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KYBERNET IKA — VOLUME 5 8 ( 2 0 2 2 ) , NUMBER 6 , PAGES 8 8 3 – 9 0 2

IMPROVED INFERENCE FOR THE GENERALIZED
PARETO DISTRIBUTION UNDER LINEAR, POWER
AND EXPONENTIAL NORMALIZATION

Osama Mohareb Khaled, Haroon Mohamed Barakat
and Nourhan Khalil Rakha

We discuss three estimation methods: the method of moments, probability weighted mo-
ments, and L-moments for the scale parameter and the extreme value index in the generalized
Pareto distribution under linear normalization. Moreover, we adapt these methods to use for
the generalized Pareto distribution under power and exponential normalizations. A simulation
study is conducted to compare the three methods on the three models and determine which
is the best, which turned out to be the probability weighted moments. A new computational
technique for improving fitting quality is proposed and tested on two real-world data sets using
the probability weighted moments. We looked back at various maximal data sets that had
previously been addressed in the literature and for which the generalized extreme value distri-
bution under linear normalization had failed to adequately explain them. We use the suggested
procedure to find good fits.

Keywords: generalized Pareto distribution, generalized extreme value distribution,
method of moments, probability weighted moments, L-moments, linear-power-
exponential normalization

Classification: 62F10, 62F03

1. INTRODUCTION

Extreme Value Theory (EVT) has risen to prominence as one of the most important sta-
tistical areas in applied sciences. EVT dates back to Gnedenko [19], who identified the
only three possible limiting types of distribution functions (DFs) of the linearly normal-
ized maximum Xn:n (or minimum X1:n) of i.i.d random variables (RVs) X1, X2, . . . , Xn

with a continuous DF F (say). These limit DFs can be incorporated using the von
Mises–Jenkinson form

Gγ(x;µ, σ) = exp

[
−
[
1− γ

(
x− µ
σ

)] 1
γ

]
, 1− γ

(
x− µ
σ

)
> 0, (1)

where γ ∈ R is a shape parameter known as the extreme value index (EVI) and plays
an important role in the empirical studies of extreme events, while µ and σ > 0 are
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the location and scale parameters, respectively. The DF Gγ(x;µ, σ), which is known as
the generalized extreme value distribution under linear normalization (GEVL), includes
the Gumbel, Frèchet, and Weibull types according as γ = 0 (interpreted as γ → 0),
γ > 0 and γ < 0, respectively. In order to broaden the class of the limit laws in EVT
to solve more approximation problems, Pancheva [24] introduced power normalization∣∣∣Xn:n

αn

∣∣∣ 1
βn S(Xn:n), where S(x) = sign(x) = −1, 0, 1, according as x < 0, x = 0, x > 0,

respectively. Another incentive to use power normalization is the possibility of achieving
a higher rate of convergence (cf. Barakat et al [4]). The DF F is said to belong to the
p-max domain of attraction of a non-degenerate DF H under power normalization if for
some αn > 0, βn > 0,

P

(∣∣∣∣Xn:n

αn

∣∣∣∣ 1
βn

S(Mn) ≤ x

)
= Fn(αn |x|βn S(x))

w−→n H(x), (2)

where “
w−→n ” denotes the weak convergence, as n → ∞. There are only six possible

continuous p-types of H in (2), which are known as the p-max stable laws. These laws

fulfil the stability relation Hn(αn |x|βn S(x)) = H(x), x ∈ R, for every n ≥ 1, where
αn > 0 and βn > 0 are some appropriate constants. Here, two DFs, F and G, are of the
same p-type if we can find α > 0 and β > 0, for which F (x) = G(α |x|β S(x)), for all
x. Consequently, any non-degenerate DF H is a p-max stable if and only if, for every
n ≥ 1, the DFs H and Hn are of the same p-type. Nasri–Roudsari [23] summarized the
p-max stable laws by the two von Mises forms

H1;γ(x; a, b) = exp[−(1− γ log axb)
1
γ ], x > 0, 1− γ log axb > 0, (3)

H2;γ(x; a, b) = exp[−(1− γ log a(−x)b)
1
γ ], x < 0, 1− γ log a(−x)b > 0. (4)

If (2) holds with H(x) = Hi;γ(x; a, b), i ∈ {1, 2}, we say that the DF F is in the power
max-domain of attraction of Hi;γ(x; a, b). Each of the families (3) and (4) is called gener-
alized extreme value distribution under power normalization (GEVP). For more details
about the EVT under the power normalization and its use in the modeling of extreme
events, we refer to Nasri-Roudsari [23] and Barakat et al. ([5, 6, 7, 12, 9, 3, 10, 11]). Once
again, in order to broaden the scope of the applications of EVT, Ravi and Mavitha [26]
extended EVT under exponential normalization Tn(x) =Tun,vn(x) = exp{un(| log |x||)vn
S(log |x|)}S(x),un, vn > 0. Under the exponential transformation, two DFs F and G
are of the same e-type if F (x) = G(exp{(u(| log |x||)v S(log |x|))}S(x)) = G(Tu,v(x)),
for some constants u > 0, v > 0. In this case, a non-degenerate DF E(.) is said to be an
e-max-stable law if there exist un > 0 and vn > 0, such that

P (T −n (Xn:n)} ≤ x) = P

({[
exp

((
| log |Xn;n||

un

)1/vn

S(log |Xn:n|)

)]}
S(Xn:n) ≤ x

)

= P (Xn:n ≤ Tn(x)) = Fn(Tn(x))
w−→n E(x). (5)

