clauss et al. (2017), this study explored the known general relationship between body size and limb length (Campione and Evans, 2012) as it relates to the shape of the torso. An additional measurement of the circumferences of the femur and humerus may be worth investigating in the future as this body size-limb bone relationship is also considered robust (Anderson et al., 1985). There also exist variations in skeletal structures present in certain groups, such as gastralia in crocodilians and tuatara. This study focused on the skeletal anatomy of amniotes but to gain potential additional insights into the amniote bauplan, future studies may consider the use of taxidermic specimens or even live animals. Another consideration was limited access to collections with skeletal specimens and the available information for each specimen. For example, differences in sex may be explored in the future as there may exist variation in the torso related to factors such as sexual dimorphism. Additionally, exploring potential scaling relationships associated with the shape of the amniote torso is worth considering as other parts and physiological aspects of living organisms exhibit differential growth rates. Nevertheless, my study represents a novel approach to investigating the shape of the amniote torso and provides additional insights that can supplement the current knowledge presented in studies such as Clauss et al. (2017).

V. CONCLUSIONS

The relationship between form and function is an overarching theme in the field of biology. Specifically, body size and shape are important factors when considering the biology of an organism. An organism's morphology can influence its ecology and physiology and body size is related to a number of different ecological and physiological aspects for a given organism. This study examined the torso morphology of a diverse set of 124 extant terrestrial and semi-aquatic amniote taxa using a novel approach to construct approximated torso shape groupings in order to evaluate hypotheses associated with diet and limb bone length. These groups were also used to explore potential evolutionary patterns related to the shape of the amniote torso.

Measurements of fully or partially mounted and mostly articulated skeletal specimens from several museum collections were used for this study. These measurements represented nine torso shape variables that combined to produce a simplified conceptual model of the amniote torso. Besides the torso, limb bone measurements were also collected to explore potential relationships associated with the limbs and the shape of the torso. These conceptualized torso shapes allowed me to calculate a volume of the torso using the measured torso shape variables, and I compared these volumes to those of the same taxa previously published in order to evaluate the accuracy of my conceptualized torso shape model. I used partitioning and dimension reducing techniques, including *k*-means clustering and PCA, to assign individuals to torso shape groups. Once determined, these groups were used to assess the hypotheses for this study. I also assigned individuals to one of three diet types: carnivore, herbivore, or omnivore. This allowed me to assess potential relationships associated with diet. Additionally, statistical tests including Pearson chi-square tests for independence, ANOVA, and Kruskal-Wallis tests were used to

evaluate the hypotheses associated with diet and limb bone length. Finally, character mapping allowed me to examine potential evolutionary patterns of torso shapes within amniotes.

The proposed method for approximating the torso shape of a given individual yielded promising results as the torso volume calculated using my method did not statistically differ from a previously published method (i.e., study by Clauss et al., 2017). *K*-means clustering determined that 10 distinct torso shapes were represented within the dataset. However, within these 10 shapes, there were shapes that exhibited identical ratios of heights, widths, and lengths, and were therefore consolidated to seven total torso shapes across the measured taxa. These groups were used to evaluate the hypotheses presented within this study.

The first hypothesis that there is a relationship between diet and torso shape was supported based on the results of chi-square tests of independence which determined that there is a statistically significant difference between observed and expected values for diet types within a given torso shape. On average, herbivores had a more voluminous torso and were most commonly found to possess a torso shape with a wider girth. The second hypothesis that there is a relationship between torso shape and limb bone lengths was also supported as results from several ANOVA and Kruskal-Wallis tests demonstrated statistically significant main effects and subsequent post-hoc analyses indicated different mean femur and humerus lengths between certain torso groups. These results can be useful for reconstructing extinct taxa. If a relatively complete skeleton is discovered that includes a well-preserved femur and or humerus and a torso length is able to be determined, the results of my study can facilitate the reconstruction of fossil quadrupeds. Character mapping identified similar torso shapes within the examined reptiles as well as within some select mammalian groups. I identified potential torso shapes that could be considered homologies and homoplasies based on the evolutionary relationships presented within

this study. Examined lagomorphs, including the European rabbit and Collared pika, share torso shape 4 with several rodents, such as both examined members of the Cricetidae (muskrat and Round-tailed muskrat) as well as the North American and Mountain beavers, amongst others. I was also able to suggest likely ancestral and derived states of the shape of the amniote torso. For reptiles, torso shape 10 appears to be ancestral because it is seen most commonly in basal groups (e.g., Rhynchocephalia and members of the clade Iguania) whereas torso shape 8 is presented as a more derived torso shape seen in more derived groups. Torso shape 3 represents a theoretical ancestral state in mammals due to its prevalence in basal mammalian groups (Monotremata, Marsupiala, Xenarthra and Afrotheria).

This study explored factors that may affect the shape of the amniote torso and provides additional evidence to support that herbivores have large and voluminous torsos to accommodate a GIT needed to digest plant material. Other factors that may influence torso shape include cursoriality, mode of thermoregulation, habitat, life-history, and behavioral or morphological adaptations in response to large scale environmental changes. Previous studies explored aspects of the amniote torso, including volume (Clauss et al., 2017), yet this study represents the first to quantitatively investigate the shape of the amniote torso. Exploring shape provides additional insights for the overall biology of a given organism and this study can contribute to the existing knowledge as it pertains to a fundamental theme in biology: the interplay between form and function. In conclusion, this study represents a relatively simple and novel approach to investigating a seemingly understudied aspect of the amniote body plan, the shape of the torso. The model constructed using this approach can be used to infer and further explore potential relationships within extant taxa and can provide insights into similar relationships of extinct taxa as well.

LITERATURE CITED

- Abrams, P. A. 1986. Adaptive responses of predators to prey and prey to predators: the failure of the arms-race analogy. Evolution 40:1229–1247.
- Anderson, J. F., A. Hall-Martin, and D. A. Russell. 1985. Long-bone circumference and weight in mammals, birds and dinosaurs. Journal of Zoology 207:53–61.
- Arita, H. T., J. G. Robinson, and K. H. Redford. 1990. Rarity in neotropical forest mammals and its ecological correlates. Conservation Biology 4:181–192.
- Asher, R., M. Novacek, and J. Geisler. 2003. Relationships of endemic African mammals and their fossil relatives based on morphological and molecular evidence. Journal of Mammalian Evolution 10:131–194.
- Ashton, K. G., and C. R. Feldman. 2003. Bergmann's rule in nonavian reptiles: turtles follow it, lizards and snakes reverse it. Evolution 57:1151–1163.
- Barry, R. E. 1977. Length and absorptive surface area apportionment of segments of the hindgut for eight species of small mammals. Journal of Mammalogy 58:419–420.
- Beck, D. D. 1990. Ecology and behavior of the Gila monster in southwestern Utah. Journal of Herpetology 24:54–68.
- Benton, M. J., A. Dunhill, G. T. Lloyd, and F. G. Marx. 2011. Assessing the quality of the fossil record: insights from vertebrates. Geological Society of London Special Publications 358:63–94.
- Bramble, D. M. 1987. Cursorial specialization of the mammalian thorax. American Zoologist 27, 87A.

- Brodie, E. D., III, and E. D. Brodie, Jr. 1999. Predator-prey arms races: asymmetrical selection on predators and prey may be reduced when prey are dangerous. BioScience 49:557–568.
- Brown, J. H., and R. C. Lasiewski. 1972. Metabolism of weasels: the cost of being long and thin. Ecology 53:939–943
- Campione, N. E., and D. C. Evans. 2012. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biology 10, 60. doi: 10.1186/1741-7007-10-60.
- Carrier, D. R. 1996. Function of the intercostal muscles in trotting dogs: ventilation or locomotion? Journal of Experimental Biology 199:1455–1465.
- Cartland-Shaw, L. K., A. Cree, C. M. Skeaff, and N. M. Grimmond. 1998. Differences in dietary and plasma fatty acids between wild and captive populations of a rare reptile, the tuatara (*Sphenodon punctatus*). Journal of Comparative Physiology B 168:569–580.
- Christiansen, P. 2002. Locomotion in terrestrial mammals: the influence of body mass, limb length and bone proportions on speed. Zoological Journal of the Linnean Society 136:685-714.
- Cieri, R. L., S. T. Hatch, J. G. Capano, and E. L. Brainerd. 2020. Locomotor rib kinematics in two species of lizards and a new hypothesis for the evolution of aspiration breathing in amniotes. Scientific Reports 10:7739. doi: 10.1038/s41598-020-64140-y.
- Clauss, M., I. Nurutdinova, C. Meloro, H. Gunga, D. Jiang, J. Koller, B. Herkner, P. M. Sander, and O. Hellwich. 2017. Reconstruction of body cavity volume in terrestrial tetrapods. Journal of Anatomy 230:325–336.
- Cohen, J. E., S. L. Pimm, P. Yodzis, and J. Saldaña. 1993. Body sizes of animal predators and animal prey in food webs. Journal of Animal Ecology 62:67–78.

Damuth, J. 1981. Population density and body size in mammals. Nature 290:699–700.

- da Silva, J. M., L. Carne, G. J. Measey, A. Herrel, and K. A. Tolley. 2016. The relationship between cranial morphology, bite performance, diet and habitat in a radiation of dwarf chameleon (*Bradypodion*). Biological Journal of the Linnean Society 119:52–67.
- Delsuc, F., M. Scally, O. Madsen, M. J. Stanhope, W. W. de Jong, F. M. Catzeflis, M. S. Springer, and E. J. P. Douzery. 2002. Molecular phylogeny of living Xenarthrans and the impact of character and taxon sampling on the placental tree rooting. Molecular Biology and Evolution 19:1656–1671.
- Dodson, P. 1990. Counting dinosaurs: how many kinds were there? Proceedings of the National Academy of Sciences 87:7608–7612.
- Engeman, R. M., B. W. Kaiser, and K. J. Osorio. 2019. Evaluating methods to detect and monitor populations of a large invasive lizard: the Argentine giant tegu. Environmental Science and Pollution Research 26:31717–31729.
- Erickson, G. M., P. M. Gignac, S. J. Steppan, A. K. Lappin, K. A. Vliet, J. D. Brueggen, B. D. Inouye, D. Kledzik, and G. J. W. Webb. 2012. Insights into the ecology and evolutionary success of crocodilians revealed through bite-force and tooth-pressure experimentation. PLoS ONE 7:e31781. doi: 10.1371/journal.pone.0031781.
- Evans, S. E. 2009. Evolution and phylogeny of amniotes; pp. 1192–1194 in M. D. Binder, N. Hirokawa, and U. Windhorst (eds.), Encyclopedia of Neuroscience. Springer Berlin Heidelberg, Berlin, Heidelberg.
- Faurby, S., M. Davis, R. Ø. Pedersen, S. D. Schowanek, A. Antonelli1, and J.-C. Svenning.
 2018. PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology 99:2626

- Fischer, M. S., C. Krause, and K. E. Lilje. 2010. Evolution of chameleon locomotion, or how to become arboreal as a reptile. Zoology 113:67–74.
- Flynn, J. J., J. A. Finarelli, S. Zehr, J. Hsu, and M. A. Nedbal. 2005. Molecular phylogeny of the Carnivora (Mammalia): Assessing the impact of increased sampling on resolving enigmatic relationships. Systematic Biology 54:317–337.
- Gainsbury, A. M., O. J. S. Tallowin, and S. Meiri. 2018. An updated global data set for diet preferences in terrestrial mammals: testing the validity of extrapolation. Mammal Review 48:160–167.
- Gaston, K. J., and T. M. Blackburn. 1996. Conservation implications of geographic range sizebody size relationships. Conservation Biology 10:638–646.
- Green, R. E., E. L. Braun, J. Armstrong, D. Earl, N. Nguyen, G. Hickey, M. W. Vandewege, J. A. St John, S. Capella-Gutiérrez, T. A. Castoe, C. Kern, M. K. Fujita, J. C. Opazo, J. Jurka, K. K. Kojima, J. Caballero, R. M. Hubley, A. F. Smit, R. N. Platt, C. A. Lavoie, M. P. Ramakodi, J. W. Finger, A. Suh, S. R. Isberg, L. Miles, A. Y. Chong, W. Jaratlerdsiri, J. Gongora, C. Moran, A. Iriarte, J. McCormack, S. C. Burgess, S. V. Edwards, E. Lyons, C. Williams, M. Breen, J. T. Howard, C. R. Gresham, D. G. Peterson, J. Schmitz, D. D. Pollock, D. Haussler, E. W. Triplett, G. Zhang, N. Irie, E. D. Jarvis, C. A. Brochu, C. J. Schmidt, F. M. McCarthy, B. C. Faircloth, F. G. Hoffmann, T. C. Glenn, T. Gabaldón, B. Paten, and D. A. Ray. 2014. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 346:1254449. doi: 10.1126/science.1254449.
- Griffen, B. D., and H. Mosblack. 2011. Predicting diet and consumption rate differences between and within species using gut ecomorphology. Journal of Animal Ecology 80:854–863.

