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Graph Wasserstein Autoencoder Based Asymptotically Optimal Motion
Planning With Kinematic Constraints for Robotic Manipulation

Chongkun Xia, Yunzhou Zhang, Sonya A. Coleman, Member, IEEE, Ching-Yen Weng, Houdei Liu,
Member, IEEE, Shichang Liu, I-Ming Chen, Fellow, IEEE,

Abstract—This paper presents a learning based motion plan-
ning method for robotic manipulation, aiming to solve the
asymptotically-optimal motion planning problem with nonlinear
kinematics in a complex environment. The core of the proposed
method is based on a novel neural network model, i.e., Graph
Wasserstein Autoencoder (GraphWAE) network, which is used
to represent the implicit sampling distributions of the configu-
ration space (C-space) for sampling-based planning algorithms.
Through learning the implicit distributions, we can guide the
planning process to search or extend in the desired region to
reduce the collision checks dramatically for fast and high-quality
motion planning. The theoretical analysis and proofs are given
to demonstrate the probabilistic completeness and asymptotic
optimality of the proposed method. Numerical simulations and
experiments are conducted to validate the effectiveness of the
proposed method through comparisons with typical planning
algorithms (e.g., RRT* and PRM*) in a series of problems
from 2D, 6D and 12D robot C-spaces in the challenging scenes.
In addition, results indicate that the proposed method can be
generalised and achieves better planning performance.

Index Terms—Motion planning, graph wasserstein autoen-
coder, kinematic constraints, collision detection, robotic manip-
ulation

I. INTRODUCTION

For most autonomous robot systems, motion planning is
a very important module especially in a complex en-

vironment. Although different robots require different types
of motion generation and planning methods, the nature of
the motion planning problem has never changed in the past
decades. Without loss of generality, the motion planning
problem can be defined as the following: find a feasible
motion sequence ζ in the configuration space that moves a
robot or a manipulator from a start state qstart to a goal
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state qgoal without collisions in the obstacle environment.
Furthermore, the optimality of motion planning is also a major
concern for real-world robotic applications. In fact, optimal
motion planning in C-space has been proven to be a PSPACE-
hard problem, which is difficult to solve using complete
planners [1]. Due to the low computational complexity and
good practicability, sampling-based motion planners (SBMPs)
have become popular solutions to optimal motion planning
problems in various robotic applications, offering asymptotical
optimality and probabilistic completeness guarantees [2]. The
SBMPs usually attempt to search the whole configuration
space to obtain all possible motion sequences, and then find
a feasible solution by kinematic-based collision detection.
However, when the environment is very complex such as a
cluttered scene or narrow scene, the kinematic constrains of a
robot will affect the planning efficiency of the SBMPs signifi-
cantly. For example, the two most widely used planners in the
field of motion planning research, the RRT* [3] and PRM*
[4] both require many collision checks to obtain a feasible
collision-free motion sequence due to kinematic constrains in
the cluttered scene, which typical result in a time-consuming
process. Sánchez et al indicated that the collision detection
required more than 90% of the total time consumption for the
SBMPs [5]. The aforementioned facts indicate that collision
detection has become the main execution impediment to the
planning efficiency of the SBMPs.

Many approaches to reduce collision checks have been
proposed to improve the planning procedure for the SBMPs.
Hauser [6] presented a lazy strategy to reduce the fraction
of edges that underwent collision checking and demonstrated
that the approach required less time than previous approaches.
While the delayed checking mechanism retried the tree’s
expansion whenever finding that a collision was detected, the
planning performance might degrade with increased proba-
bility especially when the number of collision checks was
relatively large. Van den Berg et al. [7] proposed a watershed
labeling method to effectively guide the sampling process
towards the interesting region of the scene. Gammell et al. [8]
performed an ordered search by using batches of samples to
accelerate the planning process and converge faster towards
the global optimum. While these heuristics-based sampling
methods usually perform well in specific domains or problems,
it is very hard to determine how they perform on new unseen
scenes that are beyond the expected conditions. In recent
years, the learning-based approaches have become increasingly
popular solutions through learning the non-uniform sampling
distributions to dramatically reduce the collision checks for
fast and high-quality motion planning. Huh et al. in [9]
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and [10] proposed a non-uniform sampling strategy based on
Gaussian Mixture Models (GMMs) to accelerate the collision
detection process, and applied their method in a Rapidly-
exploring Random Trees (RRT) planner. However, the GMMs-
based method has a rigorous hypotheses, local minimum and
difficulty in selecting self-parameters, which has the potential
to significantly increase the uncertainties and complexities
of the whole planning process. Ichter et al. [11] adopted
the conditional variational autoencoder (CVAE) to learn the
implicit representation of the configuration space for bias
sampling. However, the CVAE-based method lacks sufficient
representation ability of high-dimensional C-space, especially
for complex scenarios. Moreover, the samples generated by
the two methods may be ambiguous and prone to resulting
in many undesirable checks, which results in the performance
degradation of the planning process for the SBMPs.

In a typical planning scenario, a so-called point or config-
uration q of the planning process represents a certain state
that belongs to either collision-free configuration space or
not, dividing the C-space χ into two regions, a collision-
free region χfree and a collision region χcol. The purpose
of collision detection operation is to judge whether all motion
configurations belong to the collision-free region χfree of C-
space. In essence, the learning-based approaches are to train an
implicit representation to further build a generative model of
the collision-free region χfree in C-space, and thereby avoid
the collision checks as much as possible in the sampling-
based planning process. Inspired by the graph neural network
[12] [13], we propose a novel graph wasserstein autoencoder
(GraphWAE)-based asymptotically optimal motion planning
method to solve the optimal motion planning problem. In
this work, the sampling distribution in C-space will be trans-
formed into an undirected graph model G = (V, E), which is
used as the input of the developed wasserstein autoencoder.
The configuration samples generated from demonstrations of
successful plans and previous experience are used as the
vertices that form the vertex set V of the graph. The potential
movements of samples are used as edges that form the edge set
E . Through learning the latent model of this distribution, our
approach can be used as the sample generative source to deter-
ministically generate samples that belong to the collision-free
region, instead of a random generative source. Furthermore,
the learning-based generative model promotes the sampling
procedure of the planning process occurred in the collision-
free region of the configuration space, and further effectively
reduces and simplifies the collision checks, which significantly
improves the planning performance of the SBMPs.

