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Abstract. Why are natural theories pre-well-ordered by consistency strength?
In previous work, an approach to this question was proposed. This approach
was inspired by Martin’s Conjecture, one of the most prominent conjectures
in recursion theory. Fixing a reasonable subsystem T of arithmetic, the goal
was to classify the recursive functions that are monotone with respect to the
Lindenbaum algebra of T . According to an optimistic conjecture, roughly,
every such function must be equivalent to an iterate Conα

T of the consistency
operator “in the limit” within the ultrafilter of sentences that are true in the
standard model.

In previous work the author established the first case of this optimistic
conjecture; roughly, every recursive monotone function is either as weak as the
identity operator in the limit or as strong as ConT in the limit. Yet in this
note we prove that this optimistic conjecture fails already at the next step;
there are recursive monotone functions that are neither as weak as ConT in
the limit nor as strong as Con2

T in the limit. In fact, for every α, we produce a
function that is cofinally equivalent to Conα

T yet cofinally equivalent to ConT .

1. Introduction

Why are natural axiomatic theories pre-well-ordered by consistency strength? It
is not clear how to answer this question, nor even how to ask it mathematically,
since there is no clear mathematical definition of the “natural” theories. Yet the
informal question remains a well-known conceptual open problem.

In [5, 9] an approach to this problem was proposed. The approach in question
was inspired by Martin’s approach to an analogous question in recursion theory:
Why are the natural Turing degrees well-ordered by Turing reducibility? To state
Martin’s Conjecture, let’s introduce some important notions. First, a function
f : RÑ R is degree-invariant if for all reals x, y:

x ”T y ùñ fpxq ”T fpyq.

It seems that by relativizing the definition of a natural Turing degree one always
produces a degree-invariant function on the reals. Second, a Turing cone is any set
of the form tx | x ěT yu. Assuming AD, Martin proved that every degree-invariant
set of reals (i.e., every set closed under Turing-equivalence) either contains a Turing
cone or is disjoint from a Turing cone. This yields a t0, 1u-valued measure on degree-
invariant sets; a degree-invariant set has measure 0 if it is disjoint from a Turing
cone and measure 1 if it contains a cone. When we say almost everywhere, we mean
almost everywhere with respect to this measure. Finally, we say that f ďm g if
fpxq ďT gpxq for almost all x. Martin’s Conjecture is stated as follows:

Thanks to the referee for extensive and helpful suggestions and corrections.
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Conjecture 1.1 (Martin). Assume ZF` AD` DC.

(1) If f : 2ω Ñ 2ω is degree-invariant and it’s not the case that f is increasing
almost everywhere, then f is constant almost everywhere.

(2) ďm pre-well-orders the set of degree-invariant functions that are increasing
almost everywhere. If f has ďm-rank α, then f 1 has ďm-rank α` 1, where
f 1pxq “ fpxq1 for all x.

Roughly speaking, Martin’s Conjecture says that the only definable degree-invariant
functions, up to ”m, are the constant functions, the identity function, and the
iterates of the Turing jump.1

The optimistic hope in [5, 9] was that an analogue of Martin’s Conjecture holds for
axiomatic theories. Let’s fix a sound (i.e., true in the standard model) recursively
extension T of elementary arithmetic. Say that a recursive function g is extensional
if for all φ and ψ:

T $ φØ ψ ùñ T $ gpφq Ø gpψq.

Shavrukov and Visser [7] proved that there is a recursive extensional density func-
tion on the Lindenbaum algebra of T , which precludes any direct analogue Martin’s
Conjecture in this context. Nevertheless, positive results are available if we replace
extensionality with the stronger condition of monotonicity. Say that a recursive
function g is monotone if for all φ and ψ:

T $ φÑ ψ ùñ T $ gpφq Ñ gpψq.

We will be exclusively concerned with recursive monotone g in this paper. We will
be primarily interested in truth-preserving operators with this property, such as
the consistency operator.

Monotonicity is an analogue of the recursion-theoretic notion order-preserving; f
is order-preserving if for all reals x and y:

x ďT y ùñ fpxq ďT fpyq.

