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ABSTRACT

Superconducting qubits are one of the leading systems for implementing quan-
tum processors. Realizing fault-tolerant quantum computation requires some form
of quantum error correction, which typically involves performing repeated stabilizer
operations on groups of physical qubits in an array to form a logical qubit with en-
hanced protection against errors. Realizing a logical qubit that is suitable for running
quantum algorithms requires an array with a significant number of physical qubits,
which is extremely challenging. However, the physical qubit overhead can be reduced
by lowering the error rate on the physical qubits. Current state-of-the-art super-
conducting qubit designs do not have robust protection against all types of errors.
Reducing error rates on these conventional qubits requires further advances in fabri-
cation, materials, and device packaging to reduce the noise and perturbations coupled
to the qubit.

Another approach to reduce the error rates is to develop new qubit designs that
have intrinsic protection against all types of errors. The charge-parity qubit is one
such design. Conventional superconducting qubits are based on Josephson junctions,
which have a 2π-periodic dependence on the superconducting phase difference across
the junction. The charge-parity qubit is formed from a chain of plaquettes, each of
which behaves as a π-periodic Josephson element. For appropriate parameters, the
effective coupling Hamiltonian between plaquettes in a charge-parity qubit is equiv-
alent to the implementation of a quantum stabilizer in superconducting hardware.
In this thesis, I present the experimental realization of plaquette-chain devices that
exhibit such stabilizer behavior. The plaquette devices are fabricated with arrays of
Josephson junctions, with multiple on-chip flux- and charge-bias lines for local bias-
ing of the various device elements. Microwave spectroscopy measurements allow for a
characterization of the transitions between the different energy levels of the plaquette
chain and their dispersion with flux and charge bias of the various device elements.
Extensive numerical modeling of the energy-level structure and comparison with the
measured transition spectra indicates that the device exhibits protection against local
noise. This work paves the way for future qubits based on this design with optimized
parameters and implementations that are capable of achieving dramatic reductions
in error rates beyond the current state of the art.
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Chapter 1

Introduction

The field of quantum computing takes advantage of several unique and counterintu-
itive phenomena of quantum mechanics, including superpositions, interference, and
entanglement, to create processors that can dramatically outperform classical com-
puters for solving certain problems. A universal fault-tolerant quantum computer will
be able to execute key quantum algorithms, such prime factoring with an exponential
speedup over classical processors [1, 2], and unstructured database searching with a
quadratic speedup [3]. However, a quantum processor capable of this performance
requires error rates that are orders of magnitude lower than current state-of-the-art
processors. Nonetheless, recent advances in the field have led to the development of
what are referred to as noisy intermediate-scale quantum (NISQ) systems [4]. While
not fault-tolerant, these systems are capable of solving important problems in physics
[5], chemistry [6, 7, 8, 9], and artificial intelligence [10, 11, 12]. Current state-of-the-
art quantum processors have error. rates ∼ 10−3 [13, 14, 15, 16, 17, 18]; the error
rates need to improve by orders of magnitude to run useful quantum algorithms.

The fundamental element in a quantum computer is a quantum bit, or qubit.
Building a functional quantum computer requires physical qubits with long coherence,
where each qubit can controllably interact with at least neighboring qubits in an array.
Implementing quantum error correction to achieve fault-tolerance involves forming
logical qubits from a larger number of physical qubits, with stringent requirements on
the gate errors, initialization, and readout fidelity for the physical qubits [19]. There
are multiple competing approaches for implementing qubits. Besides superconducting
qubits [20], other systems include trapped ions [21], semiconductor quantum dots
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[22] and photonic qubits [23]. Superconducting qubits are widely used because of
their fast gate operations and initialization, high-fidelity readout, and scalability from
leveraging microfabrication techniques from the semiconductor processing industry.
A comprehensive recent summary of the current state-of-the-art in superconducting
qubits can be found in Ref. [24].

