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Abstract
How good is an explanation and when is one explanation better than another? In this
paper, I address these questions by exploring probabilistic measures of explanatory
power in order to defend a particular Bayesian account of explanatory goodness. Criti-
cal to this discussion is a distinction betweenweak and strongmeasures of explanatory
power due to Good (Br J Philos Sci 19:123–143, 1968). In particular, I argue that if one
is interested in the overall goodness of an explanation, an appropriate balance needs
to be struck between the weak explanatory power and the complexity of a hypothe-
sis. In light of this, I provide a new defence of a strong measure proposed by Good
by providing new derivations of it, comparing it with other measures and exploring
its connection with information, confirmation and explanatory virtues. Furthermore,
Good really presented a family of strong measures, whereas I draw on a complexity
criterion that favours a specific measure and hence provides a more precise way to
quantify explanatory goodness.

Keywords Explanation · Explanatory goodness · Explanatory power · Bayesian ·
Information · Confirmation

1 Introduction

It would be difficult to overstate the interest among philosophers of science on the topic
of explanation. Much of this has focussed on the nature of explanation (Woodward,
2017) , with modern discussions stemming from the deductive-nomological model
of Hempel and Oppenheim (1948) and going on to consider other models such as
statistical relevance (Salmon, 1971) , unification (Friedman, 1974; Kitcher, 1989)
, causal-mechanical (Salmon, 1984) , causal (Woodward, 2003) and pragmatic
accounts (van Fraassen, 1980) . Although not receiving so much attention, there has
also been interest in quantifying or comparing explanations using probability (Popper,
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1959; Good, 1960, 1968) , including a number of recent proposals (Schupbach and
Sprenger, 2011; Crupi and Tentori, 2012; Glass, 2007, 2021) .

It might be thought that an answer to the question ‘what is an explanation?’ would
be needed before attempting to answer questions such as ‘howgood is an explanation?’
or ‘when is one explanation better than another?’, but that does not seem to be the case.
Discussions about the nature of explanation typically involve pre-theoretical intuitions
about explanation and often these extend to intuitions about the goodness of expla-
nations, particularly comparative judgments. One can hold that quantum mechanics
provides a very good explanation of blackbody radiation or that thermodynamics pro-
vides a better explanation of heat than the caloric theory without settling the question
of what exactly constitutes an explanation. Similarly, in the area of medical diagnosis,
onemight try to formalize comparative judgments about which condition best explains
the symptoms without taking a view on the metaphysics of explanation.

Explanatory goodness is clearly very important in the context of inference to the best
explanation (IBE) (Lipton, 2004; Douven, 2017) .While defenders of IBE need not be
committed to a particular view on the nature of explanation, they nevertheless need to
be able to give an account of the goodness of an explanation andmore specifically how
to compare explanations. In this context, discussion of explanatory virtues is important
with explanations that do better according to a range of virtues being judged better
(Mackonis, 2013). Of particular relevance here are approaches to IBE that seek to
evaluate explanations using probability theory (Douven, 1999, 2013; Schupbach,
2018; Glass, 2012, 2021) , though one might expect that such approaches should also
capture at least some of the explanatory virtues. However, questions about explanatory
goodness and comparative judgments, which arise both within science and outside it,
are still important irrespective of whether one is committed to IBE as a legitimate
mode of scientific inference.

In this paper, I will focus on measures of explanatory power to address the central
question. A variety of probabilistic measures of explanatory power in this sense have
been proposed in the literature (Good, 1968; Schupbach and Sprenger, 2011; Schup-
bach, 2011, 2018; Crupi and Tentori, 2012) . Arguably, these measures can be seen as
attempts to quantify how well a hypothesis would explain a given explanandum if the
hypothesis were true. According to a distinction due to Good (1968), which is central
to the current paper, these are measures of weak explanatory power whereas strong
measures take into account not only how well the hypothesis would account for the
explanandum if it were true, but also how likely it is to be true in the first place.

2 Explanatory power and explanatory goodness

2.1 Measures of explanatory power

One way to approach the questions ‘how good is an explanation?’ and the related
question ‘when is one explanation better than another?’ would be to appeal to various
probabilistic measures of explanatory power. At the outset, it is worth noting that
these measures are not intended to define what constitutes an explanation, but only
to measure the explanatory power of a hypothesis that has been determined on other
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grounds to provide an explanation. With that in mind, considering an explanandum e
and an explanans or explanatory hypothesis h, these measures quantify—in a sense to
be discussed—the extent to which h explains e. For example, after identifying seven
adequacy conditions to quantify explanatory power, Schupbach and Sprenger (2011)
show that the only measure satisfying their conditions is:

E1(e, h) = P(h|e) − P(h|¬e)

P(h|e) + P(h|¬e)
. (1)

Here and elsewhere, P represents a probability function,which is assumed to be regular
(for any contingent proposition q, 0 < P(q) < 1), e represents the explanandum and
h a hypothesis that provides at least a potential explanation of e. Probabilities are taken
to represent degrees of belief relevant to background knowledge, which is omitted in
the notation for convenience. Hence, the current approach should be thought of in
Bayesian terms.

Crupi andTentori (2012) present an axiomatic representation formeasures ordinally
equivalent to E1 and then, after offering criticisms of some aspects of Schupbach and
Sprenger’s approach, they present an alternative axiomatization formeasures ordinally
equivalent to their preferred measure:

E2(e, h) =
{

P(e|h)−P(e)
1−P(e) if P(e|h) ≥ P(e)

P(e|h)−P(e)
P(e) if P(e|h) < P(e).

(2)

Cohen (2016) draws attention to another measure that had been proposed by Good
(1960), who provided an axiomitzation for it, and also discussed by McGrew (2003):

E3(e, h) = log

[
P(e|h)

P(e)

]
. (3)

Cohen shows how measures ordinally equivalent to E3 could also be given a much
simpler axiomatic representation by drawing on a result from Crupi et al. (2013).

Another measure of explanatory power was proposed by Popper (1959) as follows:

E4(e, h) = P(e|h) − P(e)

P(e|h) + P(e)
, (4)

though he also considered E3 to provide an adequate definition of explanatory power
as well. In fact, E4 is ordinally equivalent to E3 so both of these measures produce the
same comparative explanatory judgments.

What exactly are these measures intended to quantify? According to Schupbach
and Sprenger, the conception of explanatory power they have in mind is that of a
‘hypothesis’s ability to decrease the degree to which we find the explanandum surpris-
ing’ (2011, p. 108) and similarly Crupi and Tentori claim that their account captures
‘how the background surprisingness/expectedness of explanandum e is reduced by
assuming candidate explanans h’ (2012, p. 375). Plausibly all these measures can be
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understood as attempts to capture explanatory power in the sense of ‘h reducing sur-
prise in e’ or perhaps ‘h increasing expectedness of e’ (though see Sect. 4.3). How
surprising e is will differ from one case to another, but the key factor is the reduction
of surprise. We can think of this by comparing the P(e|h), the probability of e given
h, with P(e), the probability of e given only background knowledge. A low value of
P(e) would represent a case where e is surprising and the lower the value of P(e) the
greater the extent to which e is surprising. If P(e|h) is greater than P(e), this would
represent the situation where h reduces the surprise in e and the greater P(e|h) the
greater the reduction. Hence, if one is comparing two hypotheses for a given explanan-
dum, it is the one that increases its probability most that has greater explanatory power
(see Sect. 2.3). More importantly, what these measures have in common is that they
attempt to quantify how well h would explain e (in the sense just noted) if h were
true. That is, they are intended to capture something about the relationship between
h and e under the assumption that h is true.1 In Good’s (1968) terminology, they are
all measures of weak explanatory power. I will return to his distinction between weak
and strong explanatory power in Sect. 3.