Note that Lutz and Siskind [4] proved Part 1 of Martin’s Conjecture for order-
preserving functions and Slaman and Steel [8] proved Part 2 of Martin’s Conjecture
for order-preserving Borel functions.

Gödel’s second incompleteness theorem tells us that the monotone function

φ ÞÑ
`

φ^ ConT pφq
˘

produces a strictly stronger sentence whenever φ is true in the standard model.
That is, the consistency operator acts like a jump on sound finite extensions of T .
Just as with the Turing jump, there are iterates of the consistency operator into
the effective transfinite.2 Indeed, fixing a suitable elementary presentation ă of a

1Of course, the notion of “definable” is left vague in what I have written. More precisely, note
that Martin’s Conjecture is stated under the hypothesis AD. So Martin’s Conjecture will apply
to Borel functions and to ever more capacious notions of “definable function” depending on the
large cardinal axioms one assumes.

2Unlike with Turing degrees, however, transfinite iterates of the consistency operator depend
on the presentation of the base theory and the well-ordering.
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well-ordering, we may define the iterates of the consistency operator using the fixed
point lemma:

T $ Conα
T pφq Ø @β ă α ConT

`

φ^ Conβ
T pφq

˘

.3

In [5, 9] a number of results relating recursive monotone functions to iterates of the
consistency operator are established. To state one such theorem, we introduce a
definition. Note that whenever we mention sentences being “true,” we mean “true
in the standard structure N.”

Definition 1.2. A cone is any set C such that, for some φ, C “ tψ | T $ ψ Ñ φu.
A true cone is a cone that contains a true sentence.

Now here is a precise statement of a theorem from [9]:

Theorem 1.3. Let g be recursive and monotone such that, for some k P N, for all
φ, gpφq is Πk. Then one of the following holds:

(1) For all φ in a true cone, T ` φ $ gpφq.

(2) For all φ in a true cone, T ` φ` gpφq $ ConT pφq.

Roughly, this says that any sufficiently nice operator must either be as weak as the
identity operator in the limit or as strong as the consistency operator in the limit.

We had conjectured that this would be the first step of a classification of recur-
sive monotone operators. Our hope was to prove—along the lines of Martin’s
conjecture—that any function meeting the hypotheses of the theorem would either
be as strong as Conα

T in the limit or as weak as Conβ for some β ă α in the limit.
That is, we had hoped to prove a result of the following sort:4

Hoped For Result 1.4. Let g be recursive and monotone such that, for some
k P N, for all φ, gpφq is Πk. Then, for every α ą 0, one of the following holds:

(1) For all φ in a true cone, there is a β ă α such that T`φ`Conβ
T pφq $ gpφq.

(2) For all φ in a true cone, T ` φ` gpφq $ Conα
T pφq.

Of course, Theorem 1.3 already covers the α “ 1 case of the hoped for result. Some
results from [5] provided optimism for the α ą 1 cases. Before stating these results,
let’s introduce some definitions. We say that cofinally many true sentences belong
to a set A if A is cofinal in the ultrafilter of true sentences, i.e., for every true φ
there is a true ψ such that T $ ψ Ñ φ and ψ P A. rφsT is the equivalence class of
φ modulo T -provable equivalence. That is:

rφsT “ tψ | T $ φØ ψu.

If T $ φ Ñ ψ, let’s say that φ T -provably implies ψ. If φ T -provably implies ψ
and ψ does not T -provably imply φ then we say that φ strictly T -provably implies
ψ. Here are the positive results from [5]:

3A definition of suitable ordinal notations is given in §2.2.
4Note that Hoped For Result 1.4 follows from Conjecture 1.8 in [9].
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Theorem 1.5. Let g be recursive and monotone. Suppose that for all φ both of
the following hold:

(1) φ^ Conα
T pφq T -provably implies gpφq.

(2) If rgpφqsT ‰ rKsT , then for all β ă α, gpφq strictly T -provably implies Conβ
T pφq.

Then for cofinally many true φ, rgpφqsT “ rφ^ Conα
T pφqsT .

