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The deep ocean comprises complex ecosystems made up of numerous

community and habitat types that provide multiple services that benefit

humans. As the industrialization of the deep sea proceeds, a standardized

and robust set of methods and metrics need to be developed to monitor the

baseline conditions and any anthropogenic and climate change-related

impacts on biodiversity, ecosystem function, and ecosystem services. Here,

we review what we have learned from studies involving offshore-energy

industries, including state-of-the-art technologies and strategies for

obtaining reliable metrics of deep-sea biodiversity and ecosystem function.

An approach that includes the detection andmonitoring of ecosystem services,

with open access to baseline data from multiple sectors, can help to improve

our global capacity for the management of the deep ocean.

KEYWORDS

offshore renewable energies, offshore oil and gas industry, deep ocean capacity
building, capacity building, observing technologies, ecosystem-based management,
environmental impact assessment, deep sea industries
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Introduction

In the past century that humankind has been studying the

deep ocean (defined here as the water column and seafloor below

200 m water depth), we have come to understand that it plays a

key role in sustaining the well-being of multiple and diverse life

forms through a myriad of different ecosystem functions

(Thurber et al., 2014; Danovaro et al., 2020; Levin et al., 2020).

The deep ocean also provides important benefits to human well-

being, collectively known as ecosystem services (MA, 2005), but

also referred to as nature’s contribution to people. We adopt the

term ecosystem services, as the alternate expression emphasizes

the role of culture and indigenous and local knowledge in

defining nature’s links with people (Dıáz et al., 2018, Box 1).

Intact and high- functioning ecosystems provide benefits both

directly and indirectly, including biodiversity, natural resources

(such as food, genetic resources, energy, minerals), regulation of

climate and biogeochemical pathways, innovation in science and

technology, spiritual connections, and inspiration for design,

literature, and art (MA, 2005, Thurber et al., 2014; Le et al., 2017;

Mejjad and Rovere, 2021).

Humans often exploit these ecosystem services without a

good understanding of the impacts on the processes that sustain

them (Levin et al., 2020; Mejjad and Rovere, 2021). For example,

fisheries bottom trawls remove coral colonies, which can be

hundreds to thousands of years old (Watling and Norse, 1998;

Roberts et al., 2005) and provide nursery and breeding grounds

for the same species that are targeted by the fisheries (Freiwald

et al., 2004; Clark et al., 2016). In another example, the

Deepwater Horizon (DWH) oil spill caused significant damage
Frontiers in Marine Science 02
to coral colonies that were hundreds of years old (Prouty et al.,

2016), and complete recovery of the ecosystem and its services

may require time scales on the same order-of-magnitude (Girard

& Fisher, 2018). In order to be more effective in weighing the

cost-benefit ratio of industrial exploitation and in designing

mitigation measures for associated impacts, we need to better

integrate ecosystem services as a whole into our environmental

impact assessment (EIA) (Box 1) and management frameworks.

The deep ocean houses the least known set of ecosystems on

Earth, and it remains a logistical and economic challenge to

study, especially for Low/Middle Income Countries (Glover

et al., 2009; Thaler & Amon, 2019; Howell et al., 2020; Howell

et al., 2021). The advancement of ocean-based economic

initiatives (such as the “Blue Growth Initiative” launched by

FAO in 2013 and the EU’s “blue-growth strategy”, Eikeset et al.,

2018) pose a challenge for environmental management and

monitoring that transcends political boundaries, as there is

only one connected ocean, and it is rapidly changing (FAO,

2017; Laffoley et al., 2020). In many settings, our lack of

fundamental knowledge of the baseline states of biodiversity

and ecosystem structure have hampered our ability to effectively

manage natural resources (Glover et al., 2018). For example, the

DWH oil spill occurred in one of the best-known areas of the

deep ocean, with decades of research effort, and yet the

assessment of the impacts required fundamental exploration in

the immediate vicinity of the disaster (Fisher et al., 2014).

Furthermore, the available baseline data lacked information

about the ecosystem functions and services in the immediate

surrounding impacted areas (Cordes et al., 2016; Schwing et al.,

2017; Halanych et al., 2021; Sutton et al., 2022).
BOX 1 Definition of key concepts.

Ecosystem Services: The benefits to humans obtained from ecosystem processes, whether or not there exists a market for the benefits in question (MA, 2005,
Thurber et al., 2014; Le et al., 2017; Yow Mulalap et al., 2020; DOSI 2021a; Tilot et al., 2021).

◦ Supporting Services: The functions of the target ecosystem that support processes and services generated by other processes in the same and other
ecosystems (e.g., Element cycling, Nutrient cycling, Metabolic activity, Habitat provision, Primary and secondary production, Connectivity,
Dispersal, Respiration, Bioturbation).

◦ Provisioning Services: The benefits of the “products” obtained from ecosystems (e.g., Fisheries, Novel genetic resources (e.g., for biopharmaceutical,
biomimetics, bioengineering), Energy (e.g., oil and gas, wind, waves, sun, ocean current, ocean thermal gradients, green hydrogen, biomass for
biofuels), Minerals (e.g., manganese nodules, phosphorite deposits, etc.), Industrial agents, Biomaterials).

◦ Regulating Services: The regulation benefits generated by the processes and cycles of ecosystems. (e.g., Climate regulation, Carbon sequestration,
Population regulation, Biogeochemical regulation, Biological control, Detoxification, and repositories for pollutants).

◦ Cultural Services: The benefits for cultural development. (e.g., Education, Science, Inspiration for art, Inspiration for technology, Stewardship,
Spiritual value, Traditional knowledge)

Environmental Impact Assessment (EIAs): Formal process conducted prior to the initiation of a project, aimed at determining the potential impact on the
environment of the industrial activities based on the type of ecosystem (usually containing environmental and socio-economic components of the
ecosystem). The main components of EIAs include: 1) description of the project; 2) environmental baseline conditions; 3) assessment of the potential impact
on the environment; 4) proposed mitigation of impacts and 5) identification of knowledge gaps (Glasson & Therivel, 2019; Jones et al., 2019a).

Clean Energy: compared with fossil fuel energy sources, clean energies should meet the following requirements to be considered as “clean”: lower or null GHG
emission; low environmental impacts besides the emissions, low impacts on climate-regulating ecosystem services (Carley and Konisky, 2020; Jager et al.,
2021).

Ecosystem-Based Management: Ecosystem-based management (EBM) is an approach with the objective of protecting and enhancing sustainability, diversity,
and productivity of natural resources that integrates biological, social, and economic components of ecosystems (Frazão Santos et al., 2020).
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Although the COVID-19 pandemic resulted in an ~5%

decrease in global Oil & Gas (O&G) consumption in 2020

(Cornwall, 2020), demand and production are projected to

grow by ~50% until 2040, with the highest expansion (69%) in

production concentrated in the deep sea (Watts, 2012; Brent

et al., 2020). For example, in 2020, 178 O&G platforms at water

depths > 1,000 m accounted for 86% of Gulf of Mexico oil and

54% of gas production, with these percentages and total oil

production increasing dramatically over the past decade

(Murawski et al., 2020). It is currently not clear how much

O&G exploitation can be sustained while still achieving the Paris

Agreement targets, but the industry position is that its expansion

is necessary even in the most sustainable rebalance scenarios

(Equinor, 2022).

The deep ocean is potentially an important part of the

solution to achieve net-zero carbon emissions. Recent

technological advances, high demand for clean energy, and the

great potential for the offshore areas of the open ocean (any part

of the ocean, from the surface to the seafloor, where waters

depths exceed 200 m) to provide energy resources make a future

increase in offshore renewable energy exploitation likely (Bailey

et al., 2014; Junqueira et al., 2020; Global Wind Energy Council,

2021). Most of these energy projects are centered around the

development of wind farms (Global Wind Energy Council,

2021) but others include marine hydrokinetic energy (tidal,

wave, and ocean current), solar energy, thermal gradient

energy (geo-thermal or ocean-thermal energy conversion), as

well as the production of green hydrogen or biofuels (Hammar

et al., 2017, Haugan et al., 2019). These are all considered to be

“clean” energy (Box 1) sources mainly owing to their low or null

emission of greenhouse gasses (GHG, Carley and Konisky,

2020), but they can also lead to other environmental effects

that require consideration (Luderer et al., 2019). Facing the

climate crisis requires preserving the climate-regulation services

provided by the deep sea (Queirós et al., 2016; Sala et al., 2021;

Hilmi et al., 2021) while also increasing the use of its energy

resources. Clean energy production in the open ocean must be

measured, mitigated, monitored, and considered both in relation

and in addition to other anthropogenic pressures, such as

climate change, and managed in an integrated framework

(Hammar et al., 2017, Figure 1).

The global growth in offshore energy industrial activities will

increase the environmental impact that threatens ocean

ecosystems and the maintenance of the benefits and services

derived by humans. Ecosystem-based management (EBM) (Box 1)

is an approach with the objective of protecting and enhancing

sustainability, diversity, and productivity of natural resources by

integrating the biotic, social, and economic aspects of ecosystems

(Frazão Santos et al., 2020). EBM is promoted by many regulatory

bodies and international agreements such as the United Nations

Convention on the Law of the Sea (UNCLOS) and the Convention

on Biological Diversity (CBD) (Douvere & Ehler, 2009). This

approach is preferred for setting strategic goals and objectives in
Frontiers in Marine Science 03
the deep sea (Tunnicliffe et al., 2020; Sala et al., 2021), but has rarely

been implemented there.