Before considering the suitability of these measures, it is worth commenting on
some concerns about the general approach. If measures of explanatory power are con-
cernedwith reduction of surprise in the sense noted above, the problem of old evidence
that is posed for Bayesianism is relevant (Glymour, 1980) . Essentially, the problem
is that if e is old evidence it is included in background knowledge so that P(e) = 1,
which also means that P(e|h) = 1 and hence P(h|e) = P(h), so that e cannot
confirm h. Some Bayesians have appealed to variants of Garber’s (1983) approach,
which sought to show that what confirms h is not e but the discovery that h entails
e. However, this strategy does not help in the current context since if it is accepted
that P(e|h) = P(e) = 1, then there can be no reduction in surprise. Alternatively, in
the counterfactual approach to the problem, the idea is to suppose that e is not known
to be true, removing it from background knowledge, and then to consider the impact
that learning e would have on h. This approach was defended by Howson (1991), but
he later rejected it because of difficulties involved in extracting e from background
knowledge and inconsistency with a subjective Bayesian approach. Instead, he argued
that ‘a minimalist version of Objective Bayesianism does straightforwardly solve the
problem’ (Howson, 2017) and based his approach on earlier work by Rosenkrantz
(1983). An important aspect of this approach is that a probability less than one can be
legitimately assigned to e in the case of old evidence. If a solution along these lines is
viable or if the counterfactual approach can be defended against criticisms, this would
undermine the possible concern about the general approach adopted here.2

Another concern is that it might reasonably be doubted whether explanation could
be fully analyzed in probabilistic terms. In response, it can be noted that thesemeasures
are not intended to define what constitutes an explanation, but only to measure the
explanatory power of a hypothesis that has been determined on other grounds to
provide an explanation. However, further objections might relate specifically to using

1 This is clear from Crupi and Tentori’s expression ‘assuming candidate explanans h’.
2 Even if that is not the case, measures of explanatory power may still be applicable in cases where the
relevant probabilities are accessible. It would be impossible to do justice to the vast literature on the problem
of old evidence here, but for some recent proposals see Sprenger (2015) and Eva and Hartmann (2020).
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probability to measure explanatory goodness. For example, a number of philosophers
have argued that explanation is intimately tied to understanding (see, for example,
Friedman, 1974; Kitcher, 1989) and, if correct, it might seem questionable whether
this could be fully analyzed probabilistically. While this can be acknowledged as a
potential limitation, the proposed strategy is to explore the probabilistic approach to
see how far it goes. The measures of explanatory power discussed above have had
some success in this regard and the hope is to extend that success further. Arguably,
the suggestion that the explanatory measures described above capture ‘reduction in
surprise’ and the argument that the account proposed here does justice to a number of
explanatory virtues (see Sect. 4.5) might go some way to addressing this concern.

A further concern is that in the context of probabilistic explanation some have
argued that low probabilities explain just as well as high probabilities (see, Jeffrey,
1969; Salmon, 1971; Railton, 1981), a viewpoint known as egalitarianism. Yet accord-
ing to all the measures discussed above, explanatory power is greater for a hypothesis
that confers a higher probability on a given explanandum (see Sect. 2.3). This is con-
sistent with ‘moderate elitism’, a view defended by Strevens (2000, 2014) which does
not deny that low probability events can be explained, but maintains that conferring a
high probability is better. Consider, for example, a polarizer oriented at angle θ to the
vertical. According to quantum theory, a probability of cos2(θ) that an incoming, ver-
tically polarized photon will be transmitted. On an egalitarian view, the transmission
of the photon is equally well explained irrespective of whether θ is small or large, and
hence the probability of transmission large or small (though not zero) respectively. A
motivation for the egalitarian view is that in the low probability scenario, there are no
further relevant factors that could be cited. However, there also seems to be a clear
motivation for saying that the transmission is better explained by small θ (and hence
high probability). Suppose we know that θ was either small (oriented very close to the
vertical) or large (very close to the horizontal) and that both hypotheses are equally
plausible in light of background knowledge. The transmission of the vertically polar-
ized photon would be surprising given large θ , but much less surprising given small
θ . Furthermore, the reduction of surprise would be greater given small θ if multiple
vertically polarized photons were all transmitted. Hence, thinking about explanation in
terms of reduction of surprise (as well as in the context of IBE, see introduction) gives
some reason for thinking that the small θ hypothesis provides a better explanation in
this case. A detailed discussion of these issues is beyond the scope of this paper, but
these points suggest that in at least some cases there is justification for pursuing the
current approach.3

Could these measures be used to make judgments about explanatory goodness?
According to Schupbach and Sprenger (2011), their goal is to propose a measure
of explanatory power that ‘would clarify the conditions under which hypotheses are
judged to provide strong versus weak explanations’ (p. 106). They further claim that

3 Hitchcock (1999) discusses a similar example to motivate indeterministic contrastive explanation. He
considers a person who is puzzled that a photon was transmitted rather than absorbed when the polarizer is
believed to be aligned along the horizontal, but suggests that noting that the polarizer was in fact aligned
very close to the vertical explains the contrast. For discussion of the relevance of high likelihoods in the
context of inference to the best explanation, see Lipton (2004, Chap. 7). Finally, note that in the proposed
approach, higher likelihood does not always result in greater explanatory goodness (see Sect. 2.4).
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an appropriate analysis of explanatory power ‘would also clarify the meaning of com-
parative explanatory judgments such as “hypothesis A provides a better explanation
of this fact than does hypothesis B”’ (p. 106). However, they also point out that they
‘take no position on whether our analysis captures the notion of explanatory power
generally; it is consistent with our account that there be other concepts that go by this
name but which do not fit our measure’ (p. 106). According to Schupbach (private
communication), their measure E1 is appropriate formaking judgments about explana-
tory goodness in some cases, such as those where priors are not accessible or whenever
agents have knowingly ungrounded subjective priors, but in other cases judgments of
explanatory goodness may require other factors to be taken into account. In particular,
they may require a trade-off between explanatory power in their sense, which cor-
responds to Good’s notion of weak explanatory power, and the improbability of the
hypothesis since a hypothesis with high explanatory power might not rank so well in
terms of overall explanatory goodness if it has a low prior probability. Following Good
(1968), I will assume that the probability and complexity of a hypothesis are inversely
related, so themore improbable a hypothesis, the greater its complexity.4 Achieving an
appropriate trade-off between weak explanatory power and improbability/complexity
is the focus of the current paper.

In the rest of this section, I will highlight the need for such a trade-off in a wide
range of cases and to that end I will focus on what the four measures identified so far
have in common.

2.2 Entailment

E1 and E2 are maximal in cases where h entails e, while E3 and E4 take on their
greatest values for a given e in cases where h entails e. Although this is appropriate
for the specific concept of explanatory power these measures attempt to explicate
(reduction of surprise), it seems to be a distinct weakness if one is trying to evaluate
the overall goodness of an explanation or to compare explanations with each other.
We can often distinguish between how well two hypotheses explain the evidence in
cases where both of them entail the evidence. For example, explanationists typically
cite simplicity as an explanatory virtue that could discriminate in such cases. If a
conspiracy theory is deliberately constructed in such a way that if it were true, it
would entail the explanandum in question, it would still be reasonable to think that it
is a very poor explanation if it is very unlikely to be true in the first place.

2.3 Equal likelihoods and irrelevant conjunction

Closely related to the case of entailment, it turns out that all four measures satisfy
the following condition for a given e: E(e, h1) = E(e, h2) if and only if P(e|h1) =

4 It could be questioned whether this does justice to our intuitions about complexity, but as we shall see in
Sect. 4, it is based on a widely used account of semantic information and is relevant to some of the formal
results presented. Given this approach, the simplicity of a hypothesis can be represented as the negative of
its complexity.
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P(e|h2). In fact, this condition is enshrined in the principle of positive relevance,
which is used in the axiomatization of these measures (Cohen, 2016) :

Positive relevance. E(e, h1) � E(e, h2) if and only if P(e|h1) � P(e|h2).
An application of positive relevance gives rise to another important feature of all
four measures known as irrelevant conjunction. It says that conjoining an irrelevant
hypothesis, h2, to a given hypothesis, h1, has no effect on h1’s (weak) explanatory
power:5

Irrelevant conjunction. If h2 is probabilistically independent of e, h1 and their
conjunction, then E(e, h1 ∧ h2) = E(e, h1).

