

 University of Groningen

Balancing privacy and accountability in digital payment methods using zk-SNARKs
Bontekoe, Tariq; Everts, Maarten; Peter, Andreas

Published in:
2022 19th Annual International Conference on Privacy, Security & Trust (PST)

DOI:
10.1109/PST55820.2022.9851987

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Bontekoe, T., Everts, M., & Peter, A. (2022). Balancing privacy and accountability in digital payment
methods using zk-SNARKs. In 2022 19th Annual International Conference on Privacy, Security & Trust
(PST) IEEE Xplore. https://doi.org/10.1109/PST55820.2022.9851987

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 14-02-2023

https://doi.org/10.1109/PST55820.2022.9851987
https://research.rug.nl/en/publications/5f808b34-bc1d-4bb4-bee6-2a5d1499368a
https://doi.org/10.1109/PST55820.2022.9851987

Balancing privacy and accountability in digital
payment methods using zk-SNARKs

Tariq Bontekoe
TNO, Unit ICT

Groningen, the Netherlands
tariq.bontekoe@tno.nl

Maarten Everts
University of Twente

Linksight
Enschede, the Netherlands
maarten.everts@utwente.nl

Andreas Peter
University of Oldenburg
Oldenburg, Germany
andreas.peter@uol.de

Abstract—In this paper we propose and implement a digital
permissioned decentralized anonymous payment scheme that
finds a balance between anonymity and auditability. This ap-
proach allows banks to ensure that their clients are not participat-
ing in illegal financial transactions, whilst clients stay in control
over their sensitive, personal information. Existing anonymous
payment schemes often provide good privacy, but only little
or mostly no auditability. We provide both by extending the
Zerocash zk-SNARK based approach and adding functionality
that allows for customer due diligence ‘at the gate’. Clients can
do fully anonymous transactions up to a certain amount per
time unit and larger transactions are forced to include verifiably
encrypted transactions details that can only be opened by a select
group of ‘judges’.

Index Terms—auditability, anonymous e-cash, blockchain, dis-
tributed ledger technologies, zero-knowledge proof, zk-SNARKs

I. INTRODUCTION

While in the previous century most of our transactions
were still made with cash, nowadays a large fraction of
monetary transaction are made using a plastic bank card,
mobile banking, or other digital transaction forms. These
digital transactions give banks access to their clients’ personal
and sensitive information. In many cases this is undesirable
and unnecessary.

A recent approach to return control from financial trans-
actions to their clients, without requiring them to pack their
wallets with cash, are so called cryptocurrencies. Of par-
ticular interest are cryptocurrencies with a strong focus on
transactional privacy, so called privacy coins. Unfortunately,
this focus on privacy is often in conflict with anti-money
laundering (AML) regulations, which causes some regulatory
bodies to take actions against privacy coins and the exchanges
that list them [1].

Because of this, it might seem that most privacy coins are
on the complete other side of the spectrum with respect to reg-
ulatory bodies and traditional financial institutions. However,
this need not necessarily be the case. In this paper we present
a privacy enhanced digital payment scheme that bridges this
apparent gap.

We propose a digital payment scheme that is the first step
towards an anonymous payment system that adheres to exist-
ing auditability regulations for (digital) financial transactions

[2]. The proposed scheme provides complete transactional
anonymity to its users, whilst also allowing for auditability.
We achieve auditability through an approach based on both
know-your-customer (KYC) ‘at the gate’ and enclosing veri-
fiably encrypted transaction details to larger transactions. Our
proposal is not a suggestion for yet another (permissionless)
cryptocurrency, rather we propose a permissioned, decentral-
ized approach backed by participating banks, with a direct
connection to fiat currency.

We design our scheme in such a way, that it can be imple-
mented on top of a permissioned blockchain. Access control
and verification is provided by a group of administrators,
consisting of e.g. participating banks, financial institutions and
regulatory bodies.

a) Related work: Anonymous payment schemes exist in
both centralised and decentralised forms. Centralised solutions
[3], [4] offer anonymous transactions in which one central
party, e.g. a bank, plays a key role and is in general responsible
for assuring validity, thereby creating a potential single point
of failure.

Decentralised schemes on the other hand do not suffer
from the drawback of having a single point of failure and
have gained increasing popularity recently. Examples of de-
centralized schemes are privacy coins such as Monero [5]
and Verge [6], that achieve anonymity through e.g. traceable
ring signatures [7]. A disadvantage of these schemes is that
they only obfuscate part of the transaction data instead of fully
hiding all transaction details.

However, schemes that hide all transaction details com-
pletely do exist. There are two well-known schemes of this
type: Zerocoin [8] and Zerocash [9]. Zerocash can be seen
as the more mature and more practical version of Zerocoin.
Both approaches achieve their privacy through the use of zero-
knowledge proofs.

Since we want to provide the highest possible level of
anonymity for users of our digital payment scheme, and want
to avoid the risks of a single point of failure, the zk-SNARK
approach as used by Zerocash best fits our intended use.
However, none of the schemes discussed above is auditable.

In recent literature we do find schemes that provide both
anonymity and auditablity. One such scheme [10] is based
on ring signatures, which do not fully hide all transaction

20
22

 1
9t

h
A

nn
ua

l I
nt

er
na

tio
na

l C
on

fe
re

nc
e

on
 P

riv
ac

y,
 S

ec
ur

ity
 &

 T
ru

st
 (P

ST
) |

 9
78

-1
-6

65
4-

73
98

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
PS

T5
58

20
.2

02
2.

98
51

98
7

Authorized licensed use limited to: University of Groningen. Downloaded on February 13,2023 at 11:00:01 UTC from IEEE Xplore. Restrictions apply.

details. Other schemes use zk-SNARK based approaches [11],
[12] for achieving auditability and anonymity. [12] focuses
on decentralized identity management and therefore does not
present auditability measures specific to payment systems. Our
approach also differs from [11] in that we use an account-
based approach to allow for AML measures that cover multiple
transactions.

b) Our contribution: Because the Zerocash protocol al-
ready largely fits our problem setting, we choose to use an
adaptation of this protocol as basis for our new protocol. To
address the missing functionality for our use case, this paper
introduces a number of contributions that are set out in more
detail in Section III-A.

First, we present how to transform the decentralised anony-
mous payment scheme as defined in Zerocash [9] into an
account-based and permissioned one. Secondly, we show
how the conversion between existing fiat currency and its
anonymous counterpart can be achieved. Thirdly, we add
auditability functionalities to the decentralised anonymous
payment scheme, without giving in on the provided level of
anonymity. Auditability allows us to limit the amount of value
that any user can transfer anonymously in a certain fixed time
frame. In case a user wishes to spend more than this limit, he
or she needs to enclose verifiably encrypted transaction details,
that can be opened by a select group of judges if necessary.

Moreover, we introduce anonymous timelocks. Anonymity
in the sense that only the sender and the receiver of a trans-
action are aware of the timelock being in place. A timelock
can be used to make a transaction output only spendable after
a given amount of time has passed.

Finally, we present the details on a proof of concept
implementation of our scheme.

c) Structure: The remainder of this paper is structured as
follows. In Section II the most relevant cryptographic building
blocks are described. A description of the solution is provided
in Section III. Implementation details are then discussed in
Section IV. We conclude in Section V.

II. PRELIMINARIES

The decentralized payment scheme that will be defined
in the following pages makes use of existing cryptographic
building blocks. In this section we explain the two most
prominent building blocks: zk-SNARKs and SAVER.

a) zk-SNARKs: The most prominent cryptographic build-
ing block on our solution is the zero-knowledge succinct non-
interactive argument of knowledge (zk-SNARK), as introduced
by Bitansky et al. [13]. A SNARK is a succinct non-interactive
argument attesting to the fact the there exists a witness that
evaluates a given statement to true, and moreover the prover
also knows this witness. It is similar to a NIZK, in the
sense that it only requires the additional extra condition of
succinctness.

More precisely, one can define a zk-SNARK scheme with
the following three polynomial-time algorithms, where a bi-
nary statement that we want to prove is encoded in the
arithmetic circuit C.

• Setupzkp(1λ, C) → (pk, vk) is the setup function that
generates the proving pk and verifying vk key, given the
security parameter and a circuit C over which proofs are
to be generated.