Contributions: The contributions of this work are summa-
rized as follows: (1) We propose a GraphWAE-based motion
planning method to address the asymptotically optimal plan-
ning problem with kinematic constrains in the complicated
environment; (2) Our approach mainly focuses on the early
sampling stage of the planning process without modifying
the internal structures of the planners. Thus, the proposed
methodology is general and easy to be deployed into other
sampling-based motion planners; (3) The learning-based graph
generative model can effectively represent the underlying dis-
tribution of the C-space in a challenging environment, resulting

in a significant improvement in terms of planning time, success
rate and path quality.

II. NOTATION AND PROBLEM FORMULATION

A. Notation

Let χ ⊆ Rd denote the d-dimensional robot configuration
space, where d ≥ 2. To keep the symbols consistent, we use
χfree to denote the collision-free region and χcol to denote
the collision region in C-space. χfree and χcol both are the
open subsets of χ, and χfree

⋃
χcol = χ, χfree

⋂
χcol =

∅. The initial state is xinit ∈ χfree, and the goal region is
χgoal ⊂ χfree. The control input sequence is denoted as u(τ) :
[0, s] 7−→ U , which is used to drive a robot or a manipulator
from xinit to χgoal. The system dynamics of a robot or a
manipulator can be briefly described below.

ẋ = Ξ(x,u) (1)

where x ∈ χ denotes the state vector and u ∈ U denotes
the piecewise control vector. Ξ denotes the continuous-time
system dynamics.

Usually, the basic motion planning problem is briefly de-
fined by a triplet (xinit, χgoal, χfree). Assuming that the
function Ξ is smooth with respect to the state vector x and the
control vector u, the definition of a feasible path for the basic
motion planning problem is shown as follows. A visualisation
of the 2D motion planning problem is depicted in Fig. 1.

Definition 1. (Feasible path) Defining a function ζ(τ) :
[0, s]→ χ, if it is continuous and has bounded variation, then
we call the function ζ a motion path. If ∀τ ∈ [0, s], ζ(τ) ⊆
χfree, then ζ(τ) is called a collision-free path. Furthermore,
if ζ(τ) is a collision-free path, and ζ(0) = xinit, ζ(s) ∈
cl(χgoal), then ζ(τ) is so called a feasible path (or valid path)
for the motion planning problem (xinit, χgoal, χfree).

Let c(ζ) : Rd 7−→ R>0 denote the cost function of the
motion planning problem as follows:

c(ζ) =

∫ s

0

[ζ(τ)TAζ(τ) + u(τ)TBu(τ)]dt (2)

where both A and B are positive matrices. It should be noted
that if ζ(τ)TAζ(τ) + u(τ)TBu(τ) = 1, the cost function
denotes the Euclidean distance. In this paper, we select the
path length as the cost function, i.e., c((ζ)|ζ ∈ [0, s]) =

∫ s
0
dt.

B. Problem formulation

Kinematic constrains usually exist in the real-world robot
applications. We call the motion planning problem with
kinematic constraints as the feasible planning problem to
distinguish them from the basic motion planning problem.
The rigorous definitions about the feasible planning problem
considered in this paper are formally described as follows.

Problem 1. (Feasible planning problem) Given a basic motion
planning problem (xinit, χgoal, χfree), find a feasible (or
valid) path ζ(τ) : [0, s] 7→ χfree such that ζ(0) = xinit
and ζ(s) ∈ χgoal. If such a path exists, then output the result;
otherwise, report failure.
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Fig. 1. The diagram of 2D motion planning problem. Due to the kinematic
constraints, the robot cannot directly move along the straight line from the
start state xinit to the goal region χgoal. ζ1 denotes the feasible (or valid)
path. ζ2, ζ3, ζ4 all denote the invalid paths. The start state and goal state of
ζ2 do not meet the requirement of motion planning problem. ζ3 and ζ4 do
not consider the kinematic constraints. ζ∗ denotes the desired optimal motion
path.

Supposing the valid path set from solving Problem 1 is Θ,
we can set ζ∗ ∈ Θ as the optimal path. The corresponding
optimal planning problem is defined below. It is should be
noted that the optimal path considered in this paper is a
theoretical optimal solution for the motion planning problem.

Problem 2. (Optimal planning problem) Given a motion plan-
ning problem (xinit, χgoal, χfree) and a length cost function
c, find a feasible motion sequence or path ζ∗ ∈ Θ such that
c(ζ∗) = min {c(ζ) : ζ ∈ Θ is a feasible path}. If one exists,
this path ζ∗ is called an optimal path. If no such path exists,
then report failure.

In real robot applications, the optimal planning problem is
hard to solve directly by complete planners. Current planning
solutions focus on the sampling-based planning methods (i.e.,
incomplete planners), which possess asymptotically optimality.
Then the asymptotically optimal motion planning problem is
defined as follows.

Problem 3. (Asymptotically optimal planning problem) Given
Problem 2 and the cost function c(ζ), find a solution ζa such
that c(ζa) > (ε+ 1) for any small ε > 0, when the number of
samples N →∞.