It is easy to see that this follows from positive relevance since P(e|h1∧h2) = P(e|h1)
when h2 is probabilistically independent of e and h1, and hence given positive rele-
vance that E(e, h1 ∧h2) = E(e, h1). Schupbach and Sprenger argue for this condition
on the grounds that ‘h1 ∧ h2 will not make e any more or less surprising than h1 by
itself already does’ (2011, p. 110) and hence has no effect on explanatory power. Crupi
and Tentori agree, noting that ‘it does not alter the degree to which e is explained’
(2012, p. 367). While this is appropriate for measures of explanatory power that seek
to explicate how well a hypothesis would explain the explanandum if the hypothesis
were true, it seems clear that adding an irrelevant hypothesis results in a worse expla-
nation overall. Why? Because once again considerations of simplicity and plausibility
come into play. Let e be a description of the bending of light from a distant source
by the sun and h1 an explanation of this by Einstein’s theory of general relativity.
Let h2 be the hypothesis that I have an identical twin elsewhere in the universe. All
four measures judge that Einstein’s theory explains the bending of light to the same
extent that the conjunction of Einstein’s theory and the hypothesis about my identical
twin explains it. A plausible measure of explanatory goodness should show that this
conjunction provides a worse explanation.

The foregoing discussion suggests a satisfactory measure of explanatory goodness
should capture the idea that in the case of irrelevant conjunction the more concise
explanation is better:

Concise explanation. If h2 is probabilistically independent of e, h1 and their
conjunction, then E(e, h1∧h2) ≤ E(e, h1), with equality only in the case where
P(h2|h1) = 1.

However, the more general point that applies to all cases where two hypotheses
have equal likelihoods is that explanatory factors such as simplicity or plausibility
can discriminate between them. This motivates the following adequacy condition for
a measure of explanatory goodness based on the relevance of the initial plausibility
of the hypotheses as measured by their prior probabilities given only background
knowledge:

5 This is Schupbach and Sprenger’s third adequacy condition, CA3. Note that two propositions p and q
are said to be independent if P(p ∧ q) = P(p)P(q) and they are conditionally independent given r if
P(p ∧ q|r) = P(p|r)P(q|r).
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Initial plausibility. If P(e|h1) = P(e|h2), then E(e, h1) � E(e, h2) if and only
if P(h1) � P(h2).

Note that the concise explanation condition follows from initial plausibility. I will
explore the role of prior probabilities further below.

2.4 Probabilistic relevance

Could a hypothesis which is negatively relevant to e provide a better explanation than
one which is positively relevant to e? Consider a bag consisting of 99 fair coins and
one coin with a bias towards heads such that its objective chance of landing heads is
0.51. A coin is selected at random and, on being tossed, lands heads. Consider the
hypotheses: ‘the selected coin is fair’ (h1) and ‘the selected coin is biased’ (h2). Note
that h1 is negatively related to the observation since P(e|h1) = 0.5 < 0.5001 = P(e)
while h2 is positively related to it. Thinking of explanation in terms of how well the
hypotheses would account for the explanandum if they were true, which is what the
four measures specified earlier seem to explicate, h2 provides the better explanation.
However, this does not take into account the prior improbability of h2, which is relevant
if we are assessing the overall goodness of the explanations. In this sense, given the
very small difference in the likelihoods and the much greater prior probability of h1,
it is plausible to think that h1 provides a much better explanation overall. Arguably,
a trade-off needs to be made between probabilistic relevance and complexity (in the
sense of lower probability) when evaluating an explanation, though how exactly that
trade-off should bemade is not immediately obvious. I explore this matter in Sects. 2.5
and 3.6

Even though h1 seems to provide a better overall explanation than h2, there is
also something deficient about h1 as an explanation due to its negative relevance
to the explanandum and this should feature in any plausible account of explanatory
goodness. I will return to this point in Sect. 4.4.

2.5 Striking the balance

While it is perfectly reasonable to consider explanatory power in the sense explicated
by measures E1 − E4 (weak explanatory power) as a factor in explanatory goodness,
the focus in this section has been on the need for a trade-off between weak explanatory
power and complexity. Or to put it another way, a measure of explanatory goodness
should combine weak explanatory power and prior probability in an appropriate man-
ner. The initial plausibility condition specifies how the priors can play a role when the
likelihoods are equal, but how should they be taken into account more generally?

It might be thought that Bayes’ theorem provides an answer since it essentially
combines E3 with the prior probability. In that case, the goodness of an explanation

6 One response might be to deny that h1 provides an explanation since it lowers the probability of e (for
discussion of this topic, particularly in the context of causal explanation, see Salmon (1980), Hitchcock
(2004)). In the current context, h1 does seem to provide an explanation. It might be that h1 is not a very
good explanation; just better than h2 (see Sect. 4.4). Note that measures E1 − E4 also allow for negative
degrees of explanatory power.
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would be identified with its posterior probability. But there are good reasons to reject
this approach. First, while priors are relevant to explanatory goodness, arguably this
approach gives too much weight to priors via Bayes’ theorem. While explanationists
would like to think that the best explanation would often turn out to be the most
probable hypothesis, it certainly seems possible that in at least some scenarios this
might fail to be the case. Second, it also seems that in some cases a conjunctive
explanation that combines two compatible hypotheses, h1 ∧ h2 say, could turn out to
be a better explanation than either h1 or h2, yet this is ruled out if explanatory goodness
is identified with posterior probability.

One way of putting this is as follows. If h1 and h2 have equal posteriors then since
P(e|h1) · P(h1) = P(e|h2) · P(h2), if we were to treat them as equal in terms of
explanatory goodness, we would essentially be giving the priors as much importance
as likelihoods.While I have argued that excluding priors is too extreme in one direction,
giving them this much of a role is arguably too extreme in the other direction; a better
balance is needed. In light of these considerations, it seems reasonable to use likeli-
hoods to discriminate between hypotheses with equal posterior probabilities. Hence,
despite my concerns about the positive relevance condition, it does seem appropriate
to apply it in cases where the priors or the posteriors of the hypotheses are equal. This
suggests the following restricted version of the positive relevance condition:

Restricted positive relevance. If P(h1) = P(h2) or P(h1|e) = P(h2|e), then
E(e, h1) � E(e, h2) if and only if P(e|h1) � P(e|h2).

Nowwe are in a position to consider how tomake the appropriate trade-off between
weak explanatory power and improbability/complexity.

3 A Good approach to good explanation

The mathematician and World War II cryptologist I. J. Good made significant contri-
butions to this topic. I have already drawn attention to his measure in Eq. (3), which
is probably the best known measure of explanatory power. Based on the desiderata he
set out in his 1960 paper, he argued that this measure was ‘essentially the only pos-
sible explicatum for explanatory power’ (Good, 1960, p. 320). However, in another
paper in 1968 he distinguished between explanatory power in the weak sense (weak
explanatory power) and the strong sense (strong explanatory power) and noted that
‘the double meaning of “explanatory power” has previously been overlooked’ (Good,
1968, p. 124). By weak explanatory power, he meant that the explanatory power of
a hypothesis h is ‘unaffected by cluttering up [h] with irrelevancies’, while strong
explanatory power ‘is affected by the cluttering’ (Good, 1968, p. 123).

When is a hypothesis ‘cluttered up with irrelevancies’? One of Good’s desiderata
(axiom10 in the 1968paper) provides the answer andhence the keydistinction between
weak and strong measures of explanatory power. This desideratum is essentially the
irrelevant conjunction condition specified earlier. So irrelevant conjunction must be
satisfied by aweakmeasure of explanatory power since it is unaffected by the inclusion
of an irrelevant hypothesis (clutter). However, strongmeasures do not satisfy irrelevant
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conjunction, but instead take the prior probability into account to penalize the inclusion
of an irrelevant hypothesis.

Note that strong explanatory power is intended to penalize not just the addition of
irrelevant hypotheses, but also improbable/complex hypotheses more generally. An
analogy with model selection might help to motivate this approach. By adopting a
sufficiently complex model, it is possible to obtain an excellent fit to the data, but in
doing so one is likely to over-fit the model to noise in the data. Hence, a trade-off
between how well the model fits the data and the complexity of the model is sought
and this can be achieved by penalizing models for their complexity. In Bayesian
model selection, more complex models can be assigned lower probabilities so they
are penalized more. This trade-off is closely related to that needed here. For example,
in many cases it is possible to come up with an ad hoc hypothesis or conspiracy
theory that has been deliberately constructed to entail the explanandum (see Sect. 2.2)
even though the hypothesis itself is very improbable. To avoid this, hypotheses need
to be penalized for their improbability/complexity. In model selection, this is often
expressed in terms of Ockham’s razor and as we will see this is also how Good refers
to his approach.