• Provezkp(pk, x, a) → π constructs a zk-SNARK proof π
given a proving key pk that encodes the circuit over which
the proof is constructed. The function also requires the
right amount of public inputs x and auxiliary inputs a.

• Verifyzkp(vk, π, x) → b verifies the proof π over the
circuit that is encoded in the verifying key vk, given
public inputs x. The result is b = true if verification
succeeds, otherwise b = false.

Such a zk-SNARK scheme should satisfy the four informal
definitions1 below, for any given security parameter λ. In these
definitions RC is defined as the set of all valid relations with
respect to the circuit C.

Definition 1 (Completeness). An honest prover should be
able to convince an honest verifier, given a true statement.
Concretely, given (x, a) ∈ RC ,

P
[

Verifyzkp(vk, π, x) = 1|

(pk, vk)← Setupzkp(1λ, C);π ← Provezkp(pk, x, a)
]
≈ 1.

Definition 2 (Proof of knowledge). Any bounded prover can
only convince an honest verifier, if the prover “knows” the
witness for a given instance. Concretely, for every polynomial-
time bounded adversary A, there exists a polynomial-time
bounded extractor EA with complete access to A, such that

P
[
(x, a) ̸∈ RC ∧ Verifyzkp(vk, π, x) = 1|(pk, vk)← Setupzkp(1λ, C);

(π, x)← A(pk, vk); a← EA(pk, vk)
]
≈ 0.

Definition 3 (Zero-knowledge). A proof generated by an hon-
est prover does not leak any information other than the truth
(or not) of the statement. Concretely, there exists a polynomial-
time simulator Simzkp such that for any polynomially bounded
adversary A the following holds:

P
[
A(pk, vk, π)|(pk, vk)← Setupzkp(1λ, C);

π ← Provezkp(pk, x, a) = 1

]
≈ P

[
A(pk, vk, π)|

(pk, vk)← Setupzkp(1λ, C);π ← Simzkp(pk, x, a) = 1

]
.

For the payment scheme that will be defined in the coming
pages, we use the Groth16 zk-SNARK scheme [14], due to
its efficiency and availability of existing implementations.

1We provide the computational versions of all four statements. These can
be easily converted to their perfect counterparts.

Authorized licensed use limited to: University of Groningen. Downloaded on February 13,2023 at 11:00:01 UTC from IEEE Xplore. Restrictions apply.

b) SAVER: To ensure auditability of conspicuous trans-
actions we use a verifiable encryption scheme known as
SNARK-friendly, additively-homomorphic, and verifiable en-
cryption and decryption with rerandomization (SAVER) [15].
As far as the authors are aware, SAVER is the first succinct
non-interactive argument of knowledge (SNARK)-friendly en-
cryption scheme out there. Next to providing us with ver-
ifiable encryption, the scheme has more features. SAVER
has verifiable decryption, rerandomization, and is additively
homomorphic. We use and focus on verifiable encryption
and decryption features. A verifiable encryption scheme is a
scheme in which one can prove certain properties of a message
m, when only given the encryption c of m. We use this
property in our scheme, by encrypting transaction details such
as address keys whilst simultaneously using these address keys
in our zk-SNARK proof. The verifiable decryption property
of SAVER allows us to proof valid decryption of a ciphertext
without revealing the decryption key. This is especially useful
in the case, that one only wants to show decryption of one
message out of a large group.

SAVER builds upon the constructions of Groth16 and
only works with this and related zk-SNARK schemes. This
also strengthens our choice for Groth16 for our zk-SNARK
scheme. We refer the reader to [15] for the definitions of the
construction.

III. SOLUTION CONSTRUCTION

In order to clarify our payment scheme construction, we
first explain the ideas behind it. In this section we first give
an overview of all requirements that our final construction
should satisfy. Subsequently, we present a detailed description
of the inner workings of our construction and show how the
requirements are incorporated step-by-step.

A. Requirements

Below, we present a set of nine requirements that our pro-
tocol adheres to. These requirements ensure that the solution
follows the scope as set out above. In line with the definition
of the decentralised payment scheme from Zerocash [9] we
define the following four basis requirements.

a) Completeness: A digital payment scheme is complete
when any received value that has not yet been spent can
actually be spent or stored in the receiver’s account balance.
Moreover, it requires that any value from the account balance
that was not yet spent can be used, i.e. transferred to another
user.

b) Ledger indistinguishability: This requirement focuses
on the fact that no new information should be leaked to an
adversary from everything that is published on the distributed
ledger. The term ‘no new information’ refers to the fact that no
other information should be leaked from the publicly available
values than is required for the payment scheme to work.

c) Transaction non-malleability: Transaction non-
malleability requires valid transactions to be constructed in
such a way that no adversary can adapt a transaction such that
it is either no longer valid, or performs a different transfer

than the original sender intended. To be a bit more precise,
no adversary should be able to alter any of the data included
in a valid transaction.

d) Balance: A digital payment system is said to be in
balance, if no user can own or spend more value than what he
or she received or converted from fiat currency into the system.

In addition to the requirements from Zerocash we also add
five new requirements to include our own goals and research
questions.

e) Access control: In a digital transaction scheme with
access control, the administrators of the system should be
able to decide who does and who does not get access to the
transaction system. In this case, access describes the possibility
to perform transactions in the system and write something
on the distributed ledger or blockchain. Moreover, it should
also be possible to revoke access of certain users in case
this is needed. Finally, access control also dictates that only
administrators determine the state of the blockchain.

f) Conversion to/from fiat currency: This requirement
describes the linkage between the transfer of value in the
digital transaction scheme and transfer of value using fiat
currency. In order to link these two types of value, a conversion
between both should be possible in the payment scheme. This
conversion might be an actual conversion of one into the other,
alternatively the scheme might also contain certain notes that
represent fiat currency without an actual conversion taking
place. In our approach we use the first option.

g) Spend limit: The spend limit requires that the payment
system provides a possibility to limit the amount of value any
user can spend in a certain time frame. To make this more
precise, it means that the the sum of the value of all outgoing
transactions in time frame T , for any user u, may not be higher
then a certain predetermined limit L.

h) Auditability: This requirement is defined in coherence
with the spend limit. In our use case, we consider auditability
to be only required for transactions that surpass the spend
limit. These transactions should include the important transac-
tion details in a special field: transferred value, sender address,
receiver address. This field should be encrypted as to not leak
information to other users. Decryption of the field should only
be possible by a select group of actors referred to as judges.

i) Timelocks: It should be possible for a sender to define
a transaction with a timelock. This timelock should make
sure that the receiver can only spend the output value of the
transaction after the set amount of time has passed. In order to
prevent side-channel attacks, it should not be visible to actors
other than the sender and receiver that a timelock is in place.

B. Zerocash basis

In this section we describe the parts of Zerocash [9] that are
used as a basis for our further additions and improvements.
Our basis does differ from [9] in some places. We refer the
reader to the original paper for a more in-depth description.

Every user u in our payment scheme has an address key
pair, consisting of a public address key pkaddr and a secret

Authorized licensed use limited to: University of Groningen. Downloaded on February 13,2023 at 11:00:01 UTC from IEEE Xplore. Restrictions apply.

address key skaddr. A new user first generates a random skaddr
and computes pkaddr := PRFaddr

skaddr
(0), where PRFaddr

x is a pseudo
random function (PRF) with seed x. Subsequently, u generates
an asymmetric encryption key pair (skenc, pkenc) for a key-
private encryption scheme (IK-CCA) [16]. These keys can be
derived from the secret address key using a key derivation
function (KDF). Both pkaddr and pkenc are made publicly
available, the secret keys are kept hidden.

The virtual currency in our scheme is called a note and
consists of a value vnote and an owner with pkaddr. Next to this,
each note has a commitment cmnote := Commnote

snote
(pkaddr∥vnote)

computed with the secret commitment trapdoor snote and a
nullifier η to prevent double spending.

Each note that is in circulation has its commitment cmnote
included as a leaf in a Merkle Tree, that we will refer to as
the Note Merkle Tree. The root of this Note Merkle tree rtnote
is included on the blockchain, thereby indirectly including all
note commitments. This root gets updated for every new note
that comes into circulation.

