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Abstract: Global and urban-induced local warming lead to increasing heat risk in cities. The rapid 

increase in urban population, weak infrastructure, poverty, as well as an ageing population, make 

the risk more acute in developing cities. However, heat risk is not uniformly distributed and a de-

tailed exploration of the link between urban characteristics and local variations in heat risk is needed 

to aid targeted mitigation. In this paper, we demonstrate a fine-grained heat risk map using existing 

data combined with expert opinion in a humid tropical city (Colombo, Sri Lanka) with the objective 

of highlighting the relative heat risk as a function of physical and socioeconomic conditions across 

the city. We then simulate the effects of shading and greening on the ‘high’ heat risk areas, and 

greening on the ‘low’ heat risk areas, to show that a combined approach will be needed to reduce 

risk at ‘high’ risk areas. In ‘low’ risk areas, maintaining the green cover is crucial to heat risk reduc-

tion. The paper, thus, establishes a protocol for detailed heat risk mapping with existing data and 

points to the differing importance of shading and greening in different parts of the city, thus, show-

ing where, and to what extent, mitigation actions could be beneficial. 

Keywords: urban heat island; urban climate map; local climate zone; urban density; urban green 

cover; tropical cities 

 

1. Introduction 

Urban heat risk is increasing across the world as a consequence of global climate 

change and the UHI effect. Heat risk in developing cities is disproportionately high due 

to weak infrastructure, poverty, as well as an ageing population [1]. As acknowledged by 

the 6th Assessment Report of the First Working Group of IPCC [2], the temperature signal 

of urbanisation itself may be negligible at the global scale, but the relative share of urban 

warming (as denoted by the UHI effect) as a percentage of total warming in cities is sig-

nificant: U.S. (14–21%); Europe (16%) and China (33%) [3]. It could be even higher in warm 

climate cities (from 50% up to 76% [2]). Additionally, there is evidence that UHI intensities 

increase during heatwaves in coastal cities [4], although the night-time situation may even 

be reversed [5]. 

There is strong evidence that the interactions between changing urban form, expo-

sure due to urbanisation, and vulnerability due to changing demographics, can exacerbate 

heat risks and losses for cities and settlements [6]. This highlights the need to uncover 

local variations in heat risk, since intra-urban characteristics of the risk could aid targeted 

mitigation [4]. As defined by the IPCC [7], ‘Climate risk’ is a function of ‘hazard’, ‘expo-

sure’ and ‘vulnerability’. Thus, ‘heat risk’ is a function of high/extreme temperatures (haz-

ard), which are mediated by the built environment, shading, greenery, and other built 
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infrastructure (exposure). This is further influenced by socioeconomic characteristics of 

population (including age and health [8]). Detailed approaches to heat risk mapping are 

needed to understand the spatial specificities of the risk. This should address the goals 

and priorities of the well-developed disaster risk-reduction frameworks (such as the 

SFDRR of the UN) [9]. 

Efforts to determine spatial variations in urban heat risk have been increasing in re-

cent years [10]. Typically, these integrate remotely sensed urban heat island data along-

side social and demographic data to make explicit the spatial aspect of heat risk assess-

ment. Such an approach could not only highlight potential heat–health risk areas in a city, 

but the workflow could form the basis for a climate change risk assessment [10]. However, 

the coverage of heat risk and detailed mapping of such risk in developing cities is sparse 

[11]. Moreover, spatially detailed data on heat hazard as well as socio economic data on 

vulnerability and exposure are difficult to obtain in developing cities [12]. Furthermore, 

the definition of heat risk in a climate where adaptation to high temperatures and humid-

ities is already prevalent, is a significant challenge [13]. 

In this paper, we develop a heat risk map from existing, publicly available, remotely 

sensed climate and census-based socioeconomic data for a warm, humid tropical city—

Colombo, Sri Lanka. Heat risk is considered as a thermos-physiological condition medi-

ated by climatic and socioeconomic factors. Using Saaty’s AHP [14], we develop a system 

to appropriately weight the widely differing influences of climate and socioeconomic var-

iables on hazard, exposure and vulnerability. We then use ENVI-met [15] to explore the 

heat risk reduction by mitigation techniques (greening and shading) in ‘high’ risk areas 

and the role of greening in ‘low’ heat risk areas identified by the heat risk map. Our aim 

is to bring together available physical environmental and socioeconomic data, weighted 

by expert opinion, to produce a fine-grained heat risk map at neighbourhood scale as well 

as to point out the differing potential heat risk reduction in different parts of the city. The 

practical implication of this work is to feed into an area-specific urban planning approach 

to mitigate the heat risk in Colombo. 

2. Background 

There is increasing evidence that local scale physical features of urban areas (such as 

street level urban form and function) compound extreme heat hazard which is further 

modified by socioeconomic and demographic factors [16]. However, detailed mapping of 

the hazard and subsequent exploration of ‘risk’ remains patchy in developing urban areas. 

At the same time, mapping of local climate for planning purposes is well advanced. Two 

approaches dominate the increasingly frequent studies on urban climate mapping: UC-

AnMap and its corollary UC-ReMap approach, and the LCZ approach. UC-AnMap/UC-

ReMap has been in existence for over 50 years [17]. Standards for the mapping process are 

well established [18]. The focus of the effort is to integrate planning decision-making with 

physical urban climate, as opposed to explicitly mapping heat risk in terms of heat expo-

sure, hazard, or vulnerability. In contrast, the LCZ approach is aimed at selecting ‘repre-

sentative’ siting of meteorological instruments, than heat risk identification. Codified pro-

tocols for the delineation of LCZ classes (WUDAPT) [19] and a worldwide LCZ database 

of cities using the WUDAPT process, are available [20]. 

While UC-AnMap/UC-ReMap are relatively rare in the tropics, LCZ has been widely 

used—including in Sri Lanka [21]. Despite the well-known difficulties of the LCZ ap-

proach [22] and problems associated with accuracy, especially in data-poor regions [23], 

some attempt at linking LCZ mapping to heat stress has occurred recently [24], where a 

physiological heat stress index was statistically linked to LCZ classes to estimate the prob-

ability of heat stress. Shi et al. [25] presented an approach to estimate heatwave spatial 

patterns utilising the WUDAPT approach and machine learning. However, the explicit 

linking of heat hazard to socioeconomic characteristics of cities to derive heat risk has not 

been undertaken. 
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This is especially important in warm climates where the background climate is not 

conducive to thermal comfort, yet people live and work in these conditions. People are 

able to adapt to extreme conditions to a degree, which is facilitated by the built environ-

ment, climate modifiers such as shade and breeze, as well as socioeconomic factors such 

as house conditions [13,26, 27]; the latter vary much more locally, and, therefore, there is 

a need to explore local variations across space and time. 

In terms of detailed spatial exploration of heat risk, especially in the rapidly growing 

cities of the tropical belt, research is largely confined to coarse exploration of heat risk 

(such as regional exploration in Southeast Asia [28] and continental scale exploration in 

Africa [29]). The focus of such efforts tends to be climate change risk. Explicit mapping of 

heat risk arising from the UHI effect at the micro-scale is needed to develop targeted in-

terventions by planning authorities to enhance climate resilience in the present time. Such 

efforts at a scale fine enough to permit local planning decision-making would require not 

only detailed climate data, but also socioeconomic data at similar scales, to define climate 

risk. 

In the case of Colombo, Sri Lanka, no UC-AnMap/UC-ReMap studies have been con-

ducted to date. An LCZ evaluation of the city and its planning implications was conducted 

earlier [21]. Other efforts to map the local climate in Colombo include the following: effect 

of urbanisation on temperature [30,31]; spatio-temporality of urban growth and local cli-

mate [32]; thermal comfort consequences of the urban heat island phenomenon [33]; de-

sign approaches to mitigate urban heat island (UHI) effect [34,35]; and the sensitivity of 

the UHI to green spaces [36]. Furthermore, a previous study attempted to identify surface 

temperature ‘hot’ and ‘cool’ spots (i.e., hazards) in the Colombo metropolitan region [37]. 