III. METHODOLOGY

The purpose of this work is to develop a novel learning-
based method capable of approximating the distribution χfree
of the collision-free region containing optimal motion se-
quences, and further generate more similar samples to reduce
or avoid collision checks for improving the performance of
sampling-based motion planners such as planning time, path
quality and successful rate. Since the collision-free region in
C-space usually is high-dimensional, unknown and complex,
it is very difficult to accurately represent or approximate
the corresponding sampling distribution χfree. The state-of-
the-art representation learning methods mainly contain two
classes: the Gaussian Mixture Models (GMMs) [9] [10] and

the variational autoencoders (VAEs) [11]. The GMMs have
demonstrated good performance in real robot planning prob-
lems, but the appropriate parameters are very difficult to select.
Moreover, the VAEs often generate blurry samples when
applied to the practical engineering projects despite being quite
nifty and elegant in theory. Wasserstein Autoencoder (WAE)
[14] is a new regularized autoencoder neural network based
on the optimal transport (OT) theory [15], which has a strong
representation ability for the Euclidean data such as text, image
and voice. The WAE not only characterizes the non-Euclidean
data but also captures the related structure accurately.

For asymptotically optimal planning problems, the corre-
sponding sampling distributions usually are non-Euclidean
data that are difficult to directly represent by the WAE. In-
spired by graph neural networks, we propose a new methodol-
ogy based on a Graph Wasserstein Autoencoder (GraphWAE)
to learn the bias sampling distributions for motion planning,
as shown in Fig. 2. Essentially, the GraphWAE is an extension
and improvement of the standard Aasserstein Autoencoder
(WAE), which lays more emphasis on the integration of the
graph model and autoencoder network. This improvement
provides a trained graph generative model that approximates
the sampling distributions of the collision-free region as the
sample generation source of the SMBPs. Furthermore, our
method also leverages previous successful plans or demon-
strations to guide the SBMP to search trees or road maps
in the collision-free region of the configuration space. The
corresponding pseudo code of the proposed methodology is
depicted in Algorithm 1.

Algorithm 1 Learning bias sampling distributions methodol-
ogy
Offline:

1: Input: Training data (from previous successful plans, mo-
tion trajectories in action, human demonstration, etc.)

2: Train the encoder network and the decoder network of
GraphWAE, as shown in Algorithm 2.

Online:
3: Input: The motion planning problem (χfree, xstart, xgoal),

the trained graph neural network model.
4: Use the learned GraphWAE to obtain configuration sam-

ples as the sample source.
5: Run the sampling-based planners (e.g., PRM*, FMT,

RRT*) without collision detection, and generate the can-
didate motion path.

6: Check the collisions of the candidate path. Output the final
result if the path is qualified; otherwise, return to Step 4.

A. Basic architecture of Graph Wasserstein Autoencoder

The GraphWAE proposed in this paper is a new, novel,
variant of the regularized autoencoders, which has fully ab-
sorbed the quintessence theory of graph neural networks and
the variational auto-encoder network. The structure diagram
of the proposed GraphWAE network is presented in Fig. 3.
From Fig. 3, we can see that the GraphWAE is divided into
four parts: graph representation, encoder, decoder and graph



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, DECEMBER 2020 4

Pre-processing
Standard 
samples 

collection

Previous successful 
plans or 

demonstrations

Train graph 
generative model 

Obtain bias sampling 
distributions

Samples generation 
source

Generate samples

Run sampling-based 
motion planners without 

collision detection

Generate a candidate 
path 

Check the collision of 
the candidate path

Output the 
appropriate path

Graph 
representation

Yes

No

Fig. 2. The system diagram of the proposed methodology. It should be noted that our main contributions in this paper are highlighted in red box.

generation. The graph representation of the planning problem
is an important early step of the proposed GraphWAE for
learning the bias sampling distributions in the C-space. In
this paper, we construct the undirected graph G = (N , E) to
represent the graph model of the whole configuration space,
where N denotes the configuration set, and E denotes the
edge set among different configurations. It should be noted
that the configuration actually is the node in the undirected
graph. Since the sampling distributions are the subsets of C-
space, the graph model of the sampling distribution χfree
can be defined as Gfree = (Nfree, Efree). In the same way,
the graph model of the collision region can be defined as
Gcol = (Ncol, Ecol). When the sampling procedure tends to
infinity, Gfree

⋃
Gcol = G and Gfree

⋂
Gcol = ∅. Obviously,

Fig. 3 presents the bias graph representation Gfree of the
sampling distribution χfree in the motion planning problem.

For the proposed methodology, we use G = (A,E,F) as the
input to the encoder network, where A is the adjacency matrix
of graph model G, E is the edge attribute tensor and F is the
node attribute matrix. When the graph representation is Gfree,
we use Gfree as the input of the GraphWAE, and the converse
is Gcol. It should be noted that we use the G to denote the input
for the following theoretical illustration without differentiating
between Gfree and Gcol in this section. Similar to the WAEs,
the GraphWAE can generate the graph model which is similar
to the input graph by training a latent variable model Pz.
In fact, the latent variable model is progressed through two
stages, that is, sampling a low dimensional code vector Z
from a prior distribution PZ defined on the latent space Z
and mapping it to a graph model G ∈ G via a conditional
distribution Pz(X|Z). For simplicity, we use the distribution
Pz(X|Z) as the generative distribution (i.e., the decoder),
deterministically mapping Z to G = z(Z) for a given map
function z : Z 7−→ G. Additionally, the GraphWAE will
minimize the optimal transport distance between the latent
variable model Pz and the unknown graph data distribution
PG. Supposing the cost function between two data distribution
is c(g, g′), we adopt the following function as the objective of
the GraphWAE:

min
Q(Z|X)

E
PG

E
Q(Z|X)

[c(G,z(Z))] + γDZ(QZ, PZ)] (3)

where Q(Z|X) denotes the conditional distribution, which is
known as the encoder, QZ = QZ(Z) =

∫
Q(Z|X)PG(G)dG

is the posterior distribution, DZ(•) denotes the divergence
measure function between two distributions on the latent space
Z and γ > 0 is a regularization parameter. Like the auto-
encoders, the GraphWAE is also encouraged to learn a high-
level implicit representation of the input rather than simply
copy the given input. Thus, the dimension of the vector Z
is usually fairly smaller than the size of the input. Besides,
it should be noted that both of the distributions Q(Z|G) and
z(Z) need to be parameterized by deep networks. In fact, we
usually use the back propagation algorithm as the stochastic
gradient descent module in deep nets to optimize the above
objective function.