- Harvey, P. H., and M. D. Pagel. 1991. The comparative method in evolutionary biology. Oxford University Press, New York, New York.
- Healy, K., L. McNally, G. D. Ruxton, N. Cooper, and A. L. Jackson. 2013. Metabolic rate and body size are linked with perception of temporal information. Animal Behaviour 86:685– 696.
- Hilderbrand, G. V., S. D. Farley, C. T. Robbins, T. A. Hanley, K. Titus, and C. Servheen. 1996.Use of stable isotopes to determine diets of living and extinct bears. Canadian Journal of Zoology 74:2080-2088.
- Hone, D. W. E., and M. J. Benton. 2005. The evolution of large size: how does Cope's Rule work? Trends in Ecology and Evolution 20:4–6.
- Hotton III, N., E. C. Olson, and R. Beerbower. 1997. Chapter 7 Amniote Origins and the Discovery of Herbivory; pp. 207–264 in S. S. Sumida and K. L. M. Martin (eds.), Amniote Origins. Academic Press, San Diego, California.
- Hurlburt, G. 1999. Comparison of body mass estimation techniques, using recent reptiles and the pelycosaur *Edaphosaurus boanerges*. Journal of Vertebrate Paleontology 19:338–350.
- Janis, C. M., and M. Carrano. 1992. Scaling of reproductive turnover in archosaurs and mammals: why are large terrestrial mammals so rare? Annales Zoologici Fennici 28:201– 216.
- Jones, K. E., S. Gonzalez, K. D. Angielczyk, and S. E. Pierce. 2020. Regionalization of the axial skeleton predates functional adaptation in the forerunners of mammals. Nature Ecology and Evolution 4:470–478.
- Kissling, W. D., L. Dalby, C. Fløjgaard, J. Lenoir, B. Sandel, C. Sandom, K. Trøjelsgaard, and J.-C. Svenning. 2014. Establishing macroecological trait datasets: digitalization,

extrapolation, and validation of diet preferences in terrestrial mammals worldwide. Ecology and Evolution 4:2913–2930.

- Kram, R., and C. R. Taylor. 1990. Energetics of running: a new perspective. Nature 346:265–267.
- Law, C. J. 2019. Evolutionary shifts in extant mustelid (Mustelidae: Carnivora) cranial shape, body size and body shape coincide with the Mid-Miocene Climate Transition. Biology Letters 15:20190155. doi: 10.1098/rsbl.2019.0155.
- Lehman, T. M. 1998. A gigantic skull and skeleton of the horned dinosaur *Pentaceratops sternbergi* from New Mexico. Journal of Paleontology 72:894–906.
- Losos, J. B., and H. W. Greene. 1988. Ecological and evolutionary implications of diet in monitor lizards. Biological Journal of the Linnean Society 35:379–407.
- Mallison, H. 2010. The digital *Plateosaurus* I: body mass, mass distribution and posture assessed using CAD and CAE on a digitally mounted complete skeleton. Palaeontoligica Electronica 13:1–27.
- Marutho, D., S. H. Handaka, E. Wijaya, and Muljono. 2018. The determination of cluster number at k-mean using elbow method and purity evaluation on headline news. 2018
 International Seminar on Application for Technology of Information and Communication 533–538.
- O'Grady, S. P., M. Morando, L. Avila, and M. D. Dearing. 2005. Correlating diet and digestive tract specialization: examples from the lizard family Liolaemidae. Zoology 108:201–210.
- Olden, J., Z. Hogan, and J. Vander Zanden. 2007. Small fish, big fish, red fish, blue fish: sizebiased extinction risk of the world's freshwater and marine fishes. Global Ecology and Biogeography 16:694–701.

- Oonincx, D. G. A. B., J. P. van Leeuwen, W. H. Hendriks, and A. F. B. van der Poel. 2015. The diet of free-roaming Australian Central Bearded Dragons (*Pogona vitticeps*). Zoo Biology 34:271–277.
- Pianka, E. R., and R. B. Huey. 1978. Comparative ecology, resource utilization and niche segregation among gekkonid lizards in the southern Kalahari. Copeia 1978:691–701.
- Pineda-Munoz, S., and J. Alroy. 2014. Dietary characterization of terrestrial mammals. Proceedings of the Royal Society B: Biological Sciences 281:20141173.
- Porter, W. P., and M. Kearney. 2009. Size, shape, and the thermal niche of endotherms. Proceedings of the National Academy of Sciences 106:19666–19672.
- Pough, F. H. 1973. Lizard energetics and diet. Ecology 54:837–844.
- Pyron, M. 1999. Relationships between geographical range size, body size, local abundance, and habitat breadth in North American suckers and sunfishes. Journal of Biogeography 26:549–558.
- R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL <u>https://www.R-project.org/</u>.
- Russell, E. S. 1916. Form and Function: A Contribution to the History of Animal Morphology. J. Murray, London, 383 pp.
- Schoch, C. L., S. Ciufo, M. Domrachev, C. L. Hotton, S. Kannan, R. Khovanskaya, D. Leipe, R. Mcveigh, K. O'Neill, B. Robbertse, S. Sharma, V. Soussov, J. P. Sullivan, L. Sun, S. Turner, and I. Karsch-Mizrachi. 2020. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database: The Journal of Biological Databases and Curation 2020.

- Seebacher, F. 2001. A new method to calculate allometric length-mass relationships of dinosaurs. Journal of Vertebrate Paleontology 21:51–60.
- Sellers, W. I., J. Hepworth-Bell, P. L. Falkingham, K. T. Bates, C. A. Brassey, V. M. Egerton, and P. L. Manning. 2012. Minimum convex hull mass estimations of complete mounted skeletons. Biology Letters 8:842–845.
- Simões, T. R., M. W. Caldwell, M. Tałanda, M. Bernardi, A. Palci, O. Vernygora, F. Bernardini,
 L. Mancini, and R. L. Nydam. 2018. The origin of squamates revealed by a Middle
 Triassic lizard from the Italian Alps. Nature 557:706–709.
- Sommerfeldt, D., and C. Rubin. 2001. Biology of bone and how it orchestrates the form and function of the skeleton. European Spine Journal 10:S86–S95.
- Springer, M. S., M. J. Stanhope, O. Madsen, and W. W. de Jong. 2004. Molecules consolidate the placental mammal tree. Trends in Ecology and Evolution 19:430–438.
- Stevens, C. E., and I. D. Hume. 1998. Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiological Reviews 78:393–427.
- St-Pierre, B., and A.-D. G. Wright. 2012. Molecular analysis of methanogenic archaea in the forestomach of the alpaca (*Vicugna pacos*). BMC Microbiology 12:1. doi: 10.1186/1471-2180-12-1.
- Sues, H.-D., and R. R. Reisz. 1998. Origins and early evolution of herbivory in tetrapods. Trends in Ecology and Evolution 13:141–145.
- Swihart, R., N. A. Slade, and B. J. Bergstrom. 1988. Relating body size to the rate of home range use in mammals. Ecology 69:393–399.
- Thompson, D. W. 1917. On Growth and Form. Cambridge University Press, Cambridge, United Kingdom. 793 pp.

- Treves, F. 1886. Abstracts of six lectures on the intestinal canal and peritoneum in the Mammalia. British Medical Journal 1:583–584.
- Troyer, K. 1984. Diet selection and digestion in *Iguana iguana*: the importance of age and nutrient requirements. Oecologia 61:201–207.
- Upham, N. S., J. A. Esselstyn, and W. Jetz. 2019. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biology 17:e3000494. doi: 10.1371/journal.pbio.3000494.

Vanover, A. 2014. Volume, lateral area, and surface area of an elliptic conical frustum. Mathematics Stack Exchange. Available at <u>https://math.stackexchange.com/questions/973875/volume-lateral-area-and-surface-area-of-an-elliptic-conical-frustum</u>. Accessed February 18, 2020.

- Vermeij, G. J. 1994. The evolutionary interaction among species: selection, escalation, and coevolution. Annual Review of Ecology and Systematics 25:219–236.
- Wagner, C. E., P. B. McIntyre, K. S. Buels, D. M. Gilbert, and E. Michel. 2009. Diet predicts intestine length in Lake Tanganyika's cichlid fishes. Functional Ecology 23:1122–1131.
- Wang, D., Y. Pei, J. Yang, and Z. Wang. 2003. Digestive tract morphology and food habits in six species of rodents. Folia Zoologica 52:51–55.
- Werner, J., and E. M. Griebeler. 2011. Reproductive biology and its impact on body size: comparative analysis of mammalian, avian and dinosaurian reproduction. PLoS ONE 6:e28442. doi: 10.1371/journal.pone.0028442.
- West, K., A. Cohen, and M. Baron. 1991. Morphology and behavior of crabs and gastropods from Lake Tanganyika, Africa: implications for lacustrine predator-prey coevolution. Evolution 45:589–607.

- Woronowicz, K. C., and R. A. Schneider. 2019. Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw. EvoDevo 10:17. doi: 10.1186/s13227-019-0131-8.
- Zaiontz, C. (2021) Real Statistics Resource Pack | Real Statistics Using Excel. Available at https://www.real-statistics.com/free-download/real-statistics-resource-pack/. Accessed June 23, 2021.
- Ziegler, T., M. Strauch, T. Pes, J. Konas, T. Jirasek, N. Rütz, J. Oberreuter, and S. Holst. 2009. First captive breeding of the blue tree monitor *Varanus macraei*. Böhme & Jacobs, 2001 at the Plzen and Cologne Zoos. Biawak 3:122-133.

Table 1. Summary of cluster means for the 10 torso shape groups determined by *k*-means clustering using the eight torso shape variables that had been log-transformed and size-corrected with TTL as the denominator.