2.1. Colombo—Context 

Colombo city (6.94 °N, 79.84 °E), the commercial capital of Sri Lanka, with a warm, 

humid monsoon climate, has a population of 561,314 (latest official census figures [36]) 

within its municipal boundaries, and approximately 5 million people in the metropolitan 

area. Colombo has a tropical climate (Af in the Köppen–Geiger climate classification sys-

tem) that is affected by the seasonal wind reversal of the Asiatic monsoon. The monsoon 

blows from southwest from late May to late September, and northeast from late Novem-

ber to mid-February. Air temperature and humidity are high throughout the year (maxi-

mum temperature = 31–34 °C; minimum temperature = 23–26 °C; relative humidity = 70–

90%). Wind speeds are low (<1.0 m/s), especially during the inter-monsoon periods of 

March to April and October to November. The annual rainfall is 2300 mm, with two sea-

sonal peaks associated with the monsoonal winds. Solar radiation is intense due to its 

near-equatorial location (lat = 6.9 °N) where the sun passes directly overhead twice during 

the year (mid-April and mid-August), the former coinciding with the inter-monsoon pe-

riod. As such, the inter-monsoon periods, especially the first one—March to April—ex-

hibit the highest heat hazard. However, there is a high probability of cloud development, 

especially during the afternoon. The mean daily sunshine duration varies between 5 h in 

June and 9 h in February. Figure 1 shows the context, with the Colombo municipal council 

area highlighted in colour. 

The UHI effect in Colombo has been well documented, with strong association be-

tween UHI and land cover (particularly green cover) [31,36,38,39], urban growth and den-

sity [30,33], urban morphology [40], and urban surface properties [41]. Previous explora-

tions in UHI mitigation include urban form and shade manipulations [35] and increase in 

urban green space [36,42]. There has been some attempt to quantify the heat hazard in 

Colombo in the past (using proxy measures for heat hazard, such as land cover [43], LST 

[30], and HI [44]. However, a recent survey of heat risk assessment in South Asia [45] 

found no previous attempt in Colombo. Moreover, comprehensive characterisation of the 

heat risk as defined by the IPCC (hazard, vulnerability, and exposure), has not been at-

tempted in Colombo. Given the high vulnerability of South Asia to heat [46,47], as well as 
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the planning possibilities to mitigate heat risk through climate-sensitive planning, de-

tailed spatial exploration of risk is needed to aid decision-making at local scale. 

 

Figure 1. Sri Lanka context, with details of the study area (Colombo Municipal Council). 

3. Materials and Methods 

In this paper, we aim to highlight the possibility of developing a fine-grained heat 

risk map in a data-poor region of the world (Colombo, Sri Lanka) to identify local areas 

of the city where planning resources need to be concentrated to reduce the heat risk. We 

then explore the likely heat risk reduction through commonly used local climate modify-

ing approaches (densification and green infrastructure) on selected ‘high’ and ‘low’ heat 

risk areas from this map. The purpose of exploring ‘low risk’ areas is to highlight the con-

tribution of green infrastructure to local cooling, while the purpose of selecting ‘high’ risk 

areas is to check the likely scale of heat risk reduction possible, by changes to building-
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generated shading and greening. The former will highlight the causes of low risk (thus, 

needing protection) while the latter will show the scale of heat risk reduction possible. 

Together, these could point to a way to develop area-specific planning approaches to mit-

igate the heat risk. 

3.1. Heat Risk Mapping 

The process of heat risk mapping followed a five-step workflow: 

1. Collection of remotely sensed and GIS-based data on the physical and climatological 

characteristics of the city to estimate the ‘heat hazard’; land use and building quality 

and type data to derive ‘heat exposure’; and socioeconomic status of the population 

to characterise ‘heat vulnerability’ (or sensitivity to heat); 

2. Image processing of all data; 

3. Spatial correlation check; 

4. Assignment of weightage and ranking to derive heat risk; 

5. Multilayer overlay and composite heat risk map (see Figure 2 for a detailed work-

flow). 

 

Figure 2. Heat risk mapping workflow. 
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3.1.1. Data and Assumptions 

Tables 1 and 2 indicate the sources of data, the characterisation of the various param-

eters used for the determination of heat risk, and the associated assumptions. Where local 

evidence was available from previous studies on Colombo’s UHI to support the assump-

tions, these are indicated in parenthesis. Since the aim was to estimate the maximum likely 

heat risk, we selected climate and environmental data for the driest period (inter-monsoon 

period 1—see discussions on Colombo context in Section 2.1), when the sun is directly 

overhead (April) and daytime (see also Section 3.3 for further justifications). 

Table 1. Physical environment and climate data, characterisation, and assumptions. 

Parameter Data Source Data Characterisation and Assumptions 

ISF Landsat 8 OLI 

See next section and Appendix A for impervi-

ous surface extraction from Landsat 8 images. 

Assumption: bare land/building footprint cover 

positively correlated to heat hazard 

LST Landsat 8 OLI 

See Appendix A for the conversion of digital 

images into fine-grained LST. 

Assumption: LST is positively correlated to 

heat hazard [31]. 

NDVI Landsat 8 OLI 

See Appendix A for protocols to derive NDVI 

from Landsat images. 

Assumption: NDVI is an indicator of vegetation 

health and composition. NDVI is negatively 

correlated to heat hazard [48]. 

SMI Landsat 8 OLI 

See next section and Appendix A for soil mois-

ture characterisation. 

Assumption: due to accelerated evapotranspi-

ration, soil moisture index is negatively corre-

lated to heat hazard. 

Urban Ventilation 

LCZ Map of Colombo based on WUDAPT 

protocol (see ‘Background’ section for defi-

nitions). 

Urban wind flow is a critical modifier of heat 

hazard.  

Assumption: LCZ areas with high built-up cate-

gories increase heat hazard; sparsely built-up 

LCZ classes reduce hazard [21]. 

Building Density 

Building height and area shapefile from 

the Urban Development Authority, Sri 

Lanka (prepared by Survey Dept. of Sri 

Lanka). 

Assumption: building volume (density) is nega-

tively correlated to heat hazard [31]. 

SVF 

Building height and area shapefile from 

the Urban Development Authority, Sri 

Lanka (prepared by Survey Dept. of Sri 

Lanka). 

SVF is a measure of ‘urban compactness.’ As-

sumption: SVF is negatively correlated to heat 

hazard [40]. 

Blue–Green Infrastructure 

River and vegetation shapefile (Urban De-

velopment Authority, Sri Lanka, prepared 

by Survey Dept. of Sri Lanka). 

Assumption: blue–green infrastructure is nega-

tively correlated to heat vulnerability [44]. 
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Table 2. Socioeconomic data, characterisation, and assumptions. 

Parameter Data Source Data Characterisation 

Total Population Density 

Population census data by administra-

tive units, GIS files (Dept. of Census and 

Statistics, Sri Lanka). 

Assumption: Population density positively 

correlated to heat risk [37] 

Sensitive Population Density 

Population by age data by administra-

tive units, GIS files (Dept. of Census and 

Statistics, Sri Lanka). 

Assumption: Sensitive population (those 

aged below 14 and above 60) positively cor-

related with vulnerability (see a previous 

study on risk factors for non-communicable 

diseases in Colombo [49]). 

Land Use Type 

Building typology, GIS data (Urban De-

velopment Authority, Sri Lanka, pre-

pared by Survey Dept. of Sri Lanka). 

Assumption: Land use type positive/nega-

tively correlated to exposure (industrial, 

commercial, etc., are positively correlated; 

institutional is negatively correlated). 

Housing Type 

Sri Lanka Income and Expenditure Sur-

vey, Sri Lanka House Condition Survey, 

GIS files (Dept. of Census and Statistics, 

Sri Lanka). 

Assumption: Housing types are modifiers of 

urban heat exposure as well as vulnerability 

[26,27]. 

3.1.2. Image and Data Processing 

All the gathered spatial data were processed in a common GIS platform and geo-

graphical boundary (administrative wards of the Colombo Municipal Council). All raster 

were resampled to 10 m from the original 30 m resolution, as explained in Appendix A. 

The vector data (LCZ, building footprint, green–blue infrastructure and socioeconomic 

data) within administrative wards were assigned equally to 10 m resolution to bring all 

data to a common resolution. The satellite image for the Colombo area was obtained on 

13 Jan 2017, when the cloud cover was minimal (less than 2.9% of the map area). We used 

the WGS 84 UTM 44 N projection system for this step. Tables 3 and 4 show data transfor-

mation into usable output layers for the heat risk map. Appendix A provides further de-

tails on resampling, LST and NDVI calculations, relevant equations, and normalisation 

procedures. 

Table 3. Data processing approach—physical environment and climate data. 

Data Methodological Steps and Assumptions Output Information 

Multi-spectral bands (1–7) of 

Landsat 8 OLI 

Supervised classification of built-up and non-

built-up areas (water, vegetation, and bare 

land). 

Impervious surfaces include built-up ar-

eas, while water and vegetated surfaces 

are classified as pervious. 