The strong measure advocated by Good is:

E5(e, h) = log

[
P(e|h) · P(h)γ

P(e)

]
, (5)

where 0 < γ < 1 is a constant and so (5) provides a continuum of measures of strong
explanatory power. According to Good, ‘the constant γ measures the degree to which
the simplicity of the hypothesis is regarded as desirable … as compared with its weak
explanatory power’ (Good, 1968, p. 130). If γ = 0 were permitted then E5 would just
be Good’s weakmeasure, E3, so weak explanatory power can be seen as a limiting case
of strong explanatory power. Furthermore, requiring γ > 0 means that E5 satisfies
the concise explanation condition. Also, if γ = 1 were permitted then E5 would just
be the log of posterior probability and so requiring γ < 1 means that E5 satisfies the
restricted positive relevance condition.

Relating this to the discussion in Sect. 2, we can see that the positive relevance
condition is closely related to weak explanatory power since it entails the irrelevant
conjunction condition. By contrast, the initial plausibility condition is closely related
to strong explanatory power since it entails the concise explanation condition. And
while a strong measure should not satisfy the positive relevance condition, it should
nevertheless satisfy the restricted positive relevance condition.

The four measures discussed in Sect. 2 are appropriate if one is making judgments
about weak explanatory power and so debates about their relative merits are to be
understood in that light. However, if instead one is interested in when one hypothesis
provides a better overall explanation of a given explanandum than another hypothesis
does, then it seems that something along the lines of Good’s strong sense of explana-
tory power is needed. In fact, Good proposes what he calls a ‘sharpened version of
“Ockham’s razor” which is that if our primary purpose is explanation we should select
the hypothesis (among those we know) which has the maximum strong explanatory
power’ (1968, p. 123).
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A measure motivated by considerations of coherence provides another example of
a measure of strong explanatory power (Glass, 2021) :

E6(e, h) = P(e|h) · P(h|e) = P(e|h)2 · P(h)

P(e)
. (6)

Strictly speaking, E6 was not proposed as a measure of explanatory power as such,
but rather as a measure for ranking hypotheses as explanations of an explanandum
e. It is easy to show that E6 satisfies the initial plausibility, concise explanation and
restricted positive relevance conditions. Furthermore, when comparing h1 and h2 as
explanations of e it judges h1 to be better than h2 if and only if:

P(e|h1)2 · P(h1) > P(e|h2)2 · P(h2)

⇔ P(e|h1) · P(h1)
1/2 > P(e|h2) · P(h2)

1/2, (7)

and hence it provides the same ordering of explanations as Good’s strong measure,
E5, if we set γ = 1/2, which Good describes as the simplest explicatum. I will return
to this point in Sect. 4.4.

The overlap coherence measure was also proposed for ranking explanations. For
a hypothesis h and explanandum e the overlap coherence is given by (Glass, 2002;
Olsson, 2002) :

E7(e, h) = P(h ∧ e)

P(h ∨ e)
. (8)

Like E5 and E6, it also satisfies the initial plausibility, concise explanation and
restricted positive relevance conditions and so can be considered as another strong
measure of explanatory power. So Good’s strong measure is not the only measure of
strong explanatory power and hence further reasons need to be given in its defence. I
now turn to that task.

4 A defence of Good’s strongmeasure

4.1 Deriving Good’s strongmeasure

In his 1968 paper, Good adopted a two stage strategy to show that a measure of strong
explanatory power must be a monotonically increasing function of his E5 measure.
First, he drew on his 1960 paper where he showed that a weak measure of explanatory
power must be a monotonically increasing function of his E3 measure based on ten
axioms or desiderata for such a measure. Then he made some assumptions about
a strong measure and its relation to his weak measure in order to derive his result
concerning E5.

Here I want to present two new derivations that relate more closely to some of the
desiderata for measures of explanatory power found in the recent literature. The first
approach does not require establishing E3 as ameasure of weak explanatory power, but
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rather a property of it, which is sufficient to establish E5. The second follows Good’s
strategy of first establishing E3, in this case drawing on a result by Crupi et al. (2013),
before using Good’s result to establish E5 as a measure of strong explanatory power.

The first condition is based on Crupi and Tentori (2012). It is a formal assumption
about measures of weak and strong explanatory power, which I will denote as EW and
ES respectively.

(A1) Let L be a propositional language and Lc the contingent formulas in L . Let
P be the set of regular probability functions that can be defined over L and let
EW : Lc × Lc × P → R and ES : Lc × Lc × P → R. There exist continuous,
differentiable functions w and s such that, for any e, h ∈ Lc and any P ∈ P,
EW (e, h) = w[P(e∧ h), P(h), P(e)] and ES(e, h) = s[P(e∧ h), P(h), P(e)].

In terms of the dependence on P(e∧ h), P(h) and P(e), A1 just says that EW and ES
are functions of absolute and conditional probabilities of logical combinations of h
and e since all of these probabilities are determined by P(e∧ h), P(h) and P(e). The
requirement of continuity and differentiability enables us to take advantage of part of
Good’s proof and ensures that the functions are well-behaved.

The second condition requires that ES depend only on EW and P(h). This is moti-
vated by the distinction between a weak and strong measure of explanatory power
since the latter should take into account the simplicity/complexity of the hypothesis
in addition to its weak explanatory power.

(A2) ES can be expressed as a function of EW and P(h) so that ES(e, h) =
s[P(e ∧ h), P(h), P(e)] = sW [EW (e, h), P(h)].

A possible objection to this condition is that while it might be accepted that ES should
depend on EW and P(h), it might be questioned whether it should only depend on
these two factors. However, we need to distinguish conceptually between a measure
of strong explanatory power and a measure of overall explanatory goodness. Given
Good’s account of strong explanatory power, this condition seems unobjectionable.
Whether a strong measure will turn out to provide a plausible measure of overall
explanatory goodness will depend on how well it captures various explanatory virtues
(see Sect. 4.5).

The third condition says that a weak measure of explanatory power should treat
probabilistic independence between e and h as a special case by assigning it a fixed,
neutral value. This clearly holds for E1 − E4 since they are measures of probabilistic
relevance.

(A3) EW has a fixed, neutral point α such that EW (e, h) = α if and only if h and
e are probabilistically independent.

Suppose that h1 provides an explanation of e1 and h2 provides an explanation of e2,
but that h2 and e2 are irrelevant to h1 and e1. The fourth condition says that the degree
to which h1 ∧ h2 explains e1 ∧ e2 is a function of the degree to which h1 explains e1
and the degree to which h2 explains e2 and that this applies for both weak and strong
measures of explanatory power. Such a condition is discussed by Good (1968) in the
context of strong explanatory power and by Cohen (2016), who presents a generalized
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version of this condition for an arbitrary number of explanandum-explanans pairs.
Formally, it can be stated as follows:

(A4) If h2 and e2 are each probabilistically independent of h1, e1 and
their conjunction, then EW (e1 ∧ e2, h1 ∧ h2) can be expressed as a func-
tion, wc, of EW (e1, h1) and EW (e2, h2) so that EW (e1 ∧ e2, h1 ∧ h2) =
wc[EW (e1, h1), EW (e2, h2)], where wc is strictly increasing in each argument
when the other argument is fixed and non-extreme (i.e. neither its maximum or
minimum value) and non-decreasing otherwise. Similarly there is a correspond-
ing function, sc, for ES so that ES(e1∧e2, h1∧h2) = sc[ES(e1, h1), ES(e2, h2)].