This result says that if the range of a recursive monotone g is sufficiently con-
strained, then g must coincide cofinally with an iterate of the consistency operator.
In particular, if g is everywhere as weak as Conα

T but everywhere strictly stronger
than Conβ

T for all β ă α, then g must coincide cofinally with Conα
T . As a corollary

we infer that:

Corollary 1.6. There is no recursive monotone g such that for all φ such that
rφ^ Conα

T pφqsT ‰ rKsT , both of the following hold:

(1) φ^ Conα
T pφq strictly T -provably implies gpφq.

(2) For all β ă α, gpφq strictly T -provably implies φ^ Conβ
pφq.

This is just to say that there is no recursive monotone function of strictly interme-
diate strength, i.e., a function that is everywhere strictly stronger than Conβ for
all β ă α yet strictly weaker than Conα

T . This rules out the most obvious sort of
counter-example one might expect to Hoped For Result 1.4.

Nevertheless, in this paper we will see that this hoped for result fails. In fact, it
fails already at the very next step, i.e., α “ 2. For any α ą 0, we can construct a
function that is cofinally as strong than Conα

T yet cofinally as weak as ConT :

Theorem 1.7. For every α ą 0, there is a recursive monotone g such that, for all
φ, gpφq is Π1, and both of the following hold:

(1) For cofinally many true φ:
rφ^ gpφqsT “ rφ^ Conα

T pφqsT .

(2) For cofinally many true φ:
rφ^ ConT pφqsT “ rφ^ gpφqsT .

This the most dramatic possible failure of the Hoped For Result 1.4 that is consis-
tent with Theorem 1.3.

Of course, this result is somewhat negative considering the context in which it is
proved. That is, it shows that the hoped for analogue of Martin’s Conjecture fails.
Yet this result also highlights something rather surprising about the consistency
operator. Indeed, the consistency operator stands apart from its iterates with
respect to its inevitability.

Here is our plan for the rest of the paper. In §2, we will cover some preliminaries. In
§3 we will cover the main technical aspect of our result, which is the construction of
pathological recursively enumerable sets. In particular, these sets contain cofinally
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many true sentences but do not contain any true cones. In §4 we will present
the proof of the main theorem. In §5 we will conclude with some observations; in
particular, we will discuss the relationship between the negative Theorem 1.7 and
the positive Theorem 1.3.

2. Preliminaries

In this section we will fix some notation and cover some preliminaries. The main
goal of this section is to introduce the iterations of the consistency operator (relative
to a fixed ordinal notation system) and prove that they are monotone.

2.1. Base Theory. The theories we will be interested in are extensions of elemen-
tary arithmetic or EA. The signature of EA is the usual signature of PA with a
function symbol for 2x. EA has as axioms the PA´ axioms plus induction for all
formulas bounded in an exponential term. EA is just strong enough to carry out
the standard arithmetization of syntax in the usual manner. For details about EA
see [3].

One of the crucial features of EA is Σ1-completeness, which we will use. This is
just to say that for any T extending EA and any Σ1 sentence φ:

N ( φñ T $ φ.

From here on out we will fix a sound, elementarily axiomatized extension T of EA.
By saying that T is sound we mean that for all φ:

T $ φñ N ( φ.

Of course, this means that for every Σ1 sentence φ we have:

N ( φô T $ φ.

2.2. Ordinal Notations. There are many ways of reasoning with ordinal notations
in elementary arithmetic. We will not need to work with ordinal notation systems
in much detail; much of what we do can be done given any “reasonable” choice.
For present purposes, it is enough to briefly mention a few properties our ordinal
notations will have. We will call our presentations suitable presentations.

Every suitable ordinal notation system is a pair pD,ăq of elementary formulas, such
that:

(1) the relation ă well-orders D in the standard model of arithmetic;

(2) D is provably closed under successor;

(3) EA proves that ă linearly orders the elements satisfying D;5

(4) the elementary formulas defining the initial ordinal 0 (which need not be
the natural number 0), the set of limit ordinals, and the successor relation
provably in EA satisfy their corresponding first order definitions in terms
of ă.