Suppose, now that user ua want to transfer its note
noteold := (sold

note, vnote, pkaaddr, cmold
note) to user ub. To do this,

ua should follow the following steps.
Firstly, ua creates a new note notenew := (snew

note, vnote, pkb
addr,

cmnew
note), where snew

note is a random commitment trapdoor and
cmnote := Commnote

snote
(pkaddr∥vnote). Subsequently, ua computes

a nullifier η := PRFη
skaddr

(posnote), where posnote is the position
of noteold in the Note Merkle tree. PRFη

x should be a collision-
resistant PRF to ensure uniqueness of the nullifier.

In order to enable ub to spend notenew, the commit-
ment inputs should be transferred to ub, without leaking
them. ua should thus compute the ciphertext datanew

note :=
Encpkbenc

(snew
note∥vnote), where Encx(m) is the function that en-

crypts the message m under the public key x.
To ensure transaction integrity, any transaction posted on

the blockchain should also be signed. Therefore, another
cryptographic primitive is needed: a SUF-1CMA signature
scheme [17]. During the construction of a transaction, user
ua randomly samples an appropriate asymmetric signature
key pair (pksig, sksig) for this scheme and computes k :=
CRH(pksig) (where CRH is a collision-resistant hash function)
and κ := PRFκ

skaaddr
(k). The value of κ functions as a MAC

and is needed to tie the signature key pair to this particular
message.

Then, ua constructs a zk-SNARK proof π for the following
statement:

“I know sold
note, vnote, pkaaddr, skaaddr, cmold

note, posnote, pkbaddr,
snew

note such that the following holds:
• The public address key of the sender matches the sender’s

secret address key: pkaddr = PRFaddr
skaddr

(0);
• Both commitments are constructed correctly: cmold

note =
Commsold

note
(pkaaddr∥vnote) and cmnew

note =

Commnote
snew

note
(pkbaddr∥vnote);

• The commitment of the old note cmold
note appears at position

posnote in the Note Merkle tree;
• The nullifier to the old note is constructed correctly: η =

PRFη
skaddr

(posnote);”

• The public signature key is tied to this message by means
of κ: κ = PRFκ

skaddr
(k)

Using the above steps, value is transferred from one user to
another by creating a new note with the same value. The nulli-
fier to the old note is published to ensure that the old note be-
comes unusable. When ua has performed all calculations, he or
she now signs the public parts tx := (cmnew

note, η, π, datanew
note, κ, k)

using sksig, thus obtaining signature σ. Finally, ua publishes
pksig, tx and σ. The admin validates the proof of the transaction
and if valid adds cmnew

note to the Note Merkle Tree, such that it
can be spent by ub.

C. Towards an account-based model

In this section we present an updated version of our protocol
that moves the protocol from the UTXO-model towards an
hybrid account-based model, loosely based on [18]. This adap-
tion introduces new data structures that are used to implement
the remaining requirements.

In our basis version the user cannot get change back from
a transaction, we solve this using a new data structure: private
memory cells for the storage of an account balance. These
memory cells can be stored in another Merkle tree, which will
be called the Memory Merkle tree. Analogously to the Note
Merkle tree it consists of commitments to memory cells, which
contain the user’s public address key and current account
balance vmem: cmmem := Commmem

smem
(pkaddr∥vmem), where smem

is a randomly sampled commitment trapdoor.
Every time a user makes a transaction, he or she should

also update his or her own memory cell in order to process
the change in account balance. This change in account balance
is used to balance the difference between the value of the
input note and that of the output note. To prevent linkability
of transactions, these updates consist of publishing a new
commitment to the updated account balance and same public
address key and publishing a nullifier to the old memory cell
such that it becomes invalidated, i.e. it cannot be used any
more. We will refer to a memory cell with mem and to the
memory nullifier with µ.

This addition gives rise to several additional and altered
steps in the protocol. Where an old transaction had a single
input note and a single output note, a new transaction has two
inputs and two outputs. These inputs are an old, unused note
and the latest memory cell. The outputs are a new note and
a new, updated memory cell. Next to the unspent input note
noteold := (sold

note, v
old
note, pkaddr,

cmold
note), the user also has the latest version of its memory

cell memold := (sold
mem, v

mem
old , pkaddr, cmold

mem) as input to a
transaction. For the construction of the new note everything
stays the same except for the fact that the value of this
new note vnew

note can now be any positive value, as long as
the account balance does not become negative. This updated
account balance is calculated as vnew

mem := vold
note + vold

mem − vnew
note.

The commitment to the new memory cell is then computed
as cmnew

mem := Commmem
snew

mem
(pkaddr∥vnew

mem), where snew
mem is a new

randomly sampled trapdoor and pkaddr is the sender’s public
address key. Obviously, the old memory cell should also be

Authorized licensed use limited to: University of Groningen. Downloaded on February 13,2023 at 11:00:01 UTC from IEEE Xplore. Restrictions apply.

invalidated, hence we need to calculate and publish the nullifier
to this. This nullifier µ is computed analogously to the nullifier
of the old note as µ := PRFµ

skaddr
(posmem), where posmem is the

position of the commitment to the old memory cell in the
Memory Merkle tree.

Finally, the user also needs to prove in the zk-SNARK
proof π that the new commitments and nullifier have been
constructed correctly and that the transaction values are in
balance.

Additionally to what is already included in the transaction
tx in previous versions, we now also publish (and sign) µ,
cmnew

mem and the updated proof π.
Remembering the commitment trapdoor that is used for the

new memory commitment is not very practical. Therefore, the
sender can include the encrypted version of the commitment
trapdoor in the transaction, by encrypting it under the sender’s
own public encryption key. Concretely, the field datanew

mem :=
Encpkenc

(snew
mem) should be added to tx.

D. Access control

Using the previous version of our protocol, we show how to
enforce the access control requirement in the two new protocol
versions below. 2

In order to let the admin function as a gatekeeper to the
digital transaction system, we introduce one more Merkle tree:
the Account Merkle Tree. This Account Merkle tree stores
commitments to all the accounts that are allowed to perform
transactions in the system. Specifically, it stores commitments
of the form cmcred := Commcred

scred
(pkaddr∥skaddr) for every

accepted user u, where (pkaddr, skaddr) is u’s address key
pair, or credentials. By giving the admin control over which
credentials are allowed in the Account Merkle tree, the admin
can also control which users can perform transactions and
which not. Additionally, the admin is needs an asymmetric key
pair for a SUF-CMA signature scheme to be able to publish
and sign messages as the admin.

Implementation-wise, this means that whenever a new user
u wants to join the system, u should ask an admin to get
an entry in the Account Merkle Tree. To do this, u first
constructs (pkaddr, skaddr) and (pkenc, skenc), samples a random
scred and computes cmcred := Commcred

scred
(pkaddr∥skaddr). u also

constructs a zk-SNARK proof π stating: “I know scred and
skaddr such that pkaddr and cmcred are constructed correctly.”.
The user u then sends cmcred, pkaddr and π to the admin.
When everything (including customer due diligence (CDD)) is
correct, the admin adds the commitment cmcred to the Account
Merkle tree. In addition, the admin publishes a message on the
blockchain, in which the addition of the commitment is stated.

The admin can revoke an account, if this is needed, remov-
ing the commitment from the Merkle Tree and publishing a
similar message on the blockchain.

2To clarify the explanation, we present the administrator as a single entity.
This is easily extended to a group of administrators.

E. Proof of access

In this version we show how a transaction sender u con-
structs proof of having passed access control. u has credentials
(pkaddr, skaddr) and credential commitment cmcred present in the
Account Merkle tree. The only thing that really changes in this
version is the zk-SNARK proof π. Some additional statements
need to be proved there. These additional statements are:
“I know pkaddr, skaddr, cmcred, and scred, such that cmcred is
constructed correctly and is contained in the Account Merkle
tree.”

Because of the inclusion of the public address key pkaddr
in the credential commitment, one statement of the earlier
version of this protocol can be removed from the proof.
This concerns the statement: “I know pkaddr, skaddr such that
pkaddr = PRFaddr

skaddr
(0).” This statement has become redundant

since it is already proved when gaining access.