United Nations bodies such as the Food and Agriculture

Organization (FAO) and the International Seabed Authority

(ISA) provide recommendations and regulations for

environmental impact assessments (EIA) in international

waters that could be adapted and used by countries within

their different Exclusive Economic Zones (EEZs). The FAO

and ISA are primarily focused on fisheries and deep-sea

mining, respectively, but to the best of our knowledge, there

are no equivalents in the offshore energy industry. Furthermore,

there is limited feedback between FAO and ISA, which manage

areas beyond national jurisdiction (ABNJ), and the offshore

O&G industry, which operates largely within EEZs. Notably,

parties that signed UNCLOS (UNCLOS Part XII, Article 208)

are committed to implementing rules and regulations for seabed

mining within their EEZs that, as a minimum, meet those

developed for ABNJ. To understand, mitigate, and manage the

impact of offshore industries in the global ocean there is a need

for improving and harmonizing the approaches used for EIAs

across the different offshore industries, and efforts toward equal

accessibility to environmental data and technology across EEZs.

The generation of electricity is the single most important

source of CO2 emissions (40% of total CO2 emissions) (Luderer

et al., 2019). At the same time, electricity offers the highest

potential for low-cost global strategies to reduce GHG emissions

to near zero by 2050, in line with the Paris Agreement (Luderer

et al., 2019, Haugan et al., 2019). These strategies seek to

minimize both the production and the use of fossil fuels

through expansion of clean energy-based generation of

electricity together with increasing electrification of the global

energy system across multiple sectors such as transportation,

construction, and industry (Luderer et al., 2019, Haugan et al.,

2019). Beyond GHG emissions, the sustainable development of

the global energy system in the deep ocean requires

considerations on the social and environmental aspects

associated with its development, such as those established in

the UN Sustainable Development Goals (SDGs) adopted by the

United Nations in 2015 (Luderer et al., 2019, Haugan et al.,

2019). In the case of offshore energy, the future of this sector is

relevant for SDG 7 “Clean and affordable energy”, SDG 9:

“Industry innovation and infrastructure” , SDG 12:

“Responsible consumption”, SDG 13: “Climate action”, and

SDG 14: “Life below water”. Furthermore, there is a need for

equity and justice both in the accessibility of deep-ocean

ecosystems and their resources, together with collaborative

networks (e.g., across sectors and geographic boundaries) for

effective management, which are important for SDG 10:

“Reduced inequalities” and SDG 17: “Partnerships for the

goals” (Figure 1).

The potential impacts on ecosystem services remain unclear

for ocean-based renewables (Haugan et al. 2020, Mejjad &

Rovere, 2021). The current approaches of EIA for O&G do not
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typically provide data on the ecosystem functions and services

affected by industrial activities (Sommer et al., 2019; Mejjad &

Rovere, 2021). There is a need for better integration of science

into industry and policy to both build understanding of the

complex environmental responses of the deep sea to disturbance

and to guide its effective management (Sommer et al., 2019;

Kujawinski et al., 2020). This requires revising the current

approaches to EIAs and the design of a new framework for the

holistic integration of environmental and social aspects related

to ecosystem functions and services that are affected by

industrial activities (Figure 1). The design of this new

framework needs to be flexible, so that new knowledge and

technologies developed to study deep-sea ecosystems can be

integrated, as this is a rapidly changing field (Sommer

et al., 2019).

Here, we propose a preliminary design for this new

framework, which seeks to augment ecosystem-based

management to include ecosystem services-based management.

The current approaches to environmental management of

offshore O&G (in waters deeper than 200 m and inside the

EEZs) are reviewed, focusing on opportunities for improvements

through a unified effort across social sectors and geographic

regions. We believe that a number of cross-sectoral and

international partnerships can act as key enablers for the

integration of factors necessary for effective management, such

as environmental data acquisition and interpretation, research

and technological innovation, capacity building, industrial risk

reduction, and financial and political aspects. These partnerships

can shape the direction of offshore-energy industrial

development in congruence with priority areas of the UN

SDGs including climate change, education, and poverty

(Novaglio et al., 2022). Finally, we propose a new framework

that includes ecosystem services within ecosystem-based

management and discuss how it can guide the management of

both upcoming renewable-energy development and other

offshore industries.
Environmental impact assessments
in offshore oil and gas industry

In order to fully incorporate ecosystem services into the

management of offshore industries, we first need to examine the

current process for the oil and gas industry, derive the relevant

successes, and identify the existing gaps. The EIA is an important

tool for decision-makers to understand and mitigate the impact of

a project. The EIA process should develop a plan that includes: 1)

monitoring programs; 2) management of activities; and 3)

mitigation actions, which include temporal and spatial

management actions (Glasson and Therivel, 2019, Jones et al.,

2019a). Within each jurisdiction there are different requirements

for EIAs but there are some shared structures and requirements

used for O&G. The main components of EIAs include: 1)
Frontiers in Marine Science 05
description of the project; 2) environmental baseline conditions;

3) assessment of the potential impact on the environment; 4)

proposed mitigation of impacts and 5) identification of knowledge

gaps (Jones et al., 2019a). Each of these elements could

incorporate a description of ecosystem services that are

provided, enhanced, impaired or need investigation.

There are many countries for which EIAs are not required

and the companies are “self-regulated” under the premise of

following established best practices and internal industrial

policies. In many areas, EIAs are only required prior to

exploratory drilling (Box 2), or EIAs are required but the

methods are not stipulated. For example, in Portugal the

companies are required to take “all measures to prevent

pollution”, or in Tanzania “environmental protections should

follow best practices requirements” (Cordes et al., 2016). The

recommended approach to an EIA would be following those

currently implemented in some countries (e.g., Australia,

Canada, Barbados, and Norway), which have a robust

screening process to ensure that EIAs are required for projects

that may have significant effects. This would certainly trigger an

EIA for any major project, such as before drilling for exploration

or production of O&G. An EIA should stipulate that

environmental monitoring is carried out to assess impact. In

some jurisdictions, monitoring is required to be completed at

regular intervals, for example every three years (Norway) or five

years (Barbados) (Cordes et al., 2016).

The types of variables on which to focus in an EIA are

determined by the types and importance of impacts that are

expected from the activity. These are typically identified in the

scoping stage of an EIA (Durden et al., 2018). In some cases,

scoping is documented in a report, reviewed, and approved by

the regulator to guide the development of the full EIA. Based on

the types of impacts expected from O&G activity, the typical

design of an EIA is to establish baseline conditions of the

physical environment (e.g. topography, sediment grain size),

environmental chemistry (including concentrations of any

materials that are likely to be discharged), as well as benthic

and pelagic community structure (distribution and abundance

of fauna in different size classes) often focusing on marine

mammal distribution (to avoid impacts from seismic surveys,

vessel strikes, and direct oiling). Good opportunities to identify

and fill information gaps arise from the growing availability of

environmental data, new technologies, analytical techniques and

computer power (Sommer et al., 2019; Kujawinski et al., 2020).

Scientists and citizens should have access to the information

from all stages of the EIA process, and this transparency may

help industries and governments build trust and obtain feedback

to improve their practices.

The impacts of an activity are determined by detecting

significant change in the baseline conditions that were present

prior to the onset of activity. Being aware that baseline

conditions are, by nature, spatially and temporally dynamic,

the assessment of these conditions should allow decision-makers
frontiersin.org
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to differentiate environmental stochasticity from those

conditions attributable to direct human disturbance activities

(Nowacek et al., 2013). This approach integrates physical and

biological studies of the seafloor and water column and should

be included in EIAs for all phases of a project, including

exploration (alluding to potential impacts of exploratory

wells), production, and decommissioning (Box 2).

In general, any EIA submitted by the companies should

propose environmental impact mitigation measures that avoid

areas particularly sensitive to environmental impacts. This

implies that the stakeholders and the companies need to

identify these areas prior to the onset of O&G activities.

Environmental monitoring should be required in the operation

area, the area of influence, and the exclusion or control areas.

Best practices for BACI (Before-After/Control-Impact) studies

during monitoring include a strategic selection of both exclusion

zones for conservation (i.e., vulnerable marine ecosystems such

as cold seeps and cold-water coral reefs) and for control sites, as

well as benthic species that serve as ecological indicators of

anthropogenic disturbance (Cordes et al., 2016).

As the production life-time of an offshore platform is

reaching an end, the decommissioning process is begun (Box

2). There are many approaches to decommissioning including

full removal, partial removal, and leaving in place e.g., to

preserve artificial reefs (Fowler et al., 2019). Hem et al. (2014)

estimated that in 2015 annual costs of decommissioning were

$2.4 billion and predicted an increase of the investment by 2040

to $13 billion. While removal of structures will theoretically

return the habitat to its original state, impacts to the seafloor can
Frontiers in Marine Science 06
be caused by removal through direct damage and reintroduction

of contaminants (Cordes et al., 2016).

The policies to manage decommissioning of abandoned oil

platforms range from complete removal in the North Sea

(Fowler et al., 2019; Sommer et al., 2019) and Australia

(Chandler et al., 2017), to alternative use options such as in

the United States, where abandoned oil platforms are used as

artificial reefs for preservation or enhancement of fish stock via

programs known as “Rigs to Reefs” (Macreadie et al., 2011).

Submerged foundations, pipes, cables, and scour protection add

hard substrate to the environment and inevitably attract a range

of marine fauna including commercially significant fishes

(Bergström et al., 2013; Hammar et al., 2017). Abandoned

structures, if left at the seafloor, may act as hindrance to

bottom trawling, an activity with well-known negative impact

on marine ecosystems and, thus, mirror the positive effects from

no-take MPA’s (Fowler et al., 2019). Some oil platforms that are

left in place are reused for other purposes. For example, in the

North Sea there are some initiatives trying to use the oil

platforms to exploit geothermal energy (Fowler et al., 2019). In

Norway and in Saudi Arabia some more exotic initiatives include

the transformation of abandoned O&G platforms into tourist

attractions (Zawawi et al., 2012). In addition, decommissioned

offshore O&G energy infrastructure has been identified as a

potential site for future carbon capture and storage (CCS)

activities (Neele et al., 2011). Furthermore, the abandoned

O&G infrastructure could be used for environmental

monitoring, taking advantage of existing power distribution

and communication infrastructure to establish cabled fixed-
BOX 2 Activities involved at each phase of development of the offshore oil and gas industry.