If (5) is satisfied, we say that the DF F belongs to the e-max-domain of attraction of
E . Ravi and Mavitha [26] showed that the DF E is a limit in (5) if and only if, for
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every n ≥ 1, the DFs E and En are of the same e-type (for more details about the
exponential transformation, see Barakat et al.[2]). Ravi and Mavitha [26] showed that
the possible continuous limit laws in (5) are 12 types and they attract more DFs than
the p-max-stable laws. This effectively implies that while the linear and power models
may fail to fit the given extreme data, the exponential model succeeds. Barakat et al.
[8] summarized these e-max stable DFs by the following von Mises forms:

W1;γ(x; a, b)=exp[−(1−γ log(a(log x)b))
1
γ ], 1−γ log(a(log x)b)>0,

W2;γ(x; a, b)=exp[−(1−γ(− log(a(− log x)b)))
1
γ ], 1−γ(− log(a(− log x)b))>0,

W3;γ(x; a, b)=exp[−(1−γ log(a(− log(−x))b))
1
γ ], 1−γ log(a(− log(−x)))>0,

W4;γ(x; a, b)=exp[−(1−γ(− log(a(log(−x))b)))
1
γ ], 1−γ(− log(a(log(−x))b)>0,


(6)

where γ ∈ R is a shape parameter and when γ = 0, Wi;γ(x; a, b) is defined as usual by
limγ→0Wi;γ(x; a, b), i = 1, 2, 3, 4. Each DF in (6) is called generalized extreme value
distribution under exponential normalization (GEVE), denoted by GEVE(γ, a, b).
The generalized extreme value DFs defined in (1), (3), (4), and (6) provide prevailing
parametric approach for modeling extreme events, which is known as the block maxima
(BM). Its application consists of partitioning a data set into blocks of equal length and
fitting the GEV(L, P, E) to the set of block maxima. The peaks over threshold (POT)
strategy is a variation of the BM approach (see Davison and Smith [17]). The techniques
for resolving exceedances over a high threshold are crucial for hydrology, environmental
science, and other fields of study. In POT approach, we use the observations above an
appropriate threshold (see Coles [15]). The POT approach in the linear case is based
on the generalized Pareto distribution (GPD) under linear normalization (denoted by
GPDL) introduced in the pioneering papers by Balkema and de Haan ([1]) and Pickands
([25]). The GPDL is the limit distribution of scaled excesses over high thresholds, which
can be written as

Vγ(x;µ, σ) = 1+logGγ(x;µ, σ) =

{
1−

(
1− γ

(
x−µ
σ

)) 1
γ , 1−γ

(
x−µ
σ

)
>0, x>0, if γ 6=0,

1− exp
(
−
(
x−µ
σ

))
,

(
x−µ
σ

)
> 0, if γ = 0.

(7)
The GPD under power normalization (denoted by GPDP) was derived by Barakat et
al. ([5]) for each of the models (3) and (4), respectively, by

C1;γ(x; a, b) = 1 + logH1;γ(x; a, b),
C2;γ(x; a, b) = 1 + logH2;γ(x; a, b).

}
(8)

The GPD under exponential normalization (denoted by GPDE) was derived by Barakat
et al. ([8]) for each of the models (6) by

Q1;γ(x; a, b) = 1 + logW1;γ(x; a, b) ,
Q2;γ(x; a, b) = 1 + logW2;γ(x; a, b),
Q3;γ(x; a, b) = 1 + logW3;γ(x; a, b),
Q4;γ(x; a, b) = 1 + logW4;γ(x; a, b).

 (9)

The GPDs have been widely used in the extreme value framework. The success of any of
the GPDL, GPDP and GPDE when it is used to fit real data sets depends basically on
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the parameter estimation process. Several methods exist in the literature for estimating
the GPDL parameters. Mostly, the estimation is performed by the method of moments
(MOM), the probability weighted moments (PWM) and the L-moments (LM). In this
paper, we limit ourselves to estimate the parameters of GPD (L, P, E) by the approaches
MOM, PWM, and LM with comparison via a simulation study. Moreover, we suggest
a new computational technique to improve the parameter estimation process. This
technique is applied to two real-world data sets.

The paper is structured as follows: in Section 2, we discuss the methods MOM,
PWM, and LM for the parameter scale and EVI in the GPDL. Meanwhile, we are
adapting these methods to use in the GPDP and GPDE. In Section 3 , we conduct a
simulation study to compare the three methods and determine the best. It turns out
that the best method is PWM. A new computational technique is suggested in Section 4
to improve the quality of fitting and in Section 5 is applied to two real-world data sets via
the PWM. In Section 6 , we revisited some maximum data sets that had previously been
studied by Barakat et al. ([8]), where the EVT under linear, power, and exponential
normalization did not succeed to describe these data sets via the BM method, where the
maximum likelihood estimate (MLE) was used. After applying the suggested method
to these MLEs in GEVL, we reveal that the GEVL could fit these data sets.

2. METHODS OF ESTIMATION

2.1. The MOM method

The ancient and direct MOM has been widely used to estimate the parameters of the
two-parameter GPDL (7), with µ = 0, as well as many other univariate continuous
distributions.

The MOM for GPDL. The MOM estimates of the parameters γ and σ are easily
obtained by using the expressions for the mean and variance of the RV X ∼ Vγ(x; 0, σ),

which are E(X) = σ
1+γ , γ > −1 and V ar(X) = σ2

(1+γ)2(1+2γ) , γ > − 1
2 (cf. de Zea

Bermudez and Kotz, [18]). Thus, the MOM estimates of γ and σ are given by γ̂ =
1
2

(
x̄2

s2 −1
)

and σ̂ = 1
2 x̄
(
x̄2

s2 + 1
)
, where x̄ and s2 stand for the sample mean and variance,

respectively.