Shape	ATL	PTL	MTH	MTW	ATH	ATW	PTH	PTW
1	0.8344911	0.8568975	0.6192353	0.7735068	0.3382179	0.3916277	0.4274921	0.4615036
2	0.7891339	0.8873817	0.6976236	0.2479480	0.5196751	0.4043858	0.5788886	0.3128756
3	0.8618847	0.9021933	0.8359473	0.8416129	0.6741644	0.6704513	0.7742935	0.7596914
4	0.8306726	0.8972554	0.7938519	0.8081783	0.5155719	0.6016782	0.7005440	0.6957560
5	0.8945100	0.8915042	0.8821560	0.8962765	0.7649674	0.7149196	0.8212604	0.8003460
6	0.7765947	0.9367320	0.7913745	0.7489380	0.6256196	0.6004508	0.2525615	0.6674446
7	0.8492507	0.9031309	0.8109587	0.7892713	0.6462951	0.5748690	0.6946731	0.7022087
8	0.8707533	0.8556111	0.6324954	0.8093228	0.5560233	0.6302704	0.6178679	0.6648955
9	0.7935380	0.8811547	0.6864392	0.6551403	0.4563104	0.5102914	0.5475432	0.6282442
10	0.8755585	0.8776027	0.7492727	0.8523520	0.6821267	0.7322081	0.6899418	0.7233567

Table 2. Summary of cluster (interpreted as torso shape group) assignments following *k*-means clustering. Table includes: Species Code (SC), scientific name, common name, diet classification, and taxonomic rank.

SC	Species	Common name	Diet	Class	Order
TOR	SO SHAPE GROUP 1 $(n = 4)$				
17	Varanus macraei	Blue tree monitor	С	R	Squamata
66	Scapanus latimanus	Broad-footed mole	С	Μ	Eulipotyphyla
67	Blarina brevicauda	Northern short-tailed shrew	С	М	Eulipotyphyla
88	Mustela vison	American mink	С	М	Carnivora
TOR	SO SHAPE GROUP 2 $(n = 1)$				
20	Bradypodion fischeri	Fischer's chameleon	С	R	Squamata
TOR	SO SHAPE GROUP 3 ($n = 22$)				
26	Tachyglossus aculeatus	Short-nosed echidna	С	Μ	Monotremata
27	Macropus parryi	Pretty-faced wallaby	Н	Μ	Diprotodontia
30	Sarcophilus harrisii	Tasmanian devil	С	Μ	Dasyuromorphia
34	Orycteropus afer	Aardvark	С	Μ	Tubulidentata
36	Procavia capensis	Rock hyrax	Н	Μ	Hyracoidea
39	Dasypus novemcinctus	Nine-banded armadillo	С	М	Cingulata
40	Choloepus hoffmanni	Two-toed sloth	Н	Μ	Pilosa
48	Mandrillus sphinx	Mandrill	Н	Μ	Primates
56	Hydrochoerus hydrochaeris	Capybara	Н	Μ	Rodentia
62	Erethizon dorsatum	North American porcupine	Н	М	Rodentia
70	Canis lupus	Wolf	С	Μ	Carnivora
80	Panthera leo	Lion	С	Μ	Carnivora
91	Nasua nasua	South American coati	0	М	Carnivora
95	Proteles cristatus	Aardwolf	С	Μ	Carnivora
98	Tremarctos ornatus	Spectacled bear	Н	Μ	Carnivora
99	Ursus americanus	American black bear	Н	Μ	Carnivora
101	Arctictis binturong	Binturong	0	Μ	Carnivora
104	Manis pentadactyla	Chinese pangolin	С	Μ	Pholidota
108	Ammotragus lervia	Barbary sheep	Н	Μ	Artiodactyla
110	Cephalophus silvicultor	Yellow-backed duiker	Н	М	Artiodactyla

114	Vicugna pacos	Alpaca	Н	Μ	Artiodactyla
116	Odocoileus virginianus	White-tailed deer	Н	Μ	Artiodactyla
TOP	SO SHAPE GROUP $A(n - 26)$				
31	Didelphis virginiana	Virginia opossum	0	М	Didelphimorphia
32	Tanrac acquidatus	Common tenrec	C C	M	Afrosoricida
32	Rhynchocyon patarsi	Zani elephant shrew	C	M	Macroscelidea
33	Chastonhrastus villosus	Big hairy armadillo	0	M	Cinculate
37 42	Calcoptorus variogatus	Malayan colugo	U U	M	Dormontoro
42 45	Varenia varienata	Plack and white	и П	M	Definioptera
43	varecia variegaia	ruffed lemur	11	111	Filliates
46	Cercopithecus diana	Diana monkey	0	М	Primates
47	Macaca mulatta	Rhesus macaque	Н	М	Primates
51	Orvctolagus cuniculus	European rabbit	Н	М	Lagomorpha
52	Ochotona collaris	Collared pika	Н	М	Lagomorpha
53	Aplodontia rufa rufa	Mountain beaver	Н	М	Rodentia
54	Bathvergus suillus	Cape dune mole-rat	Н	М	Rodentia
55	Castor canadensis	North American	Н	M	Rodentia
		beaver			
57	Neofiber alleni alleni	Round-tailed	Н	Μ	Rodentia
		muskrat			
58	Ondatra zibethicus	Muskrat	Η	Μ	Rodentia
63	Cricetomys gambianus	Gambian pouched rat	0	Μ	Rodentia
64	Pedetes capensis	Springhare	Η	Μ	Rodentia
65	Erinaceus europaeus	European hedgehog	С	Μ	Eulipotyphyla
73	Vulpes zerda	Fennec fox	С	Μ	Carnivora
77	Felis catus	Domestic cat	С	Μ	Carnivora
82	Mephitis macroura	Hooded skunk	0	Μ	Carnivora
84	Enhydra lutris	Sea otter	С	Μ	Carnivora
85	Lontra canadensis	Common otter	С	Μ	Carnivora
86	Martes pennanti	Fisher	С	Μ	Carnivora
90	Nasua narica narica	White-nosed coati	0	Μ	Carnivora
93	Crossarchus platycephalus	Flat-headed	С	Μ	Carnivora
		kusimanse			
TOR	SO SHAPE GROUP 5 ($n = 14$)				

16	Varanus komodoensis	Komodo dragon	С	R	Squamata
29	Phascolarctos cinereus	Koala	Н	Μ	Diprotodontia
35	Loxodonta africana	African elephant	Н	М	Proboscidea
38	Euphractus sexcinctus	Six-banded armadillo	0	Μ	Cingulata

41	Myrmecophaga tridactyla	Giant anteater	С	Μ	Pilosa
49	Gorilla gorilla	Western gorilla	Η	Μ	Primates
100	Ursus arctos horribilis	Grizzly bear	0	Μ	Carnivora
105	Equus ferus caballus	Domestic horse	Н	Μ	Perissodactyla
106	Ceratotherium simum	White rhinoceros	Н	Μ	Perissodactyla
107	Tapirus indicus	Malayan tapir	Н	Μ	Perissodactyla
109	Bison bison	American bison	Η	Μ	Artiodactyla
117	Giraffa camelopardalis	Giraffe	Н	Μ	Artiodactyla
118	Hippopotamus amphibious	Hippopotamus	Η	Μ	Artiodactyla
119	Babyrousa celebensis	Sulawesi babirusa	Η	М	Artiodactyla
TOR	SO SHAPE GROUP 6 $(n = 1)$				
44	Eulemur macaco	Black lemur	Η	М	Primates
TOR	SO SHAPE GROUP 7 $(n = 27)$				
50	Brachylagus idahoensis	Pygmy rabbit	Η	М	Lagomorpha
59	Cuniculus paca	Lowland paca	Η	Μ	Rodentia
60	Dasyprocta (sp. indet.)	Agouti	Η	Μ	Rodentia
68	Canis aureus	Golden jackal	С	Μ	Carnivora
69	Canis latrans	Coyote	С	Μ	Carnivora
71	Cerdocyon thous	Crab-eating fox	С	Μ	Carnivora
72	Speothos venaticus	Bush dog	С	Μ	Carnivora
74	Vulpes lagopus lagopus	Arctic fox	С	Μ	Carnivora
75	Vulpes vulpes	Red fox	С	Μ	Carnivora
76	Cryptoprocta ferox	Fossa	С	Μ	Carnivora
78	Lynx rufus	Bobcat	С	Μ	Carnivora
79	Neofelis nebulosa	Clouded leopard	С	Μ	Carnivora
81	Conepatus leuconotus	Hog-nosed skunk	С	Μ	Carnivora
83	Mephitis mephitis	Striped skunk	0	Μ	Carnivora
89	Gulo gulo luscus	Wolverine	С	Μ	Carnivora
92	Potos flavus	Kinkajou	Η	Μ	Carnivora
94	Mungos mungo	Banded mongoose	С	Μ	Carnivora
102	Genetta genetta	Common genet	С	Μ	Carnivora
111	Gazella dorcas	Dorcas gazelle	Н	Μ	Artiodactyla
112	Gazella spekei	Speke's gazelle	Η	Μ	Artiodactyla
113	Philantomba monticola	Blue duiker	Η	Μ	Artiodactyla
115	Muntiacus reevesi	Reeve's muntjac	Н	Μ	Artiodactyla
120	Sus scrofa domesticus	Domestic pig	Н	М	Artiodactyla
121	Pecari tajacu	Collared peccary	Н	М	Artiodactyla
122	Tayassuidae (sp. indet.)	Peccary	Η	Μ	Artiodactyla

123	Moschiola memmina	Spotted mouse-deer	Н	М	Artiodactyla
124	Tragulus napu borneanus	Greater mouse-deer	Н	М	Artiodactyla
TOR	SO SHAPE GROUP 8 $(n = 10)$				
2	Alligator mississpiensis	American alligator	С	R	Crocodilia
5	Paleosuchus palpebrosus	Cuvier's dwarf	С	R	Crocodilia
		caiman		_	
10	Trachydosaurus rugosus	Shingleback lizard	Η	R	Squamata
11	Tiliqua scincoides	Blue-tongued lizard	Η	R	Squamata
13	Heloderma horridum	Beaded lizard	С	R	Squamata
14	Heloderma suspectum	Gila monster	С	R	Squamata
15	Varanus griseus	Desert monitor	С	R	Squamata
18	Varanus rudicollus	Rough-neck monitor	С	R	Squamata
21	Uromastyx aegyptius	Egyptian mastigure	Н	R	Squamata
23	Dipsosaurus dorsalis	Desert iguana	Η	R	Squamata
TOR	SO SHAPE GROUP 9 $(n = 6)$				
9	Chondrodactylus bibronii	Bibron's gecko	С	R	Squamata
28	Petaurus breviceps	Sugar glider	0	Μ	Diprotodontia
43	Tupaia javanica	Javan treeshrew	С	Μ	Scandentia
61	Heterocephalus glaber	Naked mole-rat	Н	Μ	Rodentia
87	Mustela erminea	Ermine	С	Μ	Carnivora
103	Paradoxurus hermaphroditus	Asian palm civet	0	М	Carnivora
TOR	SO SHAPE GROUP 10 $(n = 13)$)			
1	Alligator sinensis	Chinese alligator	С	R	Crocodilia
3	Caiman crocodilus vacare	Yacare caiman	С	R	Crocodilia
4	Caiman crocodilus	Spectacled caiman	С	R	Crocodilia
6	Crocodylus porosus	Saltwater crocodile	С	R	Crocodilia
7	Gavialis gangeticus	Gharial	С	R	Crocodilia
8	Sphenodon punctatus	Tuatara	С	R	Rhynchocephalia
12	Salvator merianae	Black and white tegu	0	R	Squamata
19	Varanus salvator	Water monitor	C	R	Squamata
22	Pogona vitticeps	Bearded dragon	0	R	Squamata
24	Ioyana joyana	Green iguana	Н	R	Squamata
25	Ornithorhynchus anatinus	Platypus	C	M	Monotremata
 96	Zalophus californianus	California sea lion	Č	M	Carnivora
97	Monachus schauinslandi	Hawaijan monk seal	C	M	Carnivora
)	monucius schuullistullul	Hawanan monk scal	C	141	Carmyora

Torso Shape Group	Count	Mean MHL (Std Err)	Mean MFL (Std Err)
Shape 1	4	0.6491 (0.0344)	0.6553 (0.0305)
Shape 2	1	0.6645 (N/A)	0.6761 (N/A)
Shape 3	22	0.8267 (0.0092	0.8505 (0.0068)
Shape 4	26	0.7762 (0.0084)	0.8124 (0.0093)
Shape 5	14	0.8347 (0.0117)	0.8617 (0.0100)
Shape 6	1	0.8136 (N/A)	0.8706 (N/A)
Shape 7	27	0.8001 (0.0046)	0.8272 (0.0040)
Shape 8	10	0.6840 (0.0188)	0.7019 (0.0231)
Shape 9	6	0.7155 (0.0360)	0.7336 (0.0277)
Shape 10	13	0.7476 (0.0071)	0.7577 (0.0128)

Table 3. Mean standardized and size-corrected MHL and MFL values and standard error for original 10 torso shape groups determined by *k*-means clustering.