Exploratory phase:

Seismic survey: The exploratory phase has a first phase, the seismic survey, which is aimed at detecting and mapping hydrocarbon reservoirs up to kilometers
below the seafloor. The acoustic signal is emitted by airguns and the signal returning from the bottom and kilometers below the seabed is “heard” by the
hydrophone arrays that are arranged in the streamer. The arrangement of airguns and streamers can cover kilometers. Compared with other seismic
equipment, the acoustic signal has high potency and low frequency to prioritize high penetration, but also has relatively low resolution. Surveys are usually
conducted in the form of a grid that crosses the track of the vessel perpendicularly in a limited area, during slow navigation. This allows 3D and 4Dmodels to
be reconstructed with the seismic records obtained.

Exploratory drilling: This is the second phase of the exploratory phase and is aimed at obtaining rock samples and making in situ measurements (up to 4 km
below the seafloor) in the area of interest (selected from seismic records and a range of remote sensing techniques used to characterize the formations) to
establish the existence and nature of hydrocarbon reservoirs. It is conducted using temporary rigs or drillships. Rigs or drillships use a series of anchors or
dynamic positioning (DP) to maintain position. The drilled well typically has a surface diameter of up to 1 m and is cased with steel pipes held in place with
cement. It is drilled with drilling muds (seawater with natural and synthetic additives). Blow-out preventers with valves are used to secure and control the
well. Rock cuttings are usually treated and returned to sea. Once finished (usually after 1-3 months), the well is cemented, secured, and abandoned.

Production phase: In production phase, an operational field includes various wells with installation of surface and/or submersed infrastructure. The surface
infrastructure is composed of large floating installations for production and storage as well as for offloading vessels. Submerged infrastructure includes
manifolds, control cables, and export lines for producing and exporting the hydrocarbons, and connecting the several wells that together typically comprise
the production field (Cordes et al., 2016).

Decommissioning: After the production ends, the platforms are dismantled and may be recovered to shore. However, as this is expensive and has high
environmental risks, alternative uses for abandoned oil platforms are being developed (e.g., hotels, Zawawi et al., 2012). Decommissioning and the alternative
options are associated with different types of environmental impacts, which vary with time and geographic space and require site-specific integral assessment
(Sommer et al., 2019).
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point observatories (FPOs) or networks of marine autonomous

systems (MAS, Jones et al., 2019b).

The ecosystem services provided by artificial reefs can be

different from those generated by the original communities. For

example, the Rigs-to-Reefs program may facilitate the

restoration of deep-water benthos (such as cold-water corals)

by restricting access to deep-water trawlers, but can negatively

impact existing benthic communities leading to undesirable

changes in their functions and services (biogeochemical

cycling, detoxification, marine food webs) (Macreadie et al.,

2011; Sommer et al., 2019). The addition of other functions to

existing infrastructure such as the conversion of O&G wells to

Carbon Capture and Storage (CCS) systems (Sommer et al.,

2019) carries its own set of environmental risks and potential

impacts (Levin et al., 2022). Thus, the full range of

environmental risks and benefits of each option for reducing,

reusing, and building new infrastructure, including the

ecosystem service outcomes of each option, must be

considered at the site-specific and regional scales.
Offshore energy in the 21st century

The development of marine renewable energies would

positively impact all 17 SDGs (Hoegh-Guldberg et al., 2019).

Marine renewable energies (Figure 2), compared to coal-fired

power, have low CO2 and negligible emissions of Hg, SO2, and

NO2; improve human health (through decrease in

contamination); and can provide higher employment and

better gender balance in the work environment (Haugan et al.,

2019). There is consensus that marine renewables play an

important role for the global energy transition in line with

both decreasing human contributions to global warming and

supply for increased energy demand (Jager et al., 2021; Mejjad

and Rovere, 2021). However, the potentially negative impacts of

marine renewable energies on SDG 14 (“Life below water:

Conserve and sustainably use the oceans, seas and marine

resources for sustainable development”) in the deep ocean

may pose a challenge to their expansion (Haugan et al., 2019).

In the global deep ocean, most marine renewable energies

are still at an experimental state, resulting in high scientific

uncertainty about their potential impacts on ecosystem services

(Jager et al., 2021; Mejjad and Rovere, 2021). Enhancing research

on less mineral-intensive renewable energy (instead of the

current ones that require rare minerals and contribute to the

demand for accelerating deep-sea mining), as well as on risks to

ecosystem services is important for their expansion in line with

SDG 14 (Haugen et al., 2019). At the same time, both

understanding and mitigating the impacts of new offshore

installations requires baseline study designs tailored to site-

specific characteristics and ideally specific to the impacts on

ecosystem services (Haugan et al., 2019, Jager et al., 2021; Mejjad

and Rovere, 2021). The global offshore waters has a high
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renewable energy potential and the expansion of its

sustainable exploitation to meet the Paris Agreement target is

overdue (Haugan et al., 2019). Joint efforts among science,

industry, and regulatory bodies will accelerate the expansion of

sustainable exploitation of renewable energy in the offshore.
Offshore wind

Globally, offshore installations (over deep water) present a

technical wind energy potential (without considering cost

constraints and some technological elements) of 76,757 TW per

year near shore (sites within 60 km) and 257,081 TW per year

further offshore (60-300 km offshore) (IEA, 2019a, Haugan et al.,

2019). Of the near-shore sites, 29.82% of the global potential is

within the North America EEZ, 19.3% in Europe and 18.8% in

Asia. The same regions have the most potential in offshore waters,

with 22.9% in North America, 20.23% in Europe, 18.96% in

Eurasia, and 16.09% in the Asia-Pacific region (IEA, 2019a).

Europe currently dominates the installation of infrastructure for

offshore-wind energy exploitation (Haugan et al., 2019, Mejjad &

Rovere, 2021). The European Commission designed a strategic

roadmap that would allow for an accelerated and significant

expansion of offshore wind farms in its region (Haugan et al.,

2019). It is estimated that China will overtake Europe in installed

capacity by early 2030 and that the USA will be third in this

respect (Haugan et al., 2019, IEA, 2019b).

The cost per MW of installed power decreased in the last

decade and the cost of operation and management per

megawatt-hour (MWh) produced is also expected to decrease

thanks to more robust turbine designs suitable for deep-ocean

installations (Haugan et al., 2019). Deep waters require floating

support structures (as opposed to shallow waters that require

bottom-fixed structures) that are less mature and more

expensive (Haugan et al., 2019). However, floating support

structures are suitable for standardized mass production

without site-specific requirements, which could lower their

cost and make them comparable to bottom-fixed structures

(Haugan et al., 2019).

The environmental risks of offshore energy production have

been assessed mainly for shallow water but remain uncertain in

the deep sea. Increased turbulence around the submerged

structures and shifts in Ekman transport causing local

upwelling/downwelling may increase upper-ocean mixing

(Broström, 2008; Floeter et al., 2022). Variability in vertical

mixing at the mesoscale has been shown to be a significant, but

generally overlooked factor controlling the distribution of heat,

nutrients, and carbon in the ocean (Busecke and Abernathey,

2019). Fouling organisms on submerged structures are also

considered to have a regional scale impact on the function of

pelagic ecosystems when offshore wind projects are realized

according to ambitious plans for future electricity demand

(Slavik et al., 2019). One study showed that fouling organisms
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can increase carbon assimilation significantly, with the potential

to increase blue carbon sequestration (Mavraki et al., 2020).

Support structures have also been shown to act as artificial reefs,

providing shelter, food, and spawning substrate for fish

(Bergström et al., 2013). The reef effect in combination with

the removal of bottom trawling increases diversity and

abundance of fish inside offshore wind farms (Methratta and

Dardick, 2019), potentially modifying the ecosystem services

provided by the original habitat. These studies are limited to

shelf depth areas and there is a need to augment research to

understand the impact on ecosystem services in the deep sea,

particularly considering the scale of the expansion (covering

large offshore areas in a short time) required in the energy

transition (Haugan et al., 2019, Mejjad and Rovere, 2021).

With large-scale wind farm development progressing, other

concerns include changes in atmospheric mixing and its climatic

implications (Wang and Prinn, 2011), collision of fauna with

overhead and submerged infrastructure (Haugan et al., 2019),

noise pollution, and wildlife interactions with electromagnetic

fields from cables (Hammar et al., 2017; Copping et al., 2020).

However, it should be noted that approximately 10,000 times

more birds are killed per year by domestic cats (2.4 billion) than

by all of the wind turbines in the U.S. and Canada (234,000)

(Allison et al., 2019). Underwater noise from turbines is heard by

fishes within a range of a few tens of kilometers (which is

variable between different fish species depending on their

hearing abilities as well as between different turbine types) and

would affect the maximum acoustic signaling distance of fishes

(Wahlberg and Westerberg, 2005, Haugen et al., 2019).

