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Introduction 

The global population increasingly concentrates in cities. To accommodate population growth, new cities 

emerge from smaller towns and existing cities expand or densify their physical imprint on land. The spatial 

dimension of these imprints, by built-up areas, may shape economic processes as well as the resilience 

and sustainability of daily life in cities, as the United Nations 2030 Sustainable Development Goals (UN, 

2015) underline (SDG 11 on sustainable cities and communities).  

The shape of cities, notably in terms of built-up area, potentially affects many processes taking place in 

cities, such as mobility, resource consumption, access to services, the cost of infrastructure provision or 

the ease of social and business interactions. This underlines a need for timely information on how land is 

used in cities, and how much area is allocated to key uses such as residential or business-related. 

A timely monitoring of trends and patterns in such key urban land uses, however, is largely missing at the 

global level. Relatively well known is how much of global land cover is ‘urban’ in general, for example from 

the European Commission’s Global Human Settlement Layer’s ‘built-up grid’ (Corbane et al., 2021) or 

maps by Copernicus (Buchhorn et al., 2020) or ESRI (Karra et al., 2021). Also relatively well known from 

such existing map products is how the built-up areas of cities have grown every several years or decades. 

However, little is known about the extent to which urban land is used for residential or business-related 

purposes. Consequently, the economic sources of urban land use remain unclear – and crucially, any 

timely statistics from national administrations are either absent or rely on varying land use definitions. 

In response, this study develops an approach to monitoring key types of urban land use in OECD cities on 

an internationally consistent basis. As a case application, this paper maps residential as well as business-

related built-up areas, as uniquely recent as per 2021, for 687 European cities. To ensure the consistent 

comparability of results across cities, a definition of metropolitan area boundaries (see Dijkstra, Poelman, 

and Veneri, 2019) developed jointly by the OECD and the European Commission is adopted.  

This exercise requires a mapping effort that covers a land surface of 1 million square kilometres. This scale 

of analysis is achieved efficiently by using recent advancements in space technology and machine learning 

for image processing. Satellite imagery, which unlike conventional statistical datasets are available on a 

near real-time basis, are sourced from EC-ESA Sentinel satellites and then analysed using deep learning.  

A deep learning model, in this work the well-established U-Net, can be ‘trained’ to assign areas of land 

cover to distinct land use types based on information on optical reflectance (Sentinel-2 imagery) and radar 

pulses (Sentinel-1 imagery). Such information signals what materials cover a land surface. The U-Net 

model learns to independently reproduce pre-existent, in part manually generated, maps of urban land 

use, to then track a set of targeted land uses in more recent satellite imagery. In the images, the deep 

learning model can accurately categorize coherent patterns of pixels (see, e.g., Sirko et al., 2021). This 

makes the U-Net particularly useful for tracking land use in satellite images of cities, to the extent that 

people and firms, as well as zoning governance, allocate distinct economic activities to separate plots of 

land.  

The results for 2021 quantify how the use of land in cities varies substantially. The average amount of built-

up area per urban inhabitant, whether in a residential use or in an industrial or commercial use, varies by 
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up to a fivefold between countries. Large variation stems from how compact or spread-out land use is in 

the commuting zones that surround cities. Further results explore the speed and shape of urban expansion 

over 2018-21, and show the model’s potential for application to more OECD countries. 

Overall, this study’s approach complements geospatial monitoring by governmental agencies, as well as 

emerging private initiatives. The case application’s inclusion of small and medium-sized cities is also 

academically, as most studies focus on the largest of cities (Reba and Seto, 2020). Importantly, the 

approach developed in this paper supports monitoring early signals of economic growth in cities. 
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At first glance, patterns in urban land use are easily observed from a satellite image. However, using 

satellite imagery to infer such patterns both accurately and consistently requires a study design that 

integrates several key conceptual choices.  

1.1. Land Cover or Land Use: ‘What Categories are Targeted?’ 

A long-acknowledged but important first choice regards whether the study’s objective is to observe ‘land 

cover’ or ‘land use’ (see, e.g., Anderson et al., 1976). Whereas land cover refers to the physical matter 

which covers the land surface, for instance vegetation or artificial structures, land use instead refers to 

human activities which put land to a particular use. In studies of land cover, urban land is commonly 

considered as a single class, separately from land cover classes that are of a natural or agricultural 

character (for example, the Copernicus Global Land Cover product as described in Buchhorn et al., 2020). 

While such distinct land cover classes may largely cohere with general types of land use, there are subtle 

differences and interrelations that matter.  

A key difference is that urban land cover can be associated with various uses of land – with residential use 

being the most widespread, besides commercial, recreational, or infrastructural uses. In order to 

distinguish between such types of urban land use, however, and to do so ‘from above’, the targeted land 

use types should be associated with distinct ‘spectral signatures’. In other words, can land use types be 

clearly separated from each other in remotely sensed imagery, based on the reflectance and dimensions 

of associated materials such as buildings and other structures? This is plausible, in particular due to the 

spatial separation of distinct land uses in OECD countries which results from zoning policies (OECD, 2017). 

More complex patterns of land use, however, such as mixed-use, or the provision of housing in transformed 

office buildings, may be observed less effectively than singular (and more prevalent) uses.  

With this in mind, this project focuses on classifying key forms of land use within urban areas, which are 

dominantly present on particular plots of land. These key uses of urban land will be separated from each 

other as well as from agricultural land use and natural land cover. Observing land use as well as land cover 

within a single classification scheme is appropriate, as long as these can be separated well. However, care 

should be taken as land ‘use’ and ‘cover’ are not necessarily mutually exclusive. This involves a subtle 

interrelation between land use and land cover that brings up the next conceptual issue. 

1.2. Spatial Unit of Classification: ‘What Makes for a Coherent Patch of Land 

Use?’ 

The spatial unit of classification concerns whether a classification scheme adopts a broad or a narrow 

definition of what land cover makes part of a particular land use. For instance, does vegetated land cover 

classify as residential land use when it is part of a garden, but not when it is located in an isolated area?  

1 Conceptual Choices in Classifying 

Urban Land from Satellite Imagery 
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In operational terms, the question here is whether land uses will be classified based on information at the 

level of pixels or at the level of groups of pixels that together resemble ‘objects’ (e.g., a residential plot of 

land), which may bundle various land cover types. In the present study, the object-based approach is used, 

as it aligns well with the aim to distinguish urban land uses that are dominantly and coherently present on 

particular plots of land. This choice also has the benefit of mitigating possible statistically unstable 

assignment of land use classes to pixels that are isolated amongst a patch of another use or inhibit 

idiosyncratic reflectance values.  

These considerations apply specifically to land use classification, which may bundle distinct but coherent 

land cover classes, rather than the classification of individual land cover classes (e.g., forested land), which 

may simply be adjacent to each other to form a coherent patch. In the case of individual land cover classes, 

the spatial unit of classification relates mostly to the resolution at which land cover is captured. Resolution, 

however, plays a broader role, also in the classification of land use. 

1.3. Imagery Resolution: ‘How Granular is Granular Enough?’ 

What resolution of satellite imagery is appropriate to use follows from the study’s classification objectives. 

While it may be intuitive to assume that a higher, more granular, resolution is always preferable, this is not 

necessarily always the case. This could apply, for example, when classifying images into coherent patches 

of particular land uses, as per an ‘object-based’ approach. The observation of the smallest elements of 

built-up areas in highly-detailed imagery might direct a model away from the coherence of elements that 

would signal a commercial or residential use. Conclusive theoretical guidance, however, is mostly absent.1  

Nevertheless, given that urban areas may bundle highly heterogeneous built features, the observed 

imagery should have a resolution below the dimensions of those features. This then allows the targeted 

land uses to be distinguished from each other. A higher resolution, however, also implies a more 

heterogeneous spatial separation of distinct forms of land cover (e.g., an open space enclosed by an 

apartment complex). This means that the choice of resolution and spatial unit of assessment (individual 

pixels or bundles of pixels as coherent urban ‘objects’ or sites) are interrelated. 

Box 1. Illustration of Sentinel Satellite Imagery’s Ability to Capture Urban Patterns 

The present study observes publicly available imagery in which urban land use and land cover types 

can be distinguished effectively, at a high resolution and potentially in any OECD city. This innovative 

imagery is sourced from Copernicus, the Earth Observation programme that is jointly coordinated and 

managed by the European Commission and the European Space Agency. Detailed information 

regarding the imagery data will be provided in Section 3.3. However, a start can be made to illustrate 

the imagery’s ability to distinguish between various urban land uses in Figure 1. 

                                                

1 A practical consideration is that imagery at very high (sub-meter) resolutions may come not only at licensing costs 

but, due to the size of such data, also at considerable computational (time) costs, in particular for large-scale studies. 
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Figure 1. Information captured by high-resolution imagery for the city of Luxembourg. 