Thermal band (10 and 11) of 

Landsat 8 OLI 

LST values per pixels using satellite metadata, 

resampled into 10 m to derive a proxy for heat 

hazard. 

Land surface temperature (LST) ranging 

from 23 to 32 °C. 

Red and NIR (4 and 5) of 

Landsat 8 OLI 

Normalised differential vegetation index 

(NDVI) calculation to derive a measure of heat 

exposure reduction. NDVI is a measure of 

neighbourhood greenness and its health [50]. 

Higher values of NDVI are known to corre-

spond well with expert assessment of ‘green-

ness’ [50] and, therefore, could be used as a 

proxy for the reduction in heat exposure. 

The NDVI value range is from +1 to −1, 

where values above +0.5 are considered 

indicative of healthy vegetation (and, 

therefore, high potential to reduce expo-

sure). 
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LST and NDVI 
LST, NDVI and empirical parameter of dry and 

wet value equations. 

Presence of soil moisture content in the 

top surface is grouped into three catego-

ries (low, medium, or high) to indicate 

the cooling potential. 

LCZ 

Among other things, LCZ is based on packing 

density, which is a proxy for the free flow of 

air. Thus, ventilation could be expected to de-

crease with the following order of LCZ classes: 

sparse, open low-rise, open mid-rise, and com-

pact mid-rise. 

Likely urban ventilation in different 

LCZs is classified as low, medium, or 

high, as per the assumptions in Table 1, 

ranked by experts (see below). 

Building GIS data 

Total heat absorption area in terms of building 

volume has been calculated using building 

height and area. 

Building density in cubic meters per 

pixel. 

Building GIS data 

Visible portion of the sky from the ground has 

been calculated by the ambient occlusion tool 

of QGIS. 

The portion of sky visible from the 

ground as a fraction of a 10 m2 area. 

River and vegetation shape-

file 

The total count of blue and green areas by ad-

ministrative boundary unit. 
Fraction of water and vegetated areas. 

Table 4. Data processing approach—socioeconomic data. 

Data Method Output Information 

Demographic GIS data 

(census) 

Continuous raster surface of total population per admin-

istrative boundary area of Colombo city 

Total population density (per-

sons/administrative sub-unit) 

Demographic GIS data 

(census) 

Continuous raster surface of the total sensitive popula-

tion (aged below 14 and above 60) per administrative 

boundary area of Colombo city 

Sensitive population density (per-

sons/administrative sub-unit) 

Land use type GIS data 

Ranking (1–10) of land use types according to its level of 

vulnerability to UHI from low to high, based on expert 

characterisation (see next Section) 

Ranked by experts (see ‘weight as-

signment and ranking’ below) 

Housing type GIS data 
Ranking (1–10) of house unit types according to its level 

of vulnerability to UHI from low to high 

Ranked by experts (see ‘weight as-

signment and ranking’ below) 

3.1.3. Creating LST and NDVI Layers 

LST and NDVI are key environmental and climate data. Remotely sensed LST is an 

average surface temperature per pixel, whereas UHI is usually indicated by air tempera-

ture (AT). Fine-grained air temperature data were not available for Colombo, therefore, 

LST was used as a proxy for heat hazard. As detailed in Appendix A, LST and AT have a 

linear relationship, which makes LST a reasonable proxy. Conversion of the thermal 

band’s digital number (DN) values into radiance values is required to create LST from 

Landsat images. At-satellite brightness temperatures were calculated using these radiance 

values [51,52]. NDVI on the other hand, is a measure of the health and composition of 

greenery on a patch of land area. It is calculated from remotely sensed images, using the 

reflectance in the RED and near-infrared (NIR) bands of the electromagnetic spectrum 

[53]. Furthermore, the proportion of vegetation was calculated to estimate the land surface 

emissivity. To adjust LST, the land surface emissivity was determined using the process 

specified by Sobrino et al. [54]. Finally, the derived LST values were then converted from 

kelvin to Celsius (°C). We used a single image to derive LST and NDVI, which, in the 

context of an equatorial climate such as Colombo is appropriate, since annual variation in 

heat hazard is minimal. Seasonality in terms of temperature and humidity is minimal in 

Colombo, whereas diurnal variations are larger. Detailed steps and associated equations 
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for the calculations of LST and NDVI as well as the justification for their use, are shown 

in Appendix A. 

3.1.4. Spatial Correlation Check 

In the third step, the mapping approach was checked for spatial correlation through 

Moran’s autocorrelation of each variable and spatial correlation between each variable. 

The global Moran’s I statistic assesses spatial autocorrelation based on feature loca-

tions and attribute values. In general, global Moran’s I statistics were employed to meas-

ure geographic correlation, with positive, negative, and no autocorrelation, as three cate-

gories of categorisation statistics [55]. Moran’s I index, expected index, variance, z-score, 

and p value are the five statistical values produced by spatial autocorrelation. The statis-

tical significance is indicated by the z-score and the p-value. The interpretation of Moran’s 

I values is shown in Table 5. 

Table 5. Moran’s I value interpretation. 

Moran’s I Value Interpretation 

Positive Spatial objects positioned closer together have similar attributes 

Negative Dissimilar traits are located close together 

Zero Datasets are spatially stochastic 

3.1.5. Weight Assignment and Ranking 

We used Saaty’s [14] pair-based matrix—AHP—and a nine-level scale for the fourth 

step in the workflow (weight assignment and ranking). We consulted three local experts 

familiar with the urban geography of Colombo, using the questionnaire shown in Appen-

dix B, and an average grade of the experts was assigned to each parameter. Experts made 

comparisons as to the relative importance of the parameters. They indicated on a scale of 

1–9 how many times more important or dominant one element was over another with 

respect to the hazard/vulnerability/exposure criterion or property shown to them. The fi-

nal priority scales were synthesised by multiplying them by the priority of their parent 

nodes and adding all such nodes [14]. Table 6 describes the assigned weights for all twelve 

parameters. 

Table 6. Weights of parameters calculated using AHP method. 

Parameters Weight 

ISF 6.24 

LST 16.11 

NDVI 11.66 

SMI 6.02 

Urban Ventilation 6.79 

Building Density 10.19 

SVF 13.68 

Blue–Green Infrastructure 6.80 

Total Population Density 9.94 

Sensitive Population Density 4.60 

Land Use Type 3.73 

Housing Type 4.23 

TOTAL 100.0 

Based on expert scores, we applied the interval ranking method to assign weight of 

sub-class (attribute) for ISF, LCZ, land use type and housing type for the purpose of pro-
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cessing data in the weighted overlay tool of ArcMAP. The ranking is shown below in Ta-

bles 7–10. The ranking order followed a 1–10 scale (1 = low and 10 = high vulnerability to 

heat). 

Table 7. Ranking of sub-class parameters—ISF. 

Surface Type 
Rank 

(out of 10) 

Built-up 10 

Vegetation and bare 5 

Water 1 

Table 8. Ranking of sub-class parameters—LCZ class (see [56] for details of LCZ classes). 

LCZ Type 
Rank 

(out of 10) 

LCZ 1: Compact high-rise 10 

LCZ 2: Compact mid-rise 9 

LCZ 3: Compact low-rise 8 

LCZ 4: Open high-rise 7 

LCZ 5: Open mid-rise 6 

LCZ 6: Open low-rise 4 

LCZ 7: Lightweight low-rise 3 

LCZ 8: Large low-rise 2 

LCZ 9: All other natural surfaces including water, soil, vegetation and rock. 1 

Table 9. Ranking of sub-class parameters—land use type. 

Type of Land use Particulars 
Rank 

(out of 10) 

Health Hospital, clinics. 10 

Residential Buildings used for residential purposes. 9 

Commercial 
Shops, stores, offices, warehouse, logistic, press  

centre and other. 
8 

Mixed Residential with any other type of use. 8 

Government 
Govt. department, defence service, utility,  

transportation. 
8 

Educational Schools, universities, colleges, etc. 8 

Community 
Religious, social and sports club, park, tourism, 

amusement. 
7 

Industrial All types of industry. 3 

Vacant and under 

Construction 

Buildings not in use or under construction  

or listed. 
1 

Table 10. Ranking of sub-class parameters—housing type. 