From the equation (3), we can find that the objective
of the proposed GraphWAE contains two terms: c(G,z(Z))
and γDZ(QZ, PZ). The first reconstruction term c(G,z(Z))
connects the encoder with the decoder so that the encoded
graph can be reconstructed accurately by the decoder network.
The second regularization term γDZ(QZ, PZ) utilizes the ag-
gregated posterior QZ to match the distribution PZ, which can
effectively control the size of the whole encoded data. In this
paper, we adopt the proposed GraphWAE to learn the bias
sampling distribution, aiming to reduce the collision checks
and further improve the planning performance for sampling-
based planners.

B. Learning bias sampling distribution using GraphWAE

The core step of the proposed methodology is to train
an appropriate graph generative model to represent the sam-
pling distributions. More specifically, we will fully utilize
the previous planning data to train the encoder network and
decoder network of the GraphWAE for obtaining the implicit
representation of sampling distributions, and further adopt the
learned generative model as the sample source of sampling-
based planners. Firstly, high-quality training data acquisition is
very critical for the whole training process of the GraphWAE.
When a planning task is executed, the collision detection
mechanism usually generates huge quantities of extra samples
that have been identified to belong to a certain sampling
distribution χfree or χcol for sampling-based planners. Thus
we can collect and preprocess these checked samples as the
training data. In fact, the sources of the previous planning
data are exceptionally diverse such as successful plans, human
demonstration, etc.
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Fig. 3. The setup of graph wasserstein autoencoder (GraphWAE). The encoder maps the bias sampling distribution to the latent space, and then the decoder
utilizes the latent samples to reconstruct the distribution information. Besides, the trained encoder can be used as the random sampling source of the
configurations for the SBMPs.

Another important consideration is the penalty design of
the objective function (i.e., equation (3)), which plays an
important role in the training process of the GraphWAE.
According to [16], the maximum mean discrepancy (MMD)
has good performance on the similarity judgement between
two distributions, especially for the high-dimensional standard
normal distributions. Considering that the prior distribution PZ
of latent space Z belongs to a Gaussian distribution, we select
the MMD as the penalty of the objective function DZ(QZ, PZ).
The penalty based on maximum mean discrepancy is designed
as follows:

DZ(QZ, PZ) =

∥∥∥∥∫
Z
k(z, ·)dPZ(z)−

∫
Z
k(z, ·)dQZ(z)

∥∥∥∥
Hk

(4)
where Hk denotes the reproducing kernel Hilbert space of
the generalized real valued functions mapping Z to R. k :
Z × Z 7→ R is a positive-definite reproducing kernel. The
training details of the GraphWAE is described in Algorithm
2. Additionally, it should be noted that the encoder Qψ(Z|x)
in Algorithm 2 is non-random. Usually, deterministically maps
these input data to the latent codes. Based on this condition,
we can set Qψ(Z|x) = δµψ for a function µψ : G 7→ Z . Thus
we just need to return µψ(xi) so that the ẑi can be sampled
from the distribution Qψ(Z|xi).

C. Asymptotically Optimal Motion Planning based on Graph-
WAE

When the training process ends, we can obtain the graph
generative model (i.e., the decoder zφ) that can implicitly
represent the sampling distribution χfree or χcol in C-space.
After training, the GraphWAE can be allowed to generate
samples from zφ via the simple sampling operation from
the normal distribution of the implicit variable. The online
planning task begins with a planning problem with kinematic
constrains defined by the triplet (xinit, χgoal, χfree). When

Algorithm 2 The training procedure based on GraphWAE
1: Initialization: the network parameters of encoder Qψ and

decoder zφ; the latent discriminator Dτ ; the regulariza-
tion coefficient γ > 0; the characteristic positive-definite
kernel k.

2: Train: the encoder network ψ and decoder network φ.
3: while {ψ, φ} are not convergent do
4: Input the training data G = {g1, g2, · · · , gn};
5: Do the sampling procedure from the prior distribution
PZ and acquire the samples {z1, z2, · · · , zn};

6: for i = 1→ n do
7: Do the sampling procedure from the Qψ(Z|gi) and

acquire ẑi;
8: Save ẑi to the set Ẑ;
9: end for

10: Update Qψ and zφ by ascending:
11:

1

n

n∑
i=1

c(gi,zφ(ẑi)) +
1

n(n− 1)

∑
l 6=j

k(zi, zj)

+
γ

n(n− 1)

∑
l 6=j

k(ẑl, ẑj)−
2γ

n2

∑
l,j

k(zl, ẑj)

(5)

12: end while

the planning task begins, we use the standard normal distri-
bution as the input of the learned decoder zφ and obtain the
output graph model. Next, we can obtain the configuration
samples as the sample source of the motion planner through
random sampling from the output reconstruction graph. Taking
a typical 2D planning problem as an example, the planning
results based on RRT* and GraphWAE-RRT* at different
iteration steps are shown in Fig. 4. Fig. 4 indicates that the
GraphWAE-RRT* can generate a higher quality motion path
than the standard RRT* with shorter iterations. Moreover, the
GraphWAE-RRT* needs fewer collision checks to determine
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whether the candidate path is a feasible path or not, which
dramatically reduces the planning time. The bias samples from
collision-free sampling distributions can be directly used as
the tree nodes to extend the search trees without checking
collisions. Since the distribution of the output graph model
can effectively represent the bias sampling distributions, the
collision check within each iteration is not necessary for
sampling-based motion planners. In this case, we are facing
two options: (1) check the collision every few iterations as the
tree expands; (2) check the collision of the final candidate path
as the iteration procedure ends. In fact, the two opinions both
effectively reduce the planning time and improve the planning
quality. Due to the strong representation ability of the proposed
GraphWAE, in this paper we select the second option as the
collision detection strategy.