 

Figure 1, Panel A, shows the city of Luxembourg in the high-resolution satellite imagery which captures 

urban area at the scale of 10m x 10m pixels. The colour for each pixel here reflects composite of reds, 

greens, and blues as also the human eye could observe. However, the imagery also captures, as 

Section 3.3 will further clarify, information about near-infrared values (Panel B) as well as radar 

backscatter (Panel C), which are also both measured at a 10-meter resolution. This combination of 

different sorts of remotely sensed information offers a rich basis for separating various classes of urban 

land cover and land use as this study aims to do. Residential areas can be distinguished from industrial 

sites, or from urban green spaces or agricultural land. However, the subtle complexity of urban areas, 

as Figure 1 also illustrates, underlines the need for advanced models to adequately categorize, or 

‘segment’, image pixels into the correct classes. 
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2.1. Satellite Image Segmentation through Deep Learning 

To track urban land use in satellite imagery, individual pixels in an observed image need to be assigned to 

a corresponding land use or land cover category. This process is referred to as semantic image 

segmentation. Semantic image segmentation is a common technique used in computer vision, which is a 

field of work on artificial intelligence that extracts high-level information from images.2 A general example 

of the method of segmenting, or partitioning, an image’s pixels into specific classes, as widely applied 

across different industrial and academic activities, is given in Figure 2.  

Figure 2. General example of image segmentation into object-categories in a deep learning context. 

 

Note: Figure adapted from Jeong, Yoon, and Park (2018). 

This study applies deep learning to achieve image segmentation efficiently and at scale on satellite imagery 

of metropolitan areas in OECD countries. Deep learning is a sub-field of machine learning, which consists 

of learning complex representations with different levels of abstraction from large amounts of data based 

on computational models called neural networks.3 These methods have in recent years dramatically 

improved the state-of-the-art in speech recognition, object recognition, and many other domains such as 

drug discovery, genomics, or autonomous driving. 

One of the most state-of-the art models, namely U-Net, was introduced in 2015 in a biomedical context 

(Olaf Ronneberger, 2015), and has since been applied to various other problems, including the 

segmentation of satellite imagery (e.g., Sirko et al., 2021). U-Net has been applied to the segmentation of 

                                                
2 Common methods in computer vision other than image segmentation are instance segmentation, which flags objects 

in images such that these can be counted as individual instances, and image classification, which assigns a class to 

an image as a whole given its content. In this paper ‘image segmentation’ and ‘image classification’ may be used 

interchangeably, although it is consistently the same process of image segmentation which is referred to. 

3 A neural network is composed of different layers of artificial neurons, connected to one another. The first model was 

proposed by (Rosenblatt, 1958). Since, different neural network architectures have been developed: first feed-forward 

neural networks in which information only moves in one direction; as well as convolutional neural networks (CNN) 

(LeCun et al., 1990) which are better able to capture spatial and temporal dependencies and thus to process images, 

videos, speech and audio; and recurrent neural networks (RNN) for sequential data (LeCun, Bengio, and Clinton, 

2015). 

2 Methodology 
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distinct land uses, be it limited and not always in an urban context (Solórzano et al., 2021; Giang et al., 

2020; Zhang, Liu, and Wang, 2017).4 

The U-Net model’s architecture is presented in Figure 3. The architecture consists of two paths following 

a symmetrical U-shape. The first path consists of a typical convolutional network architecture and captures 

context, while the second path enables precise localization of patterns.5  

Figure 3. Model structure of the U-Network for image segmentation (Ronneberger, 2015). 

 

Figure 4 shows the pipeline to segment satellite images. For each pixel, the same set of image bands is 

observed. The model returns as output a probability tensor. This tensor consists of a 3-dimensional array 

that for each pixel gives the probability that it belongs to a specific class. Finally, the output classification 

mask is obtained by taking the class with the highest probability observed for a pixel across the distinct 

class-layers in the previous step. The model is trained in a supervised manner, meaning that input image 

patches, of size 160x160x7, are paired with ground truth land use masks (of size 160x160x1) to learn from. 

Before training the model, for every city, the set of image patches that cover the metropolitan area is split 

into train, validation, and test sets using split ratios of 60%, 20%, and 20%, respectively.6 These allow the 

                                                
4 Other variants of U-Net have been used for image segmentation, such as (Iglovikov and Shvets, 2018) which 

combines U-Net with a VGG11 encoder. Other deep learning models for semantic image segmentation have been 

developed and applied to remote sensing data, such as Fully Convolutional Networks (FCNs) (Long, Shellhamer, and 

Darrell 2014), as an extension of image classification models AlexNet (Krizhevsky, Sutskever, and Hinton, 2012), 

VGGNet (Simonyan and Zisserman, 2015), and GoogLeNet (Szegedy et al., 2014) for image semantic segmentation; 

or more recently SegNet (Badrinarayanan, Kendall, and Cipolla, 2017), DeepLab (Chen et al., 2018), and DenseNet 

(Gao Huang et al., 2016). 

5 The contraction path follows the classical pattern of a convolutional network: 3x3 convolutions, followed by a ReLU 

function and a 2x2 max pooling operation with stride of 2 for down-sampling. At each step of down-sampling, the 

number of feature channels is doubled. Every step in the expansion path consists of an up-sampling of the feature 

map followed by a 2x2 up-convolution, which halves the number of feature channels, a concatenation with the 

correspondingly cropped feature map from the contracting path, and two 3x3 convolutions, each followed by a ReLU 

function. At the final layer, a 1x1 convolution is used to map each 64-component feature vector to the desired number 

of classes. In total the network has 23 convolutional layers. After each layer, a dropout of 0.25 is applied. 

6 Unlike many remote sensing studies which implement sample-based designs to obtain training and evaluation data, 

ground truth data are observed for nearly each of the observed pixels (see Section 4.2). This implicitly follows the good 

practice of using a probabilistic design for the inclusion of particular pixels in the training, test, and evaluation sets, as 

otherwise sample stratification by class would achieve. This mitigates possible bias in the mapped areas as the 

targeted land use classes are represented in the estimation data largely in line with their actual spatial prevalence. 
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model to learn from the training set what imagery-values to associate with what class, to then tune its 

predictive ability on a validation set. The validation set is used at the end of each epoch during the training 

to assess the model performance and avoid overfitting. An early stopping criterion tracks at the end of 

each epoch if the loss (sparse categorical cross-entropy) on the validation set reaches a minimum. Finally, 

accuracy is evaluated on an independent test set.  

Figure 4. Empirical pipeline overview. 

 

As such, accuracy evaluation comes from estimates on data values that are out-of-sample: the model has 

not yet seen these data during the training and tuning process.7 In order to increase the transparency of 

deep learning model generation, and to allow for replication, it is recorded which image patches are 

allocated to the train, test, and validation sets.  

This project is implemented in Python using the TensorFlow Deep Learning framework. The U-Net 

implementation was inspired by the repository of Kumar (2018). A proof-of-concept was generated on a 

subset of cities in Belgium using a server equipped with a T4 GPU, 2 vCPU, 25 GB of RAM. The analysis 

was then scaled to cover 687 cities across European OECD countries using Microsoft Azure compute 

clusters equipped with a T4 GPU, 16 vCPU, and 110 Gb of RAM. 

2.2. Evaluation of Model Performance in Classifying Urban Land 

Model performance should be quantified at the spatial scale at which land use or land cover is analysed, 

such that the accuracy of resultant insights can be understood. Both the scope of the analysis and its policy 

context may guide whether accuracy should be reported for the entire study area, its sub-regions, or 

individual cities. This issue will be discussed in more detail in section 4.2 before providing estimates of 

land use areas at national and sub-national scales. Next to be considered here are the operational details 

of this study’s approach to model evaluation.  

In specific, the performance of the image segmentation classifier, the U-Net, will be evaluated using 

standard metrics. Each of these metrics can be computed from an error matrix, which is also commonly 

referred to as a confusion matrix. A confusion matrix compares for each pixel the predicted land use class, 

in the test set of image patches (see Section 2.1), with the reference class. This means that the matrix 

gives count values of the number of pixels that are correctly assigned to a particular land use class, or 

incorrectly attributed to another land use class. Importantly, the assumption here is that the reference 

classification is of superior quality, as compared to the map classification that results from the model’s 

prediction, and so offers a ground truth to benchmark against. The ground truth data observed in this study 

will be described in Section 3.2, and metrics of model performance will be introduced and discussed along 

with the results in Section 4.1. 

                                                
7 A common concern is spatial autocorrelation. However, as the patches are of 1.6 km dimensions, cross-patch 

correlations of land use in the training and test and validation sets are mitigated (as compared to common approaches 

where xy-location based land use samples may be located within a few meters or pixels from each other).  
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3.1. Observed OECD Metropolitan Areas 

Our study area encloses metropolitan areas across the 27 European OECD countries8. Within these 

countries, the boundaries of metropolitan areas are defined by Functional Urban Areas (FUAs). The FUAs 

definition is a joint effort by the OECD and the European Commission to define metropolitan areas in a 

way that is consistent across countries. In particular, the boundaries of FUAs enclose an observed city, or 

a set of cities in the case of a polycentric metropolitan area, which is densely populated as well as the 

wider zone from which a substantial share of local residents commutes to the city (i.e., commuting zone). 

This offers an integrated spatial economic definition of cities and metropolitan areas that is optimized for 

the international comparisons, including in terms of city size. Across the 27 European OECD countries, 

687 FUAs are observed, for each of which this study aims to classify urban land use using the deep 

learning-based segmentation model. As such, the model will be applied to a set of metropolitan areas, 

which covers a total surface of 992,680 square kilometres, spread across a variety of urban landscapes in 

terms of economic development structures, urban planning styles, and climate zones.  