Housing Type 
Rank 

(out of 10) 

Low-income house 10 

Slums/informal settlements 9 

Moderate 7 

Semi-permanent 6 

Temporary 5 
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Permanent 4 

Vacant 1 

3.1.6. Multilayer Overlay and Composite Mapping 

After processing all the data, we finally reclassified them on a scale of 1 to 10. The 

scale indicated an order of heat risk, where 1 was considered the lowest heat risk and 10 

was considered the highest risk. Continuous data (LST, NDVI, etc.) were grouped into ten 

groups of equal intervals, and risk classes (1–10) were assigned on the basis of the assump-

tions specified in Tables 1 and 2. Discrete data (such as land use, housing type, etc.) were 

assigned risk classes according to expert opinion (Tables 8–10). We then used the 

weighted overlay tool in ArcMAP to combine all twelve chosen variables. This produced 

a heat risk map divided into the said ten classes of heat risk. Since the distribution of heat 

risk was normal (see Figure 3) we characterised the median range (5–6) as ‘moderate’ heat 

risk, while the two extremities (1–4 and 8–10) were classified as ‘low’ and ‘high’ heat risk, 

respectively. The ArcMAP mapping process using model builder is shown in Figure 4. 

 

Figure 3. Distribution of heat risk classes. 

 

Figure 4. Model builder of heat risk map in ArcMAP 10.6. 
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3.2. Estimation of Heat Risk Reduction in Selected ‘High’ and ‘Low’ Risk Areas 

The second part of the study focused on estimating the cooling potential of known 

UHI mitigation approaches (shading and green cover) in parts of the city identified as 

having different heat risks. Once the heat risk map for Colombo was developed, we se-

lected four blocks of 200 m × 200 m, two each representing ‘High’ and ‘Low’ heat risk as 

shown in Figure 5. Details of the selected locations are given in Table 11. The justification 

for their selection is provided in Appendix C, where area statistics of the heat risk in each 

of the 56 wards of the city of Colombo are shown (we selected areas with the lowest and 

highest total heat risk). 

 

Figure 5. Selected locations for estimation of heat risk reduction. Note: Please refer to Figure 8 for 

heat risk categories (green = ‘low,’ yellow = ‘moderate’ and red = ‘high’). The image on left is iden-

tical to the heat risk map of Colombo in Figure 8. The purpose is to contextualise the selected loca-

tions. 

Table 11. Selected locations for heat risk estimation legend and descriptions. 

 Heat Risk Administrative Area  Coordinates Description 

1 High 

Masangasweediya, 

adjoining Hussainiya 

Street 

6.941207 

(6°56′28.3″ N), 

79.860889 

(79°51′39.2″ E) 

High risk, mixed-use area: Two to three storey shop-houses 

along the main streets, and mainly single storey houses in 

the inner areas of the block. The area was densely built 

(built cover ≈ 80–90%) with little green infrastructure (GI). 

2 High 

Aluthkade West, ad-

joining Sebastian Ca-

nal 

6.939858 

(6°56′23.5″ N), 

79.869352 

(79°52′9.7″ E) 

High risk, residential area: Mostly single storey houses and 

a few two storey buildings along the main streets. There 

were several large warehouses located in the area. The area 

was densely built (built cover ≈ 80–90%) with barely any GI. 

A canal ran along the southeast of the block. 

3 Low 
Kurunduwatta, ad-

joining Horton Place 

6.912624 

(6°54′45.4″ N), 

79.865856 

(79°51′57.1″ E) 

Low risk, high green low density: High-end residential area 

with dispersed two storey (average) buildings. High green 

cover with large private gardens in residential and civic 

buildings. 
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4 Low 

Thimbirigasyaya, ad-

joining Keppetipola 

Road (Summit Flats) 

6.897112 

(6°53′49.6″ N), 

79.864896 

(79°51′53.6″ E) 

Low risk, medium-density, planned area: High-end planned 

residential area consisting of four-storey apartment build-

ings interspersed among old colonial bungalows. The area 

had a large amount of GI due to the trees along main roads 

and sprawling gardens in the bungalows and between the 

apartment buildings. 

3.3. Simulation Models and Data 

Simulations were carried out using ENVI-met ver. 4.4.6 [15] using the parameters 

shown in Table 12. Having mapped the heat risk, the purpose of this step was to highlight 

the differential heat risk reduction possibilities of urban planning options within the same 

city, highlighting the importance of developing area-specific planning approaches to mit-

igate the heat risk in Colombo. In other words, would the known heat risk mitigation 

action (such as manipulating building density, or green cover) work more, or less, in dif-

ferent parts of the city? Are the effects of urban planning options the same in ‘high’ and 

‘low’ risk areas? 

ENVI-met is a three-dimensional non-hydrostatic microclimate model with a typical 

spatial resolution of 0.5 m up to 10 m, which has already been successfully used in urban 

heat risk studies in the tropics and has previously been validated in Colombo [32,33]. Fig-

ure 6 shows the plan views (and Figure 7, the three-dimensional views) of the selected 

sites, while the simulation parameters are given in Table 12. Climate data for the initiation 

of the model were purchased from the Sri Lankan Dept. of Meteorology. Data for the pe-

riod of 1991 to 2020 indicated April as the hottest month in the current reference period, 

with April 2016 recording the highest temperature in the past 30 years. We, therefore, 

selected 15 April 2016 as the simulation date. Simulations started at 6pm on the previous 

day to allow the model to stabilise. All data were extracted at 1.5 m height to be relevant 

for the calculation of comfort indices.  

Simulations in locations 1 and 2 (Table 11, ‘high’ heat risk) consisted of: 

1. Base case—as shown in Figures 6 and 7a; 

2. Modified density case—Structures in these locations were often unauthorised and of 

poor quality, therefore, we converted the area into four-story rectangular blocks by 

re-arranging the building footprint but maintaining the total building volume (as 

measured by the floor area ratio—FAR). The Sri Lankan Urban Planning and Build-

ing Regulations strictly control FAR [57]; thus, the only way to maintain the FAR 

when increasing the building height was to reduce its footprint. All buildings except 

religious buildings and warehouses were, thus, modified (Figures 6 and 7b); 

3. Modified GI case—case b plus 10 m high trees in the open spaces (Figures 6 and 7c). 

Simulations in locations 3 and 4 (Table 11, ‘low’ heat risk) consisted of: 

• Base case—as shown in Figures 6 and 7a; 

• Modified GI case—all GI were removed without changes to building volume or lo-

cation (Figures 6 and 7c). 

Simulated data analysed in the next section were obtained from the red circles in 

Figure 6, representing the middle of the simulation domain.  
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Figure 6. Simulation models for the base cases with red circles representing locations of data collection. 

 

Figure 7. Three-dimensional view of simulation models. Note: ‘Modified GI’ cases for locations 3 

and 4 consisted of the removal of all GI without changes to building volume (see descriptions of 

cases in Section 3.3). 
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Table 12. ENVI-met input parameters for the simulations. 

Model Location Colombo, Lat 6.94 and Long. 79.85 

Model Geometry  

Dimensions x, y, z 50 × 50 × 40 

Grid cell in meter 4 × 4 × 3 

Vertical grid generation Dz of lowest grid box split into 5 sub-cells 

Default Settings  

Walls Brick wall (burned) 

Roof Aluminium (single layer) 

Nesting grids 3 

Soil profile for nesting grids Loamy soil (default) 

Soil profile for the non-built area Loamy soil 

Roads Asphalt 

Paving Concrete pavement, grey 

Vegetation  

Trees Tree 10 m, very dense leafless base 

Grass Grass 25 cm, average dense 

Simulation Settings  

Start date 14 April 2016 

Start time 18.00 h 

Total simulation time 36 

Level Advanced 

Wind speed measured at 10 m height 2.2 m/s 

Wind direction 22.5° 

Roughness length 0.1 

Min temp 26.5 °C 

Max temp 33.3 

Min humidity 71.4% 

Max humidity 86.2% 

Boundary condition Simple forcing 

Time of min and max 6 a.m. and 1.00 p.m. 

Output intervals 60 min 

Timesteps 10, 5, 2 at 40 and 50 

3.4. Analysis Protocols 

Heat stress, especially in tropical outdoor conditions, is notoriously difficult to quan-

tify. No thermal comfort index is fully able to explain heat stress under hot, humid condi-

tions [58]. Among those widely used in hot, humid climates, PET appears to be the most 

common, especially its modified version which also includes thresholds for tropical heat 

stress [59]. We used two indicators: MRT and PET. MRT assumes greater importance 

among these parameters, especially in conditions of high solar angles [60]. MRT, defined 

as the uniform temperature of an imaginary enclosure in which the radiant heat transfer 

from the human body equals the radiant heat transfer in the actual non-uniform enclosure 

[61] is also critical in calculating thermal indices such as PET [62] and UTCI [63]. Given 

that detailed spatial distribution of heat stress information from ENVI-met is available in 

MRT, we used MRT as the analysis parameter for spatial analysis of heat stress. MRT is a 

good proxy for outdoor comfort and is extensively used in the literature [64]. 