Torso Shape Group	Count	Mean MHL (Std Err)	Mean MFL (Std Err)
Shape 1+10	17	0.7244 (0.0138)	0.7336 (0.0156)
Shape 3	22	0.8267 (0.0092)	0.8505 (0.0067)
Shape 4	26	0.7762 (0.0084)	0.8124 (0.0093)
Shape 5	14	0.8347 (0.0116)	0.8617 (0.0999)
Shape 6 + 7	28	0.8005 (0.0044)	0.8287 (0.0041)
Shape 8	10	0.6840 (0.0188)	0.7019 (0.0230)
Shape 9	6	0.7155 (0.0360)	0.7336 (0.0277)

Table 4. Mean standardized and size-corrected MHL and MFL values and standard error for consolidated seven torso shape groups (Shape 2 removed) determined by *k*-means clustering.

Torso Shape Group	Median	<i>z</i> -statistics (<i>p</i> -values indicated in parentheses)									
1 1		1	2	3	4	5	6	7	8	9	10
1. Torso Shape 1	0.667	-									
2. Torso Shape 2	0.664	0.024	-								
3. Torso Shape 3	0.820	4.241**	2.282* (0.02)	-							
4. Torso Shape 4	0.771	2.512* (0.01)	0.135	3.300**	-						
5. Torso Shape 5	0.830	4.287**	2.375* (0.01)	0.365	3.261**	-					
6. Torso Shape 6	0.813	1.990* (0.04)	1.593	0.077	0.860	0.197	-				
7. Torso Shape 7	0.800	3.460**	1.847	1.572	1.835	1.751	0.365	-			
8. Torso Shape 8	0.698	0.338	0.217	5.520**	3.088* (0.002)	5.386**	1.931	4.466**	-		
9. Torso Shape 9	0.738	1.185	0.734	3.344**	1.290	3.413**	1.352	2.412**	1.093	-	
10. Torso Shape 10	0.755	1.257	0.719	4.535**	1.855	4.443**	1.451	3.361**	1.233	0.093	_

Table 5. Results of Dunn's test following Kruskal-Wallis for mean log-transformed and size-corrected MHL by original 10 torsoshape groups.

* indicates significant differences (p < 0.05)

**indicates p < 0.001

Torso Shape Group	Median	<i>z</i> -statistics (<i>p</i> -values indicated in parentheses)									
		1	2	3	4	5	6	7	8		
1. Torso Shape 1+10	0.734	_									
2. Torso Shape 2	0.664	0.561	-								
3. Torso Shape 3	0.820	5.436**	2.282* (0.02)	-							
4. Torso Shape 4	0.771	2.563* (0.01)	1.351	3.300**	-						
5. Torso Shape 5	0.830	5.211**	2.375* (0.01)	0.365	3.261**	-					
6. Torso Shape 6+7	0.804	4.284**	1.862	1.538	1.900	1.721	-				
7. Torso Shape 8	0.698	0.877	0.217	5.520**	3.088**	5.386**	4.524**	-			
8. Torso Shape 9	0.738	0.454	0.734	3.344**	1.290	3.413**	2.449* (0.01)	1.093	-		

Table 6. Results of Dunn's test following Kruskal-Wallis for mean log-transformed and size-corrected MHL by eight consolidated torso shape groups.

*indicates significant differences (p < 0.05)

**indicates p < 0.001

Torso Shape Group	Median	<i>z</i> -statistics (<i>p</i> -values indicated in parentheses)								
		1	2	3	4	5	6	7		
1. Torso Shape 1+10	0.734	-								
2. Torso Shape 3	0.820	5.437**	-							
3. Torso Shape 4	0.771	2.573* (0.01)	3.327**	-						
4. Torso Shape 5	0.830	5.244**	0.368	3.361**	-					
5. Torso Shape 6+7	0.804	4.308**	1.55	1.916	1.735	-				
6. Torso Shape 8	0.698	0.871	5.542**	3.090* (0.002)	5.410**	4.538**	-			
7. Torso Shape 9	0.738	0.459	3.361**	1.290	3.431**	2.459* (0.01)	1.095	-		

Table 7. Results of Dunn's test following Kruskal-Wallis for mean log-transformed and size-corrected MHL by seven consolidated torso shape groups (torso shape 2 removed).

* indicates significant differences (p < 0.05)

**indicates p < 0.001

Sources	SS	$d\!f$	MS	F	р
Between Groups	0.38156939	9	0.0423966	22.5137091	1.5401E-21
Within Groups	0.21467863	114	0.00188315		
Total	0.59624802	123	0.00484754		

Table 8. Results of ANOVA for mean log-transformed and size-corrected MFL by original 10 torso shape groups.

		Mean Differences (X _i – X _k)										
Torso Shape Group	Mean	(Effect Sizes are indicated in parentheses)										
		1	2	3	4	5	6	7	8	9	10	
1. Torso Shape 1	0.655	-										
2. Torso Shape 2	0.676	0.021	-									
3. Torso Shape 3	0.851	0.195*	0.174*	-								
		(4.50)	(4.02)									
4. Torso Shape 4	0.812	0.157*	0.136	0.038	-							
		(3.62)										
5. Torso Shape 5	0.862	0.206*	0.186*	0.011	0.049*	-						
		(4.75)	(4.28)		(1.14)							
6. Torso Shape 6	0.871	0.215*	0.195	0.020	0.058	0.009	-					
		(4.96)										
7. Torso Shape 7	0.827	0.172*	0.151*	0.023	0.015	0.035	0.043	-				
		(3.96)	(3.48)									
8. Torso Shape 8	0.702	0.047	0.026	0.149*	0.110*	0.160*	0.169*	0.125*	-			
				(3.42)	(2.55)	(3.68)	(3.89)	(2.89)				
9. Torso Shape 9	0.734	0.078	0.058	0.117*	0.079*	0.128*	0.137	0.094*	0.032	-		
				(2.69)	(1.82)	(2.95)		(2.16)				
10. Torso Shape 10	0.758	0.102*	0.082	0.093*	0.055*	0.104*	0.113	0.069*	0.056	0.024	-	
		(2.36)		(2.14)	(1.26)	(2.40)		(1.60)				

Table 9. Post hoc results for average MFL by original 10 torso shape groups.

*p < 0.05

Sources	SS	df	MS	F	P value
Between Groups	0.34768694	7	0.04966956	23.1800943	2.0284E-19
Within Groups	0.24856108	116	0.00214277		
Total	0.59624802	123	0.00484754		

Table 10. Results of ANOVA for mean log-transformed and size-corrected MFL by eight consolidated torso shape groups.

Torso Shape Group	Mean	Mean Differences $(X_i - X_k)$ (Effect Sizes are indicated in parentheses)								
	Weall	1	2	3	4	5	6	, 7	8	
1. Torso Shape 1+10	0.734	-								
2. Torso Shape 2	0.676	0.058	-							
3. Torso Shape 3	0.851	0.117*	0.174*	-						
•		(2.52)	(3.77)							
4. Torso Shape 4	0.812	0.079*	0.136	0.038	-					
-		(1.70)								
5. Torso Shape 5	0.862	0.128*	0.186*	0.011	0.049*	-				
		(2.76)	(4.01)		(1.07)					
6. Torso Shape 6+7	0.829	0.095	0.153*	0.022	0.016	0.033	-			
			(3.30)							
7. Torso Shape 8	0.702	0.032	0.026	0.149*	0.110*	0.160*	0.127*	-		
				(3.21)	(2.39)	(3.45)	(2.74)			
8. Torso Shape 9	0.734	9.83E-06	0.058	0.117*	0.079*	0.128*	0.095*	0.032	-	
				(2.53)	(1.70)	(2.76)	(2.05)			

Table 11. Post Hoc Results for Average MFL by eight consolidated torso shape groups.

 $*p < 0.\overline{05}$

Table 12. Results of ANOVA for mean log-transformed and size-corrected MFL by seven consolidated torso shape groups (torso shape 2 removed).

Sources	SS	df	MS	F	P value
Between					
Groups	0.33124497	6	0.0552075	25.7645701	2.7382E-19
Within Groups	0.24856108	116	0.00214277		
Total	0.57980605	122	0.00475251		

Torso Shape Group	Mean	Mean Differences (X _i – X _k) (Effect Sizes are indicated in parentheses)								
		1	2	3	4	5	6	7		
1. Torso Shape 1+10	0.734	-								
2. Torso Shape 3	0.851	0.117* (2.52)	-							
3. Torso Shape 4	0.812	0.079* (1.70)	0.038	-						
4. Torso Shape 5	0.862	0.128* (2.76)	0.011	0.049* (1.07)	-					
5. Torso Shape 6+7	0.829	0.095	0.022	0.016	0.033	-				
6. Torso Shape 8	0.702	0.032	0.149* (3.21)	0.110* (2.39)	0.160* (3.45)	0.127* (2.74)	-			
7. Torso Shape 9	0.734	9.83E-06	0.117* (2.53)	0.079* (1.70)	0.128* (2.76)	0.095* (2.05)	0.032	-		

Table 13. Post hoc results for average MFL by seven consolidated torso shape groups (torso shape 2 removed).

*p < 0.05

Figure 1. Schematic conceptual model for complex torso morphology. Torso variables include: total, anterior and posterior torso length (TTL, ATL, PTL), maximum torso width and height (MTW, MTH), anterior torso width and height (ATW, ATH), and posterior torso width and height (PTW, PTH). Limb variables include: maximum humerus length (MHL) and maximum femur length (MFL).

Figure 2. Elliptic conical frustum. In this figure, *a* represents the semi-major axis of the large base, *b* the semi-minor axis of the large base, *c* the semi-major axis of the small base, and *d* the semi-minor axis of the small base. The height of the frustum is represented by h.