3.2. Ground Truth Data on Urban Land Classification 

Ground truth data, which serve as input for the training of the deep learning model, and which also provide 

reference in the evaluation of model accuracy, are sourced from the Copernicus Urban Atlas project. These 

data offer a comprehensive classification of land use and land cover, and are based on granular vectors. 

In specific, any patches of land use that are at least 0.25 hectare in size are mapped granularly. The 

observed Urban Atlas maps are for the year 2018, the latest available version of these maps. Coverage is 

provided for FUAs across Europe.9 An illustration of the classification, for the FUA of Luxembourg, is 

provided in Figure 5. By overlaying these data with satellite imagery, for each satellite image pixel the 

associated land use or land cover class according to the Urban Atlas map can be observed. The Urban 

Atlas map’s resolution is matched with the satellite imagery’s 10m x 10m resolution to allow for 

straightforward assessment of agreement between predicted and ‘true’ land use classes. The full set of 

Urban Atlas data for European OECD countries is used in the labelling of the training, validation, and test 

sets of satellite images. 10 

                                                
8 The 27 European OECD countries are Portugal, Spain, Italy, France, Belgium, the Netherlands, Luxembourg, 

Switzerland, the UK, Ireland, Germany, Austria, Slovak Republic, Czech Republic, Denmark, Norway, Finland, 

Sweden, Iceland, Slovenia, Hungary, Poland, Estonia, Latvia, Lithuania, Greece, and Turkey. 

9 The Urban Atlas dataset as a whole ranges beyond OECD countries, and covers 788 FUAs across EU27 and EFTA 

countries, the West Balkans, Turkey, and the UK. 

10 For a subset of OECD-EC FUAs (n = 60), the Urban Atlas does not provide coverage. In those cases, imagery 

patches for those (typically small) cities are omitted from the modelling process, but city-specific area estimates are 

provided. The area estimates now are adjusting not for map biases observed at the city level but at the national level. 

3 Data and Study Area 
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The Urban Atlas dataset allows to overcome one of the main bottlenecks of satellite image segmentation, 

which is the lack of granular reference data for model training and accuracy evaluation. The underlying 

assumption is that the Urban Atlas provides a ‘ground truth’ and so by definition is more accurate than the 

predictions which will result from the deep learning model. This is a reasonable assumption, as the Urban 

Atlas is based on imagery at a resolution higher than this study’s imagery and, more importantly, was 

largely created via manual interpretation (Montero et al. 2014). Such processes of human visual judgment 

of ‘what is what exactly’ are challenging to replicate in a fully automated way. At the same time, in some 

instances it is plausible that the deep learning model will offer a more granular classification of land (from 

the map user’s perspective). To ensure that ground truth data are consistently of a higher quality than 

predicted maps, a common approach is to generate ground truth data manually, typically for a limited 

number of (a few hundred or a few thousand) sample locations (see, e.g., Curtis et al., 2018; Olofsson et 

al., 2014; Zhu et al., 2016). Such manual efforts are high-cost, notably when it comes to the object-based 

labelling of images rather than the labelling of subsample of individual pixels. This represents a major 

barrier to studying urban areas both at granular scale and at a high level of quantified accuracy, which 

would be required to inform local policy with confidence in the estimates.  

Figure 5. Urban Atlas disaggregated definition of land use (and land cover) in the city of 
Luxembourg. 

 

For this paper’s purposes, Urban Atlas maps offer a highly relevant, comprehensive, and granular definition 

of land use and land cover classes. Importantly, accuracy estimates for model performance and area 

estimates can, despite pan-European coverage, be reported at the policy-relevant unit of individual cities. 

However, before proceeding, the Urban Atlas maps for each FUA is aggregated into six main classes of 

(non-)built-up areas. This simplification11 allows the deep learning model to more effectively learn and 

predict key types of urban land use, but still offers a level of disaggregation of built-up area that is 

complementary to existing large-scale land cover products such as the JRC Global Human Settlement 

Layer (Corbane et al., 2021) or ESRI’s Global Land Cover map (Karra et al., 2021) do.12 In the remote 

sensing literature, observing 5 to 10 distinct classes rather than more disaggregated classes (recall Figure 

                                                
11 For instance, without such aggregation of land use classes, a particular plot of land cover which could be considered 

as a park could be observed as a mixture of lower-level land use classes such as a playground or recreational forest.  

12 Initial classification outcomes for different levels of Urban Atlas category-aggregation are presented in the Appendix. 
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5) is common (Zhu et al., 2016). The resultant and final ‘ground truth’ definition of urban land use and land 

cover classes is visualized in Figure 6, again for the city of Luxembourg. The underlying Urban Atlas sub-

categories to which the aggregate classes can be traced back are defined in Table 1. 

Table 1 also presents for each observed land use class its relative share in the total area of European 

FUAs. This shows that residential land use is typically the largest class, although the most prevalent 

classes in the study area are open space and agricultural land use. The reason for this is that FUAs include 

commuting zones, which mostly consist of built-up areas of low density which are surrounded by open and 

agricultural land. This ‘imbalance’ in the area shares of the distinct land use classes in the accuracy 

assessment has implications for the interpretation of the accuracy of predicted maps. For instance, if one 

large class such as agricultural land is particularly well predicted, a poor performance of a class such as 

residential built-up area, which is overall smaller in area but more central to this study’s urban setting, 

would remain hidden in an overall accuracy measure (see Equation 1 in Section 5.1). The reason for this 

is the relatively limited areal weight of any errors that are associated with this smaller class in the generated 

map. Therefore, the analysis will instead mostly rely on class-specific accuracy measures, which convey 

more targeted accuracy information.  

Figure 6. The final ground truth categories of land use (and land cover) illustrated for Luxembourg 
FUA. 
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Table 1. Definition of observed urban land use (and land cover) classes in the 2018 reference data. 

Observed Class  Original Sub-Category in Urban Atlas Mean  

(% of area) 

St. dev. 

(% of area) 

Residential Discontinuous and continuous urban fabrics, Isolated structures 7.8 5.3 

Industrial and commercial Industrial, commercial, public, military, and private units, mineral extraction and 

dump sites, construction sites, land without current use 

4.1 3.3 

Transport infrastructure Fast transit roads, other roads, railways, port, airports 2.7 1.6 

Open space Forests, herbaceous areas, open space without vegetation (beaches, bare land), 

green urban areas, sports and leisure facilities 

33.8 19.3 

Agricultural Arable land, permanent crops, pastures, complex and mixed cultivation, orchards 48.8 19.1 

Water and wetlands Water, wetlands 2.7 4.3 

Note: mean and standard deviation values are for the shares of observed land use classes across each of the observed individual cit ies (N = 

687). The land use shares are obtained from Urban Atlas reference data for 2018. Area shares that are disaggregated by land use class can be 

obtained from Table 7 in the Appendix. 

3.3. High-Resolution Satellite Imagery 

High-resolution imagery (10m x 10m) is publicly provided by the Copernicus Program. In specific, images 

are sourced from the European Commission and European Space Agency’s Sentinel-2 and Sentinel-1 

satellite constellations. Sentinel-2 ‘optical’ sensing instruments measure radiations reflected or emitted by 

observed objects or landscapes. This process passively captures scenery as also the human eye would 

see it, as well as more, by exploiting waves on the electromagnetic spectrum beyond visible light, such as 

infrared radiations. Sentinel-1 ‘synthetic aperture radar’ sensing instruments, on the other hand, actively 

emit radio signal impulses. When such signal impulse meets an obstacle, it scatters back to the sensor to 

some degree. Based on amount and travel time, it is then possible to estimate how far away the obstacle 

is, which provides information on the shape and depth of urban landscape configurations.  

Combining Sentinel-1 and Sentinel-2 imagery allows us to observe a comprehensive set of ‘image bands’, 

or layers. Each of these image bands, as listed in Table 2, has specific qualities relevant to image 

segmentation. In the Sentinel-2 imagery, selected bands capture: blue, green, red, near-infrared (NIR), 

and short-wave infrared (SWIR1 and SWIR2) values.13  

Blue, green, and red reflectance captures what human sight also observes. NIR, however, is not observed 

by the human eye and is particularly useful at capturing vegetated land cover, so that in image classification 

vegetation can be separated effectively from land that is in residential or commercial or industrial use. 

Every form of matter with a temperature above absolute zero (-273.15°C) emits infrared radiation according 

to its temperature. SWIR bands, on the other hand, contribute to the separation of water bodies from ‘dry’ 

land and help to identify various kinds of open space given soil moisture and vegetation cover.  

  

                                                
13 Using the Sentinel-2 bands, also various indices that measure land cover by vegetation (NDVI), built-up area (NDBI), 

or water (NDWI) were computed. However, these indices were not selected for the main analysis as their contribution 

to model performance was limited. This limited contribution to model performance is likely due to the ability of deep 

learning models to compile relevant combinations of spectral information without necessarily requiring a priori guidance 

as offered by pre-specified land cover indices. Also the use of the gradient on specific bands has been explored. 
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Table 2. Sentinel constellation technical properties. 