Similarly, electro- and magneto-sensitive species have shown
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clear awareness of artificial electromagnetic fields, possibly

modifying behavior, development, and physiology (Copping

et al., 2020). Although lab and field based studies have not

found deleterious effects of noise and electromagnetic fields on a

range of organisms, effects of long-term and large-scale exposure

have not been investigated. In terms of cultural services, the

increased commercial interest for offshore wind farms over deep

water drove greater interest in this environment and attracted

general attention to deep-ocean ecosystem services (Mejjad &

Rovere, 2021). There is potential for offshore wind farms over

deep water farms not to negatively impact SDG14, but this

requires proper planning and taking appropriate mitigation

measures (WWF, 2014, Haugan et al., 2019).
Other marine renewable energies

Hydrokinetic energy converters (Figure 2) differ mainly in

the depth at which they operate (Hammar et al., 2017), with

wave and tidal systems consisting of small units operating in

shallow waters (0-200 m) and ocean current power systems

being larger and deployed in deeper waters (~100+ m) (Hammar

et al., 2017). These systems would need to be anchored to the

seafloor, resulting in impacts to the benthos. They also involve

the movement of large volumes of water across a turbine, which

can lead to elevated mortality in the plankton (assuming larger

organisms are excluded from the intake), and increased surface

mixing that has numerous effects on ocean circulation. The

outcome of these impacts on ecosystem services is less well

understood, particularly changes in the composition of plankton
FIGURE 2

Schematic representation of different types of energy industries in current or potential development in the deep ocean. (A) Oil and gas, (B) wave
energy, (C) ocean thermal energy conversion (OTEC), (D) wind energy, (E) green hydrogen, (F) device combining wind, sun and wave energy,
(G) ocean current energy, (H) biofuels.
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communities and the net effect of increased mixing on the

transport of heat and carbon in the different parts of the ocean.

Ocean Thermal Energy Conversion (OTEC) technologies

(Figure 2) are based on the use of thermal gradients in the ocean

to create electricity but are mostly in the experimental stage of

offshore development. The most readily available thermal

gradient that can be used to generate electricity is the

temperature difference between surface water (warm) and

deep-sea water (cold) (Thurber et al., 2014). This technology

has a hypothetical capacity to provide 4000 times the global

energy need (Thurber et al., 2014). Thermoelectric generators

could also be used to generate power from hydrothermal vents,

either by directly tapping the hydrothermal plume or by

installing high-pressure thermosyphons in wells on the

hydrothermal mound (Thurber et al., 2014). OTEC technology

relocates large volumes of water at high flow rates between

different depths, potentially leading to changes in water

temperature, changes in flow patterns, relocation of pollutants,

and displacement of organisms. Although cold seawater pumped

up from the deep sea by OTEC devices could be used for

mariculture, refrigeration, air conditioning and production of

potable water, the massive flow rates needed for OTEC on a large

scale can affect global thermohaline circulation and threaten

other functions and services, particularly regulatory services,

provided by the deep ocean (Thurber et al., 2014).

Green hydrogen is a clean energy carrier and precursor of

hydrogen-based fuels (electrofuels) that is produced from a

renewable source, in contrast to the hydrogen produced by

fossil fuel sources (Ibrahim et al., 2022). Offshore hydrogen

production relies on electrolysis of seawater powered by the

electricity generated by wind farms and transported using

submarine hydrogen pipelines (Ibrahim et al., 2022, Figure 2).

While still in the experimental phase, offshore electrolysers

would require 1) back-up battery systems due to

discontinuous electricity supply by wind turbines; 2) on-site

desalination plants for pre-treatment of seawater before

electrolysis (although electrolysers capable of directly using

seawater are in development); and 3) on-site compressors to

pressurize pipelines (Ibrahim et al., 2022). The impacts of

desalinization include: 1) feed water intake, 2) high salinity

brine discharge 3) discharge of other concentrated chemical

species, and 4) potential use of fossil fuels to supplement energy

supply for pumps and compressors (Panagopoulos &

Haralambous, 2020). The use of surface intake systems can

trap marine animals on the suction racks causing their injury

or death (Panagopoulos and Haralambous, 2020). This impact,

and others (e.g., chemical contamination, energy consumption),

can be reduced by using subsurface intake systems

(Panagopoulos and Haralambous, 2020). Brine discharge poses

a series of effects known to affect marine species (and associated

ecosystem services) such as its high salinity (1.6 to 2.1 times

higher than seawater) that can cause ‘lethal osmotic shock’ to
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some species; heavy metals and residues of chemicals

(Panagopoulos & Haralambous, 2020).

Offshore cultivation of marine biomass (e.g., macroalgae)

can be used to produce biofuels (biodiesel, biobutanol), food,

and chemicals (Fernand et al., 2017, Figure 2). Marine

macroalgae have advantages such as being efficient

photosynthetic organisms, exhibiting fast growth, bearing

valuable chemical compounds, fixing inorganic carbon

(allowing its use as carbon trap and then as fuel), and

sequestering dissolved inorganic nutrients (Fernand et al.,

2017). Some offshore biorefineries currently exist in Israel, The

Netherlands, France, Germany, and Norway (Fernand et al.,

2017). For offshore marine biomass cultivation, there is currently

no universal definition, and concepts include using tidal flat

farms, floating cultivation, ring cultivation, wind-farm, or oil-rig

integrated systems (Fernand et al., 2017). The use of marine

macroalgae to produce biofuels may avoid competition for space

between agriculture and terrestrial biofuel production (Fernand

et al., 2017) but will potentially affect local primary productivity

and derived ecosystem services, such as fish stocks and carbon

sequestration, among others.
Global management of
offshore industries

Global efforts to guide unified and up-to-date management

of offshore industries are showcased through two UN bodies, the

ISA that manages deep seabed mining in ABNJ and the FAO

governance of commercial fishing (and many other activities

outside of the focus here). Pelagic fisheries beyond EEZs are

managed by Regional Fisheries Management Organizations/

Agreements (RFMOs) and the Antarctic Treaty organization.

There are 11 demersal fisheries RFMOs and five pelagic (mostly

tuna) fisheries RFMOs. The Southwest Atlantic Ocean, Eastern

Tropical Pacific, and Eastern Indian Ocean are among the few

areas in the ocean that do not have a demersal RFMO. The

RFMOs follow the FAO Guidelines for conducting impact

assessments of deep-sea fisheries, identifying Vulnerable

Marine Ecosystems (VMEs), and preventing significant

adverse impacts (SAIs) on VMEs.

In the case of deep-sea fisheries, the FAO provides criteria to

identify the potential risks/impact associated with the fishing

activities in different types of ecosystems. There are specific

criteria for identifying VMEs, eg. uniqueness, rarity, fragility,

and structural complexity and typical VMEs include cold-water

coral reefs, sponge grounds, or methane seeps. VMEs support

high biodiversity, fish nurseries, and provide ecosystem

functions that yield provisioning, supporting, and regulating

services (Le et al., 2017; Montserrat et al., 2019; Ottaviani, 2020;

Maier et al., 2021; Le et al., 2022). Significant Adverse Impacts

(SAIs) are defined as impacts that alter the structure or function
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of the ecosystem in a permanent or long-lasting manner (e.g.

Figure 3). The FAO Guidelines are ecosystem-based and identify

six factors to consider in determining the scale and significance

of an impact (e.g., intensity or severity, spatial extent relative to

the availability of the affected habitat, sensitivity/vulnerability of

the ecosystem, ability of an ecosystem to recover, alteration of

ecosystem functions, timing and duration in relation to the life-

history of the species). Most importantly, the FAO guidelines

provide a temporal scale for assessing impacts. SAIs occur

whenever the impact causes the ecosystem’s recovery to exceed

5-20 years, as the impact is no longer considered temporary.

Other mitigation strategies for SAIs include applying an

encounter protocol where there is a temporary closure for part

of the fishery based on a bycatch threshold. The United Nations

General Assembly resolutions and FAO guidelines have been

adopted on paper, but the implementation and criteria of the

impact assessments conducted by the RFMOs are often deemed

deficient (Rogers and Gianni, 2010; Weaver et al., 2011; DOSI,

2022). In Box 3 we propose how the criteria for carrying out

impact assessments from FAO, 2009 could be adapted to the

O&G industry, with type of impacts on benthic habitats for each

industry given in Figure 3).

Commercial deep seabed mining (DSM) has not yet started

on an industrial scale, but large areas are under exploration for

DSM within national jurisdiction and in ABNJ or “the Area”

(the seafloor in ABNJ). The ISA is the independent organization

through which States that are Parties to UNCLOS organize,

authorize, and control all mineral-resources-related activities in

the Area for the benefit of humankind as a whole (www.isa.org).

In so doing, the ISA has the mandate to ensure the effective

protection of the marine environment from harmful effects that

may arise from deep-seabed related activities (UNCLOS,

Article 145).

Before any deep seabed mining exploration can start in the

Area, exploitation regulations must be developed, and several

requirements must be met by contractors, including the

preparation of Environmental Impact Assessments (EIAs)

(ISBA/25/LTC/6/Rev.1). At present, guidance for exploration

EIAs has been developed and is now used for collector testing,

but the EIA format for exploitation has not been finalized. The

current draft of Environmental Impact Assessment guidance in

the draft exploitation regulations (ISBA/25/C/WP.1) includes

instructions to “address diversity, abundance, biomass,

community-level analyses, connectivity, trophic relationships,

resilience, ecosystem function and temporal variability”, plus

work on ecosystem models and appropriate ecosystem

indicators, but it does not directly mention ecosystem services.

The specific draft standards and guidelines for the

environmental impact assessment process (ISBA/27/C/4),

however, prescribe consideration of the ecosystem services

when assessing the significance of the impacts of the activities.

The standards and guidelines for the resulting Environmental

Impact Statement indicate that it must include a description of
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socioeconomic environments, however, there is no mention of

the ecosystem services provided by the biological environment

(ISBA/27/C/5).