In some cases, it seems very appropriate to combine independent explanations in this
way. Cohen (2016), for example, highlights its relevance to sets of experiments where
each is carried out in a different laboratory and has a separate hypothesis. However,
Cohen does not propose this property as a necessary requirement for measures of
explanatory power since he sees its virtue as being one of convenience. Certainly, it
can be very convenient if a measure decomposes into products or sums, as is the case
for Good’s measures. For Good’s weak measure we have:

E3(e1 ∧ e2, h1 ∧ h2) = log

[
P(e1 ∧ e2|h1 ∧ h2)

P(e1 ∧ e2)

]

= log

[
P(e1|h1)
P(e1)

]
+ log

[
P(e2|h2)
P(e2)

]
= E3(e1, h1) + E3(e2, h2), (9)

when the appropriate independence relationships hold and it is easy to show that the
corresponding result holds for his strongmeasure as well.While such a decomposition
is convenient, there are good reasons to think that A4 should indeed be a necessary
condition for measures of explanatory power.

Suppose a patient reports two symptoms, e1 and e2. Whatever the patient might
think, suppose the doctor has good reason to believe that there is no dependence
between these symptoms and is able to explain them by conditions h1 and h2 respec-
tively, which again are independent of each other and of the evidence they do not
explain. In such a case, it is reasonable to combine these independent hypotheses to
explain the symptoms to the patient. Furthermore, howwell they explain the symptoms
is very plausibly taken to be an increasing function of each explanation. For example,
suppose the doctor had two potential explanations, h2 and h3, for e2 and that both
satisfied the relevant independence conditions with h1 and e1. It seems clear that if
h2 provides a better explanation of e2 than h3 does, then the combined explanatory
power of h1 and h2 would be greater than that of h1 and h3.

So the importance of A4 lies not merely its convenience, but rather in the plausibil-
ity of requiring that when explanations are combined and the relevant independence
conditions are met, explanatory power should be an increasing function of each expla-
nation. This becomes clear when we see scenarios where measures such as E1 and E2
violate A4.
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Example 1 Suppose that (e1, h1), (e2, h2) and (e′
2, h

′
2) are three explanandum-

explanans pairs satisfying the relevant independence conditions for A4. These can
be thought of as three pairs of symptoms and corresponding conditions that explain
them, with each of the three pairs being irrelevant to the other pairs. Suppose
P(e1|h1) = 1, P(e1) = 0.5, P(e2|h2) = 0.4, P(e2) = 0.2, P(e′

2|h′
2) = 0.8 and

P(e′
2) = 0.75. Clearly, E1(e1, h1) = E2(e1, h1) = 1. Also, E1(e2, h2) ≈ 0.455 >

0.143 ≈ E1(e′
2, h

′
2). Combining explanations, we find that E1(e1 ∧ e2, h1 ∧ h2) ≈

0.714 < 0.739 ≈ E1(e1 ∧ e′
2, h1 ∧ h′

2). Hence, since E1(e2, h2) > E1(e′
2, h

′
2), but

E1(e1 ∧ e2, h1 ∧ h2) < E1(e1 ∧ e′
2, h1 ∧ h′

2), E1 violates A4. The same is true of E2
since E2(e2, h2) = 0.25 > 0.2 = E2(e′

2, h
′
2), while E2(e1 ∧ e2, h1 ∧ h2) ≈ 0.333 <

0.68 = E2(e1 ∧ e′
2, h1 ∧ h′

2).

So although (a) h1 explains e1 and (b) h2 explains e2 better than h′
2 explains e

′
2, E1

and E2 counterintuitively give the result that (c) h1 ∧h2 explains e1 ∧ e2 less well than
h1 ∧h′

2 explains e1 ∧ e′
2. In fact, matters are worse than this since, according to E1 and

E2, the combination of two poorer explanations can be better than the combination
of two better explanations. These results provide good reasons for adopting A4 as a
necessary requirement for both weak and strong measures of explanatory power.

In the discussion so far, I have argued for A4 by appealing to examples that are
intended to highlight its plausibility. However, since E1 and E2 violate A4, these
examples provide counterexamples to these measures. A possible response is to say
that even in terms of weak explanatory power E1 and E2 are better thought of as
explications of a different concept from the one being proposed here and hence from
E3. I think this is a reasonable response and will return to it in Sect. 4.2 where I discuss
the fact that A4 leads to a property of E3 and E5 that has been criticized in the literature.

The final two conditions were discussed earlier:

(A5) ES satisfies initial plausibility (see Sect. 2.3).
(A6) ES satisfies restricted positive relevance (see Sect. 2.4).
Based on these assumptions and recalling that ES is a function of EW and P(h)

as expressed in A2, we then get the following theorem for Good’s strong measure of
explanatory power, E5.7
Theorem 1 If EW and ES are weak and strong measures of explanatory power respec-
tively that satisfy A1 - A6, then ES is a monotonically increasing function of Good’s
strong measure, E5.8

For an alternative way to derive Good’s measure, consider the following conditions
for a weak measure of explanatory power:

(A7) For any e, h1, h2 ∈ Lc and P ∈ P, EW (e, h1) � EW (e, h2) if and only if
P(e|h1) � P(e|h2), i.e. EW satisfies positive relevance (see Sect. 2.3).

7 A1 corresponds closely to one of Good’s axioms, while A2 corresponds to an assumption he states for a
measure of strong explanatory power, as does the part of A4 that refers to ES . A5 and A6 do not correspond
to Good’s formally stated axioms and assumptions, but they provide a formal way to constrain the form of
E5 and more specifically the possible values of γ instead of his informal discussion.
8 That is, EW satisfies A1, A3 and A4, while ES satisfies A1, A2, A4, A5 and A6.
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(A8) For any e1, e2, h ∈ Lc and P ∈ P, EW (e1, h) � EW (e2, h) if and only if
P(h|e1) � P(h|e2).

A7 (positive relevance) seems like a very plausible condition for weak explanatory
power. Of course, positive relevance was criticized in Sect. 2.3 in the context of overall
explanatory goodness, but it is appropriate to retain it as a condition for weak explana-
tory power. Furthermore, all of the weak measures considered in this paper, E1 − E4,
satisfy A7.

What about A8? In some particular cases, there is clear justification for A8 if we
think of weak explanatory power in terms of reducing surprise. If P(e1) = P(e2), then
for EW (e1, h) > EW (e2, h) seems to require that P(e1|h) > P(e2|h), from which it
follows that P(h|e1) > P(h|e2). Similarly, if P(e1|h) = P(e2|h), then EW (e1, h) >

EW (e2, h) seems to require that P(e1) < P(e2), from which it again follows that
P(h|e1) > P(h|e2). More generally, however, A8 is widely accepted as a necessary
requirement for measures of the degree to which e confirms h. Indeed, so central is
it that Crupi and Tentori (2014) include it as part of their definition of confirmation,
calling it final probability. In the present context, A8 can then be understood as stating
a fundamental relationship between explanation and confirmation. It ensures that if h
provides explanations of e1 and e2, then it weakly explains (reduces the surprise of)
e1 better than e2 exactly when e1 provides greater confirmation of h than does e2. This
seems very plausible indeed since it is precisely the ability to explain otherwise very
surprising phenomena that can provide strong confirmation of a hypothesis.9

Using A7 and A8 we then get the following theorem for Good’s strong measure of
explanatory power, E5.
Theorem 2 If EW and ES are weak and strong measures of explanatory power respec-
tively that satisfy A1, A2, A4 - A8 then EW is a monotonically increasing function of
Good’s weak measure, E3, and ES is a monotonically increasing function of Good’s
strong measure, E5.10

4.2 Irrelevant evidence

The most significant objection to Good’s weak measure of explanatory power, but
which applies equally to his strong measure, is the problem of irrelevant evidence
due to Schupbach and Sprenger (2011). Let e be a general description of Brownian
motion and h be Einstein’s atomic explanation of it. Assuming P(e|h)/P(e) � 1,
Good’s weak measure correctly judges this to be a good explanation. However, let
e′ be the irrelevant proposition that the mating season for an American green tree
frog takes place frommid-April to mid-August. According to Good’s measures (weak
and strong) this has no bearing on the explanatory power of Einstein’s account since
P(e∧ e′|h)/P(e∧ e′) = P(e|h)/P(e). By contrast, according to the measures E1 and
E2, the addition of e′ reduces the explanatory power.