IV. THEORETICAL ANALYSIS

A. Probabilistic completeness

In this section, the probabilistic completeness of our ap-
proach is considered. Since our approach is general for the
SBMPs, we will take the GraphWAE-based RRT* as an
example to show the proof process. Firstly, the definition of a
robustly feasible planning problem is shown below.

Supposing δ > 0, if the hypersphere with a radius δ centred
at the state x ∈ χfree is entirely inside χfree, the state x
usually is said to be a δ − interior state of χfree. We use
the symbol intδχfree to denote the collection of all δ−interior
of χfree states, i.e., intδχfree := {x ∈ χfree|Rx,δ ⊆ χfree}}.

Definition 2. (Robustly feasible planning problem) If a fea-
sible path ζ : [0, s] 7→ χfree lies completely inside the
δ−interior of χfree, i.e., ζ(τ) ∈ intδχfree for all δ ∈ [0, s], we
consider the path ζ to have the strongδ−clearance. Further-
more, if there exists a path ζr with the strongδ − clearance
for δ > 0 and the path zetar is a feasible solution on
the planning problem (xinit, χgoal, χfree), then the planning
problem (xinit, χgoal, χfree) is said to be robustly feasible.

Then the definition of probabilistic completeness is as
follows. It is should be noted that the symbol V A

n denotes
the set of vertices in the tree graph returned by the planning
algorithm A and n is the number of samples.

Definition 3. (Probabilistic completeness) For any robustly
feasible motion planning problem (xinit, χgoal, χfree), a plan-
ning algorithm A is probabilistically complete only when the
following condition is satisfied:

lim
n→∞

infP({∃χgoal ∈ V A
n

⋂
χgoal|ζr(0) = xinit,

ζr(s) ∈ χgoal}) = 1
(6)

Next, the theorem and proof of probabilistic completeness
of our proposed approach (i.e., GraphWAE-RRT*) are shown
as follows.

Theorem 1. (Probabilistic completeness of GraphWAE-RRT*)
The GraphWAE-RRT* is probabilistically complete. For any
robustly feasible path planning problem (xinit, χgoal, χfree),

there exists a constant a > 0 and n0 ∈ N, both dependent
only on χfree and χgoal such that

P({V GraphWAE−RRT∗
n

⋂
χgoal 6= ∅}) > 1− e−an,∀n > n0

(7)

Proof. According to the detailed description in Section III,
the GraphWAE is used as the non-uniform sample source of
RRT* and does not interfere within the internal operation (eg.,
tree search) of the RRT*. Since GraphWAE theoretically and
perfectly represents collision-free space with the training time
is infinite, the samples generated by GraphWAE-RRT* are
almost the same as those generated randomly. Considering the
number of random samples n −→ ∞, RRT * can explore all
states of the configuration space and probabilistic complete-
ness [1]. Thus, we can infer that V GraphWAE−RRT∗

n (ω) =
V RRT∗n (ω) for all ω ∈ χ and n ∈ N. The result of Graph-
RRT* follows directly from the probabilistic completeness of
RRT*.

B. Asymptotic Optimality

In this section, the optimality of the planning algorithm is
considered. The asymptotic optimality refers to the ability to
return planning solutions whose costs converge to the global
optimum, as shown in Definition 4.

Definition 4. (Asymptotic optimality) Let c∗ denote the cost
of an optimal motion path and let Y A

n denote the extension
random variable related with the cost of the minimum-cost
solution existing in the tree graph by a sampling-based planner
at the end of iteration n. For any motion planning problem
(xinit, χgoal, χfree) and the corresponding cost function c(ζ) :
Rd 7−→ R>0 there exists a robustly optimal solution with a
cost c∗, the algorithm A has asymptotic optimality only when
the following condition is satisfied:

P( lim
n→+∞

supY A
n = c∗) = 1 (8)

It should be noted that the asymptotic optimality of a
planning algorithm suggests that the limit limn→+∞ Y A

n

exists and limn→+∞ Y A
n = c∗ due to ∀n ∈ N, Y A

n > c∗.
It also indicates that the probabilistic completeness is nec-
essary for asymptotic optimality. We use d to denote the
dimensionality of the configuration space and use L (χfree)
to denote the Lebesgue measure of collision-free space.
Moreover, we utilize Vd to denote the volume of the unit
hypersphere in the d-dimensional Euclidean space. It should
be noted that µGraphWAE−RRT∗ is a characterization con-
stant of the connection radius rn of GraphWAE-RRT* and
rn = µGraphWAE−RRT∗(

logn
n )

1
d . The asymptotic optimality

of GraphWAE-RRT* is defined as follows.