Recommendations in the literature advice protecting rare and

vulnerable hydrothermal vent habitats from mining impact (e.g.,

VanDover et al., 2018; Sigwart et al., 2019; Gollner et al., 2021). In

the latest draft, regional environmental management plan

(REMP) for the northern Mid Atlantic Ridge, active vent fields

are listed as “Sites in Need of Protection” (ISBA/27/C/38). To

facilitate management, typical vent species such as Rimicaris

shrimps or Riftia tube worms may be considered as VME

indicators (Tunnicliffe et al., 2020). At abyssal plain sites

targeted for mining of polymetallic nodules, a recently

discovered sponge endemic to nodules has been suggested as an

indicator (Lim et al., 2017). A REMP for the polymetallic nodules

fields in the Clarion Clipperton Zone has been developed and has

been recently updated (Seascape Consultants LTD, 2014).
Ecosystem services-based
management of offshore energy

Protecting the value of biodiversity, ecosystems, and

ecosystem services in the open ocean and deep sea requires a

holistic approach that enables environmental management

planning (Tunnicliffe et al., 2020). For example, Sala et al.

(2021) proposed preserving biodiversity, food, and climate

security as strategic goals for protecting the global ocean. They

estimated that the most effective way to achieve these goals

would be to combine the three objectives into a coordinated

cross-sectoral global effort. Future management of offshore

energy should include measures and indicators of ecosystem

function and services to improve the conservation of the many

critical organisms and processes that often go overlooked in

environmental impact assessments.

Here we consider ecosystem services as the benefits to

humans obtained from ecosystem processes, whether or not

there exists a market for the benefits in question (Box 1, MA,

2005). There are different frameworks for environmental

management that include ecosystem services, among which

the Millennium Ecosystem Assessment (MA) has been a

fundamental pillar. Other frameworks include Common

International Classification of Ecosystem Services (CICES),

The Economics of Ecosystems and Biodiversity (TEEB), and

the Intergovernmental Platform on Biodiversity and Ecosystem

Services (IPBES). MA has been widely applied to the

management of terrestrial and freshwater environments but

there are no equivalent efforts in the open ocean (Mejjad and

Rovere, 2021). This management framework provides

mechanisms for decision-makers to achieve sustainable

development objectives, understand trade-offs and develop

cost-effective policies in a better way (Thurber et al., 2014).
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FIGURE 3

Destruction of benthic habitats derived from the activities of deep-sea fisheries and oil and gas. (A) trawled zone of the seabed. Photo courtesy
of Malcom Clark. (B) lost net. Photo courtesy of Malcom Clark. (C) Paramuricea biscaya colonies showing varying degrees of impact from oil
and the applied dispersants 18 months after the Deepwater Horizon blowout. Photo from the R/V Holiday Chouest expedition, Mississippi
Canyon area, October 2011, courtesy of Erik Cordes.
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Growing research is focused at identifying and classifying

deep-sea ecosystem services (e.g., Thurber et al., 2014; Orcutt

et al., 2020), quantifying ecosystem services based on functional

traits (Le et al., 2022), assessing them in relation to industrial

activities (e.g., Mejjad and Rovere, 2021), valuation of services

(Ottaviani, 2020), and the communication of this new scientific

understanding to decision makers (e.g., Jobstvogt et al., 2014;

Teneva et al., 2022). Assessing ecosystem services improves, and

in some ways simplifies, the understanding of the mechanisms

behind any change and allows their economic valuation

(Thurber et al., 2014; Le et al., 2017; Mejjad and Rovere,

2021), providing a more realistic understanding of the

environmental and social costs of exploiting deep-ocean

resources. Moreover, impacts on key components of an

ecosystem that may have low resilience (i.e., sensitivity to

direct impact, long recovery times, etc.) jeopardizes the

derivation of the direct and indirect benefits of the services

they support. Thus, assessing the industrial impacts on

ecosystem services will also help to fill basic knowledge gaps

(Thurber et al., 2014; Le et al., 2017; Mejjad and Rovere, 2021;

Amon et al., 2022). This assessment requires adopting the

premise that we cannot measure everything, nor do we need
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to, but rather that we should set data priorities to add feasibility,

and recognize that any approach will be improved as further

research on deep-sea ecosystem services is available.

Diversity, abundance, distribution, and interaction (within

and between) species and habitats are factors that determine the

(dynamic) structure of ecosystems (Thurber et al., 2014; Sommer

et al., 2019, Figure 4). The integrated analysis of these components

through statistical modeling promotes an understanding of their

ecological functions (Sommer et al., 2019). Once these links are

established, the assessment and monitoring of species abundance

can be explicitly tied to an outcome in terms of a quantifiable

ecosystem service. The identification and measurement of these

indicators can improve the information quality of environmental

baseline studies.

Ecosystem service indicators can vary by region and habitat

type, but many of these are consistent and can be constrained

and generalized. In non-chemosynthetic systems, more diverse

communities generally have higher rates of ecosystem function

and therefore provide more robust ecosystem services. However,

at methane seeps, highest function is not always associated with

higher diversity (Ashford et al., 2021a), which emphasizes the

need to assess ecosystem services on a site-specific basis. A more
BOX 3 Criteria for carrying out impact assessments at different phases of development of oil and gas industrial activities. Adapted to the
specific features of the offshore oil and gas industry from the criteria recommended by FAO (2009) for impact assessments in deep-sea fish-
eries, and supplemented with the focus on ecosystem services as presented here.

To assess if deep-sea oil and gas activities are likely to produce significant adverse impacts in a given area, impact assessments should include:

1. Assessment of the activities remaining in the development cycle:

a. Exploration phase:

i. Seismic surveys: type(s) of activities conducted or planned, including vessels and the features of airguns and hydrophone arrangements,
acoustic signal features, area expected to be covered by the seismic pulse (including the vertical and lateral area in which it will be detectable above the
ambient noise), efforts of seismic prospection and duration, seismic plan;

ii. Exploratory drilling: type(s) of activities conducted or planned, including vessels and features of the equipment used for drilling (indicating if
it will be a vessel or a temporary platform), features of both the pipeline and the area expected to be covered by the sediment plume produced during drilling,
high-resolution images of the seafloor from the target area, duration of the project and project plan;

b. Production phase: type(s) of activities conducted or planned, including vessels and the features of the platform, description of the amount, type and
treatment of discharges, area covered by anchors and all the submersed infrastructure, efforts of production duration, production plan; spill risk and
mitigation

c. Decommissioning phase: type(s) of activities conducted or planned, including vessels, area expected to be covered by sediment plumes and
contaminants, description of infrastructure expected to be removed and the one that will be abandoned, duration and decommissioning plan;

2. Best available scientific and technical information on the current state of ecosystem services in the operation area, including baseline information of the
distribution and abundance of ecosystems, habitats, communities, and species of economic interest along with the ecosystem services that they provide,
against which future changes are to be compared;

3. Identification, description, and locations of key indicator species and VMEs known or likely to occur in the operation area;

4. Data and methods used to identify, describe, and assess the impacts of the activity, the identification of gaps in knowledge, and an evaluation of
uncertainties in the information presented in the assessment;

5. Identification, description, and evaluation of the occurrence, scale, and duration of likely impacts, including cumulative impacts of activities covered on
ecosystem services, VMEs, and indicator species in the operation area and the area of influence;

6. Risk assessment of likely impacts by the installations and/or operations to determine which impacts are likely to be significant adverse impacts on
ecosystem services derived from the habitats, particularly impacts on VMEs; and

7. The proposed mitigation and management measures to be used to prevent significant adverse impacts on ecosystem services and ensure long-term
conservation of VMEs and other resources, and the measures to be used to monitor effects of the installations and/or operations.
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FIGURE 4

Environmental management of offshore industries in the frame of ecosystem services.
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detailed approach is suggested for studies of species of particular

interest given their conservation value, such as mammals, or

species of commercial value, such as certain fishes (e.g., billfishes,

tunas). Ecological function of individual species can often be

determined using biological traits analysis (BTA), which can

provide information on ecological function and predict

ecosystem services related to the species present in the area

(Bremner et al., 2006, Levin et al., 2017; Bravo et al., 2021; Le

et al., 2022).

For the deep seabed, the importance of microbial taxa (i.e.,

prokaryotes and protists) and meiofauna cannot be overstated

(Orcutt et al., 2020). Microbial deep-sea biomass represents 10-

30% of all biomass on Earth (Corinaldesi, 2015), meiofauna

dominate metazoan biomass and diversity below 3,000 m (Rex

et al., 2006; Wei et al., 2010; Schratzberger and Ingels, 2018), and

protists are known to be important members of deep-sea food

webs and carbon sequestration (Gooday et al., 1992; Gooday,

1993). Deep-sea benthic metabolism is largely driven by

microbial taxa (Turley, 2000; Glud, 2008), and small

organisms therefore play key roles in deep-sea ecosystem

functions (Nascimento et al., 2012; Bonaglia et al., 2014).

While large, charismatic fauna may form the basis of habitat

mapping and protection (Danovaro et al., 2020; Bribiesca-

Contreras et al., 2022), efficient monitoring and conservation

action necessitates detecting early changes through indicator

species at the base of the food web and ecosystem functions

(Ingels et al., 2021). Indeed, those species are well suited for

monitoring change in ecosystems worldwide (Schratzberger and

Ingels, 2018; Ingels et al., 2021). Baseline characterizations must

therefore also consider microbial and meiofaunal taxa to ensure

holistic and comprehensive management of ecosystem services.

Approaches should consider connectivity and interactions

with other populations, species, and habitats (including and

throughout the water column) as key indicators of ecosystem

health and services. Connectivity plays key roles in structuring

and supporting the ecosystem services from the deep sea. For

example, the connectivity between chemosynthetic ecosystems

and background areas through transition zones and/or

chemotones often concentrate a high quantity of ecosystem

services (Figure 5, Levin et al., 2016; Ashford et al., 2021a,

Ashford et al., 2021b, Gollner et al., 2021). In this instance, a

lesson can be taken from the management offisheries in the U.S.,

where Essential Fish Habitat (EFH) is managed in addition to

the direct management of fish stocks (Moore et al., 2016) to

ensure connectivity among habitats utilized by different life

stages (Peterson et al., 2020).