5The referee has pointed out that provable linearity is not required; rather, we only need that
the relation is T -provably transitive and irreflexive.
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2.3. Iterated Consistency. Fixing a suitable elementary presentation ă of a well-
ordering, we may define the iterates of the consistency operator using the fixed point
lemma. Technically, we find a formula Con‹ in two variables:

T $ Con‹
pα,φq Ø @β ă α ConT

`

φ^Con‹
T pβ, φq

˘

.

We write Conα
T pφq as an abbreviation for Con‹

pα,φq.

Remark 2.1. We warn the reader that there is some discrepancy between our no-
tation and the notation used by other authors. Our iteration scheme

Conα`1
T pφq ” ConT

`

φ^ Conα
T pφq

˘

is sometimes denoted ConpT `φqα; see, e.g., [1]. Moreover, the notation Conα`1
T pφq

is sometimes used to denote ConT

`

Conα
T pφqq; see, e.g., [2].

Remark 2.2. Note that all of the iterates of the consistency operator we have de-
fined are sentences. This is appropriate for the current investigation since we are
interested in functions on the Lindenbaum algebra of T . For instance, given our
definition, for a limit λ, the sentence Conλ

T pφq says @α ă λ ConT

`

φ ^ Conα
T pφq

˘

.
This clashes with the conventions adopted in some other papers, wherein Conλ

T pφq
is used as a name for the infinite set tConα

T pφq | α ă λu.

Note that:6

T $ Con0
T pφq Ø J

T $ Con1
T pφq Ø ConT pφq

Since suitable ordinal notations define well-orderings over the standard structure
N, it follows by induction that for true φ, Conα

T pφq is also true. Thus, for true φ
the hierarchy Conα

T pφq is proper by Gödel’s second incompleteness theorem.

It is immediate from the definition that, for any φ, the sentence Conα
T pφq is Π1.

To verify that each function φ ÞÑ Conα
T pφq is monotone, we rely on Schmerl’s

[6] technique of reflexive induction. Reflexive induction is a way of simulating
large amounts of transfinite induction in weak theories. It is particularly useful for
proving claims about iterated reflection principles. The technique is facilitated by
the following theorem; we include the proof, since it is so short.

Theorem 2.3 (Schmerl). Let T be a recursively axiomatized theory containing EA.
Suppose T $ @α

´

PrT

`

@β ă α Apβq
˘

Ñ Apαq
¯

. Then T $ @α Apαq.7

Proof. Suppose that T $ @α
´

PrT

`

@β ă α Apβq
˘

Ñ Apαq
¯

. We infer that:

T $ PrT

`

@α Apαq
˘

Ñ @αPrT

`

@β ă α Apαq
˘

Ñ @αApαq.

Löb’s Theorem then yields T $ @α Apαq. ❑

6Here we use the fourth clause of our discussion of suitable ordinal notation systems.
7Schmerl proves his result using the base theory PRA. Beklemishev has shown that EA suffices.
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We now will verify that the function φ ÞÑ Conα
T pφq is monotone.

Lemma 2.4. For any φ and ψ, if T $ φÑ ψ then T $ @α
`

Conα
T pφq Ñ Conα

T pψq
˘

.

Proof. Suppose that:
(1) T $ φÑ ψ.

We prove the claim by reflexive induction.

Reason in T : Let α be arbitrary. Assume the reflexive induction hypothesis:

(2) PrT

´

@β ă α
`

Conβ
T pφq Ñ Conβ

T pψq
˘

¯

.

We reason as follows:
Conα

T pφq Ñ @β ă α ConT

`

φ^ Conβ
T pφq

˘

by definition of Conα
T ;

Ñ @β ă α ConT

`

ψ ^ Conβ
T pφq

˘

by 1 and monotonicity of ConT ;

Ñ @β ă α ConT

`

ψ ^ Conβ
T pψq

˘

by 2;
Ñ Conα

T pψq by definition of Conα
T .

Reasoning externally now: Let Apγq denote the claim:
Conγ

T pφq Ñ Conγ
T pψq

We have shown that:
T $ @α

´

PrT

`

@β ă α Apβq
˘

Ñ Apαq
¯

.