 Sentinel-1 Sentinel-2 

Sensor component C-band Synthetic Aperture Radar Multi Spectral Instrument 

Launch data April 2014  June 2015 

Spatial resolution 10 m: All bands 10 m: Bands 2, 3, 4, and 8 

20 m: Bands 5, 6, 7, 8A, 11, and 12 

60 m: Bands 1, 9, and 10 

Bands HH: Single co-polarization, horizontal transmit / 
horizontal receive 

HH+HV: Dual-band cross-polarization, horizontal 
transmit/vertical receive 

HV: Partial dual, HV only  

VV: Single co-polarization, vertical transmit / vertical 
receive 

VV+VH: Dual-band cross-polarization, vertical 
transmit / horizontal receive 

VH: Partial dual, VH only 

Band 1: Coastal aerosol 

Band 2: Blue 

Band 3: Green 

Band 4: Red 

Band 5: Vegetation Red Edge 1 

Band 6: Vegetation Red Edge 2 

Band 7: Vegetation Red Edge 3 

Band 8: Near Infra-Red (NIR) 

Band 8A: Narrow NIR 

Band 9: Water vapor 

Band 11: Short-Wave Infrared 1 (SWIR1)  

Band 12: Short-Wave Infrared 2 (SWIR 2) 

Revisit time 6 days with 2 satellites 5 days with 2 satellites 

The optical bands are complemented by the radar-based bands which come from Sentinel-1 imagery. In 

specific, in Sentinel-1 imagery the VV (vertical transmit and vertical receive) and VH (vertical transmit and 

horizontal receive) bands are selected. The VV band and, in particular, the VH band together add further 

information on the depth of land configurations and so, to some extent, built-up area density (Li et al., 

2020). 

To pre-process and obtain the selected imagery products, for each FUA, Google Earth Engine is used. 

Earth Engine, as described in Gorelick et al. (2017), is a cloud-based platform that offers the massive 

computational power that data acquisition for this study’s continental-scale analysis requires. 

More specifically, this study processes all individual Sentinel-1 and Sentinel-2 (Level-2A) images available 

for 2018 that cover, or partially cover, European FUAs.14 Sentinel-2 images are filtered based on a 60%-

threshold regarding total cloud cover in the observed image following Braaten (2021). In addition, clouds 

and cloud shadows are filtered internally in images using a cloud probability dataset. For Sentinel-1 

images, such cloud-based filtering procedures are not required. This is because radar instruments, unlike 

optical instruments, are able to collect informative imagery in all weather conditions and both by day or 

night. Each Sentinel-1 image, however, was pre-processed to remove thermal noise, radiometric 

calibration, and terrain correction (orthorectification), followed by a correction of outcome values to decibels 

via log-scaling. Finally, from the selected and pre-processed images, for each pixel, and for each image 

band separately, the observed band’s median value is obtained. This effectively removes the possible 

influence of clouds, haze, and shadows. In Polar regions, median values are based on the May-October 

period, to avoid influence from snow. As a result, for each FUA an image is observed in which urban areas 

can be tracked clearly and consistently. 

                                                
14 An alternative approach to observing year-round imagery, is to select images for the ‘green season’, as that could 

possibly help to even better separate vegetation from built-up structures (Gong et al. 2019). However, this would 

introduce complicating assumptions on the varying timing of the green season across years and regions, and would 

increase the influence of outliers in pixel values as fewer images would be possible to observe for a given city, in 

particular for cities that are frequently covered by clouds. For these reasons, and to ensure consistent image selection 

also in years beyond those covered in the current study, year-round imagery is used. 
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4.1. Deep Learning Model Evaluation 

4.1.1. Visual Assessment of Mapping Accuracy for European Metropolitan Areas 

This section examines the deep learning model’s performance at classifying urban land uses, in particular 

for built-up areas. Before turning to the results for relevant evaluation metrics, the estimated maps for 

several OECD Functional Urban Areas (FUAs) can be examined qualitatively. Figure 7 maps the estimated 

map classifications for subareas of Berlin, Amsterdam, and Vienna (middle panels). Also shown is the 

underlying satellite imagery (left-hand side panels, only RGB bands) from which land use is estimated, as 

well as the ‘ground truth’ map classification (right-hand side panels) that the model uses to associate 

patterns in data-values for image pixels with particular (built-up) land use types.  

Based on the figure, a first observation is that the U-Net can be trained to recognize and then classify key 

types of urban land in a way that is largely accurate. Vegetated areas are well-separated from built-up 

areas, and within built-up areas, residential and industrial or commercial areas are distinguished clearly. 

For the FUA of Berlin, the model predicts the large park as a transportation infrastructure instead of an 

open space. This park corresponds to Tempelhof, which used to be an airport, and still comprises landing 

strips and terminals. This is a compelling example of land use that is challenging for the model to capture. 

4.1.2. Assessing Accuracy at the Level of the European Study Area 

To move beyond visual impressions, the model’s performance will now be quantified. A starting point is 

Figure 8, which shows a confusion matrix. The confusion matrix is obtained from pixel-wise comparison, 

on the test set, of the predicted class against the true class according to the Urban Atlas reference data. 

This confusion matrix is normalised according to the true labels. This means, for example, that 84% of the 

pixels corresponding to residential areas in the reference data were correctly predicted by the model. For 

most of the targeted types of urban land use the model performs well. This provides a first indication that 

combining Sentinel-2 with Sentinel-1 imagery allows for a precise segmentation of economically relevant 

urban land use classes across the continental study area.15  

                                                
15 To ascertain that the sample size of 1.6 km x 1.6 km imagery patches is sufficient, and to clarify how the model 

would perform on smaller samples, the main model is re-trained and re-estimated for subsamples of the full dataset. 

In specific, models were estimated after retraining on random samples of 20%, 40%, 60%, and 80% of the full training 

sample. The test set of images, for which accuracy metrics are calculated, was held constant. Resultant balanced 

accuracy values, for various sample sizes, showed a range of only 10 percentage-points. This suggests that also small 

sample sizes may achieve decent overall map accuracies, although accuracies specific to land use types may vary. 

4 Results 
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Figure 7. Maps of predicted land uses in subareas of several OECD-EC metropolitan areas (FUAs). 

 

From confusion matrices, standard model evaluation metrics can be computed, whose values all range 

from 0 to 1. A first evaluation metric indicates that the predictions of land use classes, as pooled across 

the observed 687 European FUAs, have an overall accuracy of 0.88 (see Figure 8). This means that 88% 

of all evaluated pixels are correctly predicted.   
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Figure 8. Confusion matrix (normalised) for the test set of images for European OECD FUAs. 

 

Note: The proportions in the confusion matrix are normalised according to rows, that is, by the total number of true label observations. The 

diagonal elements correspond to recall metrics for each class. 

In more detail, overall accuracy (OA) is perhaps the most intuitive performance measure, being defined as 

the fraction of correct pixel predictions among the total number of observations16:  

 𝑂𝐴 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

=
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑃𝑖𝑥𝑒𝑙𝑠

𝐴𝑙𝑙 𝑃𝑖𝑥𝑒𝑙𝑠
 

(1) 

The overall accuracy metric should, however, be interpreted with care as the model pertains to multiple 

land use classes. As such, overall accuracy does not account for class imbalance. The accuracy could be 

particularly high with a model that performs poorly on particularly low-prevalence classes (e.g., transport 

infrastructure), which may be hard to learn and detect. Indeed, highly prevalent classes (e.g., agricultural 

land), which are easier to detect, have more weight in the data, and thus tend to drive high accuracy values. 

This may partially explain the high level of overall accuracy of the current predictions. Other useful metrics 

include the precision and recall. Precision reflects the fraction of true positives amongst the elements 

predicted as positive by the model: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (2) 

                                                
16 A true positive [true negative] is an outcome where the model correctly predicts the positive class [another class]. 

A false positive [false negative] is an outcome where the model incorrectly [not] assigns a pixel to the observed class. 
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As such, the ‘precision’ score captures the share in all pixels assigned to an observed land use class that 

should indeed be assigned to that class according to the ground-truth (Urban Atlas-based) reference data. 

The precision metric thus signals whether an observed class is over-predicted. 

On the other hand, the ‘recall’ score reflects the fraction of true positives amongst all the pixels for an 

observed land use class that should have been predicted positive according to the ground-truth class 

labels:  

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

(3) 

As such, recall signals whether an observed class is under-predicted: is all land of a given type retrieved 

by the model, or have some pixels erroneously been assigned to another land use type? As the confusion 

matrix in Figure 8 was normalised according to the true label, the values reported in the diagonal 

correspond to the recall scores for each class.  

Out of the two metrics of precision and recall, the F1-score can be defined as: 

 
𝐹1 =  

2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(4) 

It accounts for both false positives and false negatives by providing a composite signal of whether the 

classifier over-predicts and under-predicts. This metric ranges from 0 to 1. A value of 1 corresponds to a 

model that perfectly predicts each observation as the correct class, and a value of 0 to a model unable to 

predict any pixel as the correct class. 