9 Good’s weak measure turns out to have a significant advantage over other measures in terms of how it
accounts for reduction or surprise as we shall see in Sect. 4.3.
10 Strictly speaking, EW satisfies A1, A7 and A8 while ES satisfies A1, A2, A4, A5 and A6. Note that only
the part of A4 relating to ES is required.
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Is this consequence of Good’s measures as counterintuitive as Schupbach and
Sprenger claim? I will respond by trying to show that there is a very plausible way
to make sense of the alleged counterexample. Unlike the measures E1 and E2, Good’s
measures place no upper boundary on the degree of explanatory power. If there are
two explananda, e1 and e2, Good’s weak measure can be expressed as

E3(e1 ∧ e2, h) = log

[
P(e1 ∧ e2|h)

P(e1 ∧ e2)

]
= log

[
P(e2|h, e1)

P(e2|e1)
]

+ log

[
P(e1|h)

P(e1)

]
,

= E3(e2, h|e1) + E3(e1, h), (10)

where E3(e2, h|e1) represents the conditional weak explanatory power, i.e. the degree
to which h weakly explains e2 after conditioning on e1. Hence, the weak explanatory
power of h for e1 ∧ e2 is obtained by adding the degree to which it weakly explains e2
conditional on e1 to the degree to which it weakly explains e1. Good (1960) refers to
this as strict additivity of thefirst kind.Clearly, there is always scope for the explanatory
power to be greater when e2 is included than it was in the case of just e1. If the degree
to which h explains e2 given e1 is positive, then the explanatory power increases, if it
is negative, explanatory power decreases, and if it is zero, explanatory power remains
unchanged. Even if h entails e1, the explanatory power could increase further. For
example, if h also entailed e2 then it would increase further (provided e1 did not entail
e2).

Returning to the earlier example, while Einstein’s atomic account, h, provides an
excellent explanation of e, which gives a general description of Brownian motion, its
explanatory power would be increased further if it could explain additional relevant
evidence. For example, Einstein’s account explained not only the general phenomenon
of Brownian motion, but also the much more specific results of Perrin’s 1908 experi-
ments to determine the mean square displacement of particles undergoing Brownian
motion and its relation to Avogadro’s number, which further confirmed the atomic the-
ory. By contrast, the explanatory power of Einstein’s account would have decreased
had there been additional evidence, e2 say, for which Einstein’s account had negative
explanatory power (given e). So conjoining the original evidence e with additional
positively relevant evidence explained by h would increase the explanatory power of
h, while conjoining e with additional negatively relevant evidence such as e2 would
decrease the explanatory power of h. What effect should conjoining e with a proposi-
tion about American green tree frogs, which is completely irrelevant to h, have on the
explanatory power of h? According to E3, it has no effect whatsoever, which seems
very reasonable.

However, measures E1 and E2 are not additive and so give very different results. In
fact, this gives rise to a counterintuitive feature of these measures relating to entail-
ment. If a hypothesis, h entails evidence, e, then conjoining e with further evidence
cannot increase the explanatory power of h, no matter how well h explains this fur-
ther evidence. And so if Einstein’s account entails a general description of Brownian
motion, then its explanatory power would not be increased by conjoining this evidence
with Perrin’s findings relating to Avogadro’s number.
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Furthermore, suppose a hypothesis entails an explanandum that is not at all surpris-
ing because it has a high prior probability in light of background knowledge, then its
explanatory power cannot be enhanced by entailing a further surprising explanandum.
Planetary orbits (e1) that could be derived from Newton’s theory could also be derived
from Einstein’s theory (h) and so the explanatory power of Einstein’s theory would
be one according to E1 and E2. However, the perihelion of Mercury (e2) could also be
derived from Einstein’s theory, but according to E1 and E2 its explanatory power for
e1 ∧ e2 would not be any greater than it was for e1. We might call this the problem of
relevant evidence.

In summary, there is a very plausible way to make sense of the irrelevant evidence
issue from the perspective of Good’s weak measure (and hence his strong measure
too). Furthermore, I have argued that the non-additive nature of measures such as E1
and E2 can give rise to counterintuitive judgments about explanatory power and, in
particular, the problem of relevant evidence. However, maybe there is another way
to view these differences. Although E1, E2 and Good’s measure, E3, as well as E4,
are all weak measures of explanatory power, they may nevertheless be explicating
different concepts. Arguably, measures such as E1 and E2 are better understood as
explications of the degree to which h entails e.11 However, if one wants a weak
measure of explanatory power that does justice to explanatory scope and so increases
appropriately as it explains more evidence, then an additive measure such as Good’s
weak measure, E3, is suitable since it satisfies Eq. (10) as well as A4. I will also argue
below that E3 has advantages in terms of explicating reduction of surprise.12

4.3 Explanatory power and information

Good (1968) considers how his measures of weak and strong explanatory relate
to semantic information. According to one very widely used account, the semantic
information or information content of h is given by Bar-Hillel and Carnap (1953):

Inf (h) = −logP(h) (11)

for a probability distribution P , while the information content of h given e is:

Inf (h|e) = −logP(h|e). (12)

The information concerning h provided by e is given by:

Inf (h, e) = log

[
P(e|h)

P(e)

]
, (13)

11 Both E1 and E2 are well-known measures of the degree to which h confirms e and can very plausibly
be considered as measures of confirmation in the sense of partial entailment since they are maximal when
h entails e and minimal when h entails the negation of e. For further discussion, see Fitelson (2006), Crupi
and Tentori (2013).
12 E6 and E7 do not face the problems of irrelevant evidence, irrelevant conjunction or relevant evidence.
E6 also satisfies A4, but E7 does not.
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which Good also calls the mutual information between h and e since it is symmetric
in h and e (Good, 1966, 1968) . Hence, Good identifies the degree to which h
weakly explains e [see Eq. (3)] with the information concerning h provided by e or
equivalently, and perhaps more appropriately, the information concerning e provided
by h.

Since Inf(e) is a decreasing function of P(e), it could be taken to represent the
degree to which e is surprising, in which case Inf(e|h) would represent the degree to
which e is surprising given h. Good’s weak measure of explanatory power can then
be understood as representing how well h reduces the degree to which e is found to
be surprising since it can be expressed as follows:13

E3(e, h) = log

[
P(e|h)

P(e)

]
= Inf(e) − Inf(e|h). (14)

Schupbach and Sprenger (2011) also interpret their measure of explanatory power in
terms of reducing surprise, but there are a couple of advantages to Good’s measure in
this respect. First, as we have just seen, Good’s weak measure can be formulated very
straightforwardly in terms of semantic information.

Second, Schupbach and Sprenger’s measure, E1, fails to discriminate appropriately
in terms of reduction of surprise for different explananda which are entailed by a
hypothesis, and the same is true of Crupi and Tentori’s measure, E2, since both give
the maximum value of one in such cases. Suppose that e1 is very surprising in light of
background knowledge, while e2 is not surprising at all. Further suppose that h entails
e1 and also e2. While E1 and E2 quantify the degree to which h explains e1 to be the
same as the degree towhich it explains e2, according toGood’smeasure, E3, h provides
a much better weak explanation of e1 than it does of e2. In fact, since Inf(e1|h) =
Inf(e2|h) = 0, the degree to which h explains e1 is just Inf(e1) and similarly the
degree to which h explains e2 is Inf(e2) according to E3. Since Inf(e1) can be thought
of as the degree to which e1 is surprising in light of background knowledge only, it is
clearly much greater than Inf(e2). As noted earlier, E1 and E2 are better thought of as
measures of the degree to which h entails e.

Good’s strong measure of explanatory power, E5 [see Eq. (5)], can be expressed in
terms of semantic information as follows:

E5(e, h) = log

(
P(e|h)

P(e)

)
+ γ logP(h)

= Inf(e) − Inf(e|h) − γ Inf(h)

= Inf(e, h) − γ Inf(h). (15)

In light of our discussion, we can then say that strong explanatory powermeasures how
well h reduces the degree to which e is found surprising together with the inclusion
of a penalty for the complexity of h.