Environmental management policies for offshore industries

can optimize the design of environmental management plans

(monitoring programs, activity management, temporal

management, spatial management) and EIA requirements by

incorporating the analysis of ecosystem service indicators.

Integrating ecosystem services into existing management

frameworks for well-studied ecosystems or processes would
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require limited efforts to fill specific knowledge gaps, while for

less studied areas it would need programs to generate broad

basic knowledge (Sommer et al., 2019). The data required are

often currently available in well-studied areas but need to be

adapted to the temporal and spatial scales of each management

decision. This framework also addresses long-term climate

change by assessing the climate-regulating services, but

additional assessments of the effects on the distribution of heat

and carbon in the ocean resulting from changes in ecosystem

structure, including microbial and planktonic organisms, should

be conducted.

Mapping deep-sea biota associated with benthic and water-

column habitats is key to understanding the spatial distribution

and connectivity of ecosystems and evolutionary processes

(Danovaro et al., 2017; Glover et al., 2018; Danovaro et al.,

2020; Swanborn et al., 2022). The extent, geographic range, and

ecological functioning of deep-sea benthic habitats remain

poorly understood (Brown et al., 2011). Even at the most basic

level, only an estimated 20% of the seafloor has been mapped at

resolutions similar to terrestrial surveys (Coley, 2022). In

addition, most benthic ecology studies are conducted with

“over-the-side” sampling gear without direct visualization of

the seafloor, which limits the spatial coverage of their results

(Bravo et al., 2020). Consequently, there is an urgent need to

develop robust marine ecosystem mapping and visual survey

methods for effective spatial seafloor management (Brown et al.,

2011; Danovaro et al., 2020).

The deep-pelagic environments are not well studied, even

less so than the benthic environments, with greatest attention on

fishes and other conspicuous compartments (Webb et al., 2010).

The deep pelagic is the largest ecosystem on Earth, harboring

over 90% of the global biosphere with a unique biodiversity

(Robison, 2009). It plays key roles in carbon export (Davison

et al., 2013; Steinberg and Landry, 2017; Boyd et al., 2019),

nutrient regeneration, and vertically connects epipelagic and

deeper ecosystems through trophic interactions, which include

providing resources for targeted fishes and protected species

such as cetaceans and seabirds (Trueman et al., 2014; Drazen

and Sutton, 2017; Torres and Bailey, 2022). However, the

species/population perspective of environmental management

often is focused primarily on fishes of commercial interest and/

or mammalian megafauna (e.g., cetaceans, pinnipeds),

neglecting the other compartments of the pelagic ecosystems

that generate ecosystem services (e.g., plankton, deep-

living nekton).

Environmental baseline studies for planktonic and

micronektonic organisms from pelagic environments often do

not exist in industry, although they may experience negative

effects from their associated activities (e.g., Copping et al., 2020;

Drazen et al., 2020; Daly et al., 2021; Sutton et al., 2022), and

many gaps regarding the potential risks of impacts are not well

characterized (Copping et al., 2020; Amon et al., 2022).

Biogeographic ecoregions in the midwater tend to be larger
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FIGURE 5

Connectivity between chemosynthetic ecosystems and background deep sea ecosystems. (A) A methane seep transition zone offshore North
Carolina, USA. White bacterial mats indicate areas of active seepage, while the American butterfish (Peprilus triacanthus) and seastars are
background deep-sea species visiting the seeps to take advantage of the chemosynthetic productivity. Image courtesy of Ivan Hürzeler, DEEP
SEARCH project, and copyright Woods Hole Oceanographic Institution. (B) Seep transition zone with Paramuricea coral fans (like those
impacted by the Deepwater Horizon oil spill) using substrate provided by seep-related carbonate rocks with embedded chemosynthetic clam
shells. Image courtesy of Erik Cordes, ECOGIG consortium, and the Ocean Exploration Trust. (C) Extensive aggregations of brooding female
octopuses (Muusoctopus robustus), “octopus garden”, associated with vents from Monterey Bay National Marine Sanctuary. Image courtesy of
OCEAN EXPLORATION TRUST/NOAA.
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than those of benthic ecoregions, because pelagic animals may

move over 100s of kilometers and ocean currents may transport

animals over equally long distances (Sutton et al., 2017). At the

mesoscale, vertical migration is a dispersive mechanism, with

transport in one direction during daytime, and the opposite

direction during nighttime. These factors mean that impacts to

midwater communities have the potential to spread far (Sutton

et al., 2022). The awareness of large-scale changes in midwater

pelagic environments driven by offshore industries is growing,

with pioneering recommendations for its inclusion in the

contractor’s seabed mining EIAs by the International Seabed

Authority. For example, in the draft guidelines for the

preparation of environmental impact statements (ISBA/27/C/

5), it is recommended that the EIA includes a description of the

midwater community (200 m depth to 50 m above the seafloor),

describing the diversity, abundance, biomass, connectivity,

trophic relationships, resilience, ecosystem functioning, and

temporal variability for microbes, zooplankton, meso- and

bathypelagic fishes, and deep-diving mammals across depth.

Such an inclusion in the EIA should be adopted by other offshore

industries, too.

The study of the water column should be carried out in an

integrated manner using, as far as possible, a multi-modal

approach (water column sensing and sampling with multiple

gear types) that allows mapping the distribution and abundance

of the different components of the ecosystems, and this should

be carried out over time for long-term monitoring. The

provision of habitat for shelter, breeding grounds, and

nurseries is a key ecosystem service provided by a variety of

habitats. To extend this concept, many species undergo

ontogenetic migrations where they utilize numerous habitats

over the course of their development from larvae to reproductive

adults (Sutton, 2013; Longmore et al., 2014). This is a key

ecosystem service of deep-sea habitats and these “connectivity

corridors” should also be conserved to ensure the proper

management of species providing provisioning services

(Peterson et al., 2020). Finally, pelagic environments and their

biological communities must be considered for holistic

management across the entire biogeographic area, especially

when impacts can extend from the seabed into the

water column.
New technologies for improved
impact assessment and monitoring

New technologies (Figure 6) have resulted in unexpected

discoveries being made in the past few years, challenging well-

accepted hypotheses of deep-sea geology and biology, and

improving holistic views of deep-sea ecosystem services. For

example, studies have found higher than expected geodiversity

in Atlantic abyssal plains (Riehl et al., 2020) and unexpected ice-

fish breeding grounds in the southern ocean (Purser et al., 2022)
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thanks to imagery systems like the Ocean Floor Observation and

Bathymetry System (OFOBS), which are able to cover wide

geographical ranges at depth (Piepenburg et al., 2017).

Increasing interest in deep-sea resources calls for the

development of novel monitoring technologies, to go beyond

time-consuming and high-cost vessel-based surveys. To ensure

effective management and protection actions, spatiotemporally

extended monitoring strategies must be implemented, which

allow environmental (physicochemical) and biodiversity data to

be gathered in a high-throughput and parallel manner.

High-resolution, satellite-like images of the seafloor can be

obtained using a combination of acoustic methods (deep and

shallow seismic, side-scan sonar systems, single-and multibeam

echosounders). Advances in synthetic aperture sonar (Thorsnes

and Chand, 2022) and deployment of multibeam echosounders

(MBES) on submergence assets (ROVs, AUVs, human-occupied

vehicles or HOVs) have brought the ability to map the seafloor

to even higher resolution. High-resolution bathymetry is the

basis for benthic habitat mapping and seascape characterization,

which can be used for ecosystem management (Brown et al.,

2011; Bravo et al., 2020; Danovaro et al., 2020; Swanborn et al.,

2022). These benthic habitat maps are a very important and

widespread tool for predicting the spatial distribution of habitats

suitable for settlement of vulnerable marine ecosystems (VMEs;

FAO, 2009). They can also identify the suitability of habitat for

structural elements that generate ecosystem services (Morato

et al., 2020; Le et al., 2022).

However, there are examples of ecosystems whose

boundaries cannot always be detected using seafloor-surface

acoustic imaging. Chemosynthetic ecosystems associated with

methane gas seeps are common in areas of O&G development,

but the methane bubbles from seeps remain trapped in

subsurface sediments and these can only be detected by high-

resolution seismic (acoustic turbidity) data or by direct

geochemical measurements on the ocean floor (Bravo et al.,

2020; Bravo et al., 2021b). The seep biological community

provides a significant ecosystem service of oxidizing the

methane before it is released into the water column and

potentially the atmosphere where it can be a powerful

greenhouse gas (Marlow et al., 2014; Cavicchioli et al., 2019).

Thus, the acoustic turbidity could be used to map the area

covered by these ecosystems and target the area that needs direct

sampling (Bravo et al., 2020; Bravo et al., 2021b) to assess their

sphere of influence on surrounding ecosystems and ecosystem

services, both in the overlying water and on the surrounding

seafloor (Levin et al., 2016; DOSI 2021b). Similarly, the infaunal

community surrounding cold-water coral reefs is significantly

different than the community further away in terms of

biodiversity and the functional traits that define ecosystem

services (Demopoulos et al., 2018). Advances in extracting

ecosystem-service information from seafloor imagery (e.g., Le

et al., 2022) will facilitate incorporation of ecosystem-service

mapping into management practices. The broad ecosystem-
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FIGURE 6

Ocean observation opportunities through new technologies. (A) An example of a high-tech platform combining cabled, docked, and
autonomous devices as designed by Ocean Networks Canada (ONC); (B, C) Cabled observatories deployed on the seafloor in Canada (ONC)
and Spain (adapted from Del Rıó et al., 2020; OBSEA) respectively; (D) A GPS-equipped glider for gathering oceanographic and pelagic data
deployed by ONC; (E) The substrate-independent benthic sampler, a prototype of a semi-autonomous benthic eDNA sampling device (from
Keeley et al., 2021), and (F) the Environmental Sample Processor for autonomous eDNA sampling of the water column (Images by Monterey Bay
Aquarium Research Institute).
Frontiers in Marine Science frontiersin.org17

https://doi.org/10.3389/fmars.2022.994632
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Bravo et al. 10.3389/fmars.2022.994632
service boundaries of these habitats need to be incorporated in

EIAs, baseline studies, and monitoring (Levin et al., 2016;

DOSI 2021b).