In the case of multi-class classification, these metrics can be adapted as: 

 Macro metrics: metric computed class by class and then averaged. 

 Micro metrics: metric computed for each pixel no matter its class. 

The main difference between macro and micro metrics is that macro weighs each class equally whereas 

micro weighs each sample equally. For the recall metric, this would give for example: 

 
                 𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑖𝑐𝑟𝑜 =  

∑ 𝑇𝑃𝑖
|𝐶|
𝑖=1

∑ 𝑇𝑃𝑖
|𝐶|
𝑖=1 + 𝐹𝑁𝑖

 
(5) 

 
                 𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑐𝑟𝑜 =

1

|𝐶|
∑

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖

|𝐶|

𝑖=1

 
(6) 

Macro-metrics are in general impacted by class imbalance, as individual metrics are computed class by 

class and then the same weight is given to each class before averaging. Particularly under-represented 

classes in the dataset, that are harder to detect and to learn, can consequently lead to a low macro metric. 

Table 3 shows the F1-score, recall and precision obtained for each class. These metrics are high for 

residential areas, agricultural areas, water, wetlands, and open space; and slightly lower for industrial and 

commercial areas. Transportation networks are, instead, under-predicted, with a recall score of 0.27. The 

precision for this class is however much higher, showing that the pixels predicted by the model as transport 

are well predicted. A reason for this is that the associated land-based features (e.g., roads in dense urban 

settings) are, by nature, spatially woven-in between neighbouring land uses, which invites under-prediction 
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for this class despite the imagery’s high resolution.17 This is confirmed by the precision obtained for the 

residential class, which is lower than the recall, suggesting that the model tends to over-predict this class. 

At the macro-level, the F1-score is 0.76, which indicates a good overall model performance. 

Table 3. F1-score, precision and recall for each land use class and at the macro level. 

Observed Class F1-score Precision Recall 

Residential 0.78 0.72 0.84 

Industrial and commercial 0.66 0.67 0.66 

Transport infrastructure 0.38 0.62 0.27 

Open space 0.90 0.88 0.92 

Agricultural 0.91 0.93 0.90 

Water and wetlands 0.89 0.93 0.85 

Macro 0.76 0.79 0.74 

4.1.3. Assessing Accuracy at the Level of Countries 

In addition to the model’s general performance at classifying urban land, its performance can also be 

evaluated at the scale of countries. In doing so, the focus is on the two types of urban land that are key to 

the analysis, residential land and industrial or commercial land. For both uses of land, Figure 9 shows an 

F1-score (the harmonized mean of precision and recall, which conservatively weighs towards the lower 

value of those observed for precision and recall) for each of the observed OECD countries. F1-scores vary 

from 0.67 to 0.81 for residential built-up areas and from 0.47 to 0.70 for industrial and commercial built-up 

areas.   

Figure 9. Average F1 scores by country for the classification of residential land use (top panel) and 
the industrial or commercial built-up areas (bottom panel).  

Bars indicate variation in scores at the city-level 

 

                                                
17 Probability values underlying the assignment to particular classes (see the discussion of the U-Net’s probability 

tensor in Section 3.1), however, suggest that road detection could be enhanced. This, however, is beyond the scope 

of the current paper where the transport class is mostly included to mitigate assignment of infrastructure-related pixels, 

despite their limited weight in the data, to other classes that involve developed land, as these are spatially correlated. 
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Furthermore, the modest range of error bars in Figure 9 indicates that, internal to countries, the accuracy 

of residential and industrial or commercial built-up area classification is relatively constant across cities. A 

few cross-city accuracy ranges that are particularly high are observed for both the observed land use types 

in the Northern countries of Norway, Latvia, Estonia, and Lithuania. Generally, F1-scores appear to be 

higher for countries with a mostly temperate climate, although climate plays a limited role in overall model 

performance.18 

4.1.4. Assessing Accuracy at the Level of Functional Urban Areas 

Next, as FUAs represent a policy-relevant scale of analysis, it is necessary to consider how classification 

accuracy varies at the level of individual FUAs. To this end, Figure 10 plots FUA-level precision and recall 

outcomes against each other. In both of Figure 10’s panels, most FUAs are positioned in the top-right 

quadrant, which reflects relatively accurate classifications. 

Figure 10. Precision-recall accuracy metrics for individual FUAs by key urban land use class. 

        

More precisely, most cities show recall and precision values above 0.7 and 0.6, with distributions that lean 

towards values of 0.95 and 0.8 for built-up area in a residential or in an industrial or commercial land use, 

respectively. Also noticeable is the dispersion around these values, with accuracies being very low for a 

few cities. Spatial variation in classification accuracy is natural to any map product and thus relevant to 

quantify.  

                                                
18 U-Net models were initially also estimated by climate zone, but performance was similar as for the pooled model. 
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4.1.5. Urban Shape Influences the Accuracy of Land Use Classification 

Due to the consistent nature of the OECD-EC definition of metropolitan boundaries by FUAs, this study is 

uniquely able to examine whether the physical shape of cities may influence how accurately land uses are 

estimated. Is land use estimated similarly well in cities where the density of built-up area is higher or lower? 

We now turn to assess FUA-level classification accuracy for built-up area in a residential or in an industrial 

or commercial land use, for different levels of built-up area density. Density, in this relatively ‘physical’ land 

cover related exercise, is for simplicity defined as the ratio of built-up area (the combined areas of 

residential, industrial, and commercial land) divided by the total area (including non-built-up area) of the 

observed city (the city, or cities, not the entire FUA’s surface, is considered here to maximize variation in 

density).19  

A priori, the relationship between built-up area density and land use classification accuracy is ambiguous. 

A high level of built-up area density can signal urban complexity, as land uses may spatially blend together. 

However, high built-up area density may also reflect zoning policies in which distinct uses of land are tightly 

separated and thus potentially easier to separate from each other using computer vision.  

A low level of built-up area density may imply that land use zones are less cohesive in terms of the 

(developed and non-developed) land cover mix. Moreover, in satellite imagery for dispersed urban areas, 

built structures might be more easily obfuscated by features such as leafy trees. 

More definitive insights follow from Figure 11. Figure 11 plots, at the level of individual FUAs, the F1-score 

for built-up areas in a residential land use (left panel) and for built-up areas in an industrial or commercial 

land use (right panel) against the measure of each city’s built-up area density.20 This shows a clear positive 

relationship, with a moderate slope, between the level of built-up area density and classification accuracy.  

For residential land use, this positive relationship is steeper than for industrial or commercial land. Potential 

explanations may relate to how (de-)centrally these land uses are generally allocated within cities as well 

as to how well urban features are captured in satellite imagery of a particular resolution at different urban 

density compositions. 21 

The new insights regarding how classification accuracy varies with the density of urban built-up areas 

address a relevant knowledge gap in the scientific literature on the remote sensing of cities (Reba and 

Seto, 2020). 

                                                
19 Cities, as concentrations of human activities, are by nature closely related to the density of built-up area, whereas 

their commuting zones are defined by the movement of people, and lesser so by a spatial concentration of built space. 

Commuting zones may more so reflect a mix of decentral open landscapes and urban concentrations –of sizes below 

the threshold for being an urban centre– whereas FUA city boundaries tend to enclose a density built-up area that is 

relatively high (relative to that FUA overall level of concentration or dispersion of people and firms). As FUA cores are 

defined based on a minimum threshold of population density (Dijkstra et al. 2019), cross-city variation in built-up area 

density can be compared consistently in this exercise. Although the measure ignores vertical density, a lack of open 

space between typical urban land uses offers a general signal of compact urban form. 

20 Recall that the F1 score is the harmonized mean of precision and recall, and so provides a composite signal of 

whether the model overpredicts and underpredicts an observed land cover class. 

21 In this context, it can also be observed that the U-NET model performs better for residential and industrial or 

commercial land use classes in FUA cores, or cities, than in commuting zones (see Annex D for results). Moreover, 

non-built-up classes are better segmented in commuting zones. This further illustrates that the shape of cities may 

influence mapping accuracy. However, the overall influence is limited at the study area-level, and is mostly an issue 

to consider at the level of individual urban areas. 
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Figure 11. FUA-level accuracy of land use prediction varies with the core’s built-up area density. 

               

The results here underline the key importance of policy-relevant variation in map accuracy being quantified. 

Using the resultant information on accuracy, appropriate estimates of land use areas can in the Section 

5.2 be produced: area estimates can now be adjusted for a known degree of bias in the underlying maps. 

Box 2. Expanding the Mapping Process to Non-European OECD Countries 

The U-Net deep learning model presented in this paper can be applied to any geographical area. To 

explore such wider application, land use maps are predicted for several OECD metropolitan areas 

outside of this paper’s study area, including San Francisco, Seoul, Tokyo, Auckland, Santiago, Sydney, 

Mexico City and Bogota. 

Important to note is that the model has not ‘seen and learned’ any urban land use patterns outside of 

Europe. Therefore, this exercise gives an impression of how transferable the European model’s 

predictive ability is to urban settings in further world regions. 