13 See Crupi and Tentori (2014) and Milne (2014) for similar discussions in the context of confirmation.
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4.4 Making Good’s measure precise

Recall that Good’s measure, E5, has a parameter, γ , which is required to be in the
interval (0, 1). Can a particular value for γ be defended? As Good pointed out, E5 can
be expressed as follows:

E5(e, h) = (1 − γ )Inf(h, e) − γ Inf(h|e). (16)

On the basis of this expression, he suggested γ = 1/2 as the simplest explicatum
of E5 since it gives equal weighting to (weak) explanatory power and the term
−Inf(h|e), which he associates with ‘the avoidance of “clutter”’. However, while
Good’s suggestion is not implausible a more convincing justification is needed.

To address this point, we can draw on a complexity criterion proposed for explana-
tory goodness (Glass, 2023) . The criterion requires that for an explanation h of
explanandum e to be a good one, the reduction in complexity of e brought about by h
must be greater than the complexity introduced by h in the context of e, where the first
of these quantities is represented by Inf(h, e) and the second by Inf(h|e). Expressed
in terms of strong explanatory power, it is:

Complexity criterion for strong explanatory power. If ES(e, h) is a measure of
strong explanatory power of h for e then:

ES(e, h) � 0 if and only if Inf(h, e) � Inf(h|e). (17)

Note that since Inf(e, h) is Good’s weak measure and Inf(h|e) ≥ 0, this means that
a positive value of weak explanatory power is necessary, but not sufficient, for an
explanation to be a good one.

In light of (16), E5(h, e) > 0 if and only if (1 − γ )Inf(h, e) > γ Inf(h|e) and
hence if E5 is to satisfy the complexity criterion, γ must be 1/2. This provides a strong
justification for adopting this specific version of Good’s measure and, as noted earlier,
for a given explanandum e this will give the same ordering of hypotheses as measure
E6.

Let us now return to example from Sect. 2.4 about a bag containing 99 fair coins and
one with an objective chance of 0.51 of landing heads. On being tossed, a randomly
selected coin lands heads (e) and we considered the hypotheses ‘the selected coin is
fair’ (h1) and ‘the selected coin is biased’ (h2). Using Good’s measure with γ = 1/2,
we find that E5(e, h1) � log(0.9998) + log(0.9950) � −0.0023 which is greater
than E5(e, h2) � log(1.0198) + log(0.1) � −0.9915. So h1 is indeed the better
explanation according to E5, whereas h2 would be judged better by weak measures
since it is positively relevant to e while h1 is not. According to E5, h2 does not
sufficiently reduce the complexity of e to compensate for the complexity introduced
by h2. Notice, however, that even though E5 judges h1 to be better, it is clearly deficient
in the sense that it has a negative degree of explanatory power, so it might be more
accurate to say that h1 is not as bad an explanation as h2.
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4.5 Explanatory virtues and inference to the best explanation

We have already seen that Good relates his strongmeasure of explanatory power to the
explanatory virtue of simplicity. According to his version of Ockham’s razor, if two
hypotheses have equal likelihoods with respect to the explanandum we should prefer
the simpler of the two, which he says is ‘equivalent to the choice of the more probable
hypothesis’ (1968, p. 139). Given the discussion in Sects. 2.2 and 2.3, Good’s measure
does indeed accommodate simplicity in a way that weak measures do not.

Good’s measure is also able to do justice to other explanatory virtues such as scope
and unification. More specifically, it is his weak measure, which is a factor in his
strong measure, that is able to capture these virtues. In terms of explanatory scope, we
have already seen from Eq. (10) that the explanatory power of a hypothesis increases
as it explains more evidence. In terms of unification, Myrvold (2003) develops an
account in terms of informational relevance. Expressing a result of Myrvold’s in terms
of Good’s measure of weak explanatory power gives:

E3(e1 ∧ e2, h) = E3(e1, h) + E3(e2, h) +U (e1, e2; h), (18)

where U (e1, e2; h) is the degree to which h unifies e1 and e2 and is given by

U (e1, e2; h) = I (e1, e2|h) − I (e1, e2). (19)

hence h weakly explains e1 ∧ e2 to a degree that is the sum of how well it weakly
explains e1 and e2 separately plus the degree to which it unifies them. It follows that if
the sum of the weak explanatory power for e1 and e2 is the same for two hypotheses,
then the one that unifies e1 and e2 more will have greater weak explanatory power. If
they also have the same priors, then the hypothesis that unifies e1 and e2 more will
have greater strong explanatory power as well. A similar conclusion can be reached
concerning Whewell’s (1847) ‘consilience of inductions’ in terms of the value of
diverse evidence (see, McGrew, 2016).

Does this mean that Good’s strong measure fully captures explanatory goodness?
The various weak measures may well capture an aspect of explanatory goodness, but
since they fail to accommodate simplicity, I have argued that they are not plausible
candidates of explanatory goodness in a general sense. Since Good’s measure incorpo-
rates simplicity as well as the other virtues described above, it is amuchmore plausible
candidate. Whether it fully captures explanatory goodness, however, is another mat-
ter. As acknowledged in Sect. 2.1, there may be some limitations to what can be
captured probabilistically and this could include limitations arising from the fact that
the account does not attempt to capture what constitutes an explanation. Also, the
current approach does not take into account the potential relevance of manipulations
to explanatory goodness. Eva and Stern (2019) have shown how this can be done for
Schupbach and Sprenger’s measure of explanatory power, so it would be interesting
to explore whether a similar approach might be appropriate for the current measure.
Nevertheless, as it stands, Good’s measure does seem to go a long way to capturing
key aspects of explanatory goodness.

123



Synthese           (2023) 201:53 Page 21 of 26    53 

A related topic concerns the relevance of Good’s strong measure to IBE. Recent
work has demonstrated the merits of E6 [Eq. (6)] in this regard (Glass, 2021) and,
as we have seen, it produces the same ranking as Good’s strong measure when γ is
1/2. Results showed that using this measure for IBE finds the actual or true hypothesis
much more frequently than versions of IBE based on weak measures. There is a lot
more that could be said about explanatory virtues and IBE, but this brief discussion
suggests that Good’s strong measure does well on both fronts.

5 Conclusion

Strong measures of explanatory power attempt to strike a balance between how well a
hypothesis accounts for the explanandum (weak explanatory power) and the improb-
ability/complexity of the hypothesis. As such, they can be viewed as ways of making
Ockham’s razor precise. While weak measures seek to capture an important aspect of
explanation, I have argued that strong measures are better for quantifying explanatory
goodness. In defence of Good’s strong measure, I have presented two new derivations
of it, explored its connection with information theory and explanatory virtues, shown
how it can be made precise, and addressed objections to it. Since Good’s strong mea-
sure depends on his weak measure, I have also presented several reasons for preferring
his weak measure to the other weak measures. In particular, his weak measure is able
to differentiate between explanatory power in cases where a given hypothesis entails
two explananda where one is more surprising than the other.

There are various directions for further work. As noted above, it would be inter-
esting to explore the potential relevance of manipulations to explanatory goodness
in the context of Good’s measure. Also, in debates about IBE and Bayesianism, it is
usually assumed that a Bayesian approach requires selecting the hypothesis with the
highest posterior probability. However, this is not the case for the Bayesian approach
to IBE based on Good’s measure. This is particularly relevant in cases where there are
multiple compatible hypotheses. Strong measures of explanatory power should shed
light on when it is appropriate to accept conjunctive explanations involving two or
more hypotheses rather than just a single hypothesis.
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Appendix

Proof of theorem 1

Lemma A.1 If e∗ ∈ Lc is probabilistically independent of e, h ∈ Lc and their
conjunction, then EW (e ∧ e∗, h) = EW (e, h).

Proof Let e, h, e∗ ∈ Lc and P ∈ P be such that e∗ is independent of e, h and their
conjunction according to P .

Suppose also that e2, h2 ∈ Lc. We can construct a probability distribution P ′ ∈ P
such that P ′(±e∧±h∧±e∗) = P(±e∧±h∧±e∗), where±p denotes either p or¬p,
so that all probabilities involving logical combinations of e, h and e∗ are preserved.

Now we can specify P ′ in such a way that each of e2 and h2 is independent of e,
h, e ∧ h and e∗, and e2 and h2 are also independent of each other. To obtain such a
distribution we can set conditional probabilities as follows:

(i) P ′(e2| ± e ∧ ±h ∧ ±e∗) = a ∈ (0, 1),
(ii) P ′(h2| ± e ∧ ±h ∧ ±e∗ ∧ ±e2) = b ∈ (0, 1).