Theorem 2. (Asymptotic optimality of GraphWAE-RRT*) The
GraphWAE-RRT* is asymptotically optimal only when the
following condition is satisfied:

µGraphWAE−RRT∗ > (2(1 +
1

d
))

1
d (

L (χfree)

Vd
)

1
d (9)

Proof. The GraphWAE-RRT* replaces the random genera-
tion mechanism with the GraphWAE as the sample generation
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Iteration step: 5;
Invalid sample points: 2;

Collision checks: 2; 

Iteration step: 10;
Invalid sample points: 4;

Collision checks: 4; 

Iteration step: 15;
Invalid sample points: 4;

Collision checks: 2; 

Iteration step: 20;
Invalid sample points: 6;

Collision checks: 6; 

Iteration step: 25;
Invalid sample points: 7;

Collision checks: 7; 

Iteration step: 5;
Invalid sample points: 0;

Collision checks: 0; 

Iteration step: 10;
Invalid sample points: 0;

Collision checks: 0; 

Iteration step: 15;
Invalid sample points: 0;

Collision checks: 0; 

Iteration step: 20;
Invalid sample points: 0;

Collision checks: 0; 

Iteration step: 25;
Invalid sample points: 0;

Collision checks: 0; 

(a) RRT*

(b) GraphWAE-RRT*

Fig. 4. Comparison of planning results at different iteration steps using RRT* and GraphWAE-RRT* for 2D planning problem. The green solid points denote
the invalid sample points in the obstacle regions. The dotted lines denote the removed tree connects after collision detection.

source, which does not interfere with the tree expand and
steering process of RRT*. Thus, the asymptotic optimality
of GraphWAE-RRT* is the same as one of the RRT*. The
detailed proof process is shown in [1][3]. Note that, the
important premise of asymptotic optimality for GraphWAE-
RRT* is that samples generated from the GraphWAE can
occupy all of collision-free configuration space as the number
n of samples tends to be infinite (i.e., n→ +∞).

V. EXPERIMENTS AND DISCUSSION

To verify the proposed methodology and evaluate its per-
formance, we design and implement several numerical simu-
lations and experiments. We begin with a typical geometric
planning problem in which we show the generality of our
proposed method in different sampling-based planners and
demonstrate its outstanding performance. Then we use two
high-dimension robot motion planning problems to further
explain the benefits of learning bias sampling distributions.
The details of experimental deployment, result comparison and
analysis are shown below.

A. Geometric planning problem

For most sampling-based planning algorithms, the geomet-
ric planning problem is very classical and plays an important
role on the evaluation of planning performance. In order
to make the results target-oriented, we design two highly
represented geometric planning subproblems: (a) planning in
a narrow passage (as shown in Fig. 5(a)); (b) planning in a
complex scene (as shown in Fig. 5(b)). To verify the effec-
tiveness of the proposed methodology, we select four typical

sampling-based algorithms (i.e., RRT [17], RRT*[3], PRM*
[4] and FMT*[18]) as the benchmark planning algorithms.
Furthermore, we use the GMMs-based learning method as a
comparative method, through the detailed comparative anal-
ysis, to prove that our approach performs better on learning
the sampling distributions. For the convenience of comparative
analysis, we adopt the success rate and the path cost as the
evaluation indexes of the planning performance. The path cost
function τ is given as:

τ =
l

l0
(10)

where l is the real length of the motion trajectory. l0 is the
optimal path length in the scene.

Since the sampling-based planning algorithms have ran-
domness, we carry out 40 tests and calculate the average
value as the final result in the experiment. In addition, we
set Z = Rdz to denote the Euclidean latent distribution
where dz depends upon the complexity of the input data.
We use PZ(Z) = N (Z; 0, σ2

z · Id) over Z to denote the
isotropic Gaussian prior distributions. The cost function c(•) in
Algorithm 2 is c(x, y) = ‖x−y‖22 where x, y ∈ Rdz . Moreover,
we select the Adam optimizer [19] with β1 = 0.25, β2 = 0.84.
In Algorithm 2, the parameter λ is set to 8. Furthermore,
the key parameters of the GMMs-based learning method is
the number of components. We determined 5 as the optimal
number of components in Fig. 5(a) and determined 16 as the
optimal number of components in Fig. 5(b) while running
the GMMs-based learning methods. In fact, we spend a lot
of time determining the appropriate component number for
the GMMs-based methods. Compared to the GMMs-based
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Fig. 5. The geometric planning problem: (a) planning in narrow passage;
(b) planning in complex scene. The sizes of two maps in (a) and (b) both
are 1 × 1. The black parts denote the obstacle areas. The green dotted line
represents the optimal path in (a) or (b). The optimal path length in (a) is
equal to about 1.8711. The optimal path length in (b) is equal to about 1.1982.
In the two planning scenes, we select the circle region with a diameter of 0.1
as the goal region.

method, one key advantage of the proposed method is that
it can adaptively acquire the clusters based on the “encoder-
decoder” mechanism along with the continuous iterations of
training process. The solutions to the geometric planning
subproblem (a) with different algorithms are depicted in Fig.
6. The comparisons of the success rates and costs at different
times for the geometric planning subproblem (a) are shown in
Fig. 7 and Fig. 8. respectively. The solutions to the geometric
planning subproblem (b) with different algorithms are depicted
in Fig. 9. The detailed comparisons of the success rates and
costs at different times for the subproblem (b) are depicted in
Fig. 10 and Fig. 11 respectively.

Intuitively, Fig. 6 shows that our approach has better
planning paths than the GMMs-based learning method for
the geometric planning subproblem (a). From Fig. 7, we
find that our approach clearly improves the success rates
of sampling-based planning algorithms. Compared with the
GMMs-based learning method, our approach also has better
success rates for different sampling-based planning algorithms.
Moreover, Fig. 8 indicates that the proposed GraphWAE-
based learning method can effectively reduce the costs of
the planning process for the standard sampling-based planning
algorithms and generate higher quality paths compared with
the GMMs-based learning method with an increase in planning
time. The results indicates that the proposed GraphWAE can
accurately represent the configuration space of collision free
regions, especially for the narrow regions. Additionally, Fig.
9 shows that our approach can provide a better planning
solution for subproblem (b) compared with the GMMs-based
learning method. Fig. 10 and 11 further indicate our approach
can effectively assist these basic sampling-based planning
algorithms to improve their success rates and reduce the
path costs. It shows that our approach performs better than
GMMs-based learning method for the planning subproblem
in the complex scene. On the whole, the two simulations
have indicated that the proposed GraphWAE-based learning
method is generalisable, and effectively improves the planning
performance of the SBMPs.