F. Fiat currency to anonymous notes

In this version we describe how one should actually create
a new anonymous note from fiat currency.

To obtain a new note with value vnew
note, u pays the amount

vnew
note in fiat currency to the admin. Subsequently, the admin

constructs a new note with value vnew
note destined for the public

address key pkaddr of the user u. Explicitly, the admin com-
putes cmnew

note := Commnote
snew

note
(pkaddr∥vnew

note), with snew
note a randomly

sampled commitment trapdoor. The admin also computes the
encrypted commitment secrets datanew

note, analogously to a user-
to-user transfer.

In addition to these computations, the admin constructs a
zk-SNARK proof π to ensure correct construction. Finally,
the admin publishes cmnew

note, π and datanew
note, all signed under

the admin’s secret signature key to the blockchain. The user u
observes this transaction, and can decrypt datanew

note to ascertain
that the transaction was sent to u and use this note as input
for a future transaction.

G. Anonymous notes to fiat currency

The only building block that is still missing in the basis
protocol, is that of converting one’s anonymous notes back to
fiat currency.

If u wants to convert a received note of value vold
note to fiat

currency, u should perform a normal transaction to the public
address key of the admin, with one simple addition. The admin
should know which user sent the note. This is achieved by
adding u’s public address key pkaddr to the field with encrypted
secrets as dataold

note := Encpkold
enc
(sold

note∥vold
note∥info), where info

contains pkaddr and possibly some extra information.
The rest of the conversion is now up to the admin who

finds this transaction on the blockchain. The admin calculates
the nullifier η to the received note in the usual way, and then
computes a zero-knowledge proof π attesting to the correct
construction of the commitment and nullifier, possession of
the note and presence in the Note Merkle Tree.

Subsequently, the admin publishes η, π and the admin’s
public address key signed under the admin’s public signature
key. Once this message is accepted on the blockchain, the

Authorized licensed use limited to: University of Groningen. Downloaded on February 13,2023 at 11:00:01 UTC from IEEE Xplore. Restrictions apply.

Conference’17, July 2017, Washington, DC, USA Tariq Bontekoe, Maarten Everts, and Andreas Peter

CRED (Full zk-SNARK statement for creation of credentials)
Given (cmcred, pkaddr) , the prover knows (skaddr, scred) , such that the fol-
lowing statements hold:

• Correct derivation of public address key from secret address key:
pkaddr = PRFaddrskaddr

(0) ;
• Correct computation of credential commitment:
cmcred := Commcred

𝑠cred (pkaddr ∥skaddr) .
CTO (Full zk-SNARK statement of a fiat-to-note conversion)
Given (cmnew

note) , the prover knows (𝑠newnote, 𝑣
new
note, pk

new
addr) , such that the fol-

lowing statement holds:
• Correct computation of output note commitment:
cmnew

note = Commnote
𝑠newnote
(pknewaddr ∥𝑣newnote ∥0) .

CFROM (Full zk-SNARK statement of a note-to-fiat conversion)
Given (rtnote, [, pkaddr) , the prover knows (skaddr, 𝑠oldnote, 𝑣

old
note, 𝑡

old
note, cmold

note,
pathnote, posnote) , such that the following statements hold:

• Correct derivation of public address key from secret address key:
pkaddr = PRFaddrskaddr

(0) ;
• (posnote, pathnote) is the valid Merkle Tree path from
𝐶𝑅𝐻note (cmold

note, 𝑡
old
note) to rtnote;

• Correct computation of input note commitment:
cmold

note = Commnote
𝑠oldnote
(pkaddr ∥𝑣oldnote ∥0) ;

• Correct computation of input note nullifier: [= PRF[skaddr (posnote) .
XFER (Full zk-SNARK statement of a note-to-note transaction)

Given (pksndr, pkrcvr, 𝑣xfer, rtmem, rtnote, rtcred, 𝑘, ^, [, `, cmnew
note, cmnew

mem, 𝑡
new) ,

the prover knows (rtrealmem, rtintmem, rtintnote, [
int, pkaddr, skaddr, 𝑠cred, cmcred, 𝑣

old
note,

𝑠oldnote, 𝑡
old
𝛿
, cmold

note, 𝑡
old
note, 𝑣

old
mem, 𝑠

old
mem, 𝑐

old, cmold
mem, 𝑡

old
mem, 𝑣

ceil
mem, 𝑠

ceil
mem, 𝑐

ceil, cmceil
mem,

𝑡 ceilmem, pathcred, pathnote, pathmem, pathceil, posnote, posmem, poscred, posceil, 𝑠newnote,
𝑠newmem, 𝑣

new
note, 𝑣

new
mem, 𝑐

new, pknewaddr, 𝑏note, 𝑏mem, 𝑏saver, 𝑡𝛿) , such that the follow-
ing statements hold:

• Correct computation of credential commitment:
cmcred := Commcred

𝑠cred (pkaddr ∥skaddr) ;• Correct computation of input note commitment:
cmold

note = Commnote
𝑠oldnote
(pkaddr ∥𝑣oldnote ∥𝑡old𝛿

) ;
• Correct computation of previousmemory cell commitment: cmold

mem :=
Commmem

𝑠oldmem
(pkaddr ∥𝑣oldmem ∥𝑐old) ;

• Correct computation of ceiling memory cell commitment: cmceil
mem :=

Commmem
𝑠ceilmem
(pkaddr ∥𝑣ceilmem ∥𝑐ceil) ;

• (poscred, pathcred) is the valid Merkle Tree path from
cmcred to rtcred;
• (posnote, pathnote) is the valid Merkle Tree path from
CRHnote (cmold

note, 𝑡
old
note) to rtintnote;

• (posmem, pathmem) is the valid Merkle Tree path from
CRHmem (cmold

mem, 𝑡
old
mem) to rtintmem;

• (posceil, pathceil) is the valid Merkle Tree path from
CRHmem (cmceil

mem, 𝑡
ceil
mem) to rtintmem or 𝑐ceil = 0;

• Correct computation of previous memory cell nullifier:
` = PRF`skaddr (posmem) ;
• Correct computation of input note nullifier:[int = PRF[skaddr (posnote) ;• If there is no previous memory cell set the related values accordingly:
if𝑏mem = false, then (𝑣oldmem = 0 and posmem = −1 and rtmem =
rtrealmem and 𝑐ceil = 0 and 𝑐old = 0) , else if 𝑏mem = true, then
rtmem = rtintmem;
• If there is no input note set the related values accordingly: if𝑏note =
false, then (𝑣oldnote = 0 and [= 0 and rtnote = 0) , else if

𝑏note = true, then ([= [int and rtnote = rtintnote) ;
• Correct calculation of new account balance in memory cell: 𝑣newmem =
𝑣oldnote + 𝑣oldmem − 𝑣newnote;
• The new total outgoing value is correct: 𝑐new = 𝑐old + 𝑣newnote · (1 −
𝑏saver) ;
• The output note value and new account balance lie in the correct
range: 0 ≤ 𝑣newmem, 𝑣

new
note ≤ 𝑣max;

• The transaction is not an empty transaction: 0 < 𝑣newnote + 𝑣oldnote.
• The ceiling memory cell is old enough: 𝑡 ceilmem < 𝑡new −𝑇 ;
• The spend limit is not surpassed: 𝑐new −𝑐ceil ≤ 𝐿 or 𝑏saver = true;
• The note is unlocked: 𝑡oldnote + 𝑡old𝛿

≤ 𝑡new.
• Correct computation of output note commitment:
cmnew

note = Commnote
𝑠newnote
(pknewaddr ∥𝑣newnote ∥𝑡𝛿) ;

• Correct computation of new memory cell commitment: cmnew
mem :=

Commmem
𝑠newmem
(pkaddr ∥𝑣newmem ∥𝑐new) ;

• The public signature key is tied to this message with the sender’s
secret address key by means of ^: ^ = PRF^skaddr (𝑘) ;
• The saver encrypted values are defined correctly if 𝑏saver = true:
pksndr = pkaddr · 𝑏saver, pkrcvr = pknewaddr · 𝑏saver, and 𝑣xfer = 𝑣newnote ·
𝑏saver;
• 𝑏note, 𝑏saver, 𝑏mem ∈ {0, 1}.