Figure 3. Elbow Curve from *k*-means clustering. Dotted line indicates the location where Sum of squares within a group begins to flatten out, suggesting that additional clusters would not impact the total WSS, thus the optimal number of groups is set at k = 10.

Figure 4. Graph depicting results from the paired *t*-test to determine the validity of the conceptual model (Fig. 1) when compared to the convex hull method used by Clauss et al. (2017) (numbers indicate species codes for the 20 amniotes in the *t*-test: see Appendix 2). The results of the *t*-test indicated that there was no significant difference in mean torso volumes calculated from the torso shape model ($\bar{x} = 4.03$, SD = 1.07) and from those calculated using the digital convex hull method seen in that published study ($\bar{x} = 4.15$, SD = 0.95), t(19) = -1.56, p = 0.06.

Figure 5. Conceptualized models and number of individuals (n) for the 10 torso shapes determined by *k*-means clustering. Ratios of average values of log-transformed and size-correct torso shape variables (Table 1) for each torso shape group were used to generate the models. Note that torso shapes 1 and 10 exhibit the same ratios of torso shape variables. Torso shapes 6 and 7 also have similar ratios, whereas torso shape 6 has a larger ratio of PTW to PTH. In both cases, these pairs were consolidated and individuals in these pairs of groups are considered to possess the same torso shape.

Figure 6. PCA scatter plot of the 10 original torso shape groupings. Percentage in parentheses on each axis denotes percent variation explained by that principal component. Loadings are represented by the red lines and labeled with torso shape variables.

Figure 7. PCA scatter plot of amniote taxa coded for diet type. Percentage in parentheses on each axis denotes percent variation explained by that principal component. Loadings are represented by the red lines and labeled with torso shape variables.

Figure 8. PCA scatter plot of amniote taxa coded for taxonomic class. Percentage in parentheses on each axis denotes percent variation explained by that principal component. Loadings are represented by the red lines and labeled with torso shape variables.

Figure 9. Distribution of torso shapes across diet types. Note that similar torso shapes were consolidated, and that torso shape 2 was removed. Also note the different scales for the different diets. Herbivores (A) and carnivores (B) were more abundant than omnivores (C) in this dataset.

Figure 10. Average standardized and size-corrected volume for each of the three diet types.

Figure 11. Representative phylogenetic tree of Reptilia from this study with torso shape group identified by color.

Figure 12. Representative phylogenetic trees of Monotremata and Marsupialia as well as Afrotheria and Xenarthra from this study with torso shape group identified by color.

Figure 13. Representative phylogenetic tree of members of the superorder Euarchontoglires from this study with torso shape group identified by color.

Figure 14. Representative phylogenetic tree of members of the superorder Laurasiatheria from this study with torso shape group identified by color

Figure 15. Representative phylogenetic tree of members of the Carnivora from this study with torso shape group identified by color

Appendix 1. Images of measured specimens with Species Code (see Table 2) in parentheses.

Reptiles

Heloderma suspectum (14B)

Varanus griseus (15)

Pogona vitticeps (22)

Dipsosaurus dorsalis (23)

Iguana iguana (24)

Mammals

Didelphis virginiana (31)

Tenrec ecaudatus (32)

Rhynchocyon petersi (33)

Hydrochoerus hydrochaeris (56A)

Hydrochoerus hydrochaeris (56B)

Hydrochoerus hydrochaeris (56C)

Neofelis nebulosa (79)

Pecari tajacu (121)

- Tayassuidae sp. (122)
- Moschiola memmina (123)
- Tragulus napu borneanus (124)

Appendix 2. List of examined species and their species codes (SC), scientific name, common name, and taxonomic rank used throughout this study.

SC	Species	Common name	Order	Family
Rep	otilia			
1	Alligator sinensis	Chinese alligator	Crocodilia	Alligatoridae
2	Alligator mississipiensis	American alligator	Crocodilia	Alligatoridae
3	Caiman crocodilus yacare	Yacare caiman	Crocodilia	Alligatoridae
4	Caiman crocodilus	Spectacled caiman	Crocodilia	Alligatoridae
5	Paleosuchus palpebrosus	Cuvier's dwarf caiman	Crocodilia	Alligatoridae
6	Crocodylus porosus	Saltwater crocodile	Crocodilia	Crocodylidae
7	Gavialis gangeticus	Gharial	Crocodilia	Gavialidae
8	Sphenodon punctatus	Tuatara	Rhynchocephalia	Sphenodontidae
9	Chondrodactylus bibronii	Bibron's gecko	Squamata	Gekkonidae
10	Trachydosaurus rugosus	Shingleback lizard	Squamata	Scincidae
11	Tiliqua scincoides	Blue-tongued lizard	Squamata	Scincidae
12	Salvator merianae	Black and white tegu	Squamata	Teiidae
13	Heloderma horridum	Beaded lizard	Squamata	Helodermatidae
14	Heloderma suspectum	Gila monster	Squamata	Helodermatidae
15	Varanus griseus	Desert monitor	Squamata	Varanidae
16	Varanus komodoensis	Komodo dragon	Squamata	Varanidae
17	Varanus macraei	Blue tree monitor	Squamata	Varanidae
18	Varanus rudicollis	Rough-neck monitor	Squamata	Varanidae
19	Varanus salvator	Water monitor	Squamata	Varanidae
20	Bradypodion fischeri	Fischer's chameleon	Squamata	Chamaeleonidae
21	Uromastyx aegypticus	Egyptian mastigure	Squamata	Agamidae
22	Pogona vitticeps	Bearded dragon	Squamata	Agamidae
23	Dipsosaurus dorsalis	Desert iguana	Squamata	Iguanidae
24	Iguana iguana	Green iguana	Squamata	Iguanidae
Ma	mmalia			
25	Ornithorhynchus anatinus	Platypus	Monotremata	Ornithorhynchidae
26	Tachyglossus aculeatus	Short-nosed echidna	Monotremata	Tachyglossidae
27	Macropus parryi	Pretty-faced wallaby	Diprotodontia	Macropodidae
28	Petaurus breviceps	Sugar glider	Diprotodontia	Petauridae
29	Phascolarctos cinereus	Koala	Diprotodontia	Phascolarctidae
30	Sarcophilus harrisii	Tasmanian devil	Dasyuromorphia	Dasyuridae
31	Didelphis virginiana	Virginia opossum	Didelphimorphia	Didelphidae
32	Tenrec ecaudatus	Common tenrec	Afrosoricida	Tenrecidae
33	Rhynchocyon petersi	Zanj elephant shrew	Macroscelidea	Macroscelididae
34	Orycteropus afer	Aardvark	Tubulidentata	Orycteropodidae
35	Loxodonta africana	African elephant	Proboscidea	Elephantidae
36	Procavia capensis	Rock hyrax	Hyracoidea	Procaviidae
37	Chaetophractus villosus	Big hairy armadillo	Cingulata	Chlamyphoridae

38	Euphractus sexcinctus	Six-banded armadillo	Cingulata	Chlamyphoridae
39	Dasypus novemcinctus	Nine-banded armadillo	Cingulata	Dasypodidae
40	Choloepus hoffmanni	Two-toed sloth	Pilosa	Choloepodidae
41	Myrmecophaga tridactyla	Giant anteater	Pilosa	Myrmecophagidae
42	Galeopterus variegatus	Malayan colugo	Dermoptera	Cynocephalidae
43	Tupaia javanica	Javan treeshrew	Scandentia	Tupaiidae
44	Eulemur macaco	Black lemur	Primates	Lemuridae
45	Varecia variegata	Black-and-white	Primates	Lemuridae
		ruffed lemur		
46	Cercopithecus diana	Diana monkey	Primates	Cercopithecidae
47	Macaca mulatta	Rhesus macaque	Primates	Cercopithecidae
48	Mandrillus sphinx	Mandrill	Primates	Cercopithecidae
49	Gorilla gorilla	Western gorilla	Primates	Hominidae
50	Brachylagus idahoensis	Pygmy rabbit	Lagomorpha	Leporidae
51	Oryctolagus cuniculus	European rabbit	Lagomorpha	Leporidae
52	Ochotona collaris	Collared pika	Lagomorpha	Ochotonidae
53	Aplodontia rufa rufa	Mountain beaver	Rodentia	Aplodontiidae
54	Bathyergus suillus	Cape dune mole-rat	Rodentia	Bathyergidae
55	Castor canadensis	North American beaver	Rodentia	Castoridae
56	Hydrochoerus hydrochaeris	Capybara	Rodentia	Caviidae
57	Neofiber alleni alleni	Round-tailed muskrat	Rodentia	Cricetidae
58	Ondatra zibethicus	Muskrat	Rodentia	Cricetidae
59	Cuniculus paca	Lowland paca	Rodentia	Cuniculidae
60	Dasyprocta sp.	Agouti	Rodentia	Dasyproctidae
61	Heterocephalus glaber	Naked mole-rat	Rodentia	Heterocephalidae
62	Erethizon dorsatum	North American	Rodentia	Erethizontidae
		porcupine		
63	Cricetomys gambianus	Gambian pouched rat	Rodentia	Nesomyidae
64	Pedetes capensis	Springhare	Rodentia	Pedetidae
65	Erinaceus europaeus	European hedgehog	Eulipotyphyla	Erinaceidae
66	Scapanus latimanus	Broad-footed mole	Eulipotyphyla	Talpidae
67	Blarina brevicauda	Northern short-tailed	Eulipotyphyla	Soricidae
		shrew		
68	Canis aureus	Golden jackal	Carnivora	Canidae
69	Canis latrans	Coyote	Carnivora	Canidae
70	Canis lupus	Wolf	Carnivora	Canidae
71	Cerdocyon thous	Crab-eating fox	Carnivora	Canidae
72	Speothos venaticus	Bush dog	Carnivora	Canidae
73	Vulpes zerda	Fennec fox	Carnivora	Canidae
74	Vulpes lagopus lagopus	Arctic fox	Carnivora	Canidae
75	Vulpes vulpes	Red fox	Carnivora	Canidae
76	Cryptoprocta ferox	Fossa	Carnivora	Eupleridae
77	Felis catus	Domestic cat	Carnivora	Felidae
78	Lynx rufus	Bobcat	Carnivora	Felidae
79	Neofelis nebulosa	Clouded leopard	Carnivora	Felidae
80	Panthera leo	Lion	Carnivora	Felidae