The MOM for GPDP. Clearly, if X ∼ C1;γ(x; a, b), then Z ∼ Vγ(x;µ, σ), where

Z = logX, σ = 1
b and µ = − log a

b . Therefore, by applying the transformation z = log x
on the items in the sample that we have (see Remark 2.1), the MOM estimates of the
parameters γ and b, when a = 1, can be easily obtained by using the corresponding MOM

estimates for γ and σ, when µ = 0, in the GPDL, as γ̂ = 1
2

(
z̄2

s2 − 1
)

and σ̂ = 1
2 z̄
(
z̄2

s2 + 1
)
,

where z̄ and s2 are the transformed sample mean and variance, respectively. The MOM
estimates for the parameters in C2;γ(x; 1, b) can be obtained by a similar way (by using
the transformation z = log |x|) (see Remark 2.1).

The MOM for GPDE. Let X ∼ Q1;γ(x; a, b). Further, let Z = log logX (note that

in Q1;γ(x; a, b), we have x > 1). Then, Z ∼ Vγ(x;µ, σ), where σ = 1
b and µ = − log a

b .
Therefore, by applying the transformation z = log log x on the items in the sample that
we have, the MOM estimates of the parameters γ and b, when a = 1, can be easily
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obtained by using the corresponding MOM estimates for γ and σ, when µ = 0, in the

GPDL, as γ̂ = 1
2

(
z̄2

s2 − 1
)

and σ̂ = 1
2 z̄
(
z̄2

s2 + 1
)
, where z̄ and s2 are the transformed

sample mean and variance, respectively. The MOM estimates for the parameters in
Qi;γ(x; 1, b), i = 2, 3, 4, can be obtained by a similar way (see Remark 2.1).

Remark 2.1. For any DF F, Christoph and Falk [16] demonstrated that the F ’s upper
tail behavior indicates whether F belongs to the domain of attraction of the limit law (3),
in which case C1;γ(x; a, b) would apply, or that of (4), in which case C2;γ(x; a, b) would
apply. The right endpoint of F should be positive in the first case and negative in the
second. As a result, only positive data (or negative data) larger than the chosen threshold
can be used to apply the modeling under power normalization using C1;γ(x; a, b) (or
using C2;γ(x; a, b)). Simply put, this means that the appropriate threshold should be
established so that the sample located after it only contains positive or negative values
(see, Barakat et al. [10]). Additionally, in order to apply the models Qi;γ(x; a, b), i =
1, 2, 3, 4, the appropriate threshold should be selected so that the sample lies after that
threshold in either (1,+∞), or (0, 1), or (−1, 0), or (−∞,−1), according to Q1;γ , or
Q2;γ , or Q3;γ , or Q4;γ (see Barakat et al.,[8]). The associated necessary transformations
are log log x, log | log x |, log | log | x ||, and log log | x | .

2.2. The PWM method

The PWM method was first proposed in the statistical literature in the early 1970s and
is now widely utilized in hydrological applications, inter alia. The PWM of an RV X
with DF F is defined as

Mp,r,s = E[XpF r(X)(1− F (X))s] =

∫ 1

0

xp(F )F r(1− F )s dF, (10)

where p, r and s are real numbers. These moments are especially handy for any dis-
tribution F that has a simple quantile function x(F ) (a simple inverse) as observed
by Greenwood et al. ([20]). Many a time, PWM are much more simple in expressing
the parameters of a distribution than by the ordinary moments about the origin of or-
der p > 0, Mp,0,0 = E[Xp]. Consequently, for several distributions it is most useful to
consider either the moments

αs = M1,0,s = E[X(1− F (X))s], (11)

or
βr = M1,r,0 = E[XF r(X)], (12)

for s, r ≥ 0, where s and r are preferably chosen to be small. Since the order p is set
to be 1 in the above formulas, the PWM will depend directly on the observations. For
more details about the PWM, see Castillo et al. ([14]) and de Zea Bermudez and Kotz
([18]).

The PWM for GPDL. By using the PWM for Vγ(x; 0, σ) given in (7), we get

αs = E[X(1− F (X))s] =
σ

(s+ 1)(s+ 1 + γ)
, γ > −1, s = 0, 1, 2. (13)
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Thus, the following expressions can easily be obtained for the GPDL parameters: γ =
α0

α0−2α1
− 2 and σ = 2α0α1

α0−2α1
, where α0 and α1 are given in (13). The quantities α0 and

α1 are then replaced by appropriate sample estimates

as =
1

n

n∑
i=1

xi:n(1− pi:n)s, s = 0, 1. (14)

Similarly to those based on the “regular” moments, the associated estimators based on
the PWM are also consistent (see Landwehr et al.,[22]). Obviously, the estimate of α0

is simply the sample mean x̄. The plotting positions, pi:n, imply that 1− pi:n estimates
the survival function 1 − F. The expressions for pi:n is available in the literature, such
as pi:n = i−ν

n , 0 ≤ ν ≤ 1, or pi:n = i−ν
n+1−2ν −0.5 < ν < 0.5.

The PWM for GPDP and GPDE. Again, ifX1 ∼ C1;γ(x; a, b) andX2 ∼ Q1;γ(x; a, b),
then Zi ∼ Vγ(x;µ, σ), i = 1, 2, where Z1 = logX1, Z2 = log logX2, σ = 1

b , and

µ = − log a
b . Therefore, by applying the transformation z1 = log x1, or z2 = log log x2 on

the items in the given sample and by using the PWM for GPDL given in (13), we have

αs = E[Zi(1− F (Zi))
s] =

σ

(s+ 1)(s+ 1 + γ)
, γ > −1, i = 1, 2, s = 0, 1, 2.

Consequently, γ = α0

α0−2α1
− 2 and σ = 2α0α1

α0−2α1
, where the quantities α0 and α1 are then

replaced by transformed sample estimates given by (14). The PWM estimates for the
parameters in C2;γ(x; 1, b), and Qi;γ(x; 1, b), i = 2, 3, 4, can be obtained by a similar
way (by using the transformations z = log |x| and z = log |(log |x|)|, respectively).