PET is defined as the air temperature in which the heat budget of the human body is 

balanced in a typical indoor setting (without wind and solar radiation) with the same core 

and skin temperature as under the complex outdoor conditions to be assessed [60]. ENVI-

met provides PET data at selected points and RayMan software was used to calculate the 
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variations in PET over 24 h. Using the MRT information from ENVI-met, we calculated 

PET for spot analysis of heat stress in the middle of each of the studied domains. 

4. Results 

Table 13 indicates the spatial correlation between variables. Some high correlations 

were expected. For example, the well-known coupling between soil moisture and surface 

temperature [65] was especially true during the daytime, where the water content of up-

per soil layers and near surface temperature was particularly strong during clear days 

with reduced wind speeds. 

Some of the other stronger correlations were logical. Total population density vs. sen-

sitive population density could be expected to be high, assuming these two have similar 

distributions. Other correlations had support from the literature. For example, the nega-

tive relationship between population density and blue–green infrastructure has been well 

documented [66,67]. While these two variables are generally negatively correlated, the 

strength of the relationship depends on the population size, type of green infrastructure 

and location of the city [67]. In the case of Colombo, the available green cover (17% of the 

total area of the city core [68]) was unequally distributed. The city development plan [68] 

envisages an increased green cover of 35% by 2030, without changes to either total popu-

lation or population density. Whether such uniform greening targets are feasible, given 

the steep increase in green cover needed to meet the target in a short time, remains to be 

seen.  

There are some unique clusters (such as ‘land use type’ vs. ‘housing type’) indicating 

the socioeconomic characteristics of Colombo. While it is well-known that greener areas 

are strongly correlated to ‘better quality’ housing types [69], the strong correlation be-

tween ‘land use types’ and ‘housing types’ with SVF indicated the low density, open, sin-

gle-family housing dominated the built form of the city.  

Nevertheless, spatial correlation between variables showed that most of them were 

not strongly correlated (49 out of the 66 correlations were <±0.25). This indicated the use-

fulness of including all of the chosen variables in estimating heat risk. 

Table 13. Spatial correlation of selected variables. 
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ISF 1                       

LST 0.34 1                     

NDVI −0.33 −0.30 1                   

SMI −0.34 −1.00 0.30 1                 

Urban Ventilation −0.09 −0.14 0.00 0.14 1               

Building Density 0.05 0.05 −0.06 −0.05 0.02 1             

SVF −0.17 −0.24 0.14 0.24 0.19 −0.22 1           

Blue–Green Infrastructure −0.11 −0.25 0.34 0.25 0.03 −0.02 0.09 1         

Total Population Density 0.09 0.34 −0.16 −0.34 −0.08 0.04 −0.13 −0.50 1       

Sensitive Population Density 0.10 0.33 −0.17 −0.33 −0.08 0.05 −0.14 −0.49 0.99 1     

Land Use Type −0.12 −0.14 0.10 0.14 0.09 −0.18 0.66 0.07 −0.09 −0.09 1   
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Housing Type −0.13 −0.18 0.12 0.18 0.10 −0.21 0.69 0.08 −0.10 −0.11 0.94 1 

Key:             

+1.00–0.50 Strong Positive Correlation        

0.49–0.00 Weak Positive Correlation        

−0.01–−0.49 Weak Negative Correlation        

−0.50–−1.00 Strong Negative Correlation        

4.1. Heat Risk Map of Colombo 

Figure 8 shows the final heat risk map we developed for Colombo. The more heavily 

built-up areas in the centre-north of the city showed high heat risk, while areas with high 

green and blue infrastructure showed low risk. The fact that the former area also consisted 

of extremes of socioeconomic conditions (poor quality housing, high population density 

and high fraction of sensitive population [36]) further added to heat stress inequity in the 

‘red’ areas, whereas better housing and lower population density negatively influenced 

heat stress in the ‘green’ areas in Figure 8.  

 

Figure 8. Heat risk map for Colombo, Sri Lanka. 
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This was further confirmed by a land cover survey conducted a few years before the 

Landsat image used for the present heat risk map (2014 vs. 2017) [68]. This study found 

that Kurunduwatte (the precinct in the middle of Figure 8 and the area of simulation lo-

cation 3) had the highest concentration of playgrounds, parks and high-function green 

spaces. A 2017 survey of access to green spaces in Colombo [68] found that over 80% of 

the Kurunduwatte precinct was covered within 300 m of buffers around green spaces in 

the area (Figure 6.9 of [69]). Thus, the area was not only well endowed in terms of green 

spaces, but these were public and highly accessible. 

The identified high heat risk areas corresponded well with the action plan of the pre-

sent Colombo Commercial City Development Plan 2019 to 2030 [70]. The plan recognises 

some of the areas highlighted by ‘hHigh’ heat risk in Figure 8 (such as Aluthkade East, 

Aluthkade West, Masangasweediya and Jinthupitya—the first three of which were cov-

ered by simulation locations 1 and 2) for their ‘underutilised’ status due to most of the 

area being occupied by underserved settlements that have encroached on state land and 

privately owned estates. These areas have emerged informally and in haphazard ways 

corresponding to socioeconomic processes. A recent stakeholder consultation [71] further 

highlighted the congested nature of the built form and the lack of open spaces and parks. 

Our housing type data [36] further indicated the use of temporary building materials, 

leading to weak capacity for heat adaptation. Unclear land tenure [70] discourages invest-

ment in housing improvement. Moreover, it was highlighted that most of these settle-

ments abutted canal fronts that have relatively poor access, and are prone to flooding, 

thus, resulting in low land values (Figure 79 in Volume 1 and Map 4.9 in Volume 2 [70]). 

Similarly, the more affluent areas of the city with high land values and low building den-

sity corresponded to low heat risk.  

The socioeconomic and physical land use linkages between our heat risk map for 

Colombo showed similarities to studies undertaken in other contexts [72]. Exploring rela-

tions between thermal zones and the socioeconomic conditions of the population of San-

tiago, Chile [73], found that “urban climates are a representation of societal and natural 

integrated processes. The warmest areas are found in neighbourhoods with high-density 

social buildings lacking green areas that are located in those areas of the city where lower 

income population predominates. The coolest areas are located in those neighbourhoods 

where the most affluent people live; these zones are characterised by the presence of green 

spaces and lower dwelling densities.”  

Additionally, Figure 8 bore a close similarity to a recently published physiological 

‘hotspot map’ for Colombo, based solely on thermal stress (‘heat index’) distribution (Fig-

ure 6 of [44]). There were striking similarities between the cool spots, but our map is much 

more spatially fine-grained. Furthermore, the inclusion of vulnerability and exposure pa-

rameters added fine details to our heat risk map. 

4.2. Applicability of Heat Reduction Approaches in High and Low Heat Risk Areas 

Figure 9 shows the daily PET variations at 1.5 m above ground on the hottest day (15 

April 2017). While there was no reduction in peak heat stress between the cases, there 

were clear reductions in the number of hours of heat stress (‘hot’ and ‘very hot’) in the 

modified cases (i.e., modified density and green cover), especially in ‘high’ heat risk loca-

tions. Location 2 (high risk, residential area) had the worst base case with only four hours 

of neutral conditions and nine hours of very hot conditions, whereas location 4 (low risk, 

medium density, planned area) had the best base case with eleven hours of neutral con-

ditions and only five hours of very hot conditions. These findings provide further clues to 

the reasons for the differences: tightly packed built form with barely any vegetation (lo-

cation 2) and/or lack of open spaces (location 1—high risk, mixed use area), even though 

both sites have similar built density. Location 4 had higher levels of thermal comfort (or 

fewer hours of extreme heat stress) than location 3 (low risk, high green, low density) due 

to high green cover and low paved area (see Table 11). Modification of density in the high 
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heat risk site had no impact on the number of hours of neutral comfort conditions. How-

ever, the density variation resulted in a reduction in the number of hours of very hot con-

ditions in location 2. Combining density modification with green cover significantly in-

creased the number of hours with neutral temperature whilst also bringing down the 

number of hours with high temperatures. Given the low density of building in location 3, 

the removal of trees made very little difference (Figure 9c). 

Removing all green cover in Location 4 resulted in significantly fewer hours with 

neutral conditions. This further highlights the importance of vegetation to heat risk reduc-

tion at all locations. The results also confirm the ‘accuracy’ of ‘high’ and ‘low’ heat risk 

areas as classified by our approach, in that the known heat mitigation approaches are able 

to offer greater cooling in low risk areas than high risk areas. 