81	Conepatus leuconotus	Hog-nosed skunk	Carnivora	Mephitidae
82	Mephitis macroura	Hooded skunk	Carnivora	Mephitidae
83	Mephitis mephitis	Striped skunk	Carnivora	Mephitidae
84	Enhydra lutris	Sea otter	Carnivora	Mustelidae
85	Lontra canadensis	Common otter	Carnivora	Mustelidae
86	Martes pennanti	Fisher	Carnivora	Mustelidae
87	Mustela erminea	Ermine	Carnivora	Mustelidae
88	Mustela vison	American mink	Carnivora	Mustelidae
89	Gulo gulo luscus	Wolverine	Carnivora	Mustelidae
90	Nasua narica narica	White-nosed coati	Carnivora	Procyonidae
91	Nasua nasua	South American coati	Carnivora	Procyonidae
92	Potos flavus	Kinkajou	Carnivora	Procyonidae
93	Crossarchus platycephalus	Flat-headed kusimanse	Carnivora	Herpestidae
94	Mungos mungo	Banded mongoose	Carnivora	Herpestidae
95	Proteles cristatus	Aardwolf	Carnivora	Hyaenidae
96	Zalophus californianus	California sea lion	Carnivora	Otariidae
97	Monachus schauinslandi	Hawaiian monk seal	Carnivora	Phocidae
98	Tremarctos ornatus	Spectacled bear	Carnivora	Ursidae
99	Ursus americanus	American black bear	Carnivora	Ursidae
100	Ursus arctos horribilis	Grizzly bear	Carnivora	Ursidae
101	Arctictis binturong	Binturong	Carnivora	Viverridae
102	Genetta genetta	Common genet	Carnivora	Viverridae
103	Paradoxurus hermaphroditus	Asian palm civet	Carnivora	Viverridae
104	Manis pentadactyla	Chinese pangolin	Pholidota	Manidae
105	Equus ferus caballus	Domestic horse	Perissodactyla	Equidae
106	Ceratotherium simum	White rhinoceros	Perissodactyla	Rhinocerotidae
107	Tapirus indicus	Malayan tapir	Perissodactyla	Tapiridae
108	Ammotragus lervia	Barbary sheep	Artiodactyla	Bovidae
109	Bison bison	American bison	Artiodactyla	Bovidae
110	Cephalophus silvicultor	Yellow-backed duiker	Artiodactyla	Bovidae
111	Gazella dorcas	Dorcas gazelle	Artiodactyla	Bovidae
112	Gazella spekei	Speke's gazelle	Artiodactyla	Bovidae
113	Philantomba monticola	Blue duiker	Artiodactyla	Bovidae
114	Vicugna pacos	Alpaca	Artiodactyla	Camelidae
115	Muntiacus reevesi	Reeve's muntjac	Artiodactyla	Cervidae
116	Odocoileus virginianus	White-tailed deer	Artiodactyla	Cervidae
117	Giraffa camelopardalis	Giraffe	Artiodactyla	Giraffidae
118	Hippopotamus amphibious	Hippopotamus	Artiodactyla	Hippopotamidae
119	Babyrousa celebensis	Sulawesi babirusa	Artiodactyla	Suidae
120	Sus scrofa domesticus	Domestic pig	Artiodactyla	Suidae
121	Pecari tajacu	Collared peccary	Artiodactyla	Tayassuidae
122	Tayassuidae <i>sp</i> .	Peccary	Artiodactyla	Tayassuidae
123	Moschiola memmina	Spotted mouse-deer	Artiodactyla	Tragulidae
124	Tragulus napu borneanus	Greater mouse-deer	Artiodactyla	Tragulidae

SC	TTL	ATL	PTL	MTH	MTW	ATH	ATW	PTH	PTW	MHL	MFL
Reptilia											
1A	340	160	180	79	145	75	82	52	79	82	87
1B	270	94	176	67	95	40	55	60	61	77	87
2	322	150	172	51	116	29	52	39	78	85	90
3	530	310	220	120	234	76	153	105	160	136	171
4	390	149	241	54*	109	56	69	74	70	80	99
5	221	122	99	22*	82	20	42	50	58	54	70
6	435	175	260	110	210	105	130	76	115	110	126
7	545	270	275	64*	263	80	105	84	111	127	134
8**	140	74	66	34	56	27	36	19	33	32	40
9	49	25	24	11	8	8	10	8	12	9	13
10	109	70	39	19	46	14	15	16	16	14	15
11	165	84	81	23	50	16	21	19	27	24	21
12	225	125	100	80	120	36	46	39	54	60	61
13	300	160	140	58	106	32	41	30	43	53	59
14A	265	132	133	47	57	20	30	26	33	46	41
14B	219	121	98	30	87	10	17	14	20	24	30
15	210	74	136	37	80	29	35	28	28	44	49
16	585	400	185	189	310	145	164	150	155	126	160
17	146	71	75	8	33	5	7	11	12	25	24
18	160	83	77	18	69	19	26	28	27	37	40
19	490	223	267	109	190	63	108	74	85	91	116
20	84	33	51	22	3	10	6	13	4	19	20
21	139	84	55	24	66	20	28	16	33	29	31
22	135	95	40	37	72	20	27	29	32	36	42
23	82	39	43	12	30	9	11	19	19	22	29
24	229	126	103	52	109	39	44	56	48	66	78
Mammalia											
25A	125	50	75	58	69	26	35	35	28	40	33
25B	159	82	77	65	90	38	44	39	39	39	44
26	202	66	136	96	80	37	49	62	54	62	65
27	370	170	200	114	162	35	40	132	100	9 <u>8</u>	200
28	82	30	200 52	21	22	5	8	15	20	32	32
29	165	85	80	102	98	40	47	74	20 54	93	115
30	280	115	165	94	110	50	53	79	62	97	119
31	161	75	86	46	68	12	21	30	30	54	70
32	164	70	94	53	76	9	18	26	24	46	46
33	123	44	79	54	37	10	14	34	38	39	51
34	475	162	313	202	234	56	74	176	148	155	199
35	1870	760	1110	930	835	547	260	760	554	834	1050

Appendix 3. Raw torso shape measurements taken from 132 amniote specimens examined (see Appendix 2).

36	255	119	136	86	80	39	35	59	64	70	73
37	186	80	106	70	100	19	28	42	54	62	70
38	231	105	126	99	162	42	72	72	73	84	96
39	200	70	130	109	124	32	43	48	87	165	90
40	350	159	191	118	131	34	63	119	107	148	146
41	434	222	212	216	199	65	78	165	130	160	216
42	229	92	137	76	80	12	24	42	39	109	128
43	76	34	42	23	22	8	9	7	22	29	31
44	242	71	171	77	61	31	27	4	39	87	119
45	281	144	137	77	91	18	48	65	62	104	143
46	355	163	192	109	98	24	41	82	73	138	170
47	300	120	180	109	80	20	41	6 <u>5</u>	58	130	150
48	520	190	330	174	112	<u> 62</u>	68	112	120	233	310
49	755	312	443	222	422	142	163	245	252	410	355
50	145	60	85	$\Delta \Delta \Delta$	36	20	105	213	31	49	59
51	184	82	102	81	55	16	20	44	44	66	84
52	85	<u>44</u>	102 41	35	34	5	13	24	11	29	31
53	146	52	94	50	53	11	23	30	28	37	<u>4</u> 7
53 54	132	52 66	54 66	50 53	55 64	11	15	26	38	<i>4</i> 3	51
55 55	315	130	185	110	200	25	13 42	20 /19	95	ч 5 85	110
55 564	595	229	366	231	200	23 88	42 68	165	124	182	210
56B	520	22)	200	231	100	55	00 40	105	124	162	184
56C	520 605	215	290	104	210	55 70	49 54	155	00	170	200
57	005	213	590 62	194 20	210 42	19	54 17	07 24	99 20	172	200
50	9 4 150	52	02	59 60	42 70	9 14	14 20	2 4 22	20 25	23	30 45
50 50	132	100	92 106	02	70	14 40	20	33 50	55 60	57 85	43
59	303 264	109	190	114	09 61	40	52 24	30 27	40	6J 60	100
00 61	204	82 20	162	97 15	04 10	52 5	24 10	5/	40	09	02 15
01 62	00	20	40	13 116	19	5 24	10 56	0 111	10	1/	13
62 62	203	140 76	123	110 54	130	54 15	20	111	07 42	99 50	111 61
03	205	/0 55	129	54	09	15	28 42	33 15	42 56	50	01
04	215	55 E 4	100	00	80 50	19	42	45	30 25	50 20	109
05	145 56	54 20	89 27	49	39 20	15	20	39 5	25	39 16	39 17
00 67	50 64	29	27	19	39 22	4	0	5	1	10	1/
0/	04 255	32 120	52 216	12	22 114	3 40	5	5	5	10	11
68	333	139	216	122	114	40	32	65 70	60	130	149
69 70	430	190	240	158	146	08	40	/0	80	157	180
70	635	288	347	250	202	88	64 24	150	130	243	268
/1	273	105	168	/5	80	29	24	54	45	94	109
72	320	160	160	112	103	47	35	68	73	107	108
73	205	72	133	60	49	15	15	30	40	70	82
74	325	160	165	97	122	54	30	48	56	128	134
75	300	125	175	92	89	31	25	60	41	118	125
76	335	160	175	105	94	33	45	72	61	112	139
77	294	122	172	86	71	23	27	50	49	105	115
78	425	180	245	118	113	49	27	67	68	152	182
79	440	182	258	128	114	43	45	89	70	147	180

80	1020	430	590	345	320	155	115	235	145	345	410
81	184	95	89	78	69	22	13	55	45	69	82
82	151	64	87	55	47	17	19	44	34	50	59
83	168	73	95	67	50	22	14	36	39	60	73
84	620	250	370	185	260	40	60	60	86	112	139
85A	330	205	125	100	138	35	30	65	72	75	82
85B	364	131	233	94	101	21	40	35	46	80	79
86	264	129	135	70	69	16	23	51	40	80	96
87	130	59	71	27	24	10	8	12	14	30	34
88	183	69	114	45	47	9	6	10	12	40	39
89	494	226	268	128	153	58	52	80	65	143	145
90	209	85	124	69	75	19	24	59	45	83	104
91	263	130	133	100	99	42	44	64	63	99	124
92	214	72	142	73	62	26	30	48	60	68	85
93	173	68	105	55	62	20	19	42	28	53	59
94	205	80	125	66	53	28	20	40	48	59	77
95	312	132	180	100	121	28	44	72	73	140	142
96A	710	350	360	30	280	99	105	120	66	154	96
96B	900	414	486	269	253	102	115	49	64	162	84
97	1050	385	665	265	310	100	158	65	129	138	99
98	765	390	375	265	286	93	90	209	145	270	315
99	665	315	350	250	219	75	97	130	135	270	309
100	885	320	565	368	345	130	124	269	230	353	411
101	422	173	249	139	149	49	55	98	94	153	157
102	236	113	123	78	64	28	16	43	40	75	85
103	194	66	128	56	27	14	15	36	30	64	65
104	220	135	85	71	104	32	38	72	62	64	81
105	1140	545	595	520	528	226	119	324	294	335	410
106	1630	933	697	870	1109	360	140	515	410	355	500
107	1090	540	550	510	518	200	118	265	255	259	336
108	630	315	315	245	209	146	49	117	126	194	242
109A	1334	705	629	655	435	249	104	210	220	315	369
109B	1465	830	635	505*	520	295	176	296	264	340	438
110	695	281	414	254	242	134	64	132	132	194	239
111	450	235	215	159	176	62	33	99	85	111	140
112	470	240	230	190	160	85	39	80	90	125	169
113	312	132	180	107	102	41	21	50	49	85	110
114	680	325	355	275	265	125	54	160	120	200	280
115	424	152	272	235	109	68	33	64	65	114	138
116	740	310	430	280	305	140	79	133	125	190	255
117	1350	825	525	795	744	495	135	470	360	496	545
118	1600	817	783	810	806	402	169	402	401	384	515
119	635	320	315	315	272	134	65	190	142	230	231
120	930	359	571	259	265	122	56	98	125	195	210
121	470	185	285	175	162	75	34	92	76	154	170
122	419	154	265	139	123	62	28	59	74	145	147

123	294	116	178	89	88	49	25	23	54	82	96
124	226	104	122	75	57	30	20	36	37	80	92

* Maximum Rib Height (MRH) instead of MTH ** Measurements collected through palpation