2.3. The LM method

The LM are expectations of certain linear combinations of order statistics (OSs). They
can be defined for any RV whose mean exists and they are used in many aspects of the
statistical inference. The LM of an i.i.d. random sample X1, X2, . . . , Xn (drawn from a
DF F ) with the associated OSs X1:n < X1:n < · · · < X1:n, are defined by (cf. Hosking,
[21] and de Zea Bermudez and Kotz, [18]).

Lr =
1

r

r−1∑
i=0

(−1)i
(
r − 1

i

)
E(Xr−i:r), r = 1, 2, . . . . (15)

The expectation of an OS Xj:r, 1 ≤ j ≤ r, may be written as

E(Xj:r) =
r!

(j − 1)!(r − j)!

∫ 1

0

x(F )F j−1(1− F )r−j dF =
M1,j−1,r−j

B(j, r − j + 1)
, (16)

where B(., .) is the usual Beta function and M1,j−1,r−j is given in (10). Expression (16)
clarifies the relationship between the PWM and LM. On the other side, the natural
estimator of Lr based on an observed sample of data is a linear combination of the
ordered data values, i. e., an L-statistic.
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The LM for GPDL, GPDP, and GPDE. We require L1 and L2 to estimate the
parameters σ and γ in Vγ(x; 0, σ) presented in (7). In light of (15), L1 and L2

are given by

L1 = E(X1:1) = E(X) =

∫ 1

0

x(F ) dF = β0,

L2 =
1

2
E(X2:2 −X1:2) = E(X) =

∫ 1

0

x(F )(2F − 1) dF = 2β1 − β0, (17)

where β0 and β1 are the PWM given in (12). On the other hand, we can easily show
that L1 = σ

1+γ and L2 = σ
(1+γ)(2+γ) . Moreover, the values of βr, r = 0, 1, in the ex-

pression (17) can be assessed by the analogous estimates to those presented in (14),
br = 1

n

∑n
i=1 xi:np

r
i:n, r = 0, 1, respectively. Therefore, the LM estimates of the pa-

rameters γ and σ in Vγ(x; 0, σ) are γ̂ = L̂1−2L̂2

L̂2
and σ̂ = L̂1(L̂1−L̂2)

L̂2
, respectively,

where L̂i, i = 1, 2, are defined by replacing βr, r = 0, 1 by br, r = 0, 1, in the ex-
pressions of Li, i = 1, 2. The same estimates for γ and σ in Ci;γ(x; 1, b), i = 1, 2, and
Qi;γ(x; 1, b), i = 1, 2, 3, 4, can be obtained by using the appropriate transformations
given in the preceding two subsections, where the corresponding estimates br, r = 0, 1
are calculated from the order transformed data.

3. SIMULATION STUDY

In this section, extensive simulation studies are conducted to investigate the estimation
of the scale and shape parameters in the GPDL (see Table 1), GPDP (see Table 2)
and GPDE (see Table 3) via the three estimation-methods MOM, PWM and LM. The
simulation study is performed using MATLAB to compare the three estimation-methods
based on mean square error (MSE). The following algorithms are used for this study:

An algorithm for the implemented simulation study

1. Generate a random sample of size 10,000 from each of
Vγ(x;µ, σ), for
(γ, µ, σ) = (0.3, 0, 4), (0.4, 0, 2), (0.4, 0, 2.1), (0.1, 0, 4), (0.1, 0, 0.125), (0.4, 0, 0.125),
C1;γ(x; a, b), for
(γ, a, b) = (0.3, 1, 4), (0.4, 1, 2), (0.4, 1, 2.1), (0.1, 1, 4), (0.1, 1, 0.125), (0.4, 1, 0.125),
and Q1;γ(x; a, b), for
(γ, a, b) = (0.3, 1, 4), (0.4, 1, 2), (0.4, 1, 2.1), (0.1, 1, 4), (0.1, 1, 0.125), (0.4, 1, 0.125).

2. Compute the estimates of the parameters in the three models according to the
methods MOM, PWM and LM, which are explained in Section 2, where we took
ν = 1 in the application of the methods PWM and LM.

3. Repeat the above two steps 10,000 times. compute the average value of each
estimate over these repetitions, as well as the corresponding MSE.

A cursory glance at the Tables 1 , 2 and 3 reveals that the PWM is the best method
among the three studied ones. This easy-to-reach decision is based on the closeness
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between the actual and estimated values and related MSEs. Nonetheless, the PWM’s
performance is merely acceptable rather than exceptional. In the next section, we suggest
a new computational method to improve the estimate of any unknown parameters in
any parametric model via any estimation method. We call this method the Scan Method
(abbreviated by SM).

sample size (n= 10,000) average estimate value MSE
GPDL Method γ σ γ σ

V0.3(.; 0, 4) MOM -0.1884789 1.647756 9.544465e-05 0.002213221
PWM 0.2850895 2.648459 8.892915e-08 0.0007306651
LM -4.322255 -4.322255 0.008546096 0.0007256639

V0.4(.; 0, 2) MOM 1.912345 2.389422 0.0009148744 6.065977e-05
PWM 0.3651341 1.077717 4.862538e-07 0.0003402421
LM -4.400939 4.232211 0.009219605 0.001993106

V0.4(.; 0, 2.1) MOM 1.687912 2.316379 0.0006634868 1.872798e-05
PWM 0.3937979 1.190255 1.538619e-08 0.0003310541
LM -4.424131 4.282871 0.009308896 0.00190597

V0.1(.; 0, 4) MOM -0.4278824 1.810782 0.0001114639 0.001917071
PWM 0.1135899 3.557115 7.387385e-08 7.845881e-05
LM -4.070404 6.179731 0.006956906 0.001900491