B. 6-DOFs robot motion planning problem

Although sampling-based planning algorithms can basically
solve the aforementioned geometric planning problem, it is not
easy to handle the high-dimension motion planning problem
in a complex scene. To further evaluate the proposed method,
we use the 6 DOFs planar robot motion planning problem
as the foundation of the simulation experiment. The reason
for selecting the planar robot simulation is that the planar
robot can provide the clear, intuitive and easy-to-be-quantified
planning results. The detailed simulation environment is shown
in Fig. 12 where we can see that the simulation contains mul-
tiple obstacles which present a cluttered and narrow planning
scene. For sampling-based planning algorithms, it will take
a considerable amount of time to check collisions in such a
scene. In the simulation experiment we use the RRT and RRT*
as the benchmark planning algorithms. Furthermore, we use
the GMMs-based learning method as the comparative method.
The key parameter λ of the proposed method is set to 7. By
repeated testing, we select 17 as the optimal cluster number of
the GMMs-based method. Additionally, we adopt the iteration
number as the control variable in the simulation experiment.
For each iteration number node, we conduct 40 tests to acquire
the average of the planning results as the final result. Moreover,
we select the running time, success rate and cost function ρ
as the planning performance evaluation indexes. It should be
noted that ρ reflects the level of motion path quality, which
shows a negative correlation, that is to say, the increase of
the cost value will decrease the motion path quality. The cost
function ρ is given as follows:

ρ =

Nlink∑
i=1

li (11)

where li denotes the motion path length of the i-th link end
of the robot arm and Nlink denotes the link number. For this
simulation, Nlink = 6.

The planning results with different planning algorithms
in one test at 6000 iterations are shown in Fig. 13. The
comparison of solutions to 6-DOFs motion planning problem
at 6000 iterations is shown in Fig. 14. Observing Fig. 13
and Fig. 14, we can find that our approach can effectively
improve the motion path qualities of the basic sampling-
based planning algorithms. Furthermore, we also intuitively
see that the proposed method has shorter planning time than
the GMMs-based method in Fig. 14. The detailed experimental
results with different iteration numbers are presented in Table.
I. From Table. I, we find that the GraphWAE-based learning
approach can effectively improve the planning performance
(i.e., planning time, cost and success rate) of the benchmark
algorithms. More specifically, the planning time of our ap-
proach is reduced by approximately 33.4% and 37.2% on
average respectively than the RRT and RRT*. The cost of
our approach is reduced by approximately 18.5% and 14.2%
on average respectively than the RRT and RRT*. With the
increasing of iterations, the success rate of our approach
has noticeable improvement compared with the RRT and
RRT*. These results indicate that the proposed methodology
is generalisable, and the GraphWAE-based learning method
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Fig. 6. The solutions to the geometric planning subproblem (a) with different planning methods.

Fig. 7. Comparisons of success rates at different times for the geometric planning subproblem (a).
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Fig. 8. Comparisons of costs at different times for the geometric planning subproblem (a).

Fig. 9. The solutions to the geometric planning subproblem (b) with different planning methods.
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Fig. 10. Comparisons of success rates at different times for the geometric planning subproblem (b).

Fig. 11. Comparisons of costs at different times for the geometric planning subproblem (b).
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Fig. 12. The 6-DOFs planar robot motion planning problem. The size of the
simulation environment is 100 × 120. The radius of the goal region is 4.0. The
robot arm contains six links and six joints. The size of each link is 12 × 3.
The variation range of each joint angle is [−135◦, 135◦]. For sampling-based
planning methods, the joint angle variation range at each iteration is [−5◦,
5◦]. Moreover, the maximum joint angle at each neighbor search is 30◦. We
use the oriented bounding boxes (OBBs) as the collision detection strategy
in the simulation. In post-processing, we adopt the third order B-spline curve
fitting algorithm as the motion trajectory smooth method.

can effectively improve the planning performance of sampling-
based planning algorithms. Furthermore, our approach has
better planning performance than the GMMs-based learning
method, especially for the run time and cost. For example, the
planning time of our approach is reduced by approximately
17.6% and 21.6% on average respectively than the GMMs-
based RRT and the GMMs-based RRT*. In addition, the cost
of the GraphWAE-based RRT* is reduced by 14.7% on av-
erage compared with the GMMs-based RRT*, which presents
a significant improvement in the planning path quality. The
comparison results regarding success rate also indicate that the
GraphWAE-based learning method can generate the qualified
planning path in a shorter time than the GMMs-based method.
In fact, these results reflect that the proposed GraphWAE-
based learning method has a strong representation ability
for the sampling distributions of the SBMPs. Furthermore,
the aforementioned analyses also indicates that the proposed
method is general and has a better planning performance than
the GMMs-based method.

C. 12-DOFs robot motion planning problem

The dual-arm collaborative robot motion planning is a typi-
cal high-dimensional motion planning problem, which is still a
challenging topic for robotic autonomous manipulation. Thus,
we select the 12-DOFs robot collaborative planning problem
as an example to further validate the proposed methodology.
We adopt the dual-arm robot “NEXTAGE” system as the main
carrier of the high-dimensional motion planning problem.