Appendix 4. List of examined specimens. Abbreviations: SC, species code; Diet (C, carnivore; H, herbivore; I, insectivore); Sex (F, female; M, male); AC, age category (A, adult; SA, Subadult); LC, locality code (AF, Africa; AS, Asia; AU, Australia; CA, Central America; EU, Europe; NA, North America; NZ, New Zealand; SA, South America;); PC, preservation condition (SK, mounted complete skeleton; uSK, unmounted complete skeleton; pSK, partially disarticulated skeleton with articulated ribcage; PW, preserved whole animal)

SC	Species	Catalog number	Diet	Sex	AC	LC	PC
1A	Alligator sinensis	MoO 3754	C^{14}	?	А	AS	SK
1 B	Alligator sinensis	FMNH 31303	C^{14}	F	SA	AS	pSK
2	Alligator mississpiensis	FMNH 31321	C^{14}	F	SA	NA	pSK
3	Caiman crocodilus yacare	FMNH 9150	C^{14}	?	?	SA	pSK
4	Caiman crocodilus	FMNH 13062	C^{14}	?	?	SA	pSK
5	Paleosuchus palpebrosus	FMNH 98961	C^{14}	?	?	?	pSK
6	Crocodylus porosus	MoO 3758	C^{14}	?	А	?	SK
7	Gavialis gangeticus	MoO 3757	C^{14}	?	А	AS	SK
8	Sphenodon punctatus	MNHC R0109	C ¹³	?	?	NZ	PW
9	Chondrodactylus bibronii	FMNH 209448	C^{12}	?	?	?	uSK
10	Trachydosaurus rugosus	FMNH 22035	H^{6}	?	?	AU	SK
11	Tiliqua scincoides	FMNH 22034	H^{6}	?	?	AU	SK
12	Salvator merianae	MoO 3523	O^8	?	А	SA	SK
13	Heloderma horridum	MoO 3518	C^7	?	А	CA	SK
14A	Heloderma suspectum	MoO 5443	C^7	?	А	?	SK
14B	Heloderma suspectum	MNHC R0055	C^7	?	?	NA	SK
15	Varanus griseus	FMNH 204663	C^4	?	?	AF	SK
16	Varanus komodoensis	MoO 3524	C^4	?	А	?	SK
17	Varanus macraei	MNHC R2099	C^{9*}	?	?	?	uSK
18	Varanus rudicollus	MNHC R0091	C^4	?	?	?	SK
19	Varanus salvator	MNHC R0089	C^4	?	?	?	SK
20	Bradypodion fischeri	FMNH 229961	C^{10}	?	?	?	pSK
21	Uromastyx aegyptius	FMNH 22031	H^6	?	?	AF	SK
22	Pogona vitticeps	MoO 6348	O^{11}	?	А	AU	SK
23	Dipsosaurus dorsalis	FMNH 206188	H^{6}	?	?	?	pSK
24	Iguana iguana	MoO 3529	H^5	?	А	SA	SK
25A	Ornithorhynchus anatinus	FMNH 81527	C ³	?	А	AU	SK
25B	Ornithorhynchus anatinus	MoO 3813	C^3	?	А	AU	SK
26	Tachyglossus aculeatus	MoO 3817	C^3	?	А	AU	SK
27	Macropus parryi	MoO 3780	H^{1}	?	А	AU	SK
28	Petaurus breviceps	MoO 3785	O^1	?	А	AU	SK
29	Phascolarctos cinereus	MoO 1624	H^3	?	А	AU	SK
30	Sarcophilus harrisii	MoO 3775	C ³	?	А	AU	SK
31	Didelphis virginiana	MNHC TC460	O^1	?	?	NA	SK
32	Tenrec ecaudatus	MoO 3792	C^3	?	А	AF	SK
33	Rhynchocyon petersi	MoO 3811	C^1	?	А	AF	SK
34	Orycteropus afer	MoO 3886	C ³	?	А	?	SK

35	Loxodonta africana	MoO 4710	H^2	?	А	AF	SK
36	Procavia capensis	MoO 3873	H^3	?	А	AF	SK
37	Chaetophractus villosus	MNHC 33	O^3	?	?	SA	SK
38	Euphractus sexcinctus	MoO 3841	O^3	?	А	SA	SK
39	Dasypus novemcinctus	MoO 3501	C^2	?	А	NA	SK
40	Choloepus hoffmanni	MoO 2163	H^3	?	А	C/SA	SK
41	Myrmecophaga tridactyla	MoO 3850	\mathbf{C}^1	?	А	?	SK
42	Galeopterus variegatus	MoO 1098	H^3	?	А	AS	SK
43	Tupaia javanica	MoO 3827	C^3	?	А	AS	SK
44	Eulemur macaco	MNHC 41	H^{1}	?	?	AF	SK
45	Varecia variegata	MoO 2781	H^3	?	А	AF	SK
46	Cercopithecus diana	MoO 2723	O^1	?	А	AF	SK
47	Macaca mulatta	FMNH 59018	H^3	F	А	?	SK
48	Mandrillus sphinx	MoO 08-579/784	H^2	Μ	А	AF	SK
49	Gorilla gorilla	MoO 2793	H^3	?	А	AF	SK
50	Brachylagus idahoensis	MoO 3806	H^3	?	А	NA	SK
51	Oryctolagus cuniculus	MoO 6328	H^3	?	А	?	SK
52	Ochotona collaris	MoO 3273	H^3	?	А	NA	SK
53	Aplodontia rufa rufa	FMNH 18820	H^3	Μ	А	NA	SK
54	Bathyergus suillus	MoO 2159	H^{1}	?	А	AF	SK
55	Castor canadensis	MoO 3489	H^{1}	?	А	NA	SK
56A	Hydrochoerus hydrochaeris	MoO 3860	H^3	?	А	SA	SK
56B	Hydrochoerus hydrochaeris	FMNH 51636	H^3	?	А	SA	SK
56C	Hydrochoerus hydrochaeris	MNHC 6029	H^3	?	?	SA	SK
57	Neofiber alleni alleni	FMNH 18824	H^3	F	А	NA	SK
58	Ondatra zibethicus	MoO 3488	H^3	?	А	NA	SK
59	Cuniculus paca	FMNH 15613	H^3	?	А	SA	SK
60	Dasyprocta sp.	MNHC 17	H^{1*}	?	?	SA	SK
61	Heterocephalus glaber	FMNH 1439	H^{1}	F	А	AF	SK
62	Erethizon dorsatum	MoO 3859	H^3	?	А	NA	SK
63	Cricetomys gambianus	MoO 3855	O^1	?	А	AF	SK
64	Pedetes capensis	MNHC 6027	H^3	?	?	?	SK
65	Erinaceus europaeus	MoO 6123	C^1	?	А	?	SK
66	Scapanus latimanus	MoO 3830	C^2	?	А	NA	SK
67	Blarina brevicauda	MoO 3504	C^2	?	А	?	SK
68	Canis aureus	FMNH 15536	C^3	?	А	AS	SK
69	Canis latrans	MoO 3436	C^3	F?	А	NA	SK
70	Canis lupus	MoO 3437	C^3	Μ	А	?	SK
71	Cerdocyon thous	FMNH 15538	C^3	?	А	SA	SK
72	Speothos venaticus	MoO 3455	C^3	F?	А	SA	SK
73	Vulpes zerda	MoO 3456	C^3	?	А	AF	SK
74	Vulpes vulpes	MoO 3500	C^2	?	А	?	SK
75	Vulpes lagopus lagopus	FMNH 15537	C^2	?	А	EU	SK
76	Cryptoprocta ferox	MoO 3396	C^3	Μ	А	AF	SK
77	Felis catus	MoO 2724	C^3	?	А	?	SK
78	Lynx rufus	MoO 3498	C^3	?	А	NA	SK

79	Neofelis nebulosa	MoO 5442	C^3	?	А	AS	SK
80	Panthera leo	MoO 3431	C^3	?	А	AF	SK
81	Conepatus leuconotus	MoO 14320/3393	C^3	Μ	А	N/CA	SK
82	Mephitis macroura	MoO 3404	O^3	F?	А	N/CA	SK
83	Mephitis mephitis	MoO 3497	O^3	?	А	?	SK
84	Enhydra lutris	MoO 3397	C^3	Μ	А	NA	SK
85A	Lontra canadensis	MoO 3496	C^3	?	А	NA	SK
85B	Lontra canadensis	MNHC 56	C^3	Μ	?	NA	SK
86	Martes pennanti	FMNH 15539	C^3	?	А	NA	SK
87	Mustela erminea	MNHC 63	C^3	Μ	?	NA	SK
88	Mustela vison	MNHC 58	C^3	Μ	?	NA	SK
89	Gulo gulo luscus	FMNH 15541	C^3	?	А	NA	SK
90	Nasua narica narica	FMNH 15543	O^3	?	А	NA	SK
91	Nasua nasua	MoO 3424	O^3	Μ	А	?	SK
92	Potos flavus	MoO 3411	H^3	F?	А	C/SA	SK
93	Crossarchus platycephalus	MoO 3395	\mathbf{C}^1	F?	А	AF	SK
94	Mungos mungo	MoO 3406	C^3	F?	А	AF	SK
95	Proteles cristatus	MoO 3412	C^3	F?	А	AF	SK
96A	Zalophus californianus	MoO 3479	C^3	?	А	NA	SK
96B	Zalophus californianus	MNHC 22	C^3	?	?	NA	SK
97	Monachus schauinslandi	MoO 3468	C^3	?	А	?	SK
98	Tremarctos ornatus	MoO 3417	H^3	Μ	А	SA	SK
99	Ursus americanus	FMNH 15547	H^3	?	А	NA	uSK
100	Ursus arctos horribilis	MoO 6907	O^{15}	Μ	А	NA	SK
101	Arctictis binturong	MoO 3392	O^3	F?	А	AS	SK
102	Genetta genetta	MoO 3398	C^3	F?	А	AF	SK
103	Paradoxurus hermaphroditus	FMNH 15534	O^3	?	А	AS	SK
104	Manis pentadactyla	MoO 3822	C^3	?	А	AS	SK
105	Equus ferus caballus	MoO 3995	H^3	?	А	?	SK
106	Ceratotherium simum	MoO 4707	H^3	F	А	AF	SK
107	Tapirus indicus	MoO 3987	H^{1}	?	А	?	SK
108	Ammotragus lervia	MoO 3940	H^2	?	А	NA?	SK
109A	ABison bison	FMNH 15577	H^3	?	А	NA	SK
109E	Bison bison	MoO 3494	H^3	?	А	NA	SK
110	Cephalophus silvicultor	MoO 3915	H^2	?	А	AF	SK
111	Gazella dorcas	MoO 3927	H^{1}	?	А	AF	SK
112	Gazella spekei	FMNH 18809	H^{1}	?	А	AF	SK
113	Philantomba monticola	MoO 3933	H^{1}	?	А	AF	SK
114	Vicugna pacos	MoO 3973	H^{16}	?	А	SA	SK
115	Muntiacus reevesi	MoO 3954	H^{1}	Μ	А	AS	SK
116	Odocoileus virginianus	MoO 3492	H^3	?	А	?	SK
117	Giraffa camelopardalis	MoO 4708	H^3	M	A	AF	SK
118	Hippopotamus amphibious	MoO 4709	H^3	M	Ā	ĀF	SK
119	Babyrousa celebensis	MoO 3971	H^3	?	Ā	ĀŠ	SK
120	Sus scrofa domesticus	MNHC 6028	H^3	?	?	?	SK
121	Pecari tajacu	MoO 3972	H^3	?	A	?	SK
	· · · · J · · · · ·	· · · · · · =			-	-	-