The exploratory results (see Annex F and Figure 12 below) suggest that the European U-Net model 

can effectively segment urban land uses also in non-European OECD countries. Maps generated for 

Sydney and Mexico City reveal a clear ability of the model to distinguish industrial or commercial built-

up areas from residential built-up areas. Maps for San Francisco, and Bogota, for instance, identify 

transport infrastructure features such as ports and airports relatively well. Open (green) spaces and 

agricultural land are well-identified for each of the metropolitan areas observed here. 

However, map predictions are now applied to satellite images that enclose a new level of cross-country 

and cross-continental variety in land use structures, as driven by a variety of market forces and urban 

planning cultures. For instance, in Seoul and Tokyo, separating residential and industrial or commercial 

uses of land from each other is more challenging than in Sydney or San Francisco, where dominant 

uses of land are generally more spatially separated. 

The observations above have two main implications regarding the inclusion of further OECD countries 

in the mapping process. One is that the mapping objective, of what land to assign to which land use 

type, should be conceptually consistent across countries (Section 1). Secondly, more heterogeneity in 

urban land use features and patterns should be considered in the collection of training and evaluation 

data. In remote sensing studies, this generally involves the manual labelling of land use in satellite 

images. In this study’s case, this may instead relate to whether readily existing ground truth maps can 

be obtained for OECD countries beyond Europe that are consistent with the Urban Atlas. An 
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overarching challenge is to achieve cost-reductions in the collection of consistent imagery labels at 

scale, to track urban land use accurately in more OECD countries. 

Figure 12. Illustration of land use predictions for a metropolitan area (Sydney) new to the model. 

 

4.2. Area Estimates for Land Use in European Metropolitan Areas 

4.2.1. Procedure to Adjust Area Estimates for Known Map Biases 

While any map that classifies urban land might appear visually compelling, an important question is to what 

extent the map captures the areas of the observed land use types accurately. There are two main ways in 

which areas can be estimated. One way is to simply count pixels associated with a particular land use. 

This approach, however, ignores the degree of error in the predicted map (recall the evaluation metrics in 

section 5.1). A preferred approach, therefore, is to report area estimates that are adjusted for the known 

degree of error in the mapping of specific land use classes – as quantified using reference data that is 

assumed to be of a superior quality (UN FAO 2016; Olofsson et al. 2014; Stehman 2013).22 The sample-

based approach is adopted in this section’s analyses. In specific, the map proportion for land class k is 

estimated using the equation: 

 
�̂�.𝑘 = ∑ 𝑊𝑖

𝑛𝑖𝑘

𝑛𝑖 .
.

𝑞

𝑖=1

 
 (7) 

where �̂�.𝑘 denotes the area proportion for the k-th land use class. The area proportion estimate follows 

from the sum of proportions of pixels (𝑛𝑖𝑘 / 𝑛𝑖) that are either correctly assigned to class k or ‘omitted’ 

through being incorrectly assigned to another i-th class while belonging to class k according to the 

                                                
22 It may be noted that also standard errors and confidence intervals associated with the area estimates are obtained, 

following equations (10) and (11) in Olofsson et al. (2014). However, reporting these explicitly, would in this study’s 

case add limitedly insightful information. The reason for this is that the number of observed reference pixels is very 

large, thus compressing the confidence intervals such that these might suggest over-precision of the estimates (as 

compared to estimates in smaller-sample studies for which confidence interval reporting is advocated). 
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reference data, multiplied by the i-th class’s total area proportion (𝑊𝑖). The area proportion for the k-th 

class can then be multiplied with the total map area to obtain the estimate for the class’s area. 

The information that the estimation requires can be obtained from the predicted map and the associated 

confusion matrix. As mapping accuracy varies across countries and urban areas (recall section 4.1), area 

estimates are adjusted for errors at the lowest spatial scale of analysis in this study that is of clear policy 

relevance, the individual FUA. This also flexibly allows for area aggregations to (inter-)national scales. 

4.2.2. Land Use Area Estimates for 2021 Across Metropolitan Areas 

Using the deep-learning model’s land use predictions for metropolitan areas in Europe, as defined by 

OECD-EC functional urban areas (FUAs), and after adjusting these estimates for known mapping errors23, 

a variety of key urban land use patterns can now be examined on a consistent basis.  

Amongst the 992,680 km2 of observed urban surface, estimates suggest that 7.5% of land surface is 

allocated to a residential use (see Table 4). Residential built-up area, as such, is the largest of the ‘typical’ 

urban of urban land in terms of areal cover. In cities (densely populated cores), the share of residential 

built-up area is 12%, which is approximately two times the amount of land allocated to an industrial or 

commercial use, and roughly three times the land surface that is in an infrastructural use. Open spaces, 

which may reflect green spaces as well as recreational spaces and bare land, and agricultural land together 

represent more than two-thirds of the total observed metropolitan surface.24 

Important in the areal distribution of land use in FUAs is the role of commuting zones, where, in relative 

terms, less land is used for residential or industrial and commercial purposes than in cities. In absolute 

terms, however, most of the land that is covered by built-up area in a residential, industrial, or commercial 

use is found within commuting zones. This means that, across European FUAs, locations where the use 

of built-up areas tends to be relatively spread-out have the most weight in the overall physical, or built-up, 

‘footprint’ that FUAs have on land.  

Table 4. Estimated FUA land area in 2021, by type of use (within European OECD countries). 

 Area (km2) Area (%) 

 City Commuting zone FUA City Commuting zone FUA 

Transport 8,506 17,078 25,585 3.9 2.2 2.6 

Water and wetlands 8,848 19,964 28,812 4.1 2.6 2.9 

Industrial and commercial 13,476 21,331 34,808 6.2 2.7 3.5 

Residential 25,880 48,170 74,049 12.0 6.2 7.5 

Open space 78,080 284,725 362,804 36.2 36.7 36.5 

Agricultural 81,153 385,422 466,575 37.6 49.6 47.0 

It should be noted that comparing FUAs based on areal shares of different land uses relative to the total 

land area of the FUA or city has two main drawbacks. First, the comparison would be highly dependent on 

the areal size of the local units used to define the FUA or city. Second, the resultant share is likely to only 

increase as FUA or city boundaries are held constant. Therefore, the analysis below relies on measures 

of the areas of distinct types of land on a per capita basis, based on the number of FUA or city inhabitants. 

Figure 13 shows for each of the observed countries the average built-up area per capita across FUAs, as 

differentiated for key uses of urban land. In specific, built-up area per capita is shown for residential as well 

                                                
23 Adjustment follows the procedure in Section 5.2A and assumes that mapping errors in 2018 data apply also in 2021. 

24 Water bodies are only partially captured in the FUAs definition because of definitional reasons (see Dijkstra et al. 

2012) and therefore have a limited weight in the estimated urban land use areas, despite many cities being close to 

water. 
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as for industrial or commercial uses. For each country, the thin lines inside the bars indicate variation of 

built-up area per capita, in the observed use, amongst FUAs.25 

Figure 13. Urban built-up area per capita (2021), by country and land use type. 

 

 

Between the 27 countries observed in Figure 13, the range of built-up area per capita is substantial. For 

residential land use, the lowest amount of built-up area per inhabitant across FUAs is about 120 square 

meters (Turkey) whereas the highest built-up area per capita is close to 600 square meters per inhabitant 

(Finland).26 Between these two outer values, the distribution across countries is relatively gradual. This 

shows that although within Europe there is noteworthy variation in how much land per inhabitant is in 

residential use, there is no general divide between countries.  

However, on a country-by-country basis, it can now be observed that the residential built-up area per capita 

in Ireland’s FUAs is, on average, about twice that of FUAs in Germany, or that such per capita outcomes 

are smaller for FUAs in Spain and Estonia than for FUAs in countries that are widely known for their 

compact cities, such as the Netherlands and the United Kingdom. Largely similar patterns are observed, 

in the lower panel of Figure 13, for industrial or commercial land use, also in terms of how countries rank.  

                                                
25 For Iceland, no line is plotted as only one FUA is observed and so is represented by the country-level estimate. 

26 It may be recalled that these per capita built-up areas do not capture internal floor space but any land, including 

gardens, that is associated with a residential use. 
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Noteworthy, in Figure 13, is that within several countries built-up area per capita varies relatively widely 

between FUAs, as the lines plotted within the bars show. For these countries, this observation of relatively 

wide cross-FUA variation in built-up area per capita holds for both industrial or commercial use and 

residential land use. This hints at regional variation in planning cultures or land market structures that are 

consistent across uses. However, in some countries variation in built-up area per capita is particularly wide 

either for residential built-up areas or for industrial and commercial built-up areas. 

Figure 14 gives a further impression of the extent to which FUAs in different countries are relatively 

residential, or relatively industrial and commercial, in terms of their built-up area composition. This shows 

that countries including Turkey, Slovakia, Estonia as well as Iceland and Spain are characterized by 

relatively industrial and commercial FUA-surfaces. The surfaces of FUAs in Norway, Austria, Belgium or 

Poland, on the other hand, are relatively more of a residential nature. Latvia, the Czech Republic, and the 

United Kingdom are positioned at a ratio around the OECD average (for the observed European FUAs). 

Figure 14. Urban built-up area distribution (2021) over residential and industrial or commercial 
uses. 