Although the coherence of superconducting qubits has improved by over five or-
ders of magnitude in the last two decades [24], the gate error rates are still orders of
magnitude larger than what is necessary to build a fault-tolerant quantum proces-
sor. Besides errors due to calibration imprecision, gate errors are caused by various
sources, such as environmental noise and dissipation, as well as coherent interactions
with other quantum systems or levels. Gate errors can be broadly separated into three
categories: bit-flip errors, phase-flip errors, and leakage errors. All of these must be
suppressed to implement a successful quantum processor. Within the field of super-
conducting qubits, the transmon qubit has been one of the most successful designs
over the past 15 years. Phase-flip errors in transmons due to environmental charge
noise are exponentially suppressed because the width of the circuit wavefunction in
the charge basis is large [25]. On the other hand, when the frequency of a transmon is
made tunable, the device becomes suseptible to phase-flip errors from magnetic flux
noise [26]. In addition, the nature of the transmon wavefunctions makes the qubit
sensitive to environmental noise at the qubit frequency, thus leading to bit-flip errors.
Also, due to the small anharmonicity of transmons, it can be challenging to reduce
leakage errors out of the qubit subspace. Fluxonium is another promising super-
conducting qubit design, with disjoint wavefunctions for the qubit basis states that
help to reduce bit-flip errors [27, 28]. However, achieving low phase-flip error rates in
fluxonium is challenging because of the susceptibility to flux noise. Because of the rel-
atively large anharmonicity, leakage errors are less problematic for fluxonium qubits,
although initialization is more difficult due to the generally small energy scales at the
typical operating point. For both transmons and fluxonia, there is no clear path for
the simultaneous significant suppression of bit-flip, phase-flip, and leakage errors. To
further reduce error rates with the transmon and fluxonium designs, the primary fo-
cus involves reducing environmental noise, with significant effort in materials science
and device fabrication [29, 30].

With sufficiently low physical qubit error rates, quantum error correction (QEC)
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can be implemented for working towards a fault-tolerant processor. In general, QEC
schemes are based on spreading quantum information across an array of physical
qubits to form a logical qubit [31, 32, 33]. Through repeated measurements of stabi-
lizers, which consist of products of operators on multiple qubits in the array, errors
due to local noise on individual physical qubits can be detected and corrected. Of
course, adding more imperfect physical qubits to run QEC can end up decreasing
the overall coherence. Thus, to make QEC effective, the physical qubit error rate
must be below a threshold, which depends on the particular QEC scheme. At this
point, the error rate in the logical qubits becomes lower than in the physical qubits.
The Google Quantum AI team recently demonstrated exponential suppression of bit-
flip and phase-flip errors in an array of transmon qubits using the repetition code
[18]; the Google group also demonstrated logical qubits based on the surface code
with transmons where the logical errors improved as the number of physical qubits
was increased [34]. Another superconductor-based scheme involving bosonic codes in
superconducting resonators has also demonstrated logical error rates lower than phys-
ical error rates [35]. Nonetheless, reducing logical error rates to the level required for
fault-tolerance requires thousands of current state-of-the-art physical qubits to form
a single logical qubit. This becomes an extremely challenging engineering task. Sev-
eral years ago, transmons were shown to be capable of reaching the error correction
threshold for the surface code approach to QEC [32, 36]

The overhead requirement on the number of physical qubits required to form a
logical qubit with a particular error rate decreases with the ratio of the error per
physical gate to the QEC threshold [18]. Thus, significant improvements in qubit
coherence to reduce physical qubit error rates can have a large impact. Protected
qubit designs, with intrinsic protection against local noise, hold promise for moving
beyond the error rates that are achievable with transmon or fluxonium qubits. In
general, protected qubit designs involve wavefunctions for the qubit basis states that
are disjoint in phase space; at the same time, the qubits have suppressed sensitivity
to local noise, thus providing suppression of both bit-flip and phase-flip errors [37, 38,
39, 40, 41]. The charge-parity qubit that we are pursuing is one such protected qubit
design. In particular, the charge-parity qubit involves built-in stabilizers involving
different components of the device. These stabilizers allow for the nonlocal storage of
quantum information and enhance the immunity to local noise. In this thesis, I will
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describe the concept of simultaneously suppressing both bit-flip errors and phase-flip
errors with charge-parity qubits.

This thesis is structured as follows. Chapter 2 gives a brief overview of super-
conducting qubits − introducing transmon and fluxonium, then the protected qubit
design. The last section will discuss the common decoherence sources in superconduct-
ing qubits. Chapter 3 describes the basic concept of charge-parity qubits. Chapter 5
shows our choice of parameters, device design, circuit-element simulation and device
fabrication. Chapter 4 describes the modeling of charge-parity qubits with actual
circuit parameters, including details of the complex energy-level dispersion with re-
spect to flux and charge bias. Chapter 6 presents the measurement setup as well as
the spectroscopy experimental methods and data. Chapter 7 describes the process
for fitting the modeled energy-level spectra to the experimental spectroscopy data.
Chapter 8 discusses several potential improvements in future devices that could en-
able the charge-parity qubit to operate with protection for significant improvements
in coherence beyond conventional superconducting qubits.
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Chapter 2

Superconducting quantum

computation

In this chapter, I describe basic concepts of qubits and their realization with super-
conducting circuits and Josephson junctions. I introduce the topic of circuit quantum
electrodynamics (cQED), which provides a key framework for describing networks of
superconducting qubits and photonic modes. I next describe the transmon qubit [25]
and fluxonium qubit [27, 28], which represent the current state of the art for su-
perconducting qubit technology. Next, I introduce the charge-parity protected qubit
design based on cos 2φ elements, which has the potential to achieve error rates that
are significantly lower than have been demonstrated with conventional qubit designs.