Fig. 1. zk-SNARK statements

admin transfers the note value vold
note in fiat currency to u in the

regular fashion.

H. Spend limit

The only algorithm that really needs adaptations is that of a
regular transfer transaction, since this is the type of transaction
we actually want to limit.

Say we want to limit the amount that any user can spend
during any time span of size T to L. In that case, any sender
u should prove that the value of u’s new transaction vnote

new plus
the amount of all transactions u spent between now (tnow) and
T time ago (tnow − T) is not more than L. In order to prove
this, u needs to add some more information to each memory
cell and also make use of another old memory cell. We will
denote this other old memory cell as the ‘ceiling’ memory cell
memceil.

Each memory cell gets the following additional fields: c
for the total amount of value transferred anonymously up

to and including the transaction that created this memory
cell and t for the time this memory cell got updated. We
add c to the commitment of the memory cell: cmmem =
Commmem

smem
(pkaddr∥vmem∥c). On the other hand we add t to the

Memory Merkle tree. Explicitly, we compute the Merkle leaf
as CRHmem(cmmem∥t) using a new hash function CRHmem,
instead of adding only the commitment.

When a user u wants to send a new note with value vnew
note at

time tnew, u needs to have two memory cells: the latest mem-
ory cell memold = (sold

mem, v
old
mem, pkaddr, cmold

mem, c
old, told) and a

memory cell memceil = (sceil
mem, v

ceil
mem, pkaddr, cmceil

mem, c
ceil, tceil),

with tceil < tnew−T . Also, u needs to ensure that cold− cceil +
vnew

note ≤ L.

In this version of the protocol a memory cell is computed
as cmnew

mem := Commmem
snew

mem
(pkaddr∥vnew

mem∥cnew), with cnew :=

cold + vnew
note. Finally, u can construct the zk-SNARK proof

π, proving the same statements as before, with the altered

Authorized licensed use limited to: University of Groningen. Downloaded on February 13,2023 at 11:00:01 UTC from IEEE Xplore. Restrictions apply.

commitment computations, and also proving satisfaction of
limits with respect to T and L and correct computation of c.

I. Auditability: Enclosing encrypted transaction details

When a user u wants to send a transaction tx that does
not adhere to the spend limit, he should be forced to include
the transaction details of tx in such a way that a trusted
authority can view these details in case of doubts regarding
u’s intentions. However, these details should not be visible to
any other party. We propose that u encrypts the transaction
details using SAVER and the public key pksvr of the trusted
authority.

Specifically, this means that during the setup of the payment
scheme the trusted authority should generate a SAVER key
triplet (pksvr, vksvr, sksvr). The public key pksvr and verification
key vksvr should be made publicly available. The secret
SAVER key sksvr should be kept secret at all times.

When u surpasses the spend limit on a transaction tx, the
following fields: (1) sender (u) public key pksndr := pkaddr; (2)
receiver’s public key pkrcvr := pknew

addr; and (3) transferred value
vxfer := vnew

note. If u does not surpass the spend limit, he should
define these values to 0.

We also need to ensure that a transaction with valid enclosed
details does not count towards the spend limit. Therefore, the
user u should set cnew := cold, instead of cold + vnew

note, when u’s
encrypted details are added to the transaction. The zk-SNARK
proof π should be updated to include statements regarding all
the above mentioned restrictions.

With this new structure, the trusted authority can decrypt
the contents of the datatx field of a questionable transaction tx
on the blockchain, whenever this is deemed necessary. This
decryption is performed using the authority’s secret key sksvr

and verification key vksvr. These keys are used as input for
the decryption algorithm Decsvr, which returns the sender and
receiver public key, as well as the transferred value in readable
form. Next to this, the algorithm constructs a decryption proof
ν which will come in handy in case of transferring the results
to the relevant legal authority if this is required. Namely, ν
proofs correctness of these values without having to hand over
sksvr, thereby not giving the legal authority free play to decrypt
any message.

J. Key sharing over N judges

The single trusted authority can be replaced by a group
of N judges.This can be achieved by executing the key
generation KeyGensvr in a distributed setting. A distributed
key generation protocol (in the honest-but-curious setting)
can be constructed using straightforward secure multi-party
computation techniques and are therefore not included in this
paper.

K. Timelocks

The final version update of our protocol implements the
only missing requirement: anonymous timelocks.

Suppose that the sender of a transaction with transaction
time tnew, wants to lock the output note for time tδ . In other

words, the sender creates a transaction at time tnew with output
note notenew and makes the note only spendable at time tnew+
tδ or later.

We can achieve this by slightly adapting the Note Merkle
tree. Namely, we can alter the leaf of a Note Merkle tree to
have the value of the hash of the transaction time together
with the commitment to the new note cmnew

note. We call this
hash function CRHmem.

The sender should also add the value tδ to both cmnew
note

and datanote. Thus each note commitment is now con-
structed as cmnote := Commnote

snote
(pkaddr∥vnote∥tδ). Similarly,

the encrypted note data is now computed as datanote :=
Encpkenc

(snote∥vnote∥tδ∥info).
When tδ has passed and the receiver of notenew wants to

spend this note in a new transaction, he or she also needs to
prove that the note is allowed to be spent. For this we add an
additional statement to the zk-SNARK proof π.

Together, these steps allow a sender to lock an output note
for a certain amount of time. In the case that the sender of a
transaction does not want to lock the output note for a certain
amount of time, he or she simply sets tδ := 0. Furthermore,
we force users and administrators to set tδ := 0 on creating a
note as input for one of the conversion transactions, by fixing
this in the respective proofs π.

L. Solution Definition

The algorithms and zk-SNARK statements that comprise the
protocol as described above are defined explicitly in Figure 1,
Figure 2, and Figure 3.

IV. IMPLEMENTATION

In this section we explain the concrete choices made for our
cryptographic building blocks that provide a security level of
at least 128 bits. These building blocks were used in a proof
of concept implementation3 of our solution. The performance
of this implementation is also briefly discussed.

a) zk-SNARKs: We use the BLS12-381 elliptic curve for
implementing our zk-SNARKs, following the Groth16 scheme
[14]. This curve is chosen due to its efficiency and provides us
with the possibility of implementing elliptic curve arithmetic
in an arithmetic circuit efficiently on an embedded curve inside
BLS12-381, otherwise known as Jubjub [19].

b) CRH, PRF, COMM and Merkle trees: We define our
Note and Memory Merkle trees to have depth 32, this allows
for 232 leafs, which should be more than sufficient for the
foreseeable future. The position of a commitment in one of
these Merkle tree can be represented by a 33-bit number (32
bits for the position and 1 bit extra for the case of using −1
as the position). The Credential Merkle tree has depth 20.

We use Blake2s [20] with a 512 bit input and 256 bits output
as basis for the PRF, giving us the desired security properties.
The Blake2s function is denoted as H.

A Pedersen hash function is used as basis for the com-
mitment and hash functions, due to its higher efficiency in
zk-SNARK schemes [21].

3https://github.com/TariqTNO/anonymous-transactions

Authorized licensed use limited to: University of Groningen. Downloaded on February 13,2023 at 11:00:01 UTC from IEEE Xplore. Restrictions apply.

Conference’17, July 2017, Washington, DC, USA Tariq Bontekoe, Maarten Everts, and Andreas Peter

Setup
Input: security parameter _
Output: public parameters pp

(1) Construct the arithmetic circuits𝐶XFER,𝐶CRED,𝐶CTO,𝐶CFROM at secu-
rity level _.

(2) Generate the proving and verification key pairs for all four cir-
cuits (pkXFER, vkXFER) := Setupsvr (1_,𝐶XFER)) , (pkCRED, vkCRED) :=
Setupzkp (1_,𝐶CRED)) , (pkCTO, vkCTO) := Setupzkp (1_,𝐶CTO)) , and
(pkCFROM, vkCFROM) := Setupzkp (1_,𝐶CFROM)) .

(3) The admin(s) together compute (pksvr, sksvr, vksvr) :=
KeyGensvr (pkXFER, vkXFER) and store their individual shares of sksvr.