 

In Figure 15 and Figure 16, built-up area per capita is now further disaggregated. First by cities versus 

commuting zones and subsequently by FUA-size category. This is necessary to appropriately interpret the 

built-up area per capita, in the light of standard economic explanations of how intensively or extensively 

land is used (see, for instance, Alonso [1960], Bertaud and Renaud [1998], or Evans [2008]). 

Figure 15 shows how commuting zones drive up the average built-up area per capita for FUAs (compare 

Figure 13).27 The reason for this is that land values in commuting zones tend to be relatively low, in 

comparison to land values in cities as there competition for space is higher. Therefore, land in commuting 

zones tends to be used extensively (in low densities). This underlines the importance of using the FUA-

based distinction between densely populated cities and their commuting zones in examining built-up area.  

Several of the countries (e.g., Ireland and Latvia) for which in Figure 13 some of the largest built-up areas 

per capita were observed (based on the surface and population of entire FUAs), are now shown in Figure 

15 to actually have cities with relatively low built-up area per capita; this means that in those countries, the 

relatively large FUA-wide built-up area per capita outcomes are primarily driven by spread-out land use in 

                                                
27 For some countries no commuting zones are observed. For Iceland, the commuting zone’s built-up area is omitted 

as population estimates from the JRC GHSL-POP layer appeared to be inconsistent with satellite-based observations. 
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commuting zones (rather than in cities). Noteworthy is that large relative gaps in built-up area per capita 

outcomes for cities and commuting zones are observed not only for countries with the largest of FUA-wide 

built-up areas per capita. Similar relative gaps are observed for countries of various levels of built-up area 

per capita, including Norway, Greece, and Spain. 

Figure 15. Urban built-up area disaggregated by the FUA-definition of cities and commuting zones. 

 

 

Next, in line with theoretical expectations, Figure 16 shows that built-up area per capita tends to be smaller 

for larger FUAs. The reason for this is that competition for space by households and firms leads land to be 

used more intensively in larger cities, which are thus associated with relatively compact built-up areas. 

However, also amongst the largest of FUAs there is substantial variation in residential or commercial and 

industrial built-up area per capita.  
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Figure 16. Urban built-up area by Functional Urban Area size-category. 

 

 

Table 5 and Table 6 show the large metropolitan FUAs that in 2021 rank in the separate top-10’s in terms 

of smallest and largest built-up areas per capita (by land use type), respectively. These results suggest a 

North-South divide amongst large metropolitan FUAs (n = 41), where Southern FUAs tend to have smaller 

built-up areas per capita than Northern FUAs. This observation holds for both residential and industrial or 

commercial land uses. Outcomes for all European FUAs are mapped Figure 17. Similar top-10 rankings 

and maps, but based on land use at the scale of cities instead of metropolitan areas as a whole may be 

observed in Annex E. 
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Table 5. Top-10 metropolitan areas (cities and commuting zones) with the smallest built-up area per capita, by land use type. 

Rank Metropolitan Area 
 

Country 
 

Residential 
Built-up area per capita (m2) 

 Rank FUA 
 

Country 
 

Industrial or Commercial 
Built-up area per capita (m2) 

1 Istanbul Turkey 28.7  1 Istanbul Turkey 19.6 

2 Izmir Turkey 37.4  2 Athens Greece 28.3 

3 Bursa Turkey 45.4  3 Bursa Turkey 34.5 

4 Gaziantep Turkey 58.8  4 London United Kingdom 35.7 

5 Ankara Turkey 60.6  5 Izmir Turkey 38.0 

6 Barcelona Spain 76.0  6 Barcelona Spain 43..6 

7 Madrid Spain 83.6  7 Naples Italy 48.5 

8 Valencia Spain 103.3  8 Ankara Turkey 54.2 

9 Athens Greece 109.9  9 Paris France 58.0 

10 Milan Italy 114.2  10 Madrid Spain 61.3 

Notes: Metropolitan areas are in this table defined by the subset of Functional Urban Areas that categorize as large metropolitan (n = 41). 

Table 6. Top-10 metropolitan areas (cities and commuting zones) with the largest built-up area per capita, by land use type. 

Rank Metropolitan Area 
 

Country 
 

Residential 
Built-up area per capita (m2) 

 Rank FUA 
 

Country 
 

Industrial or Commercial 
Built-up area per capita (m2) 

1 Warsaw Poland 297.8  1 Dublin Ireland 133.9 

2 Stockholm Sweden 295.4  2 Berlin Germany 121.1 

3 Brussels Belgium 279.7  3 Rotterdam Netherlands 101.1 

4 Dublin Ireland 271.0  4 Katowice Poland 99.0 

5 Copenhagen Denmark 256.4  5 Vienna Austria 98.0 

6 Budapest Hungary 250.3  6 Glasgow United Kingdom 96.8 

7 Lyon France 241.4  7 Copenhagen Denmark 94.1 

8 Hamburg Germany 226.3  8 Hamburg Germany 92.4 

9 Prague Czech R. 221.5  9 Prague Czech R. 90.9 

10 Vienna Austria 216.8  10 Budapest Hungary 86.0 

Notes: Metropolitan areas are in this table defined by the subset of Functional Urban Areas that categorize as large metropolitan (n = 41). 
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Figure 17. Built-up area per capita (2021) in European FUAs, by land use type. 

 

 



   35 

MONITORING LAND USE IN CITIES USING SATELLITE IMAGERY AND DEEP LEARNING © OECD 2022 
  

Box 3. Timely Tracking of Urban Expansion (And Its Speed and Shape) 

The U-Net deep learning model can also be applied to track changes in land use over time. A first 

illustration can be given below. First, a methodological note is provided, and then followed by an 

application of tracking and categorizing urban expansion across large European metropolitan areas.  

Changes could be tracked using several methodological approaches. For instance, change could be 

detected by comparing each satellite image pixel and estimate which land use is present there with the 

highest probability for 2018 and 2021 imagery separately, and then compare classifications. This, 

however, is a noisy procedure. Consider a pixel that could potentially be classified as one of two likely 

classes, as these classes have very close probabilities in the output probability tensor for two points in 

time. This pixel could then be classified differently, even if there has been no land use change, if ground 

reflectance changes only slightly over time. Some of such noise may be removed from the land use 

change estimation by applying a sieving operation, but that would be a limited solution.  

A second, more stable, method is to compare the probability tensors for the two points in time 𝑖 and 𝑓, 
and to compute for class 𝑘 the probability difference 𝑝𝑘,𝑓 − 𝑝𝑘,𝑖. If this difference is above a certain 

threshold, this is taken as an indication that there is an expansion of class 𝑘. Figure 18 shows such 

probability-difference based signals of expansion for a sub-centre within the FUA of Dublin (Ireland), as 

an illustration. This illustration suggests a relatively large-scale and spatially concentrated expansion of 

residential areas in the observed settlement.  

Figure 18. Urban expansion (2018-21) tracked in a settlement within the Dublin metropolitan 
area, based on probability-differences in the model’s assignment of land use types to satellite 

image pixels. 

 

Systematic analysis of land use change, however, requires reference data for both the initial and the 

final period of observation, which in the case of Urban Atlas is unavailable for the present study. Also, 
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to appropriately quantify accuracy, evaluation procedures should be tailored to account for the potential 

subtleties of changes in spectral profiles when urban land is converted from one use to another. Another 

possible source of temporal variation in mapping accuracy could be changes in the luminosity or 

contrast of images. Detailed analysis of land use change would thus warrant additional accuracy 

assessment. 

In Figure 19, European metropolitan areas are illustratively categorized in terms of the speed and shape 

of urban expansion. The figure’s y-axis plots whether expansion of built-up areas takes place in FUA 

sub-areas that are intensively or extensively developed. This signals whether a FUA moves towards 

compaction or dispersion. The underlying measure captures for each individual expansion-site (red 

areas in Panel A) the share of residential, industrial, and commercial land, within a 1-km radius, 

amongst all developable land, and divides this share by such ratio captured at FUA-level; finally, site-

specific values are averaged at the FUA-level. The x-axis plots a Herfindahl index, which captures the 

degree to which FUA urban expansion is concentrated in few or in many individual sites. The speed of 

expansion is measured from the expansion’s areal surface relative to the total surface of the observed 

FUA.  

Based on the metrics outlined above, the shape and speed of urban expansion can be consistently 

compared across OECD metropolitan areas in a single overview. For instance, urban expansion in 

Vienna is relatively intensive, taking place close to or in existing built-up areas, yet fragmented across 

many sites, whereas Istanbul’s urban surface expanded more extensively but across relatively few sites.             

Figure 19. The speed and shape of the urban expansion (2018-21) of OECD metropolitan areas. 
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Conclusion 

Whether today’s cities become more compact or more spread out will have a lasting influence on the 

economic efficiency, resilience, and sustainability of life in cities (OECD, 2018a; 2018b; 2019). Many 

processes regarding mobility, carbon emissions, resource consumption, housing affordability, people’s 

access to services, infrastructure costs, or the ease of social and business interactions, may be 

successfully or less successfully facilitated by a metropolitan area’s physical shape and expansion. This 

highlights the importance of this paper for the timely monitoring of urban land use across OECD countries. 