By applying Lemma 2.3, we infer that T $ @α Apαq. ❑

We want to see not only that α-iterated consistency is monotone but also that it is
provably monotone in T . We carry out this argument in two steps.

Corollary 2.5. T $ @φ@ψ

˜

PrT pφÑ ψq Ñ PrT

´

@α
`

Conα
T pφq Ñ Conα

T pψq
˘

¯

¸

.

Proof. Since the proof of Lemma 2.4 can be carried out in T . ❑

Corollary 2.6. T $ @φ@ψ
´

PrT pφÑ ψq Ñ @α
`

Conα
T pφq Ñ Conα

T pψq
˘

¯

.

Proof. Reason in T : Let φ and ψ be arbitrary. Suppose that:
(3) T $ φÑ ψ.

Let α be arbitrary. We reason as follows:
Conα

T pφq Ñ @β ă α ConT

`

φ^ Conβ
T pφq

˘

by definition of Conα
T ;

Ñ @β ă α ConT

`

ψ ^ Conβ
T pφq

˘

by 3 and monotonicity of ConT ;

Ñ @β ă α ConT

`

ψ ^ Conβ
T pψq

˘

by Corollary 2.5;
Ñ Conα

T pψq by definition of Conα
T .

This completes the proof of the corollary. ❑
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3. Constructing Pathological Sets

The main technical aspect of our result is the construction of recursively enumerable
sets that contain arbitrarily strong true sentences but that have wide gaps. In this
section (and the next) we will work with a fixed suitable ordinal notation system
ă; see §2.2. We will define a set Aα for each ordinal notation α ľ 0; the size of the
gaps that we leave in the set will depend on α.

Similar constructions of recursively enumerable sets appear in [5, 9]. The goal in
the construction of these sets was merely to include arbitrarily strong true sentences
and to omit arbitrarily strong true sentences. These sets did not leave large enough
gaps for present purposes.

Here is how we define the set Aα:

Let φ0, φ1, . . . , be an effective Gödel numbering of arithmetical sentences. We
describe the construction of Aα in stages. During a stage n we may activate finitely
many sentences; if ψ is some such sentence we say that ψ is active until ψ is
deactivated at the later stage n` 1.

Stage 0: Numerate J into Aα; activate J^ Conα`1
T pJq.

Stage n+1: There are finitely many active sentences. For each active sentence ψ,
numerate θ0 :“ ψ^φn and θ1 :“ ψ^␣φn into Aα. Deactivate the sentence ψ and
activate the sentences θ0 ^ Conα`1

T pθ0q and θ1 ^ Conα`1
T pθ1q.

It can be useful to visualize, along with the construction of Aα, the construction of
a tree that is binary branching. The tree has J as its root. The nodes in the tree are
the sentences that are numerated into Aα. Informally, the immediate descendants
of any sentence ψ are the sentences that are numerated into Aα immediately after
ψ on account of ψ. More formally, for any sentence ψ numerated into Aα at stage
n, say that ψ ă ψ ^ Conα`1

T pψq ^ ˘φn; the tree ordering is the transitive closure
of the ordering ă (note that this ordering is defined only on sentences numerated
into Aα).

We will call the branches through this tree Aα-branches. If φ and ψ share an Aα-
branch and φ was numerated into Aα at stage n and ψ was numerated into Aα at
stage k where k ą n, we say that ψ is a descendant of φ. If k “ n` 1 we say that
ψ is an immediate descendant of φ.

Remark 3.1. Note that for each ordinal notation α we get a set Aα. The gaps that
we leave in Aα depend on α in the following sense: If φ is numerated into Aα, then
φ’s immediate descendants imply Conα`1

T pφq.

We can easily check some basic properties of this set Aα.

Lemma 3.2. Aα is recursively enumerable.

Proof. By construction. ❑

Remark 3.3. An important consequence of the recursive enumerability of Aα is that
for any φ, if φ P Aα then T $ φ P Aα. This follows since T is Σ1-complete.
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Lemma 3.4. Aα contains arbitrarily strong true sentences.