V0.1(.; 0, 0.125) MOM 73.42157 7.359994 2.150421 0.02093805
PWM 0.1079126 0.1060756 2.504399e-08 1.432533e-07
LM -4.127745 3.230458 0.007149532 0.003857547

V0.4(., 0, 0.125) MOM 616.6948 31.67153 151.9277 0.3980735
PWM 0.3400918 0.06815604 1.435596e-06 1.292494e-06
LM -4.3314 3.382229 0.008954459 0.004243815

Tab. 1. Parameters estimation for Vγ(x; 0, σ).
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sample size (n= 10,000) average estimate value MSE
GPDP Method γ b γ b

C1;0.3(.; 1, 4) MOM 20.28448 0.1372226 0.1597519 0.00596842
PWM 0.5944732 1.853886 3.468579e-05 0.001842322
LM -4.643726 0.2503658 0.009776171 0.005623903

C1;0.4(.; 1, 2) MOM 29.09076 0.1086893 0.3292638 0.001430823
PWM 0.6845182 1.933409 3.238024e-05 1.773734e-06
LM -4.705233 0.2491176 0.01042536 0.001226236

C1;0.4(.; 1, 2.1) MOM 29.08513 0.1086822 0.3291346 0.001586138
PWM 0.649924 2.058392 2.498479e-05 6.925014e-07
LM -4.643596 0.2533144 0.01017515 0.001364099

C1;0.1(.; 1, 4) MOM 9.82774 0.2165181 0.03785157 0.005725894
PWM 0.5094372 1.584648 6.705554e-05 0.00233357
LM -4.478134 0.2553607 0.008383723 0.005608929

C1;0.1(.; 1, 0.125) MOM 9.828673 0.2164211 0.03785883 3.34313e-06
PWM 0.4971071 1.615896 6.307763e-05 0.0008891083
LM -4.457775 0.2577836 0.008309326 7.052598e-06

C1;0.4(.; 1, 0.125) MOM 29.03589 0.1088759 0.3280056 1.039946e-07
PWM 0.6625963 1.933384 2.758273e-05 0.001308101
LM -4.674203 0.2510573 0.01029902 6.356179e-06

Tab. 2. Parameters estimation for C1;γ(x; 1, b).

sample size (n= 10,000) average estimate value MSE
GPDE Method γ b γ b

Q1;0.3(.; 1, 4) MOM 13.55799 0.2287066 0.07030975 0.005689061
PWM 0.3325494 2.520431 4.237846e-07 0.0008756502
LM -4.291154 0.2783529 0.008431477 0.005540263

Q1;0.4(.; 1, 2) MOM 9.871948 0.2451046 0.03588712 0.001231863
PWM 0.3710689 1.897615 3.348027e-07 4.193111e-06
LM -4.41126 0.2635345 0.009259287 0.001206125

Q1;0.4(.; 1, 2.1) MOM 10.13077 0.2439227 0.03787513 0.001378009
PWM 0.4013737 1.954396 7.5478e-10 8.480189e-06
LM -4.413785 0.2641721 0.00926901 0.001348106

Q1;0.1(.; 1, 4) MOM 13.48869 0.2250917 0.07170281 0.005699973
PWM 0.3026536 2.475476 1.642739e-05 0.0009296693
LM -4.326141 0.2752273 0.007836291 0.005549573

Q1;0.1(.; 1, 0.125) MOM 62.5719 0.09625728 1.561095 3.304576e-07
PWM 0.5752778 3.693667 9.03556e-05 0.005094154
LM -4.579735 0.2665614 0.008759967 0.008759967

Q1;0.4(.; 1, 0.125) MOM 62.75106 0.1157773 1.555062 3.402318e-08
PWM 0.4828451 5.21012 2.745327e-06 0.01034338
LM -4.486404 0.2759981 0.009550777 9.120165e-06

Tab. 3. Parameters estimation for Q1;γ(x; 1, b).
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4. THE SM AND REAL DATA MODELING

4.1. The SM

The suggested method relies on the fact that in any modeling problem, especially in the
extreme modeling problem, our main focus is not the estimation problem itself but to
pick up a suitable family (with estimated parameters) to describe the given data. The
estimation stage is only a preliminary stage. Therefore, we can consider any obtained
estimates of the unknown parameters of any DF with known type as initial estimates,
which may be improved by carrying out the Kolmogorov-Smirnov (K-S) test to check
the fitting of this DF with several values around these initial values and choose the
model with estimated values that yields the best fitting. According to this idea, the
aimed improvement has not pertained to the estimated values, but it pertains to the
chosen model’s fitting quality to the given data. In the K-S test, we have four functions
[H, P, KSSTAT, CV ]. H is equal to 0 or 1, P is the p-value, KSSTAT is the maximum
difference between the data and the fitting curve, and CV is a critical value. Moreover,

• we accept H0, if H = 0, KSSTAT ≤ CV and P > level of significance and

• we reject H0, if H = 1, KSSTAT > CV and P ≤ level of significance.

However, as the model parameters are estimated from fitted data, P-values as well as
the decision indicator H are just relative. That is why the P-values are not shown in
the subsequent tables (Tables 6 , 9 , 11 , 13). Therefore, if any model could fit a data
set, then its fitting quality depends on how small KSSTAT is. Specifically, the model
with estimated values that yields the best fitting should have minimum KSSTAT value.
Simultaneously, the fit quality can be observed from graphical comparison of empirical
and model DFs. Below, we present an algorithm that describes the SM for two unknown
parameters θ1 and θ2 in any DF F (.; θ1, θ2). The estimations of the unknown parameters
are assumed to be implemented by any estimation method such as the MOM, PWM,
LM, and Maximum Likelihood Method. Throughout the following algorithm, we denote
the given estimation method by M (say).