122	Tayassuidae <i>sp</i> .	MNHC 31	$H^{2^{**}}$?	?	?	SK
123	Moschiola memmina	MoO 3952	H^3	?	А	AS	SK
124	Tragulus napu borneanus	FMNH 15570	H^3	?	А	SA	SK

* Indicates extrapolated from related taxa – genus

** Indicates extrapolated from related taxa – family

¹Diet data from MammalDiet and MammalDiet2 metadata (Kissling et al., 2014; Gainsbury et al., 2017)

²Diet data from Pineda-Munoz and Alroy (2014)

³Diet data from PHYLACINE 1.2 (Faurby et al., 2018)

⁴Diet data from Losos & Greene, 1988

⁵Diet data from Troyer, 1984

⁶Diet data from Pough, 1973

⁷Diet data from Beck, 1990

⁸Diet data from Engemen et al., 2019

⁹Diet data from Ziegler et al., 2009

¹⁰Diet data from da Silva et al., 2016

¹¹Diet data from Oonincx et al., 2015

¹²Diet data from Pianka and Huey, 1978

¹³Diet data from Cartland-Shaw et al., 1998

¹⁴Diet data from Erickson et al., 2012

¹⁵Diet data from Hilderbrand et al., 1996

¹⁶Diet data from St-Pierre and Wright, 2012

Scientific Name	Common Name	PC1	PC2
Alligator sinensis	Chinese alligator	-0.5541519	-0.3254875
Alligator mississpiensis	American alligator	0.10344772	-0.0187798
Caiman crocodilus yacare	Yacare caiman	0.06675091	-0.0216572
Caiman crocodilus	Spectacled caiman	0.13423394	0.00724906
Paleosuchus palpebrosus	Cuvier's dwarf caiman	0.08814877	-0.0496756
Crocodylus porosus	Saltwater crocodile	0.116786	-0.0424415
Gavialis gangeticus	Gharial	0.20268522	0.02074641
Sphenodon punctatus	Tuatara	0.15789085	-0.0163861
Chondrodactylus bibronii	Bibron's gecko	0.12951259	-0.0018778
Trachydosaurus rugosus	Shingleback lizard	0.14251224	-0.059749
Tiliqua scincoides	Blue-tongued lizard	0.14219482	-0.0449145
Salvator merianae	Black and white tegu	0.15074415	-0.0615228
Heloderma horridum	Beaded lizard	0.15410928	-0.0207718
Heloderma suspectum	Gila monster	0.15383668	-0.0240801
Varanus griseus	Desert monitor	0.13186051	0.00505355
Varanus komodoensis	Komodo dragon	0.2016425	-0.0228454
Varanus macraei	Blue tree monitor	0.18153556	0.01892307
Varanus rudicollus	Rough-neck monitor	0.1338355	-0.0527551
Varanus salvator	Water monitor	0.15772758	-0.0338748
Bradypodion fischeri	Fischer's chameleon	0.04676116	0.00831712
Uromastyx aegyptius	Egyptian mastigure	0.12198335	0.0386974
Pogona vitticeps	Bearded dragon	0.10680618	-0.0013743
Dipsosaurus dorsalis	Desert iguana	0.09226186	-0.0126483
Iguana iguana	Green iguana	-0.1127098	-0.0198725
Ornithorhynchus anatinus	Platypus	-0.0043317	0.04060111
Tachyglossus aculeatus	Short-nosed echidna	-0.0194286	-0.0359357
Macropus parryi	Pretty-faced wallaby	-0.0366347	-0.0785847
Petaurus breviceps	Sugar glider	-0.2089431	-0.0292013
Phascolarctos cinereus	Koala	-0.0990686	-0.0026464
Sarcophilus harrisii	Tasmanian devil	-0.0681217	-8.70E-05
Didelphis virginiana	Virginia opossum	0.0498755	0.06308703
Tenrec ecaudatus	Common tenrec	-0.1005681	-0.0378215
Rhynchocyon petersi	Zanj elephant shrew	-0.038227	-0.0168059
Orycteropus afer	Aardvark	0.01036806	0.02971745
Loxodonta africana	African elephant	-0.1696894	0.01837016
Procavia capensis	Rock hyrax	-0.0741746	-0.0993856
Chaetophractus villosus	Big hairy armadillo	-0.0643036	-0.0242763

Appendix 5. Raw coordinate data for principal component analysis (PCA) on Torso Shape Groups.

Euphractus sexcinctus	Six-banded armadillo	-0.1654068	-0.071462
Dasypus novemcinctus	Nine-banded armadillo	-0.0818569	-0.0473586
Choloepus hoffmanni	Two-toed sloth	-0.0228191	0.03482402
Myrmecophaga tridactyla	Giant anteater	-0.0430308	0.01376991
Galeopterus variegatus	Malayan colugo	-0.1204316	-0.0335716
Tupaia javanica	Javan treeshrew	-0.0571538	-0.0461665
Eulemur macaco	Black lemur	-0.1073719	0.03451231
Varecia variegata	Black-and-white ruffed lemur	0.03889929	0.02628471
Cercopithecus diana	Diana monkey	-0.0035634	-0.0249386
Macaca mulatta	Rhesus macaque	-0.0941595	0.0276287
Mandrillus sphinx	Mandrill	-0.0268543	-0.0650253
Gorilla gorilla	Western gorilla	-0.0113575	-0.0408409
Brachylagus idahoensis	Pygmy rabbit	0.26916291	-0.0043629
Oryctolagus cuniculus	European rabbit	0.36514122	-0.0452263
Ochotona collaris	Collared pika	0.28026127	0.05714957
Aplodontia rufa rufa	Mountain beaver	0.26208156	-0.036439
Bathyergus suillus	Cape dune mole-rat	0.31275865	-0.0313153
Castor canadensis	North American beaver	0.24202156	-0.0259774
Hydrochoerus hydrochaeris	Capybara	0.20519161	-0.0271283
Neofiber alleni alleni	Round-tailed muskrat	0.35107516	-0.0507351
Ondatra zibethicus	Muskrat	0.30099879	-0.0292592
Cuniculus paca	Lowland paca	0.21776302	-0.0621215
Dasyprocta sp.	Agouti	0.27496601	0.10010696
Heterocephalus glaber	Naked mole-rat	0.23227291	-0.0193447
Erethizon dorsatum	North American porcupine	0.23030342	0.07984834
Cricetomys gambianus	Gambian pouched rat	0.22732303	-0.0322187
Pedetes capensis	Springhare	-0.1882493	0.12680798
Erinaceus europaeus	European hedgehog	-0.1966771	0.11226796
Scapanus latimanus	Broad-footed mole	-0.0783862	0.19296843
Blarina brevicauda	Northern short-tailed shrew	-0.206816	0.08926347
Canis aureus	Golden jackal	-0.031597	0.12744292
Canis latrans	Coyote	-0.0383647	0.17387336
Canis lupus	Wolf	-0.0775779	0.09906427
Cerdocyon thous	Crab-eating fox	-0.2418215	0.08947419
Speothos venaticus	Bush dog	-0.0812447	0.09176681
Vulpes zerda	Fennec fox	-0.114685	0.16517904
Vulpes lagopus lagopus	Arctic fox	-0.3955224	0.0401552
Vulpes vulpes	Red fox	-0.3022749	0.01590042
Cryptoprocta ferox	Fossa	-0.2812928	0.02531252
Felis catus	Domestic cat	-0.3866951	-0.0525497

Lynx rufus	Bobcat	-0.3088931	-0.0395009
Neofelis nebulosa	Clouded leopard	-0.2020375	-0.1348189
Panthera leo	Lion	-0.5766894	0.12519339
Conepatus leuconotus	Hog-nosed skunk	-0.4263802	0.10006053
Mephitis macroura	Hooded skunk	-0.6290288	0.06803292
Mephitis mephitis	Striped skunk	-0.4603401	-0.0739378
Enhydra lutris	Sea otter	0.08086804	0.08852475
Lontra canadensis	Common otter	0.10624985	0.08061185
Martes pennanti	Fisher	0.18526264	0.1342526
Mustela erminea	Ermine	0.03141243	0.0793469
Mustela vison	American mink	0.20112215	0.11322431
Gulo gulo luscus	Wolverine	0.09064012	0.16521637
Nasua narica narica	White-nosed coati	-0.0027023	0.13461982
Nasua nasua	South American coati	0.08628493	0.09837472
Potos flavus	Kinkajou	0.13969538	0.05203671
Crossarchus platycephalus	Flat-headed kusimanse	0.01936197	0.07210263
Mungos mungo	Banded mongoose	0.02756629	0.06946478
Proteles cristatus	Aardwolf	0.091035	0.08191346
Zalophus californianus	California sea lion	0.01688338	0.12249931
Monachus schauinslandi	Hawaiian monk seal	-0.2488377	0.07904137
Tremarctos ornatus	Spectacled bear	-0.1281016	-0.0527877
Ursus americanus	American black bear	0.00942687	-0.0540963
Ursus arctos horribilis	Grizzly bear	-0.0720299	-0.0836789
Arctictis binturong	Binturong	0.02055077	-0.0387003
Genetta genetta	Common genet	0.074412	-0.0488747
Paradoxurus hermaphroditus	Asian palm civet	0.09111094	-0.0524171
Manis pentadactyla	Chinese pangolin	-0.0309199	-0.0699526
Equus ferus caballus	Domestic horse	0.039742	-0.1234279
Ceratotherium simum	White rhinoceros	0.03251952	-0.0363405
Tapirus indicus	Malayan tapir	0.06471736	-0.076033
Ammotragus lervia	Barbary sheep	0.00542601	-0.0688949
Bison bison	American bison	-0.0621137	-0.0074391
Cephalophus silvicultor	Yellow-backed duiker	-0.069905	-0.0649958
Gazella dorcas	Dorcas gazelle	0.00541029	-0.0510656
Gazella spekei	Speke's gazelle	0.06502797	-0.0388734
Philantomba monticola	Blue duiker	-0.050102	-0.0476534
Vicugna pacos	Alpaca	0.06571661	-0.0327737
Muntiacus reevesi	Reeve's muntjac	-0.0471502	-0.0605424
Odocoileus virginianus	White-tailed deer	0.01785957	-0.0056852
Giraffa camelopardalis	Giraffe	0.02070888	-0.0148959

Hippopotamus amphibious	Hippopotamus	-0.0277731	-0.0614275
Babyrousa celebensis	Sulawesi babirusa	0.01214292	-0.0395792
Sus scrofa domesticus	Domestic pig	-0.0022085	-0.1065408
Pecari tajacu	Collared peccary	0.01817654	-0.0002587
Tayassuidae sp.	Peccary	-0.0334774	-0.067649
Moschiola memmina	Spotted mouse-deer	-0.0744121	-0.0857174
Tragulus napu borneanus	Greater mouse-deer	-0.0483965	-0.0988208

	PC1	PC2
ATL	0.10809565	0.1427448
PTL	0.03894177	-0.1870125
MTH	0.32357137	-0.576968
MTW	0.30819915	0.47209971
ATH	0.51548882	-0.0916769
ATW	0.38378595	0.51049177
PTH	0.46363443	-0.3324819
PTW	0.39891912	0.09658843

Appendix 6. Loadings for principal components by Torso Shape Variable.