The whole simulation experiment runs on the MoveIt! plat-
form [20] within Robot Operating System (ROS) in Ubuntu
16.04 with a computer (Intel core 2 Duo, 16GB RAM,
CPU 2.50 GHZ). We use the OMPL [21] as the underlying
planning repository, which can be embedded in the MoveIt!

platform. The dual-arm robot system contains one 1-DOF
head, one 1-DOF waist, two 1-DOF grippers and two 6-DOFs
arms. In our simulation, we select two 6-DOFs arms as the
manipulators to perform the collaborative planning task. We
design the obstacle scene with the typical narrow passage
as the simulation environment, as shown in Fig. 15. In the
simulation experiment, we use the RRT and RRT* as the
benchmark planning algorithms. Moreover, we still use the
GMMs-based learning method as the comparative method. The
key parameter of our approach is set to 10. The cluster number
of the GMMs-based method is set to 14. We select the success
rate, planning time and cost (i.e., path quality) as the evaluation
indexes. It should be noted that we adopt the total motion path
length of two arm ends as the cost value.

To ensure the evaluation quality, we conduct 40 tests
and calculate the average value as the final result for every
planning methods. The planning results with different meth-
ods in MoveIt! are shown in Fig. 16. The comparison of
simulation results with different methods is shown in Table.
II. From Fig. 16, we can intuitively see that our approach
has shorter planning paths than the GMMs-based learning
method, especially for the asymptotically optimal motion
planner (i.e., RRT*). Table. II also shows that the cost values
of the proposed methodology are reduced by approximately
16.26% and 13.06% on average than the RRT* and the
GMMs-based RRT* respectively. The planning time is also
a critical factor for the planning performance. Compared with
the GMMs-based RRT*, the planning time of our approach is
reduced by approximately 36.16%, which indicates that our
approach can provide more appropriate samples to reduce
the collision checks. In addition, the success rates of our
approach are significantly higher than those of the GMMs-
based learning method, which indicates that our approach has
stronger representation ability than the GMMs-based method
for learning the bias sampling distributions. In summary, the
proposed methodology has a better planning performance than
the GMMs-based learning method in the 12-DOFs dual-arm
robot motion planning problem.

VI. CONCLUSION

In this paper we propose a bias sampling strategy based on
GraphWAE to assist the sampling-based planners to further
acquire the fast and high-quality motion planning path in
complex environments. We implement three simulation ex-
periments with several benchmark planners to validate the
proposed methodology. The comparison results indicates that
our approach is general and has a noticeable improvement in
the planning performance for sampling-based motion planning
algorithms. In addition, our approach also provides a new
perspective on solving the high-dimensional optimal planning
problem in the complex environment.

For the future work, we will continue promoting an in-depth
study in the cross part between the graph neural networks
and the robot motion planning. We will also carry out more
complex experiments to further exploit the advantages of the
GraphWAE. We hope that the learning-based method can make
a significant contribution to the development of asymptotically
optimal motion planning for robotic manipulation.
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RRT GMMs-based RRT GraphWAE-based RRT

RRT* GMMs-based RRT* GraphWAE-based RRT*

Motion trajectory:    Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

Fig. 13. Comparison of planning results using different methods at 6000 iterations.

TABLE I
COMPARISON OF EXPERIMENTAL RESULTS WITH DIFFERENT ITERATION TIMES

Iteration times 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

Planning time
(s)

RRT 9.85 11.38 13.04 14.76 16.28 18.12 19.64 21.03 22.38 24.53 26.34
GMMs-based RRT 8.11 9.55 11.04 12.85 14.13 15.08 15.98 16.41 17.08 17.85 18.78
GraphWAE-based RRT 6.04 6.95 8.11 9.89 11.04 11.92 12.83 14.06 15.18 15.98 17.23
RRT* 105.32 124.28 141.45 158.96 177.85 195.37 209.42 223.28 243.31 258.64 278.37
GMMs-based RRT* 89.35 103.69 121.54 139.26 156.42 175.35 190.28 205.63 218.79 224.85 237.62
GraphWAE-based RRT* 61.58 76.28 91.93 105.16 119.27 132.84 148.55 161.81 177.34 189.58 195.75

Cost

RRT 1058.46 989.14 954.72 912.28 855.65 834.23 837.49 831.52 828.74 831.27 833.65
GMMs-based RRT 868.44 845.32 821.65 804.33 783.35 771.26 782.10 769.55 774.38 785.28 775.42
GraphWAE-based RRT 832.57 816.38 788.18 757.34 747.26 736.39 725.27 731.65 739.21 728.54 725.83
RRT* 538.26 513.73 486.55 471.62 455.25 431.58 410.86 388.79 361.05 345.76 326.84
GMMs-based RRT* 495.37 472.19 443.76 418.75 385.58 362.15 342.82 325.17 323.35 321.46 322.75
GraphWAE-based RRT* 418.52 384.86 351.14 326.52 311.68 308.75 305.89 304.16 303.74 303.26 303.48

Success rate

RRT 0.125 0.275 0.45 0.575 0.725 0.85 0.925 0.975 0.975 1.00 1.00
GMMs-based RRT 0.225 0.425 0.55 0.675 0.75 0.875 0.925 1.00 1.00 1.00 1.00
GraphWAE-based RRT 0.475 0.65 0.725 0.875 0.95 1.00 1.00 1.00 1.00 1.00 1.00
RRT* 0.125 0.275 0.65 0.725 0.875 0.90 0.975 1.00 1.00 1.00 1.00
GMMs-based RRT* 0.375 0.45 0.625 0.725 0.80 0.875 0.95 1.00 1.00 1.00 1.00
GraphWAE-based RRT* 0.50 0.825 0.95 0.975 1.00 1.00 1.00 1.00 1.00 1.00 1.00

TABLE II
COMPARISON OF EXPERIMENTAL RESULTS WITH DIFFERENT ITERATION

TIMES

Methods time (s) success rate cost(m)
RRT 5.42 0.20 3.26

GMMs-based RRT 3.57 0.475 3.14
GraphWAE-based RRT 2.25 0.75 2.73

RRT* 9.74 0.375 2.21
GMMs-based RRT* 6.83 0.525 2.05

GraphWAE-based RRT* 4.36 0.80 1.86
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