The SM algorithm for two parameters

• Apply the method M on a given data to get two initial estimates θ01 and θ02 for
θ1 and θ2, respectively.

• Choose two intervals (C1θ1 , C2θ1) and (C1θ2 , C2θ2) (see Remark 4.2) such that
θ0i ∈ (C1θi , C2θi), i = 1, 2. Moreover, divide the interval (C1θi , C2θi) by uniformly-
disseminated dividers θti = C1θi + t`i, t = 0, 1, . . . , ni, and θnii = C2θi i = 1, 2. (As
an illustrative example, if θ0i = 0.22, we may choose (C1i, C2i) = (0, 0.5), while
`i = 0.01, i = 1, 2, the dividers will be 0, 0.01, 0.02, . . . , 0.5, and the divider-number
is n1 = n2 = 51).

• Check the fitting of the models F (.; θi11, θi22), it ∈ {0, 1, . . . , nt}, t = 1, 2.

• Confine the models that fitted the given data and choose the one with the lowest
KSSAT.
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Remark 4.1. Clearly, the preceding algorithm can be simply modified to include more
than one unknown parameter. Nonetheless, the extended algorithm will take longer to
implement.

Remark 4.2. In the case that the model F (.; θ01, θ02) fitted the given data (according a
preliminary test before applying the SM method), we can choose a narrow scan interval.
Otherwise, we choose relatively a larger scan interval. Moreover, if no model according
to this larger scan interval fits the given data set, then we enlarge the scan interval or
take the decision that the model is not suitable for this data.

5. REAL EXTREME DATA MODELING BY USING THE SM

In this section we consider two examples for real extreme data sets and use the suggested
SM to model them by GPDL (Vγ(.; 0, σ)), GPDP (C1;γ(.; 1, b)), and GPDE (Q1;γ(.; 1, b))
via the PWM.

Example 5.1. In this example, we use Spot Crude Oil Price of West Texas Intermediate
monthly data set, from 01/01/1946 to 01/3/2021. This data set is available through the
web site

https://fred.stlouisfed.org/series/WTISPLC

Table 4 shows the summary statistics for this data collection. Table 5 displays the
PWM estimates of the parameters of the models under the title “PWM original”, also
it displays the new estimates, which corresponding to the best fitting quality via the
application of the SM, under title “PWM modified”. Finally, in Table 5, we display
(C1,θi , C2,θi , `i, ni), i = 1, 2, (the characterizations of SM) for each estimate of the pa-
rameters θ1 = γ and θ2 = σ, or b, in each of the considered models. Table 6 exhibits
the fitting result of the models Vγ(.; 0, σ), C1;γ(.; 1, b), and Q1;γ(.; 1, b)) before applying
the suggested method SM and after its application. Finally, Figures 1 , 3 and 5 depict
the data set against the estimated models GPDL, GPDP, and GPDE via PWM, while
Figures 2 , 4 and 6 depict the data set against the estimated models GPDL, GPDP, and
GPDE via PWM after applying the SM. Tables 5 , 6 and the given figures show that, in
all cases the models could fit the data set, but the quality of the fitting is improved af-
ter applying the SM. Moreover, due to this study the GPDE (namely Q1;0.96(.; 1, 3.57))
is the best favorable model for the given data set, followed by the GPDP (namely
C1;0.79(.; 1, 1)), and finally followed by the GPDL model (namely V0.3(.; 0, 40)).

Descriptive statistics for the data set
n minimum maximum median mean SD skewness kurtosis

903 1.17 133.93 17.514 25.4860 27.515 1.442 1.455

Tab. 4. Summary statistics.

 https://fred.stlouisfed.org/series/WTISPLC
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Parameters estimation for the model GPDL
Method γ(= θ1, i = 1) σ (= θ2, i = 2)

PWM original 0.3756743 42.26858
PWM modified 0.3000 40

(C1,θi , C2θi , `i, ni) (-0.5,1,0.1,16) (35,50,0.1,16)

Parameters estimation for the model GPDP
Method γ(= θ1, i = 1) b (= θ2, i = 2)

PWM original 0.8595887 0.9465367
PWM modified 0.7900 1

(C1,θi , C2θi , `i, ni) (-3,1,0.01,401) (0.1,3,0.1,30)

Parameters estimation for the model GPDE
Method γ(= θ1, i = 1) b (= θ2, i = 2)

PWM original 0.9982003 3.461584
PWM modified 0.9600 3.571429

(C1,θi , C2θi , `i, ni) (-1,1,0.01,201) (0.1,1,0.01,91)

Tab. 5. Parameters estimation.

Fitting data set by GPDL
Method H KSSTAT Decision

PWM original 0 0.0512 accept
PWM modified 0 0.0507 accept

Fitting data set by GPDP
Method H KSSTAT Decision

PWM original 0 0.0434 accept
PWM modified 0 0.0432 accept

Fitting data set by GPDE
Method H KSSTAT Decision

PWM original 0 0.0418 accept
PWM modified 0 0.0394 accept

Tab. 6. K-S test.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF

 

 

Empirical

GPDL fitting

Fig. 1. Fitted GPDL with PWM.
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Fig. 2. Fitted GPDL with PWM via SM.
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Fig. 3. Fitted GPDP with PWM,
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Fig. 4. Fitted GPDP with PWM via SM.
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Fig. 5. Fitted GPDE with PWM.
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Fig. 6. Fitted GPDE with PWM via SM.