(4) Create the public parameters for the encryption scheme ppenc :=
Setupenc (1_) .

(5) Create the public parameters for the signature scheme ppsig :=
Setupsig (1_) .

(6) Create the public parameters for the admin signature scheme ppasig :=
Setupasig (1_) .

(7) Set pp := (pkXFER, vkXFER, pkCRED, vkCRED, pkCTO, vkCTO, pkCFROM, vkCFROM,
ppenc, ppsig, ppasig, pksvr, vksvr) .

(8) Each admin calls AddAdmin(_.pp)
(9) Publish pp.

AddAdmin
Input: security parameters _; public parameters pp
Output: admin credentials credadm

(1) Parse pp as (ppenc, ppasig, ∗)
(2) Generate the public and secret key for the admin signature scheme

as (pkasig, skasig) := KeyGenasig (ppasig) .
(3) Randomly sample an address secret key skaddr that is also a seed to

PRFaddr.
(4) Define the address public key as pkaddr := PRFaddrskaddr

(0) .
(5) Generate the encryption public-private key pair (pkenc, skenc) :=

KDFenc (ppenc, skaddr) .
(6) Add (pkasigpkaddr, pkenc) to pp.
(7) Set credadm = (pkasig, skasig, skaddr, pkaddr, pkenc, skenc) .

CreateAccount
Input: public parameters pp
Output: credentials cred

(1) Parse pp as (pkCRED, ppenc, ∗) .
(2) Randomly sample an address secret key skaddr that is also a seed to

PRFaddr.
(3) Generate the encryption public and private key pair (pkenc, skenc) :=

KDFenc (ppenc, skaddr) .
(4) Define the address public key pkaddr := PRFaddrskaddr

(0) .
(5) Randomly sample a commitment trapdoor 𝑠cred.
(6) Calculate the hiding commitment cmcred as

cmcred := Commcred
𝑠cred (pkaddr ∥skaddr) .

(7) Define 𝑥 := (cmcred, pkaddr) and 𝑎 := (skaddr, 𝑠cred) .
(8) The user computes the proof 𝜋CRED := Provezkp (pkCRED, 𝑥, 𝑎) .
(9) Send 𝑥 and 𝜋CRED to the admin, and wait until cmcred is included in

the Credential Merkle Tree.
(10) Define cred := (pkaddr, skaddr, pkenc, skenc, 𝑠cred, cmcred) .

AddAccount
Input: public parameters pp; public credential values 𝑥 ; credential proof
𝜋CRED; Credential Merkle root rtcred; admin credentials credadm
Output: tx

(1) Parse pp as (vkCRED, ∗) .

(2) Parse credadm as (skasig, ∗) .
(3) Parse 𝑥 as (cmcred, ∗) .
(4) If Verifyzkp (vkCRED, 𝜋CRED, 𝑥) outputs false, then return ⊥.
(5) Define𝑚add := (“Add credential”, cmcred) .
(6) Compute the signature on the message as 𝜎add := Signasigskasig

(𝑚add) .
(7) Publish tx := (𝑚add, 𝜎add) .
(8) Add cmcred to the Credential Merkle Tree and update rtcred.

RevokeAccount
Input: credential commitment cmcred; Credential Merkle root rtcred; admin
credentials credadm
Output: tx

(1) Parse credadm as (skasig, ∗) .
(2) Define𝑚rvk := (“Revoke credential”, cmcred) .
(3) Compute a signature on the message as 𝜎rvk := Signasigskasig

(𝑚rvk) .
(4) Publish tx := (𝑚rvk, 𝜎rvk) .
(5) Remove cmcred from the Merkle tree and update rtcred.

ConvertToNote
Input: public parameters pp; conversion value 𝑣newnote; public destination ad-
dress pknewaddr; destination encryption key pknewenc ; extra info info; admin cre-
dentials credadm
Output: transaction tx; notenew

(1) Parse pp as (pkCTO, ∗) .
(2) Parse credadm as (skasig, ∗) .
(3) Randomly sample the commitment trapdoor 𝑠newnote for the new note.
(4) Compute the commitment cmnew

note for the new note as cmnew
note :=

Commnote
𝑠newnote
(pknewaddr ∥𝑣newnote) ∥0.

(5) Define datanewnote := Encpknewenc (𝑠newnote ∥𝑣newnote ∥info) .
(6) Set 𝑥 := (cmnew

note) .
(7) Set 𝑎 := (𝑠newnote, 𝑣

new
note, pk

new
addr) .

(8) Obtain a zero-knowledge proof for the transaction
𝜋CTO := Provezkp (pkXFER, 𝑥, 𝑎) .

(9) Define𝑚cto := (𝑥, 𝜋CTO, datanewnote) .
(10) Compute a signature on the transaction message

𝜎cto := Signasigskasig
(𝑚cto) .

(11) Set notenew := (𝑣newnote, pk
new
addr, 𝑠

new
note) .

(12) Publish tx := (𝑚cto, 𝜎cto) .
ConvertFromNote
Input: public parameters pp; input note noteold; Note Merkle root rtnote;
admin credentials credadm
Output: transaction tx

(1) Parse pp as (pkCFROM, ∗) .
(2) Parse credadm as (skaddr, pkaddr, skasig, ∗) .
(3) Parse noteold as (𝑣oldnote, cmold

note, 𝑡
old
note, 𝑠

old
note, ∗) .

(4) Determine the position posnote of cmold
note in the Note Merkle Tree

and its path pathnote to rtnote.
(5) Determine the nullifier to noteold as [:= PRF[skaddr (posnote) .
(6) Set 𝑥 := (rtnote, [, pkaddr) .
(7) Set 𝑎 := (skaddr, 𝑠oldnote, 𝑣

old
note .𝑡

old
note, cmold

note, pathnote, posnote) .
(8) Create a zero-knowledge proof for the transaction

𝜋CFROM := Provezkp (pkCFROM, 𝑥, 𝑎) .
(9) Define𝑚cfrom := (𝑥, 𝜋CFROM) .
(10) Compute a signature on the transaction message

𝜎cfrom := Signasigskasig
(𝑚cfrom) .

(11) Publish tx := (𝑚cfrom, 𝜎cfrom) .

Fig. 2. Algorithm definitions

Using H we define the PRFs as follows, with [·]x being the
function that truncates its input to a size of x bits:

• PRFaddr
x (s) := H(x∥00∥s), with x ∈ {0, 1}256, s ∈

{0, 1}254;
• PRFη

x(s) := H(x∥01∥0191∥s), with x ∈ {0, 1}256, s ∈
{0, 1}33;

• PRFµ
x(s) := H(x∥10∥0191∥s), with x ∈ {0, 1}256, s ∈

Authorized licensed use limited to: University of Groningen. Downloaded on February 13,2023 at 11:00:01 UTC from IEEE Xplore. Restrictions apply.

Balancing privacy and accountability in digital payment methods using zk-SNARKs Conference’17, July 2017, Washington, DC, USA

CreateTransaction
Input: public parameters pp; credentials cred; Note Merkle root rtnote; Mem-
ory Merkle root rtmem; Credential Merkle root rtcred; old note noteold; previ-
ous memory cell memold; ceiling memory cell memceil; new note value 𝑣newnote;
new public address pknewaddr; new public encryption key pknewenc ; extra info
info; new block time 𝑡new; boolean value for including SAVER encrypted
values 𝑏saver; lock time new note 𝑡𝛿
Output: transaction tx

(1) Parse pp as (pkXFER, ppenc, ppsig, pksvr∗) .
(2) Parse cred to (skaddr, pkaddr, cmcred, 𝑠cred) .
(3) Determine the position poscred of cmcred in the Account Merkle Tree

and its path pathcred to rtcred.
(4) Randomly sample two commitment trapdoors 𝑠newnote, 𝑠newmem for the

new note.
(5) If noteold = ⊥, then set𝑏note = 0, posnote = 0, pathnote = 0, 𝑣oldnote = 0,

𝑠oldnote = 0, [= −1, 𝑡old
𝛿

= 0, 𝑡oldnote = 𝑡
new, compute cmold

note and rtintnote
accordingly, and go to step 8.

(6) Parse noteold as (𝑣oldnote, cmold
note, 𝑡

old
𝛿
, 𝑡oldnote, 𝑠

old
note) .