Species distribution and predictive habitat modeling have

advanced to the point where they can provide high-resolution

and accurate predictions for management prioritization using

primarily remote sensing data (e.g. Iacono et al., 2018; Georgian

et al., 2020; Melo-Merino et al., 2020). This greatly decreases the

cost of conducting an assessment, assuming there are existing

species distribution data on which to base the models, and can

greatly increase the area over which biological data can be

generated. These methods are frequently used for single-taxon

prediction, which can be applied to indicator taxa for designated

VMEs or, in the scenario presented here, ecosystem services.

Predictive habitat models have now progressed to allow for

ensemble modeling of entire community or habitat types (Mata

et al., 2020; Uhlenkott et al., 2021) and for projecting their

response to changing conditions (Morato et al., 2020; Gasbarro

et al., 2022).

Optoacoustic technologies (high-definition still and video

image data coupled with active acoustic imaging, i.e., sonar)

represent key techniques for the observation of deep-sea habitats

and biological behaviors, allowing visualization and

identification (to some degree) of the mega- and macrofauna

at wider geographic scales. A current drawback is the

computational capacities needed to process the huge amounts

of imaging data, but the ability for machine learning algorithms

to automatically detect and quantify key fauna is improving.

While these algorithms require ecosystem-specific training and

calibration, which can initially include direct sampling of fauna,

they offer major opportunities for decreasing throughput time,

reducing observer bias, and limiting the impacts of the surveys

themselves (Aguzzi et al., 2019; Aguzzi et al., 2020; Stefanni et al.,

2022). Although imaging has mostly been used to detect and

identify fauna > 1 cm in size, new modeling approaches based on

physically collected in situ samples are being developed to

characterize temporal and spatial variability of smaller

organisms (Stefanni et al., 2022).

The latest progress in robotics have allowed for the

development of fixed (cabled), docked (tethered and

untethered crawlers and rovers), and autonomous platforms as

cross-disciplinary infrastructures, providing complementary and

long-term monitoring data in the benthic and pelagic realms

(Aguzzi et al., 2019; Aguzzi et al., 2020; Stefanni et al., 2022).

Such platforms can be equipped with optical, biogeochemical,

oceanographic, and acoustic biological sensors, enabling

continuous and long-term (up to decades) monitoring of

remote seafloor locations (Aguzzi et al., 2019). To complement

benthic monitoring, the platforms can also be equipped with

tethered Remotely Operated Vehicles (ROVs) and free-

swimming Autonomous Underwater Vehicles (AUVs) to allow

monitoring of the water column. The deployment of such

observatory modules in clusters can allow expanding surveys
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from local- to ecosystem-level geographic scales, and successful

implementations have already taken place in the North Pacific

and Atlantic Oceans, and in the Mediterranean Sea (Stefanni

et al., 2022). Similarly, high-tech sensors can be fitted on existing

fiber optic telecommunications cables, which would increase

ocean observing capacities to a global level (Howe et al., 2019).

Imaging does not always provide enough taxonomic

resolution, and physical collection of voucher specimens is

required to describe new taxa and validate species

identification. Moreover, imaging monitoring strategies such

as video transects or Baited Remote Underwater Video

(BRUV) may result in biased data due to various avoidance or

attraction behaviors (Stefanni et al., 2022). There will always be a

need for integrative taxonomy, which couples morphological

and genetic data, in deep-sea research and environmental

assessments (Glover et al., 2015; Lins et al., 2021), and the

capacity for this area of research needs to be continually

developed globally.

Genetic identification can also be achieved from

environmental samples (water, sediment, air) using

environmental DNA (eDNA) metabarcoding, which is the

high-throughput sequencing of genetic barcodes in DNA

directly extracted from environmental samples (Taberlet et al.,

2012). eDNA metabarcoding enables non-invasive and high

throughput sampling, and allows the description of whole

communities, from prokaryotes to metazoans, including the

detection of “hidden” (rare, cryptic) diversity. A major

limitation of this technique in the deep sea is the general lack

of taxonomic knowledge resulting in incomplete reference

databases for identifying the barcode sequences (Hestetun

et al., 2020). Interpretation of the results of eDNA sequencing

is also hampered by an incomplete knowledge of degradation

rates under different environmental conditions in the deep sea

(McCartin et al., 2022). Accurate voucher specimen provision/

validation will likely remain a limitation in deep-sea

metabarcoding strategies, although ecological status can be

assessed from metabarcode data using taxonomy-free

approaches to construct de novo biotic indices via the

identification of indicator taxa (Lanzén et al., 2021a, Lanzén

et al., 2021b, Mauffrey et al., 2021) or through supervised

machine learning (Cordier et al., 2018, Lanzén et al., 2021b).

Going beyond biotic indices, environmental genomics can also

be applied to infer structural (e.g., ecological networks,

phylogenetic structures) and functional (e.g., meta-genomics

and transcriptomics) community metrics, making eDNA data

applicable in ecosystem service-based monitoring frameworks

(Cordier et al., 2018).

Combining imaging-based monitoring with eDNA has

already been successfully showcased in the water column (Stat

et al., 2019; Easson et al., 2020), and on cabled observatories

(Mirimin et al., 2021).

These proof-of-concept studies mostly involved visually

conspicuous taxa (fish and micronekton) and all sample
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collection steps were carried out manually. Practical high-

throughput implementation will thus require the integration

and development of automated eDNA sampling devices adapted

to operate on ROVs or AUVs. Such “eco-genomic” sensors are

already in development (Aguzzi et al., 2019), and examples

include the environmental sample processor (ESP) for the

water column (Yamahara et al., 2019), and the substrate-

independent benthic sampler (SIBS) for the seafloor (Keeley

et al., 2021). Increasing the level of automation and taxonomic

resolution of bioimaging sensors will improve the quantitative

aspect of offshore ecological monitoring, and greatly expand our

taxonomic knowledge in the deep sea, which are both

fundamental for implementing evidence-based conservation

(Sutherland et al., 2004).
Improving the global capacity for
offshore management

The notion of “energy justice” includes the equal

opportunity for all individuals to have both access to decision-

making processes around energy and to energy that is

sustainable, safe, affordable, and sustains a decent lifestyle

(SDG 7 “Affordable and Clean Energy”, Carley & Konisky,

2020). The sustainable aspect of this concept links it with the

concept of “just transition”, which is aimed at pursuing equity

and justice toward planning, implementation and assessment of

every social-energy system change related with the energy

transition (Carley & Konisky, 2020).

Renewables, and wind power in particular, continue to grow

offshore (e.g., 30% annual growth between 2010 and 2018;

International Energy Agency 2019) but disproportionately

among different EEZs (Novaglio et al., 2022). Growth in

offshore wind is mainly concentrated in the UK, EU and

China while other regions have been slow to adopt renewables,

resulting in uneven efforts and suboptimal benefits in terms of

de-carbonization (Novaglio et al., 2022). Several countries do not

adopt offshore wind because of the challenges posed by the grid

capacity to sustain the growth of power generation or because

the supply chain is not established yet (Poulsen and Lema, 2017;

Novaglio et al., 2022). Furthermore, Low and Middle-Income

countries cannot access the necessary means for the exploitation,

or even the exploration, of their offshore renewable

energy resources.

Science plays a key role in overcoming the gaps in knowledge

offshore, in terms of both environmental data and technological

innovation, that challenge the fulfillment of requirements for the

energy transition and its effective management. Efforts aimed at

the sustainable development of offshore energy need to integrate

measures that facilitate equal and fair access to environmental
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data to inform and monitor the planning, implementation, and

development of energy policies. Framed in justice and equity

principles, this implies that access to the environmental data, the

latest technologies, and the “know-how” is not relegated to the

more economically powerful sectors of industry, politics, and

science. However, a series of actions may help to overcome this

problem: science-industry agreements, capacity building,

and transparency.
Science-industry agreements

New areas of offshore O&G development are appearing in

Low-/Middle-Income countries, which have limited capacity for

expensive offshore research. In these areas, the O&G industry is

supplying the vessels and vehicles required for the baseline

characterization of the deep ocean, but often the data are not

ending up in the hands of local researchers whowouldmost benefit

from them. The governing bodies of the EEZs where this activity is

takingplacemust require the public deposition of the available data.

Even if some data, such as the sub-surface profiles from the seismic

data, remain proprietary, we suggest that the video/photographic

surveys, biological and geological samples, and bathymetric data be

made easily accessible and in appropriate formats for the scientific

community to develop the robust baselines required to detect

potential ecosystem-level impacts. This is especially important

where there is limited capacity for offshore research, and where

resource exploitation is occurring prior to scientific exploration

(Cordes & Levin, 2018).