Example 5.2. In this example, we consider the Consumer Price Index: OECD Groups:
All Items Non-Food and Non-Energy for the Group of Seven (DISCONTINUED) monthly
data set, from 01/01/1971 to 01/09/2017. This data set is available through the web
site

https://fred.stlouisfed.org/series/CPGRLE01G7M659N

The summary statistics for this data set is given in Table 7. Table 8 shows the original
PWM estimates of the parameters of the models (PWM original), as well as the revised
estimates (PWM modified), which correspond to the best fitting quality with the appli-
cation of the SM. Finally, for each estimate of the parameters θ1 = γ and θ2 = σ, or b,
in each of the examined models, we display (C1,θi , C2,θi,`i, ni), i = 1, 2, (the character-
izations of SM) in Table 8. Table 9 shows the fitting results of the models before and
after applying the proposed technique SM. Figures 7 and 9 show the data set in com-
parison to the estimated models GPDL and GPDP via PWM (the model GPDE failed
to fit this data set), whereas Figures 8 , 10 , and 11 show the data set in comparison
to the estimated models GPDL, GPDP, and GPDE via PWM after applying the SM.
Tables 8 , 9, and the accompanying figures reveal that, in all cases, the models were able
to fit the data set, with the exception of the model GPDE with initial estimate values
(PWM), which failed to do so. After applying the SM, the fitting quality improves, and
the model GPDE is able to fit the data set. Furthermore, according to this study, the
GPDL (V0.8(.; 0, 6.3)) is the most appropriate model for the provided data set, followed
by the GPDE (Q1;1.4(.; 1, 1.587)), and finally the GPDP model (C1;1.2(.; 1, 0.91)).

Descriptive statistics for the data set
n minimum maximum median mean SD skewness kurtosis

561 0.7 13.4 2.6 3.984 3.032 1.212 0.550

Tab. 7. Summary statistics.

https://fred.stlouisfed.org/series/CPGRLE01G7M659N
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Parameters estimation for the model GPDL
Method γ(= θ1, i = 1) σ (= θ2, i = 2)

PWM original 0.8444403 6.439844
PWM modified 0.8000 6.3000

(C1,θi , C2θi , `i, ni) (-1,1,0.1,21) (5,7,0.1,21)

Parameters estimation for the model GPDP
Method γ(= θ1, i = 1) b (= θ2, i = 2)

PWM original 1.372516 0.8506022
PWM modified 1.2000 0.90900

(C1,θi , C2θi , `i, ni) (-3,15,0.1,181) (0.0001,3,0.1,30)

Parameters estimation for the model GPDE
Method γ(= θ1, i = 1) b (= θ2, i = 2)

PWM original 1.862181 1.43906
PWM modified 1.4000 1.58730

(C1,θi , C2θi , `i, ni) (-1,3,0.2,21) (0.1,3,0.01,291)

Tab. 8. Parameters estimation.

Fitting data set by GPDL
Method H KSSTAT Decision

PWM original 0 0.0731 accept
PWM modified 0 0.0701 accept

Fitting data set by GPDP
Method H KSSTAT Decision

PWM original 0 0.0993 accept
PWM modified 0 0.0810 accept

Fitting data set by GPDE
Method H KSSTAT Decision

PWM original 1 0.2057 reject
PWM modified 0 0.0792 accept

Tab. 9. K-S test.
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Fig. 7. Fitted GPDL with PWM.
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Fig. 8. Fitted GPDL with PWM via SM.
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Fig. 9. Fitted GPDP with PWM.
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Fig. 10. Fitted GPDP with PWM via SM.
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Fig. 11. Fitted GPDE with PWM via SM.
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6. APPLICATION OF THE SM TO THE THREE-PARAMETER GEVL VIA THE
BM AND MLE

Air pollution is a major environmental and social concern. Furthermore, it is a complex
subject with numerous obstacles in terms of management and pollution reduction (cf.
Barakat et al., ([6, 12, 11]), BuHamra,([13]), and Coles, ([15])). In Barakat et al. ([8]),
a comparison study of the different extreme models was conducted using two real data
sets (LB6 and GR4) of air pollutants, each of which contains the maximum data of the
three pollutants mentioned, nitric oxide (NO), nitrogen dioxide (NO2), and particulate
matter diameter less than 10 mm (PM10). In Barakat et al. ([8]), the three-parameter
model GEVL Gγ(.;µ, σ) failed to fit these data sets using the BM technique and the
MLE method to estimate the unknown parameters γ, σ, and µ. We apply the suggested
approach SM to these MLEs in GEVL and find that the model GEVL is able to fit these
data sets after this operation is accomplished via Tables 10 − 13 and Figures 12 − 14,
as we did in the previous section.

Estimate parameters of the GEVL, Gγ(x;µ, σ), via BM approach for LB6
Pollutant γ(= θ1, i = 1) σ(= θ2, i = 2) µ(= θ3, i = 3)

MLE original NO 0.5794 16.6815 21.5258
MLE modified NO 0.5000 18 22

(C1,θi , C2θi , `i, ni) ( 0.4,2,0.1,17) (15,20,1,6) (20,25,0.1,51)

Tab. 10. Parameters estimation of the GEVL for LB6.

Fitting data of LB6 by the GEVL Gγ(x;µ, σ)
Pollutant H KSSTAT Decision

MLE original NO 1 0.0347 reject H0

MLE modified NO 0 0.0242 accept H0

Tab. 11. K-S test for the maximum data from LB6.