 

Figure 9. PET variation for the different scenarios on the simulated day. 

Figures 10–13 show the spatial distribution of MRT at peak daytime (1 p.m. local 

time) and peak night-time (6 a.m. local time) for all four locations. Unlike the PET values 

(Figure 9), the MRT distribution had greater variation and could be critical in developing 

street level heat adaptation strategies. 
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Figure 10. Spatial MRT variations at location 1 for 6 a.m. and 1 p.m. 

 

Figure 11. Spatial MRT variations at location 2 for 6 a.m. and 1 p.m. 
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Figure 12. Spatial MRT variations at location 3 for 6 a.m. and 1 p.m. 

 

Figure 13. Spatial MRT variations at location 4 for 6 a.m. and 1 p.m. 

Locations 1 and 2 show MRT variations of 15–18 °C across the domain at 6 a.m. except 

for the slight increase in MRT of 18–21 °C when GI was present. The density modification 
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demonstrated similar results, whereas the introduction of GI resulted in a greater fraction 

of interstitial spaces showing MRT of 18–21 °C. The inverse was true for locations 3 and 4 

at 6 a.m., confirming that the introduction of GI resulted in slightly elevated MRTs be-

tween buildings at night-time. 

The spatial variations in MRT in the base cases of locations 1 and 2 at 1 p.m. was very 

high (66–69 °C) along wider streets, and slightly lower (63–66 °C) along narrower streets. 

The presence of vegetation reduced MRT to 57–60 °C. The shading modification resulted 

in a slight improvement of MRT in location 1 between buildings, whereas location 2 

showed very little difference, highlighting the importance of factors other than shading in 

optimising thermal comfort. Both locations showed reduced MRT levels of 48–51 °C along 

the northeast façades, indicating the potential for developing pedestrian activities along 

these areas. The shading modification combined with green cover in location 1 demon-

strated the ideal scenario, with a greater portion of the area at the lower end of the MRT 

range. This observation was confirmed by the MRT variations in locations 3 and 4, the 

sparse built form resulting in a relatively lower reduction in MRT, despite the presence of 

large amounts of GI. As seen in the PET graph (Figure 9) the removal of vegetation in 

locations 3 and 4 resulted in steep rises in MRT values, highlighting the importance of 

maintaining green cover to keep these areas cool. 

There are several practical implications of these findings: 

• The fact that peak heat hazard (thermal stress) was similar in all locations indicates 

the importance of exposure and sensitivity (i.e., socioeconomic factors) in modulat-

ing the heat risk. Given the high correlation between land use classes and ‘housing 

type’ (with a positive correlation in ‘low’ heat risk areas), improving the housing type 

and economic conditions of the urban population is an important tool to manage heat 

risk, rather than merely focusing on reducing temperature; 

• The introduction of green cover and shading could reduce heat stress in high heat 

risk areas, but only if building footprints are arranged to create sufficient interstitial 

spaces, while maintaining the total built footprint. This implies a more nuanced ap-

proach to building footprint regulations in high heat risk areas; 

• Local variations in MRT in ‘low’ risk areas showed the importance of green cover. 

Planning strategies in these areas should, therefore, focus on maintaining the already 

high green cover. 

5. Conclusions 

The present work demonstrates the possibility of accurately identifying ‘high’ and 

‘low’ heat risk areas in data-poor tropical cities such as Colombo, Sri Lanka, and the var-

ying possibilities of modulating heat stress through planning approaches. Currently avail-

able data (remotely sensed temperature, vegetation, and locally-sourced census data) is 

adequate to develop a detailed spatial understanding of heat risk. While it may not be 

possible to reduce the peak thermal discomfort, it is possible to reduce the number of 

hours of heat stress through density and vegetation combinations. The fact that such heat 

stress reductions are possible without reducing the building footprint points to the possi-

bility of maintaining high building density in a climate-sensitive manner. These could 

have important planning implications for other hot, humid cities with similar develop-

mental pressures to Colombo. 

There are some limitations to the present approach. Only one date (albeit the hottest, 

least windy, and highest solar radiation day) was selected for heat hazard; although sea-

sonality is limited in Colombo, there may be differences during the rainy season, and this 

could be explored to better understand the spatial risk profile. However, we have at-

tempted to reduce the effect of seasonality and temporal variation by normalisation, as 

explained in Appendix A. Another limitation is the lack of fine-grained data on air tem-

perature. In the absence of air temperature, we have used LST as a proxy for heat hazard, 

which may be a reasonable proxy to air temperature, as shown in Appendix A. Only two 
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urban microclimate modification strategies—shading modification and vegetation—were 

explored in this study. Other approaches, such as the materiality of the built environment 

and its contribution to heat vulnerability and/or exposure, were not studied. Additional 

levels of density, and green cover variations too, need to be studied, to develop a more 

nuanced understanding of the likely mitigation potential of local planning actions. 

In terms of future directions, the interplay between heat hazard and the moderating 

influence of socioeconomic factors (ranging from public health to energy consumption to 

economic development and social cohesion) needs more interdisciplinary research to de-

velop a holistic response to the increasing problem of urban- and global-warming-in-

duced heat risk and its mitigation. Work is also needed to develop heat action plans 

(HAPs) based on heat risk mapping exercises, such as the present study. Additionally, 

early warning systems, capacity building and community education to raise awareness 

and take evasive actions to mitigate heat risk are also needed.  
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Abbreviations 

AHP Analytical hierarchy process 

DN Digital number 

GIS Geographic information system 

HI Heat index 

IPCC Intergovernmental Panel on Climate Change 

ISF Impervious surface fraction 

LCZ Local climate zone 

LST Land surface temperature 

MRT Mean radiant temperature 

NDVI Normalised difference vegetation index 

NIR Near infrared  

OLI Operational Land Imager 

PET Physiologically equivalent temperature 

SFDRR Sendai Framework for Disaster Risk Reduction 

SMI Soil moisture index 

SVF Sky view factor 

TIRS Thermal infrared sensor 

UC-AnMap Urban climate analysis map and its corollary 

UC-ReMap Urban climate recommendation map 

UHI Urban heat island 

UTCI Universal thermal climate index 

UTM Universal Transverse Mercator  

WGS World Geodetic System 

WUDAPT World Urban Database Accept Portal Tools 
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Appendix A. Explanations of Calculation Processes for LST and NDVI 

LST and NDVI retrieval were critical steps of the methodology of the present paper. 

Radiative transfer equation (as shown in Equation (A6) below) was used. Before using this 

equation, the digital number needs to be converted to radiance and the sensor’s brightness 

temperature needs to be known:  

Digital number to radiance: 

𝐿𝜆 = 𝑀𝐿 × 𝑄𝐶𝐴𝐿 + 𝐴𝐿  (A1) 

where 𝐿𝜆 is the spectral radiance at the sensor’s opening in Watts/(m2·Sr·μm), 𝑄𝐶𝐴𝐿  is the 

quantised adjusted pixel values in digital number (DN), 𝐴𝐿  represents radiance add 

band, and 𝑀𝐿 is the radiance multi band. 

Table A1. Constant used to calculate radiance. 

Parameter Landsat 8 Description Average Values 

𝐴𝐿 
Radiance add band 10 

0.10000 
Radiance add band 11 

𝑀𝐿 
Radiance multi band 10 

0.0003342 
Radiance multi band 11 

Brightness temperature: 

𝑇𝐵 =
𝐾2

ln(
𝐾1

𝐿𝜆
+1)

  (A2) 

where 𝑇𝐵  represents the satellite temperature in kelvin, 𝐿𝜆  is the spectral radiance, 

while K1 and K2 are the calibrated constant as provided by the Landsat data used by the 

study.  

Table A2. Constants used to calculate brightness temperature. 

Calibrated constant for Landsat 8 Band Constant 

K1 
Band 10 774.8853 

Band 11 480.8883 

K2 
Band 10 1321.0789 

Band 11 1201.1442 

The brightness temperature is affected by atmospheric conditions, which could be 

improved using NDVI to determine spectral emissivity of various land surface values as 

per Table A3. 

Table A3. NDVI thresholds for spectral emissivity of land surfaces. 