Proof. Let φn be a true sentence. By induction it is easy to see that there is one
true active sentence at each stage. Let’s say that going into stage n ` 1 the true
active sentence is ψ. Then at stage n` 1 we numerate ψ ^ φn into Aα. ❑

Aα-branches are sets of formulas, so reasoning about Aα-branches might seem to re-
quire second-order expressive resources. Yet we have assumed only that T contains
elementary arithmetic. Nevertheless, elementary arithmetic suffices for reasoning
about the descendant relation. The claims we make about Aα-branches in this paper
could be translated into T -intelligible claims about the descendant relation. In the
following lemma, for instance, we will prove a claim within T about Aα-branches.
All such claims can be translated into claims about the descendant relation, though
we will not give an explicit translation here.

Lemma 3.5. Provably in T , if ψ and θ both belong to Aα but do not share an
Aα-branch, then ψ and θ are jointly T -inconsistent.

Proof. Reason in T : First observe that for any two sentences φ and ψ in the tree,
if φ is a descendant of ψ then T ` φ $ ψ.

Now let ψ and θ be arbitrary sentences in Aα that do not share an Aα-branch.
Then there is some node ζ0 that has immediate descendants

ζ1 :“ ζ0 ^ Conα`1
T pζ0q ^ φn

and
ζ2 :“ ζ0 ^ Conα`1

T pζ0q ^ ␣φn

such that T `ψ $ ζ1 and T ` θ $ ζ2. But ζ1 and ζ2 are jointly inconsistent whence
ψ and θ are too. ❑

Lemma 3.6. Provably in T , some T -refutable sentence θ belongs to Aα.

Proof. Let T $ ␣ψ. Note that ψ is φn for some n. At stage n ` 1, we numerate
a sentence θ that T -provably implies ψ into Aα. Note that T proves both that
T $ ␣θ and that θ P Aα, since T is Σ1-complete. ❑

4. The Proof

Now we are ready to prove the main theorem. In this section we provide an ex-
ample of a recursive monotone function that oscillates between behaving like Conα

T

and behaving like ConT . Note that this refutes the optimistic Hoped For Result
1.4. Indeed, no function that oscillates cofinally between behaving like Conα

T and
behaving like ConT can converge on either in the limit (assuming that α ą 1).

For convenience, we restate Theorem 1.7 here.

Theorem 4.1. For every α ą 0, there is a recursive monotone g such that, for all
φ, gpφq is Π1, and both of the following hold:
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(1) For cofinally many true φ:
rφ^ gpφqsT “ rφ^ Conα

T pφqsT .

(2) For cofinally many true φ:
rφ^ ConT pφqsT “ rφ^ gpφqsT .

Proof. Given α ą 0, let:
gpφq :“ @θ P Aα

`

PrT pφÑ θq Ñ Conα
T pθq

˘

.

Note that g is clearly recursive. It is routine to check that, for all φ, gpφq P Π1 and
(using Corollary 2.6) that g is monotone.

Let φ P Aα. By Σ1-completeness of T :
(△) T $ φ P Aα.

We reason as follows:
T ` gpφq $ @θ P Aα

`

PrT pφÑ θq Ñ Conα
T pθq

˘

by choice of g;
T ` gpφq $ PrT pφÑ φq Ñ Conα

T pφq by (△);
T ` gpφq $ Conα

T pφq by Σ1-completeness.

On the other hand, the monotonicity of Conα
T is provable in T (see Corollary 2.6).

Whence:
T ` Conα

T pφq $ @θ
`

PrT pφÑ θq Ñ Conα
T pθq

˘

;
T ` Conα

T pφq $ gpφq.

Since cofinally many true sentences belong to Aα, this already takes care of (1).

Now we pick some true ψ P Aα. We consider the sentence φ :“ ψ ^ Conα
T pψq.

Claim. T proves that if φ is consistent, then ψ is the strongest sentence in Aα that
φ T -provably implies.