(7) Determine the position posnote of cmold
note in the Note Merkle Tree

and its path pathnote to rtnote and set rtintnote = rtnote.
(8) Determine the nullifier [int to noteold as [int := PRF[skaddr (posnote) .
(9) Calculate the commitment cmnew

note for the new note as cmnew
note :=

Commnote
𝑠newnote
(pknewaddr ∥𝑣newnote ∥𝑡𝛿) .

(10) Define datanewnote := Encpknewenc (𝑠newnote ∥𝑣newnote ∥𝑡𝛿 ∥info) .
(11) If memold = ⊥, then set 𝑏mem = 0, posmem = −1, 𝑡old = −(𝑇 + 1) ,

𝑣oldmem = 0, 𝑠oldmem = 0, 𝑐oldmem = 0, pathmem = 0, rtrealmem = rtmem, and
compute cmold

mem and rtintmem accordingly and go to step 14.
(12) Parse memold as (𝑣oldmem, cmold

mem, 𝑠
old
mem, 𝑐

old
mem, 𝑡

old
mem) .

(13) Determine the position posmem of CRHmem (cmold
mem, 𝑡

old
mem) in the

Memory Merkle Tree and its path pathmem to rtmem and set rtrealmem =
rtintmem = rtmem.

(14) If memceil = ⊥, then set 𝑡 ceil = −(𝑇 + 1) , 𝑣ceilmem = 0, 𝑠ceilmem = 0,
𝑐ceilmem = 0, and compute cmceil

mem accordingly, and go to step 17.
(15) Parse memceil as (𝑣ceilmem, cmceil

mem, 𝑠
ceil
mem, 𝑐

ceil
mem, 𝑡

ceil
mem) .

(16) Determine the position posceil of CRHmem (cmceil
mem, 𝑡

ceil
mem) in the

Memory Merkle Tree and its path pathceil to rtmem.
(17) Determine the nullifier ` to memold as ` := PRF`skaddr (posmem) .
(18) Determine 𝑣newmem := 𝑣oldnote + 𝑣oldmem − 𝑣newnote.
(19) Determine 𝑐new := 𝑐old + 𝑣newnote · (1 − 𝑏saver) .
(20) Calculate the new memory commitment

cmnew
mem := Commmem

𝑠newmem
(pkaddr ∥𝑣newmem ∥𝑐new) .

(21) Define datanewmem := Encpkenc (𝑠newmem) .
(22) Randomly generate a signature public and private key pair

(pksig, sksig) := KeyGensig (ppsig) .
(23) Compute𝑘 := CRHsig (pksig) and calculate^ := PRF^skaddr (𝑘) , which

ties the signature public key to the secret address key of the sender.
(24) Determine the inputs for the SAVER encryption: pksndr = pkaddr ·

𝑏saver, pkrcvr = pknewaddr · 𝑏saver, and 𝑣xfer = 𝑣newnote · 𝑏saver.

(25) Set𝑚svr := (pksndr, pkrcvr, 𝑣xfer) .
(26) Set 𝑥 := (rtmem, rtnote, rtcred, 𝑘, ^, [, `, cmnew

note, cmnew
mem, 𝑡

new) .
(27) Set 𝑎 := (rtrealmem, rtintmem, rtintnote, [

int, pkaddr, skaddr, 𝑠cred, cmcred, 𝑣
old
note,

𝑠oldnote, 𝑡
old
𝛿
, cmold

note, 𝑡
old
note, 𝑣

old
mem, 𝑠

old
mem, 𝑐

old, cmold
mem, 𝑡

old
mem, 𝑣

ceil
mem, 𝑠

ceil
mem,

𝑐ceil, cmceil
mem, 𝑡

ceil
mem, pathcred, pathnote, pathmem, pathceil, posnote,

posmem, poscred, posceil, 𝑠newnote, 𝑠
new
mem, 𝑣

new
note, 𝑣

new
mem, 𝑐

new, pknewaddr, 𝑏note,
𝑏mem, 𝑏saver, 𝑡𝛿) .

(28) Obtain a zero-knowledge proof and ciphertext for the transaction
(𝜋XFER, datasaver) := Encsvr (pkXFER, pksvr,𝑚svr, 𝑥, 𝑎) .

(29) Define𝑚xfer := (𝑥, 𝜋XFER, datanewnote, datanewmem, datasaver) .
(30) Compute a signature on the transaction message

𝜎xfer := Signsigsksig (𝑚xfer) .
(31) Set notenew := (𝑣newnote, pk

new
addr, 𝑠

new
note) .

(32) Set memnew := (𝑣newmem, pkaddr, 𝑠newmem) .
(33) Publish tx := (𝑚xfer, pksig, 𝜎xfer) .

VerifyTransaction
Input: public parameters pp; transaction tx; current blockchain 𝐵
Output: boolean value for correctness 𝑏

(1) Parse pp as (vk∗, pksvr∗) .
(2) Parse tx as (𝑚, pksig, 𝜎) , if transaction type is not regular transfer

transaction get the public admin key pkasig.
(3) Parse𝑚 as (𝑥, 𝜋, datasaver, ∗) .
(4) If the transaction type is not a regular transfer transaction, go to

step 10.
(5) Parse 𝑥 as (rtcred, rtmem, rtnode, 𝑘, ^, [, `, 𝑡new, ∗) .
(6) If rtmem, rtcred and rtnode do not appear in the same block on 𝐵, then

output false.
(7) If 𝑡new is not close to the current block time, then output false.
(8) If [or ` does appear on 𝐵, then output false.
(9) If 𝑘 does not equal CRHsig (pksig) , then output false.
(10) If Verify(a)sigpk(a)sig

(𝑚,𝜎) outputs false, then output false.
(11) Define 𝑏 := VerifyEncsvr (vk∗, pksvr, 𝜋, datasaver, 𝑥) if the transac-

tion type is a regular transaction, otherwise𝑏 := Verifyzkp (vk∗, 𝜋, 𝑥) .
ReceiveTransaction
Input: public parameters pp; new transaction tx; credentials cred; current
blockchain 𝐵
Output: received note notenew

(1) If transaction type is not a regular transfer transaction, then output
⊥.

(2) If VerifyTransaction(pp, tx, 𝐵) outputs false, then output ⊥.
(3) Parse cred as (skenc, pkaddr, ∗) .
(4) Parse tx as (𝑚xfer, ∗) .
(5) Parse𝑚xfer as (𝑥, datanote, ∗) .
(6) Parse 𝑥 as (cmnew

note, ∗) .
(7) Compute (𝑠newnote, 𝑣

new
note, 𝑡

new
𝛿

, info) = Decskenc (datanewnote) , if the output
was ⊥, then output ⊥.

(8) If cmnew
note does not equal Commnote

𝑠newnote
(pkaddr ∥𝑣newnote) , then output ⊥.

(9) Set notenew := (𝑣newnote, 𝑠
new
note, info, cmnew

note) .

Fig. 3. Algorithm definitions

{0, 1}33;
• PRFκ

x(s) := H(x∥11∥[s]254), with x ∈ {0, 1}256, s ∈
{0, 1}256.

Consistently with the above defined PRFs, we take our
public and secret address key to have bit length 256. Using
this fact we can define the credential commitment using the
Pedersen hash.

We will denote the Pedersen hash function as P . Our
Pedersen hash function takes as input a bit string of arbitrary
length and outputs an element in the Jubjub curve as defined

in the Zcash protocol [22].
Given this Pedersen hash function and three pre-defined

elements on the Jubjub Curve J1, J2, and J3 we define our
commitment functions, with s∗ ∈ {0, 1}252, as:

• COMMcred
scred

(pkaddr∥skaddr) := P(pkaddr∥skaddr) · Jscred
1 ;

• COMMnote
snote

(pkaddr∥vnote) := P(pkaddr∥vnote∥tδ) · Jsnote
2 ;

• COMMmem
smem

(pkaddr∥vmem) := P(pkaddr∥vmem∥cmem)·Jsmem
3 .