Estimate parameters of the GEVL Gγ(x;µ, σ) via BM approach for GR4
Pollutant γ(= θ1, i = 1) σ(= θ2, i = 2) µ(= θ3, i = 3)

MLE original NO 1.0065 5.6233 6.1006
MLE modified NO 1.1000 6 6.2000

(C1,θi , C2θi , `i, ni) ( 0.1,10,1,10) (1,10,1,10) (6,10,0.1,41)
MLE original NO2 -0.0537 14.9302 28.8916
MLE modified NO2 -0.0500 16 28.7000

(C1,θi , C2θi , `i, ni) ( -0.05,10,1,11) (5,20,1,16) (25,30,0.1,51)

Tab. 12. Parameters estimation of the GEVL for GR4
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Fitting data of GR4 by the GEVL Gγ(x;µ, σ)
Pollutant H KSSTAT Decision

MLE original NO 1 0.0398 reject H0

MLE modified NO 0 0.0287 accept H0

MLE original NO2 1 0.0370 reject H0

MLE modified NO2 0 0.0241 accept H0

Tab. 13. K-S test for the maximum data from GR4.
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Fig. 12. Fitted GEVL with MLE forNO in LB6 via SM.
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Fig. 13. Fitted GEVL with MLE for NO in GR4 via SM.
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Fig. 14. Fitted GEVL with MLE for NO2 in GR4 via SM.



Improved inference for the generalized Pareto distribution 901

ACKNOWLEDGEMENT

The authors are grateful to the anonymous reviewers for their careful and diligent reading,
which improved the readability and presentation substantially.

(Received May 11, 2022)

R E F E R E N C E S

[1] A. A. Balkema and L. de Haan: Residual life time at great age. Ann. Prob. 2 (1974), 5,
792–804.

[2] H. M. Barakat, E. H. Nigm, and E. O. Abo Zaid: Asymptotic distributions of record
values under exponential normalization. Bull. Belg. Math. Soc. Simon Stevin 26 (2019),
743–758. DOI:10.36045/bbms/1579402820

[3] H. M. Barakat, E. M- Nigm, and H. A. Alaswed: The Hill estimators under power nor-
malization. App. Math. Modell. 45 (2017), 813–822. DOI:10.1016/j.apm.2017.01.028

[4] H. M. Barakat, E. M. Nigm, and M. E. El-Adll: Comparison between the rates of conver-
gence of extremes under linear and under power normalization. Stat. Pap. 51 (2010), 1,
149–164. DOI:10.1007/s00362-008-0128-1

[5] H. M. Barakat, E. M. Nigm, and O. M. Khaled: Extreme value modeling under power nor-
malization. App. Math. Modell. 37 (2013), 10162–10169. DOI:10.1016/j.apm.2013.05.045

[6] H. M. Barakat, E. M. Nigm, and O. M. Khaled: Statistical modeling of extremes under
linear and power normalizations with applications to air pollutions. Kuwait J. Sci. 41
(2014), 1, 1–19.

[7] H. M. Barakat, E. M. Nigm, and O. M. Khaled: Bootstrap method for central and in-
termediate order statistics under power normalization. Kybernetika 51 (2015), 923–932.
DOI:10.14736/kyb-2015-6-0923

[8] H. M. Barakat, O. M. Khaled, and N. Khalil Rakha: Modeling of extreme values via
exponential normalization compared with linear and power normalization. Symmetry 12
(2020), 11, 1876. DOI:10.3390/sym12111876

[9] H. M. Barakat, E. M. Nigm, O. M. Khaled, and H. A. Alaswed: The counterparts of Hill
estimators under power normalization. Special Issue J. App. Stat. Sci. (JASS) 22 (2016),
1–2, 87–98.

[10] H. M. Barakat, A. R. Omar, and O. M. Khaled: A new flexible extreme value model
for modeling the extreme value data, with an application to environmental data. Stat.
Probab. Lett. 130 (2017), 25–31. DOI:10.1016/j.spl.2017.07.002

[11] H. M. Barakat, E. M. Nigm, O. M. Khaled, and H. A. Alaswed: The estimations under
power normalization for the tail index, with comparison. AStA Adv. Stat. Anal. 102
(2018), 3, 431–454. DOI:10.1007/s10182-017-0314-3

[12] H. M. Barakat, E. M. Nigm, O. M. Khaled, and F. M. Khan: Bootstrap order statistics
and modeling study of the air pollution. Comm. Statis.-Sim. Comp. 44 (2015), 1477–1491.

[13] S. BuHamra, N. Al-Kandari, and M. Al-Harbi: Parametric and nonparametric bootstrap:
An analysis of indoor air data from Kuwait. Kuwait J. Sci. 45 (2018), 2, 22–29.

[14] E. Castillo, A. S. Hadi, N. Balakrishnan, and J. M. Sarabia: Extreme Value and Related
Models with Applications in Engineering and Science. Wiley, New-Jersey 2004.

https://doi.org/10.36045/bbms/1579402820
https://doi.org/10.1016/j.apm.2017.01.028
https://doi.org/10.1007/s00362-008-0128-1
https://doi.org/10.1016/j.apm.2013.05.045
https://doi.org/10.14736/kyb-2015-6-0923
https://doi.org/10.3390/sym12111876
https://doi.org/10.1016/j.spl.2017.07.002
https://doi.org/10.1007/s10182-017-0314-3


902 O.M. KHALED, H.M. BARAKAT AND N. KHALIL RAKHA

[15] S. Coles: An Introduction to Statistical Modeling of Extreme Values. Springer, London
2001.

[16] G. Christoph and M. Falk: A note on domains of attraction of p-max stable laws. Stat.
Prob. Lett. 28 (1996), 279–284. DOI:10.1007/BF02110701

[17] A. C. Davison and R. L. Smith: Models for exceedances over high threshold. J. Roy. Stat.
Soc. Ser. B. 52 (1990), 393–442.

[18] P. de Zea Bermudez and S. Kotz: Parameter estimation of the generalized Pareto distri-
bution – Part I. J. Stat. Plan. Inf. 140 (2010), 1353–1373. DOI:10.1016/j.jspi.2008.11.019

[19] B. V. Gnedenko: Sur la distribution limite du terme maximum d’une série aléatoire. Ann.
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