Note that h2 is probabilistically independent of e, h and h ∧ e, as is e∗ ∧ e2 since a)
P ′(e∗∧e2|e) = P ′(e2|e∧e∗)P ′(e∗|e) = P ′(e2|e∗)P ′(e∗) = P ′(e∗∧e2) and so e∗∧e2
is independent of e, b) P ′(e∗ ∧ e2|h) = P ′(e2|h ∧ e∗)P ′(e∗|h) = P ′(e2|e∗)P ′(e∗) =
P ′(e∗ ∧ e2) and so e∗ ∧ e2 is independent of h, and c) P ′(e∗ ∧ e2|h ∧ e) = P ′(e2|h ∧
e ∧ e∗)P ′(e∗|h ∧ e) = P ′(e2|e∗)P ′(e∗) = P ′(e∗ ∧ e2) and so e∗ ∧ e2 is independent
of h ∧ e. Hence, given (A3), the relevant conditions for applying (A4) as follows are
satisfied14

EW (e ∧ e∗ ∧ e2, h ∧ h2) = wc[EW (e, h), EW (e∗ ∧ e2, h2)]
= wc[EW (e, h), α].

Similarly, we can show that the relevant conditions for applying (A4) as below are
also satisfied

EW (e ∧ e∗ ∧ e2, h ∧ h2) = wc[EW (e ∧ e∗, h), EW (e2, h2)]
= wc[EW (e ∧ e∗, h), α].

Since wc is strictly increasing in each argument, it follows that EW (e ∧ e∗, h) =
EW (e, h). This holds for distribution P ′, but since it was constructed so as to preserve
the probabilities for all logical combinations of e, h and e∗, it also holds in distribution
P . This establishes lemma A.1. ��
14 This part of the proof is based on that of Theorem 4 by Cohen (2016).

123

http://creativecommons.org/licenses/by/4.0/


Synthese           (2023) 201:53 Page 23 of 26    53 

LemmaA.1 will be used later in the proof of theorem 1 (in the proof of lemmaA.3),
but first it will be useful to introduce another lemma. Note that from (A1) it fol-
lows that there exist continuous, differentiable functions w1 and s1 such that for any
e, h ∈ Lc and any P ∈ P, EW (e, h) = w1[P(h|e), P(h), P(e)] and ES(e, h) =
s1[P(h|e), P(h), P(e)].

To simplify matters we can identify triplets (x, y, z) representing
[P(h|e), P(h), P(e)] that satisfy the following conditions:15

1. 0 < y, z < 1
2. 0 ≤ x ≤ 1
3. x ≥ y+z−1

z since xz = P(e ∧ h) ≥ P(e) + P(h) − 1 = y + z − 1.
4. x ≤ y/z since xz = P(e ∧ h) ≤ P(h) = y.

Let us then posit w1 : {(x, y, z) ∈ [0, 1] × (0, 1)2 | y
z ≤ x ≤ y+z−1

z } → R and
denote the domain of w1 as Dw1 .

Lemma A.2 For any x, y, z1, z2 such that x ∈ [0, 1], y, z1, z2 ∈ (0, 1) and y
z1

≤
x ≤ y+z1−1

z1
and y

z2
≤ x ≤ y+z2−1

z2
, there exist e, e∗, h ∈ Lc and P ∈ P such that

P(h|e) = P(h|e ∧ e∗) = x, P(h) = y, P(e) = z1 and P(e ∧ e∗) = z2 where
P(e∗) = z2/z1 and so P(e ∧ e∗) = P(e)P(e∗).

Proof This can be achieved by means of the following probability assignments:

P(h ∧ e ∧ e∗) = xz2,
P(h ∧ e ∧ ¬e∗) = x(z1 − z2),
P(h ∧ ¬e ∧ e∗) = (y − xz1)z2/z1,
P(h ∧ ¬e ∧ ¬e∗) = (y − xz1)(1 − z2/z1),
P(¬h ∧ e ∧ e∗) = (1 − x)z2,
P(¬h ∧ e ∧ ¬e∗) = (1 − x)(z1 − z2),
P(¬h ∧ ¬e ∧ e∗) = [(1 − y) − (1 − x)z1]z2/z1,
P(¬h ∧ ¬e ∧ ¬e∗) = [(1 − y) − (1 − x)z1](1 − z2/z1).

��
Lemma A.3 There is a continuous, differentiable function s2 such that for any e, h ∈ Lc

and any P ∈ P, ES(e, h) = s2[P(h|e), P(h)].
Proof Suppose there exist (x, y, z1) and (x, y, z2) ∈ Dw1 , the domain ofw1, such that
w1(x, y, z1) �= w1(x, y, z2). Then, by lemma A.2 there exist e, e∗, h ∈ Lc and P ∈ P
such that P(h|e) = P(h|e ∧ e∗) = x , P(h) = y, P(e) = z1 and P(e ∧ e∗) = z2
where P(e∗) = z2/z1. Clearly, P(e ∧ e∗) = P(e)P(e∗) so e∗ is independent of
e. Similarly, P(h ∧ e∗) = xz2 + (y − xz1)z2/z1 = yz2/z1 = P(h)P(e∗) so e∗ is
independent of h, and P(h∧e∧e∗) = xz2 = xz1.z2/z1 = P(h∧e)P(e∗) so e∗ is also
independent of h ∧ e. Thus, there exist e, e∗, h ∈ Lc and P ∈ P such that EW (e, h) =
w1(x, y, z1) �= w1(x, y, z2) = EW (e ∧ e∗, h) even though e∗ is independent of
e, h and their conjunction, contradicting lemma A.1. Conversely, lemma A.1 implies

15 This part of the proof is similar in style to those used by Crupi and Tentori (2012) in the context of weak
measures of explanatory power.
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that for any (x, y, z1) and (x, y, z2) ∈ Dw1 , w1(x, y, z1) = w1(x, y, z2). Hence,
lemma A.1 requires that there must exist w2 such that, for any e, h ∈ Lc and P ∈ P,
EW (e, h) = w2[P(h|e), P(h)] and w2(x, y) = w1(x, y, z). Hence it follows from
(A2) that there is a differentiable function s2 such that, for any e, h ∈ Lc and P ∈ P,
ES(e, h) = s2[P(h|e), P(h)] since a differentiable function of differentiable functions
is itself differentiable. This establishes lemma A.3. ��

Given lemmaA.3 and (A4),Good shows in his 1968 paper that, up to a differentiable
monotonic transformation, ES(e, h) is given by

log[P(h|e)] + (γ − 1) log[P(h)], (A1)

where γ is a constant or alternatively,

log

[
P(e|h)

P(e)

]
+ γ log[P(h)]. (A2)

(A5) implies that if P(e|h1) = P(e|h2), then γ log[P(h1)] � γ log[P(h2)] if and
only if P(h1) � P(h2) and so γ > 0. (A6) implies that if P(h1|e) = P(h2|e), then
(γ −1) log[P(h1)] � (γ −1) log[P(h2)] if and only if P(e|h1) � P(e|h2), but since
P(h1|e) = P(h2|e) this will be the case if only if P(h1) � P(h2) and hence γ < 1.

These conditions also require that any monotonic transformation of this function
must be increasing. Suppose that ES(e, h)were a decreasing function of (A2). Suppose
also that P(e|h1) = P(e|h2). Then, if γ log[P(h1)] > γ log[P(h2)], and hence
P(h1) > P(h2), it would follow that ES(e, h1) ≤ ES(e, h2), which contradicts (A5).
This establishes theorem 1. ��

Proof of theorem 2

The result for EW follows from (A1), (A7) and (A8) as demonstrated by theorem 3
of Cohen (2016), which was in turn proved in the context of E3 as a confirmation
measure by Crupi et al. (2013). Lemma A.1 follows trivially given the result for EW
and lemma A.3 then follows straightforwardly from lemma A.1 and (A2). The result
for ES can then by established from the relevant part of the proof for theorem 1 based
on lemma A.3, (A4), (A5) and (A6). ��
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