To see that the claim is true, we reason in T : Suppose that φ is consistent. Note
that φ T -provably implies ψ. Note, moreover, that ψ is inconsistent with every
sentence in Aα with which ψ does not share an Aα-branch by Lemma 3.5. So, since
φ is consistent, the only Aα sentences that φ T -provably implies must share an Aα-
branch with ψ. By construction of Aα, every descendant of ψ T -provably implies
Conα`1

T pψq. But, since φ is consistent, φ does not T -provably imply Conα`1
T pψq by

Gödel’s second incompleteness theorem. This delivers the claim.

We then reason as follows:
T ` φ` ConT pφq $ @θ P Aα

´

PrT pφÑ θq Ñ PrT pψ Ñ θq
¯

by the claim;

T ` φ` ConT pφq $ @θ P Aα

´

PrT pφÑ θq Ñ
`

Conα
T pψq Ñ Conα

T pθq
˘

¯

by Corollary 2.6;

T ` φ` ConT pφq $ @θ P Aα

´

PrT pφÑ θq Ñ Conα
T pθq

¯

since T ` φ $ Conα
T pψq;

T ` φ` ConT pφq $ gpφq by the definition of g.
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For the converse:

T $ Dθ P Aα␣ConT pθq by Lemma 3.6;
T `␣ConT pφq $ Dθ P Aα

`

PrT pφÑ θq ^ ␣Conα
T pθq

˘

;
T `␣ConT pφq $ ␣gpφq by the definition of g.

This takes care of (2). ❑

5. Observations

Theorem 1.7 refutes Hoped For Result 1.4. Yet what happens in the case α “ 0?
That is, why can’t the proof of Theorem 1.7 be adapted to the α “ 0 case, thereby
contradicting Theorem 1.3? The answer exhibits an important feature that the
notion of consistency does not share with its iterates.

Recall that we construct Aα so that whenever φ is numerated into Aα, then φ’s
immediate descendants T -provably imply Conα`1

T pφq. In particular, whenever φ is
numerated into A0, then φ’s immediate descendants T -provably imply ConT pφq.
Let’s consider the function:

g0pφq :“ @θ P A0
`

PrT pφÑ θq Ñ ConT pθq
˘

.

Surprisingly, g0 is actually equivalent to the consistency operator. That is:

Proposition 5.1. For every φ, T $ ConT pφq Ø g0pφq.

Proof. Left to right:

T $ ConT pφq Ñ @θ
`

PrT pφÑ θq Ñ ConT pθq
˘

;
Ñ g0pφq.

Right to left:

T $ ␣ConT pφq Ñ Dθ P A0
`

PrT pφÑ θq ^ ␣ConT pθq
˘

by Lemma 3.6;
Ñ ␣g0pφq.

This completes the proof. ❑

Note the appeal to Lemma 3.6. Here we use that A0 is guaranteed to contain
an inconsistent sentence; the important point is that if φ is T -inconsistent, then
some sentence that φ T -provably implies belongs to A0. Indeed, the fact that all
T -inconsistent sentences T -provably imply each other is used in the proof of the
positive Theorem 1.3 (see the proof of Theorem 2.4 Case 2 in [9]). By contrast,
if we merely knew ␣Conα`1

T pφq, we would not be able to conclude that some T -
consequence of φ belongs to Aα. Nor for any of the other iterates of the consistency
operator.

There are ways of modifying g0 to avoid Proposition 5.1. Rather than quantifying
over the T -implications of φ in A0 and saying that they are all consistent, we can
let gpφq merely assert the conjunction according to which each is consistent. That
is:
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g‹
0pφq :“

"
Ź

tConT pζq | ζ P A0 and T ` φ $ ζu if rφsT ‰ rKsT ,
K otherwise

In previous work we have shown that g‹
0 oscillates between behaving like the iden-

tity and the consistency operator (see Theorem 3.7 in [9]). However, computing
the function g‹

0 requires access to the oracle 01. Indeed, to calculate g‹
0pφq we must

know whether rφsT ‰ rKsT , which requires 01. So g‹
0 demonstrates that recur-

siveness is also a necessary condition in Theorem 1.3; it cannot be weakened to
limit-recursiveness.
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