NDVI Thresholds Spectral Emissivity of Land Surface (ε) 

NDVI < −0.185 0.995 

−0.185 ≤ NDVI ≤ −0.157 0.970 

−0.157 ≤ NDVI ≤ 0.727 1.0094 + Ln(NDVI) 

NDVI > 0.727 0.990 

Normalised difference vegetation index (NDVI) is given below: 

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅−𝑅𝐸𝐷)

(𝑁𝐼𝑅+𝑅𝐸𝐷)
  (A3) 

Proportion of vegetation index: 
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𝑃𝑉 = [
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑀𝑖𝑛

𝑁𝐷𝑉𝐼𝑀𝑎𝑥−𝑁𝐷𝑉𝐼𝑀𝑖𝑛
]

2
(A4) 

Emissivity: 

ε = 0.004PV + 0.986 (A5) 

Land surface temperature: 

𝐿𝑆𝑇 =
𝑇𝐵

1+(𝜆×
𝑇𝐵

𝜌
)×ln(𝜀) (A6) 

𝜌 = ℎ × 𝑐/𝜎 (A7) 

where 𝑇𝐵 is the brightness temperature in kelvin; 𝜆 is the wavelength of emitted radi-

ance (λ = 10.9 μm for band 10, and 12 μm for band 11); h is the Planck’s constant (6.626 × 

10−34 m2kg/s); c represents the velocity of light (2.998 × 108 m/s); 𝜎 is the Boltzmann con-

stant (1.38 × 10−23 J/K), and calculated 𝜌 value is 1.438 × 10−2 mk. 

Conversion of LST from kelvin to degrees Celsius 

T°C = LST − 273.15 (A8) 

Table A4 provides details of the satellite image (Operational Land Imager—OLI, and 

thermal infrared sensors—TIRS) used for the study. 

Table A4. Detail information of the image used for the study. 

Satellite Sensor Metadata Spatial Resolution Spectral Band (Wavelength in μm) 

L
A

N
D

S
A

T
 8

 

O
L

I 
an

d
 T

IR
S

 

Date = 13 January 2017; 

Scene cloud cover = 2.89% 

Bands 1–7, 9 = 30 m 

Band 8 = 15 m 

Band 10 and 11 = 100 m 

(re-sampled to 30 m) 

Band 1—Coastal aerosol (0.43–0.45) 

Band 2—Blue (0.45–0.51) 

Band 3—Green (0.53–0.59) 

Band 4—Red (0.64–0.67) 

Band 5—Near infrared (NIR) (0.85–0.88) 

Band 6—SWIR1 (1.57–1.65) 

Band 7—SWIR2 (2.11–2.29) 

Band 8—Panchromatic (0.50–0.68) 

Band 9—Cirrus (1.36–1.38) 

Band 10—TIRS1 (10.60–11.19) 

Band 11—TIRS2 (11.50–12.51) 

Source: https://www.usgs.gov/media/images/landsat-8-oli-and-tirs-and-their-uses. (accessed on 

19 December 2022). 

As indicated in Table A4, the cloud cover contamination was minimal, requiring no 

further treatment. In terms of resampling, we further resampled the 30 m resolution pro-

vided by the data provider into 10 m using the bilinear interpolation method in ArcGIS 

software. Bilinear interpolation calculates the value of each pixel by averaging the values 

of the surrounding four pixels (weighted for distance). Such interpolation is appropriate 

for continuous data, whereas other resampling methods such as ‘nearest neighbour’ or 

‘majority resampling’ are more appropriate for discrete data. Although the cubic interpo-

lation method is also applicable for continuous data, its use of 16 surrounding pixels for 

weighted average tends to reduce the variations in data. Therefore, we used the bilinear 

method to resample the LST data by considering closest temperature values of LST as well 

as taking into account the nearest temperature values with higher weight (Source: 

https://desktop.arcgis.com/en/arcmap/latest/tools/data-management-

toolbox/resample.htm, accessed on 19 December 2022.).  
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Appendix A.1. Soil Moisture Index (SMI) 

The dry edge and wet edge LST and NDVI connections provided confidence that soil 

moisture could be determined using the LST–NDVI space [74]. The formula (Equation 9) 

to estimate soil moisture index within the space of LST–NDVI was previously proposed 

[74].  

𝑆𝑀𝐼 = (𝐿𝑆𝑇𝑀𝑎𝑥 − 𝐿𝑆𝑇)/(𝐿𝑆𝑇𝑀𝑎𝑥 − 𝐿𝑆𝑇𝑀𝑖𝑛)  (A9) 

𝐿𝑆𝑇𝑀𝑎𝑥 = 𝑎1 × 𝑁𝐷𝑉𝐼 + 𝑏1  (A10) 

𝐿𝑆𝑇𝑀𝑖𝑛 = 𝑎2 × 𝑁𝐷𝑉𝐼 + 𝑏2 (A11) 

where 𝐿𝑆𝑇𝑀𝑎𝑥 is the maximum LST value, 𝐿𝑆𝑇𝑀𝑖𝑛 is the minimum LST value, SMI is the 

soil moisture index, while a1, a2, and b1, b2 are empirical parameters for both the dry and 

wet margins that can be determined by linear regression of known remotely sensed data. 

Appendix A.2. Impervious Surface Extraction 

Impervious surface areas of the study area were extracted using the supervised clas-

sification technique of Landsat 8 OLI Satellite imagery. Based on spectral reflectance of 

surface properties in different colour bands, the surface features were classified into im-

pervious (built-up) and pervious (water, vegetation, and bare land) zones. Maximum like-

lihood classification technique was used for interpolation of spectral signature.  

Appendix A.3. LST Validation 

Validity and accuracy of satellite-derived output on surface temperature are neces-

sary conditions to increase the reliability of extracted LST. Given the absence of in situ 

measurements of local surface and air temperatures in our present study, the process of 

validation of temperature data necessarily relied on secondary sources in similar climates. 

A recent study [75] showed that satellite-derived longwave upward radiation of 

Landsat has a bias of 1.9 kelvin and RMSE of 1.2 kelvin. Although the temperature results 

from the NOAA-AVHRR platform and MODIS sensor are known for better accuracy, their 

spatial resolution is poor. The higher spatial resolution of Landsat products is more ap-

propriate for a detailed heat risk mapping study such as the present paper. A further study 

[76] found a high degree of agreement between the satellite-retrieved surface temperature 

and the ground-based LST observations. The correlation, root mean square (RMS) differ-

ence, and standard deviation for the two sets of data were estimated as 0.89, 0.5 °C, and 

approximately 0.72 °C, respectively. Another study [77] also found similar patterns be-

tween satellite-derived LST and ground-measured surface temperature across 13 stations. 

Additional studies [78] have considered satellite-derived data as being well representative 

of UHI on heterogeneous surfaces. There is also evidence that there is a linear relationship 

between atmospheric and surface urban heat island [79]. Although the intensity of air 

temperature heat island is lower—compared with surface temperature heat island—there 

was a linear trend across the study area. As such, the use of satellite-derived LST can be 

considered as a justified proxy indicator for surface urban heat intensity, which, at worst, 

may have a linear relationship with atmospheric urban heat island.  

Appendix A.4. Normalisation of LST 

Given that we used one satellite image to derive the heat hazard, the present study 

used normalisation technique to reduce the effect of seasonality and temporal variation 

by smoothing the pixel values. A similar approach [79] used different statistical methods 

to represent spatial non-stationarity of surface temperature across the city. However, the 

present study used the normalised ratio scale (NRS) method according to Equation (11) to 

represent the LST value as a source information for surface thermal characteristics by nor-

malising the effect of seasonal and temporal variations.  
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𝐿𝑆𝑇𝑁𝑅𝑆 =  
(𝐿𝑆𝑇)

√∑(𝐿𝑆𝑇)2
  (A12) 

Compared with other investigated methods, NRS produces less discrepancy across 

the year [80]. Therefore, this method was adopted in this study to ensure non-stationarity; 

in addition, the LST pixel values had a lesser, and acceptable, range of annual anomaly. 

Appendix B. Analytical Hierarchical Process (AHP) Matrix Used in the Study 

Relative Comparison  

 
Land Sur-

face Tem-

perature 

NDVI 
Building 

Density 

Sky 

View 

Factor 

Uninter-

rupted 

Wind Flow 

Impervi-

ous Sur-

face  

Fraction 

Soil  

Mois-

ture  

Index 

Blue  

Infrastruc-

ture 

Instruction 

Land Surface 

Temperature 
1 3             

This matrix aims 

to 

NDVI 0.333333333 1             

derive the rela-

tive importance 

of environ- 

Building Density #DIV/0!   1           
mental and so-

cio- 

Sky View Factor #DIV/0!     1   0.2     

economic varia-

bles to the urban 

heat island 

Uninterrupted 

Wind Flow 
#DIV/0!       1       phenomenon. In  

Impervious Sur-

face Fraction 
#DIV/0!         1     

this worksheet, 

you are asked to 

rate 

Soil Moisture In-

dex 
#DIV/0!           1   

the relative im-

portance of each 

of 

Blue Infrastruc-

ture 
#DIV/0!             1 

the eight varia-

bles  

Total of Column #DIV/0!               

against each 

other, on a scale 

of 1 to 9 

Instructions 

This matrix aims to derive the relative importance of environmental and socioeco-

nomic variables to the urban heat island phenomenon. In this worksheet, you are asked 

to rate the relative importance of each of the eight variables against each other, on a scale 

of 1 to 9. 