Moreover, we define vmax := 264 − 1 for convenience.
Similarly, we define the Merkle tree hash functions as:
• CRHmem(cmmem, t) = P(cmmem∥t)

Authorized licensed use limited to: University of Groningen. Downloaded on February 13,2023 at 11:00:01 UTC from IEEE Xplore. Restrictions apply.

• CRHnote(cmnote, t) = P(cmnote∥t).
On the other hand, we define our collision-resistant hash as

CRHsig = H. Because this hash function needs not be encoded
inside the arithmetic circuit, efficiency does not matter as much
and we simply choose the more secure option.

c) Signatures: Both signature schemes can be instanti-
ated using EdDSA. Normally, EdDSA only provides EUF-
CMA security, however if one introduces an additional check
on the domain of the signature [23] it provides SUF-CMA
(and thus also SUF-1CMA) security.

d) Encryption and KDF: For the key private encryption
scheme we choose to use ECIES [24], with any appropriate
key derivation to derive the user’s private key. Specifically,
we use a SHA-512 derived Hash KDF to generate X25519
key pairs. The used encryption algorithm is CHACHA20-
POLY1305 [25]. We choose to adopt ECIES since it is
a standardised and widely adopted scheme with available
implementations and it fits our security requirement.

e) Performance: A brief analysis of the proof of concept
reveals that the total size of a Transfer transaction in our
implementation is 2640 bytes, whereas the other transaction
types have a size of around 350 bytes. Next to this we see
that computation times on a modern desktop PC (6 core CPU
@4.0GHz and RAM at 3600MHz) take around 2 to 3 seconds
for the Transfer transaction and under a second for the other
transaction types.

V. CONCLUSIONS

We propose a decentralized, permissioned payment scheme
that combines auditability with anonymity without making
large compromises. Any user of the scheme can make transfer
value to other users without any details of any transaction
being visible to any other parties. However, this anonymity
does not get in the way of accountability and regulation.

Participating financial institutions can perform KYC ‘at-the-
gate’ and a distributed group of judges can, if necessary, view
transaction details of suspiciously large transactions.

Future work: Many of the features presented in this paper
can be seen as a first step towards an auditable and anonymous
payment scheme with a wide range of functionalities. Ideas of
future improvements can be found in many ranges. It would
be interesting to investigate how anonymous timelocks can be
used for second layer solutions such as the Lightning Network.

REFERENCES

[1] FATF, “International Standards on Combating Money Laundering and
the Financing of Terrorism & Proliferation,” 2012, report. [Online].
Available: http://www.fatf-gafi.org/recommendations.html

[2] ——, “Guidance for a Risk-Based Approach to Virtual Assets
and Virtual Asset Service Providers,” 2019, report. [On-
line]. Available: www.fatf-gafi.org/publications/fatfrecommendations/
documents/Guidance-RBA-virtual-assets.html

[3] D. Chaum, “Blind Signatures for Untraceable Payments,” in Advances in
Cryptology, D. Chaum, R. L. Rivest, and A. T. Sherman, Eds. Boston,
MA: Springer US, 1983, pp. 199–203.

[4] T. Sander and A. Ta-Shma, “Auditable, Anonymous Electronic Cash,” in
Advances in Cryptology — CRYPTO’ 99, ser. Lecture Notes in Computer
Science, M. Wiener, Ed. Springer, 1999, pp. 555–572.

[5] K. M. Alonso and koe, “Zero to Monero: First Edition,” Jun. 2018,
online article. [Online]. Available: https://web.getmonero.org/it/library/
Zero-to-Monero-1-0-0.pdf

[6] CryptoRekt, “Blackpaper Verge Currency,” Jan. 2019, blackpa-
per. [Online]. Available: https://vergecurrency.com/static/blackpaper/
verge-blackpaper-v5.0.pdf

[7] E. Fujisaki and K. Suzuki, “Traceable Ring Signature,” in Public Key
Cryptography – PKC 2007, ser. Lecture Notes in Computer Science,
T. Okamoto and X. Wang, Eds. Berlin, Heidelberg: Springer, 2007,
pp. 181–200.

[8] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin: Anonymous
distributed e-cash from bitcoin,” in 2013 IEEE Symposium on Security
and Privacy, May 2013, pp. 397–411, ISSN: 1081-6011.

[9] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized Anonymous Payments from
Bitcoin,” in 2014 IEEE Symposium on Security and Privacy. IEEE,
May 2014, pp. 459–474.

[10] W. Li, Y. Wang, L. Chen, X. Lai, X. Zhang, and J. Xin.
Fully auditable privacy-preserving cryptocurrency against malicious
auditors. [Online]. Available: https://www.semanticscholar.org/
paper/Fully-Auditable-Privacy-preserving-Cryptocurrency-Li-Wang/
a68a6c1ea1ad83b298cc47dc8c3646fdeec0c8e5

[11] C. Garman, M. Green, and I. Miers, “Accountable privacy for decen-
tralized anonymous payments,” in Financial Cryptography and Data
Security, ser. Lecture Notes in Computer Science, J. Grossklags and
B. Preneel, Eds. Springer, 2017, pp. 81–98.

[12] I. Damgård, C. Ganesh, H. Khoshakhlagh, C. Orlandi, and L. Sinis-
calchi, “Balancing privacy and accountability in blockchain identity
management,” in Topics in Cryptology – CT-RSA 2021, ser. Lecture
Notes in Computer Science, K. G. Paterson, Ed. Springer International
Publishing, 2021, pp. 552–576.

[13] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From extractable
collision resistance to succinct non-interactive arguments of knowledge,
and back again,” in Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference on - ITCS ’12. ACM Press, 2012, pp.
326–349.

[14] J. Groth, “On the Size of Pairing-Based Non-interactive Arguments,”
in Advances in Cryptology – EUROCRYPT 2016, M. Fischlin and J.-S.
Coron, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, vol.
9666, pp. 305–326.

[15] J. Lee, J. Choi, J. Kim, and H. Oh, “SAVER: Snark-friendly,
Additively-homomorphic, and Verifiable Encryption and decryption
with Rerandomization,” IACR, Tech. Rep. 1270, 2019. [Online].
Available: https://eprint.iacr.org/2019/1270

[16] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval, “Key-Privacy
in Public-Key Encryption,” in Advances in Cryptology — ASIACRYPT
2001, ser. Lecture Notes in Computer Science, C. Boyd, Ed. Berlin,
Heidelberg: Springer, 2001, pp. 566–582.

[17] N. P. Smart, Cryptography made simple, ser. Information security and
cryptography. Springer, 2016, oCLC: 934618628.

[18] D. Khovratovich and M. Vladimirov, “Full privacy in account-based
cryptocurrencies v 0.12,” Jul. 2019, online draft. [Online]. Available:
https://dusk.network/uploads/Private-account-based-model.pdf

[19] Electric Coin Company. What is jubjub? [Online]. Available:
https://z.cash/ja/technology/jubjub/

[20] M.-J. O. Saarinen and J.-P. Aumasson. The BLAKE2 cryptographic
hash and message authentication code (MAC). Num Pages: 30.
[Online]. Available: https://datatracker.ietf.org/doc/rfc7693

[21] E. Tromer, “[Sapling] specify Pedersen hashes for a collision-resistant
hash function inside the SNARK · Issue #2234 · zcash/zcash,” Apr.
2017. [Online]. Available: https://github.com/zcash/zcash/issues/2234\
#issuecomment-292419085

[22] S. Bowe, T. Hornby, and N. Wilcox, “Zcash Protocol Specification,”
Feb. 2020. [Online]. Available: https://github.com/zcash/zips/blob/
master/protocol/protocol.pdf

[23] P. Wuille, “Dealing with malleability,” Mar. 2014, bIP 62. [Online].
Available: https://github.com/bitcoin/bips

[24] D. R. L. Brown, “Standards for Efficient Cryptograhpy 1 (SEC 1),”
May 2009. [Online]. Available: https://www.secg.org/sec1-v2.pdf

[25] Y. Nir and A. Langley. ChaCha20 and poly1305 for IETF protocols.
Num Pages: 46. [Online]. Available: https://datatracker.ietf.org/doc/
rfc8439

Authorized licensed use limited to: University of Groningen. Downloaded on February 13,2023 at 11:00:01 UTC from IEEE Xplore. Restrictions apply.