While ocean-based energy in wealthy, developed nations is

moving on from O&G extraction to renewables such as offshore

wind, many Low-/Middle-Income countries are just beginning to

explore their deep-water fossil fuel resources with the intent to

extract them. This is often done with a dearth of baseline

information about seafloor or water column habitats and

environments. Examples of this are present in South America

(Argentina, Brazil, Guyana) and Africa (Kenya, Ghana, Namibia,

South Africa). Early activities often involve exploratory cruises by

the industries to provide baseline characterization and can act to

build capacity, providing regional scientists with unique

opportunities for bathymetric, hydrographic, biodiversity

(taxonomic and genetic), and resource characterizations. Often,

findings can stimulate research on new ecosystems (e.g. methane

seep discovery) or taxa. For example, off-Argentina, an

agreement between the local oil industry (YPF S.A.) and the

National Scientific and Technical Research Council (CONICET)

covers funding for geological instrumentation and partially

covered the cost of six research cruises (undertaken from 2017

to 2022 on board the R/V Austral-CONICET) with permission

for the scientists to publish the environmental data acquired.
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Capacity building

A major new source of deep-sea access has come through

philanthropic entities that have developed research vessels with

capabilities for deep-sea exploration. Often these offer survey,

sampling and telepresence opportunities, broadcasting real time

deep-sea imagery from the ROV feed onto the internet for public

consumption. Examples include assets of Ocean Exploration

Trust (RV Nautilus and ROV Hercules), the Schmidt Ocean

Institute (RV Falkor and ROV Subastian), Victor Vescovo’s Five

Deeps operation and REV Ocean. Although deep-seabed mining

has captured the attention of a number of these, with some

cruises taking place in areas targeted for mining exploration,

offshore energy development has not received as much attention.

Focused research could inform decision-making by examining

ecosystem attributes in areas targeted for future energy

development, as well as by assessing impacts of offshore wind

turbines, O&G infrastructure, or accidents (blowouts or spills)

on the deep-sea environment, ecosystem services, or other

human uses of the region.

Additional new knowledge may come through the UN

Decade for Ocean Sciences for Sustainable Development. The

UN Decade promotes science to achieve a healthy, resilient,

productive, predicted, safe and accessible, inspiring and

engaging ocean. Deep-ocean science emerging from the energy

industry can potentially develop in multiple ways. A number of

programs and projects focus on deep-sea exploration and

coordinated observing (Deep Ocean Observing Strategy;

Challenger 150, JETZON, One Ocean Network for Deep

Observation, Crustal Ocean Biosphere Research Accelerator -

COBRA) or new technologies (Ocean Biomolecular-Observing

Network - OBON), but they do not have a clear focus on

offshore energy.
Transparency

Much of the environmental data, innovation in research and

technology is not shared and it is concentrated in a small number of

countries and profitable companies and investors (Novaglio et al.,

2022). A large amount of the deep sea environmental information

and cutting-edge technologies available to humankind is owned by

theO&G industry (obtained during exploration, exploitation, EIAs,

etc.). However, much of this information is not accessible to the

scientific and public community. Even if it is housed at government

facilities; it is confidential information. Accessing the information

that industries obtained since the 1970s would reduce costs for

informing stakeholders of various management scenarios,

including conservation initiatives as well as industrial

development (Murray et al., 2018). At the same time, it would
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build trust in both the political and industrial sectors (Murray

et al., 2018).

Key to the generation of scientifically robust baselines to

inform the management of industrial activities is improving the

accessibility of all deep-sea research efforts that occur globally.

Many scientific data are published in open access repositories

(for example on the Pangaea platform, or genbank), but datasets

are often not comparable or difficult to find. The new global

deep-sea biological research program ‘Challenger 150,’ provides

a framework for international collaboration and cooperation

among the scientific community to share knowledge, technology

and establish standards for the application of knowledge to deep

ocean management (Howell et al., 2020; Howell et al., 2021).
Conclusions

In this article, we propose a framework for ecosystem

services-based management of the offshore energy industry.

New technological solutions position the deep ocean as a

promising frontier for the expansion and transition of energy

industries (both O&G and marine renewables). For the deep-

ocean energy industry to be aligned with SDGs 7, 9, 10, 12, 13, 14

and 17 there are still multiple challenges. We believe that a

number of priority actions provide opportunities to overcome

these challenges: 1) increase research for the development of

both competitive and environmentally benign offshore

renewable-energy technologies, considering, in addition to the

requirement of low GHG emissions, their associated impacts on

ecosystem services (SDG 9); 2) incorporate the measurement of

ecosystem services into management strategies for industrial

development in the deep ocean that draws on new

interdisciplinary scientific approaches, data, and technologies

available; and 3) strengthen international agreements and

collaborations across sectors (science, decision makers,

industry) and build capacity (SDG17) for fair and equitable

access (SDG 10) to energy resources (SDG 7) as well as the other

services and benefits derived from deep-ocean ecosystems (SDG

14). The transition of our energy systems and the effective

management of ecosystem services are key to responding to

the short timeframes involved in reaching the target of 1.5°C

average global temperature increase by 2050 (SDG 13) (Box 4).

We recognize that there are many knowledge gaps about

deep-sea ecosystem services (Mejjad and Rovere, 2021). But,

now, after 100 years of deep-sea research, it is clearly understood

that these systems are key for the well-being of both human

society and Earth itself (Thurber et al., 2014; Mejjad and Rovere,

2021) and that preserving their services requires managing them

directly and effectively. There is an urgent need to understand

deep-sea ecosystem services and to integrate them into the
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scientific research, technology development, and management

policies involved in the continued and expanded exploitation of

energy resources in the deep ocean. We believe that overcoming

this challenge is feasible by integrating new knowledge, data, and

technologies in conjunction with collaborations across scientific

networks, and from different sectors (scientific, policy makers,

and industry). Firstly, this can help in understanding the

relationship between the costs and the benefits of exploiting

deep-sea resources (Thurber et al., 2014) and in this case, energy

resources (whether renewable or O&G). Secondly, it can

strengthen equitable and fair access to the sustainable use of

deep-sea energy resources. The implementation of a framework

based on ecosystem services will enable better informed decision-

making on the exploitation of deep-sea energy resources.
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Summary of suggested
priority actions

We offer the following recommendations to integrate deep

water O&G management with a more holistic view and

stewardship of the ocean.
• Adopt an ecosystem services-based management

framework for the offshore oil and gas industry built

on an understanding of how ecosystem structure and

function support the services that maintain health of

marine life and human populations.

• Advance new technologies (such as eDNA and robotics)

that enable and can expand baseline assessment and
BOX 4 Summary of best practices for environmental impact assessment (EIA) including data, technology and strategies.

The environmental data must address the impact on deep-sea essential ecological variables:

◦ What are the components of ecosystems that play key roles on ecosystem functions and services, how they relate with species, how they vary across
space and time? Consider:

1. Type of habitats involved in provisioning services: sustaining high biodiversity and biomass of living resources, novel genetic resources,
mineral and/or energy resources.

2. Habitats, species, communities involved in regulating services: regulation of climate, biogeochemical processes, detoxification, sequestration
and cycling of pollutants.

3. Habitats, species, communities involved in supporting services (e.g., fish stock)
4. Habitats, species, communities involved in cultural services: traditional knowledge, art, technology, religion, science, etc.

◦ Biodiversity (species and genetic diversity, rarity, endemism, evolutionary processes, ecosystem redundancy)
◦ Connectivity (genetic, spatio-temporal, the ecotones and chemotones, between eco-regions, interspecific relations e.g., trophic links)
◦ Climate risk (how impacts may affect adaptive and evolution capacity to climate change -considering increasing temperature, decrease in oxygen,

increasing acidification)?
◦ Synergetic pressure (what are the cumulative impacts for the specific area - fisheries, contamination, climate change, others? how do impacts affect

the resilience ability of the habitat, species, community)?.

The required technology includes:
◦ multibeam echosounder bathymetry of the potential impact area (beyond the activity area)
◦ high-definition video and photo surveys of the seafloor using ROV/AUV/HOV
◦ physical samples of biota and sediments
◦ skilled taxonomists and specialists from other basic disciplines of marine sciences to calibrate, guide, and supervise the data acquired

Additional recommended technologies:
◦ high-definition optoacoustic imaging (sonar and video)
◦ eDNA metabarcoding– de novo biotic indices, structural community metrics
◦ metagenomics/metatranscriptomics- functional community metrics
◦ Robotics (cabled, docked and autonomous observatories)
◦ eco-genomic sensors (automated eDNA samplers)
◦ high resolution acoustic tools (3,5 kHz sub-bottom profilers, side scan sonars, vehicle mounted multibeam echosounders) for benthic and pelagic

habitat mapping

Recommended strategies:
◦ Ecosystem-based recommendations by FAO and ISA addressing direct physical impact of the seabed could be applicable to those from offshore

energies. Integration of management strategies for mining, deep-sea fisheries, and offshore energies.
◦ Harmonized and standardized management strategies and efforts for offshore industries across EEZs.
◦ Climate-based MPA design should be considered for exclusion of areas for control (monitoring) and/or conservation from the operation areas of

offshore energy industries.
◦ Science-stakeholders (politics and industry) agreements to inform management policies (including but not limited to EIAs).
◦ Capacity building initiatives through industry-science-politics agreements, global scientific networks, and philanthropy for accessing cruises,

environmental data, technologies, open access publications, etc.
◦ Transparency (improving accessibility to environmental data owned by the industry).
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monitoring of deep-sea ecosystems, their functions and

services.

• Build intellectual and infrastructure capacity among all

nations to employ advanced technologies and tools to

advance the incorporation of ecosystem services into

ecosystem-based management strategies.

• Share knowledge and best practices of UN bodies

governing other international industries with the

o ff s ho r e en e r g y i ndu s t r y t o imp rov e t h e

standardization of impact assessment, spatial

protections, monitoring, transparency, and stakeholder

engagement.

• Harmonize the activities of UN and regional

management bodies across deep-sea realms (sea floor,

water column) and resource extraction activities (energy,

mining, fishing) and stressors (pollution, climate) to

achieve sustainable development goals and ocean

sustainability.
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