Example 1. Cell no D4. 

Regarding UHI, if it is considered that land surface temperature is three times (out 

of nine) more important than NDVI, then put 3 in this cell (LST to NDVI). 
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Weight Assignment 

 Land Surface 

Temperature 
NDVI 

Building  

Density 

Sky 

View 

Factor 

Uninterrupted 

Wind Flow 

Impervious 

Surface  

Fraction 

Soil  

Moisture 

Index 

Blue  

Infrastructure 

Average 

of Row 

Weight  

(% of av of row) 

Land Surface  

Temperature 
                    

NDVI                     

Building Density                     

Sky View Factor                     

Uninterrupted Wind 

Flow 
                    

Impervious Surface 

Fraction 
                    

Soil Moisture Index                     

Blue Infrastructure                     
         Total   

 

Relative Comparison 

 Population 

Density 

Land Use of 

Building 

Sensitive Population 

Density 

Household Income 

Level 

Vehicular Pollution  

Dispersion (Mobility) 

Population Density 1         

Land Use of Building   1       

Sensitive Population Density     1     

Household Income Level       1   

Vehicular Pollution Dispersion 

(Mobility) 
        1 

Total of Column           

 

Weight Assignment 

  
Population 

Density 

Land Use of 

Building 

Sensitive 

Population 

Density 

Household 

Income 

Level 

Vehicular  

Pollution  

Dispersion 

(Mobility) 

Average of 

Row 

Weight  

(% of av of row) 

Population Density               

Land Use of Building               

Sensitive Population Density               

Household Income Level               

Vehicular Pollution Dispersion 

(Mobility) 
              

       Total   

 

Relative Comparison 
 Environmental Socioeconomic 

Environmental 1   

Socioeconomic   1 

Total of Column     

 

Weight Assignment   

  Environmental Socioeconomic 
Average of 

Row 

Weight  

(% of av of row) 

Environmental         

Socioeconomic         
   Total   
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Appendix C. Summary Heat Risk Statistics by Administrative Zones of Colombo 

Table A5. Colombo municipal council area—zonal statistics of heat risk. 

Administrative Zone 
Zone 

Code 

Count 

(Pixels) 
Area (m2) 

Heat Risk 

Min Max Range Mean Std Variety Majority Minority Median 

Aluthkade West 2 1464  146,400.00  5 9 4 7.352 0.792 5 8 9 8 

Kochchikade South 14 2270  227,000.00  5 9 4 7.235 0.814 5 8 9 7 

Kochchikade North 13 2264  226,400.00  5 8 3 7.174 0.743 4 7 5 7 

Masangasweediya 24 2584  258,400.00  5 8 3 7.146 0.715 4 7 5 7 

Jinthupitiya 10 1991  199,100.00  5 8 3 7.119 0.654 4 7 5 7 

Nawagampura 27 1258  125,800.00  5 9 4 7.068 0.824 5 7 9 7 

Aluthkade East 1 2777  277,700.00  5 8 3 7.027 0.854 4 7 5 7 

New Bazaar 28 5029  502,900.00  5 9 4 6.913 0.814 5 7 9 7 

Grandpass North 6 3344  334,400.00  5 8 3 6.788 0.832 4 7 5 7 

Grandpass South 7 5279  527,900.00  4 9 5 6.756 0.999 6 7 4 7 

Slave Island 32 1123  112,300.00  4 8 4 6.695 0.860 5 7 4 7 

Khettarama 12 3332  333,200.00  4 8 4 6.601 1.026 5 6 4 7 

Kotahena West 16 3077  307,700.00  4 8 4 6.561 0.816 5 7 4 7 

Panchikawatta 29 2316  231,600.00  4 8 4 6.561 0.868 5 7 4 7 

Maligakanda 20 2379  237,900.00  5 8 3 6.478 0.808 4 6 5 6 

Madampitiya 18 2802  280,200.00  4 9 5 6.408 0.965 6 6 9 6 

Maradana 23 1946  194,600.00  4 8 4 6.357 0.938 5 7 4 6 

Dematagoda 38 7311  731,100.00  4 8 4 6.277 0.916 5 7 4 6 

Kotahena East 15 3411  341,100.00  4 8 4 6.269 0.732 5 7 8 6 

Kuppiyawatta West 45 3671  367,100.00  4 8 4 6.252 0.796 5 6 4 6 

Maligawatta West 22 2666  266,600.00  5 8 3 6.201 0.807 4 6 8 6 

Pamankada West 50 6103  610,300.00  4 7 3 6.188 0.688 4 6 4 6 

Sammanthranapura 31 1721  172,100.00  3 8 5 6.181 0.957 6 6 3 6 

Modara 26 7795  779,500.00  3 8 5 6.047 0.948 6 6 3 6 

Keselwatta 11 3062  306,200.00  4 8 4 5.960 0.893 5 6 4 6 

Wanathamulla 52 6071  607,100.00  4 8 4 5.922 0.891 5 6 8 6 

Wellawatta South 54 6377  637,700.00  4 7 3 5.761 0.804 4 6 4 6 

Aluthmawatha 3 6390  639,000.00  3 8 5 5.751 0.921 6 6 3 6 

Kuppiyawatta East 44 5730  573,000.00  4 8 4 5.711 0.923 5 6 8 6 

Maligawatta East 21 6325  632,500.00  4 8 4 5.591 0.991 5 5 8 5 

Borella South 37 6562  656,200.00  4 7 3 5.580 0.766 4 6 4 6 

Bloemendhal 4 10,062  1,006,200.00  3 8 5 5.579 0.941 6 5 3 6 

Mahawatta 19 4903  490,300.00  3 8 5 5.569 0.964 6 5 3 5 

Wellawatta North 53 9443  944,300.00  3 7 4 5.564 0.885 5 6 3 6 

Borella North 36 9010  901,000.00  4 8 4 5.506 0.879 5 5 8 5 

Pettah 30 6854  685,400.00  3 8 5 5.465 0.964 6 5 3 5 

Kollupitiya 43 6821  682,100.00  3 7 4 5.415 0.842 5 6 3 5 

Milagiriya 47 10,639  1,063,900.00  3 7 4 5.393 0.747 5 6 3 5 

Pamankada East 49 8340  834,000.00  4 7 3 5.358 0.833 4 5 7 5 

Lunupokuna 17 10,652  1,065,200.00  3 8 5 5.241 0.861 6 5 8 5 

Bambalapitiya 35 12,479  1,247,900.00  3 7 4 5.190 0.790 5 6 7 5 

Wekanda 34 3532  353,200.00  3 8 5 5.187 1.354 6 4 8 5 

Havelock Town 40 12,911  1,291,100.00  3 7 4 5.124 0.802 5 5 7 5 

Kirulapone 42 12,621  1,262,100.00  3 7 4 5.097 0.800 5 5 3 5 

Kirula 41 16,199  1,619,900.00  3 7 4 5.094 0.827 5 5 3 5 

Ibbanwala 9 7504  750,400.00  3 7 4 5.084 0.889 5 5 7 5 

Peliyagoda Gangabada 55 205  20,500.00  4 7 3 4.976 0.435 4 5 7 5 

Mattakkuliya 25 19,754  1,975,400.00  2 8 6 4.835 1.028 7 5 8 5 

Narahenpita 48 7790  779,000.00  3 7 4 4.797 0.994 5 5 7 5 

Hunupitiya 8 7591  759,100.00  3 7 4 4.645 1.301 5 3 7 5 

Suduwella 33 7886  788,600.00  3 8 5 4.569 0.967 6 4 8 4 

Fort 56 12,624  1,262,400.00  2 7 5 4.426 1.066 6 4 2 4 

Thimbirigasyaya 51 18,590  1,859,000.00 3 7 4 4.340 0.931 5 4 7 4 

Galle Face 5 4733  473,300.00 3 8 5 4.209 0.909 6 4 8 4 
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Kurunduwatta 46 35,513  3,551,300.00 2 7 5 4.006 1.012 6 3 7 4 

Gothamipura 39 11,211  1,121,100.00 2 7 5 3.903 1.158 6 3 7 4 

 Bold indicates selected locations        

 Bold indicates selected locations        
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