This study developed an efficient method for the near real-time monitoring of land use in OECD cities, on 

an internationally consistent basis. As a case application, land use in 687 European metropolitan areas 

was examined for the year 2021. The large spatial scope of the study was supported by combining imagery 

from an innovative constellation of satellites, operated by the European Commission and ESA, with an 

established machine learning model for processing such imagery. In specific, a deep learning model in a 

U-Net architecture was used to map key economic land uses in cities.  

Overall, the model was found to detect and distinguish residential and industrial or commercial uses of 

land at a high level of accuracy. As any mapping exercise involves some degree of error, the accuracy of 

results was quantified at the level of individual metropolitan areas. Such reporting ensures that analytical 

insights can be appropriately obtained at a policy-relevant scale of analysis. This exercise further showed 

that the accuracy of urban land use mapping clearly varies with built-up area density, which has not been 

accounted for yet in other studies.  

The findings quantify how the compactness of land use in cities varies strongly across European countries. 

Across the observed countries, whether measured from residential or from industrial and commercial uses, 

the built-up area per urban inhabitant varies between countries by up to a fivefold. Large variation stems 

from how compact or spread-out the use of (built-up) land is in the commuting zones that surround central 

cities. A related finding is that in some countries the industrial or commercial use of land has noticeably 

more weight in the metropolitan land surface than in other countries. 

As an extension of the main analysis, the speed and shape of urban expansion over 2018-2021 was 

explored. These results showed major differences, even within Europe’s low-population growth 

environment. Metropolitan areas grew inward or outward to a varying extent and, similarly, substantial 

differences are observed in whether growth is concentrated in few locations or fragmented over many sites 

across the metropolitan area’s surface. This raises the question of how the development of built-up areas 

in European metropolitan areas might compare to other world regions where urban growth rates may vary 

even more. The current model, which was trained solely on European data, was qualitatively indicated to 

transfer well to other world regions. Monitoring land use also for non-European countries would require an 

efficient and harmonized approach to collecting further data for model training and evaluation purposes. In 

this light, the present model may offer a methodological basis for indicators that are even more centred on 

the monitoring of specific forms of economic development in cities, to capture early signals of growth or 

change.   
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Annex A. Alternative Groupings of Urban Atlas 

Categories and Associated Confusion Matrices 

Table A A.1. Full Urban Atlas typology and relative coverage (%) by FUA in 2018. 

Urban Atlas 2018 Typology Mean St. dev. 

Continuous urban fabric (S.L. : > 80%) 0.9 1.1 

Discontinuous dense urban fabric (S.L. : 50% -  80%) 2.3 2.5 

Discontinuous medium density urban fabric (S.L. : 30% - 50%) 1.8 1.8 

Discontinuous low density urban fabric (S.L. : 10% - 30%) 1.3 1.2 

Discontinuous very low density urban fabric (S.L. : < 10%) 0.9 1.1 

Isolated structures 0.7 0.6 

Industrial, commercial, public, military and private units 3.3 3.0 

Fast transit roads and associated land 0.2 0.2 

Other roads and associated land 2.0 1.1 

Railways and associated land 0.2 0.2 

Port areas 0.1 0.4 

Airports 0.2 0.4 

Mineral extraction and dump sites 0.4 0.7 

Construction sites 0.1 0.1 

Land without current use 0.2 0.3 

Green urban areas 0.6 0.8 

Sports and leisure facilities 0.8 0.8 

Arable land (annual crops) 28.6 19.0 

Permanent crops (vineyards, fruit trees, olive groves) 3.2 9.0 

Pastures 17.0 13.7 

Complex and mixed cultivation patterns 0.1 0.8 

Orchards at the fringe of urban classes 0.0 0.0 

Forests 23.3 17.8 

Herbaceous vegetation associations (natural grassland, moors...)  8.1 13.8 

Open spaces with little or no vegetation (beaches, dunes, bare rocks, glaciers) 0.9 4.2 

Wetlands 0.5 1.4 

Water 2.2 3.8 
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Figure A A.1. Confusion matrix for the full set of Urban Atlas categories 
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Table A A.2. Aggregation of Urban Atlas categories. 

Grouped class Original class 

Urban fabric (low density) Discontinuous low density urban fabric (S.L.: 10% - 30%), 

Discontinuous very low density urban fabric (S.L.: < 10%), 

Isolated structures 

Urban fabric (medium density) Discontinuous dense urban fabric (S.L.: 50% - 80%), 

Discontinuous medium density urban fabric (S.L.: 30% - 50%) 

Urban fabric (high density) Continuous urban fabric (S.L.: > 80%) 

Agricultural Arable land, Permanent crops, Pastures, Complex and mixed cultivation 

patterns, Orchards 

Water, wetlands Water, wetlands 

Roads and railways Fast transit roads, railways, other roads, and associated land 

Airports Airports 

Ports Ports 

Industrial, commercial, public, military and 
private units 

Industrial, commercial, public, military, and private units 

Mine, dump, and construction sites Mineral extraction and dump sites, Construction sites, Land without current 
use 

Artificial vegetated areas (non-agricultural) Green urban areas, Sports facilities 

Herbaceous area Herbaceous areas 

Forests Forests 

Open spaces Open space without vegetation (beaches), 

Figure A A.2. Confusion matrix for aggregated Urban Atlas typology. 
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Table A A.3. Further aggregation of Urban Atlas categories. 

Grouped 
Class 

Original class 

Artificial areas Urban fabric, Industrial, commercial, public, military, and private units, roads, railways, ports, airports, mineral 
extraction and dump sites, construction sites, lands without current use, green urban areas, sport facilities 

Natural areas Forests, herbaceous areas, open space without vegetation (beaches) 

Agricultural 
areas 

Arable land, Permanent crops, Pastures, Complex and mixed cultivation patterns, Orchards 

Water, 

wetlands 

Water, wetlands 

Figure A A.3. Confusion matrix for further-aggregated Urban Atlas typology 
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Annex B. Prediction Accuracy by Sample Size 

Figure A B.1. Influence of the train set size on the model performance as obtained from the mean of 

FUA-by-FUA balanced accuracy values. 
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Annex C. Results for Models by Climate Zone 

Figure A C.1. Results for a ‘global’ U-Net using all training data and for U-Nets trained by climate 

zone. 
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Annex D. Does Accuracy Vary Within FUAs? 

Figure A D.1. Normalised confusion matrices obtained for FUA cities (top) and commuting zones 

(bottom) 
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Annex E. Maps of built-up area per capita by city 

Figure A E.1. Urban area per capita by city, 2021. 
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Table A E.1. Top-10 cities with the smallest urban built-up area (relatively compact urban form) by land use type. 

Rank Metropolitan Area Country Residential 
Built-up area per capita (m2) 

 
Rank FUA Country Industrial or Commercial 

Built-up area per capita (m2) 

1 Istanbul Turkey 28.7 
 

1 Istanbul Turkey 19.6 

2 Barcelona Spain 35.6 
 

2 Copenhagen Denmark 20.9 

3 Izmir Turkey 37.4 
 

3 Barcelona Spain 22.9 

4 Madrid Spain 40.3 
 

4 London United Kingdom 25.0 

5 Valencia Spain 43.9 
 

5 Vienna Austria 25.9 

6 Bursa Turkey 45.4 
 

6 Munich Germany 26.6 

7 Turin Italy 51.0 
 

7 Valencia Spain 27.4 

8 Gaziantep Turkey 58.8 
 

8 Athens Greece 28.3 

9 Ankara Turkey 60.6 
 

9 Paris France 28.5 

10 Copenhagen Denmark 63.1 
 

10 Warsaw Poland 30.5 

Note: Metropolitan areas are in this table defined by the subset of Functional Urban Areas that categorize as large metropolitan (n = 41). 

Table A E.2. Top-10 cities with the largest urban built-up area (relatively dispersed urban form) by land use type. 

Rank Metropolitan Area Country Residential 
Built-up area per capita (m2) 

 
Rank FUA Country Industrial or Commercial 

Built-up area per capita (m2) 

1 Brussels Belgium 199.1 
 

1 Gaziantep Turkey 79.1 

2 Leeds United Kingdom 145.0 
 

2 Glasgow United Kingdom 75.5 

3 Ruhr Germany 139.4 
 

3 Katowice Poland 68.8 

4 Glasgow United Kingdom 135.8 
 

4 Rotterdam Netherlands 63.4 

5 West Midlands United Kingdom 135.6 
 

5 Brussels Belgium 63.3 

6 Manchester United Kingdom 122.6 
 

6 Ruhr Germany 68.0 

7 Hamburg Germany 121.6 
 

7 Leeds United Kingdom 61.8 

8 Athens Greece 109.9 
 

8 Düsseldorf Germany 57.8 

9 Budapest Hungary 106.9 
 

9 Amsterdam Netherlands 57.8 

10 Stockholm Sweden 104.7 
 

10 Cologne Germany 56.0 

Note: Metropolitan areas are in this table defined by the subset of Functional Urban Areas that categorize as large metropolitan (n = 41).  
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Annex F. Estimated Land Use Maps for OECD 

Metropolitan Areas Beyond Europe 

Figure A F.1. Satellite images and estimated land uses for selected non-European metropolitan 

areas. 
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