2.1 Qubit basics

The fundamental element in a quantum computer is the qubit. A qubit is a two-state
quantum system, with basis states |0⟩ and |1⟩, that can be prepared in an arbitrary
superposition:

|ψ⟩ = α |0⟩+ β |1⟩ , (2.1)

where α and β are complex numbers with |α|2 + |β|2 = 1; |α|2 and |β|2 represent the
probability for a measurement to observe the qubit in |0⟩ and |1⟩, respectively. An
arbitrary qubit state can be visualized on the Bloch sphere (Fig. 2.1) by expressing
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Figure 2.1: Bloch sphere for representing an arbitrary qubit state in terms of the
angles θ and ϕ.

the state vector in terms of polar and azimuthal angles θ and ϕ:

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ . (2.2)

Another representation of the qubit state that is particularly useful when consid-
ering decoherence is based on the density matrix ρ = |ψ⟩ ⟨ψ|.

ρ =
1

2
(I + a⃗ · σ⃗) = 1

2

(
1 + cos θ eiϕ sin θ

eiϕ sin θ 1 + sin θ

)
. (2.3)

Here, the I is identity matrix, a⃗ is the Bloch vector, σ⃗ = (σx, σy, σz), where the σi are
the Pauli matrices. When |⃗a| = 1, the qubit is in a pure state and the Bloch vector
points on the surface of the Bloch sphere. In this case, the density matrix can be
expressed as: (

|α|2 αβ∗

α∗β |β|2

)
. (2.4)

When |⃗a| < 1, the Bloch vector does not reach the surface of the Bloch sphere,
corresponding in general to a mixed state with a loss of qubit coherence.
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2.2 Decoherence

Decoherence of physical qubits plays a critical role in determining gate errors in a
quantum processor. In general, decoherence can be described by two timescales that
describe the decay of the entries in the density matrix. This can be written in the
Bloch-Redfield formalism as [42]:

ρBR =

(
1 + (|α|2 − 1)e−Γ1t αβ∗e−Γ2t

α∗βe−Γ2t |β|2e−Γ1t

)
. (2.5)

where
Γ1 ≡

1

T1
(2.6)

Γ2 ≡
1

T2
=

Γ1

2
+ Γϕ, (2.7)

Γ1 is the relaxation rate corresponding to the decay of the diagonal elements of the
density matrix. Γ1 characterizes the rate at which the qubit loses energy to the
environment, thus leading to bit-flip errors. Γ2 corresponds to the decay rate for the
off-diagonal elements of the density matrix, characterizing the rate at which the qubit
loses phase information, leading to phase-flip errors. Γ2 is composed of a contribution
from relaxation as well as a pure dephasing rate Γϕ, which results from the random
accumulation of dynamical phase due to low-frequency noise in the energy difference
between the qubit basis states. Pure dephasing causes a loss of phase coherence, but
without energy loss to the environment.

The relaxation rate and pure dephasing rate due to a fluctuating parameter λ can
be computed from the following expressions:

Γλ
1 ∝

∣∣∣∣∣ ⟨0|∂Ĥq

∂λ
|1⟩

∣∣∣∣∣
2

Sλ(ω10) (2.8)

Γλ
ϕ ∝

∣∣∣∣∂ω10

∂λ

∣∣∣∣. (2.9)

Here, the matrix element ⟨0|∂Ĥq/∂λ|1⟩ is qubit transverse susceptibility to the fluctu-
ating parameter λ, ∂ω10/∂λ is the qubit frequency first derivative with respect to the
parameter λ, and Sλ(ω10) is the noise power spectral density at the qubit frequency
[43, 42]. Γλ

ϕ also depends on the spectrum of fluctuations in λ at low frequencies, and
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requires a more involved calculation to determine the dephasing rate depending on
the particular power spectral density for fluctuations of λ. The power spectral density
for different types of noise for for a typical superconducting qubit environment can
be found in Ref. [42]. In Sec. 2.5, we discuss some of the dominant noise sources.

Equations (2.7) and (2.8) suggest at least two possible approaches for combatting
decoherence. The first way is to engineer the environment so that the noise power
spectral density is minimized at the frequencies that affect the qubit. The second
way involves engineering the qubit energy-level structure so that the susceptibility to
the dominant noise sources is minimized. For superconducting qubits, the first way
requires improvements in fabrication, materials, and packaging. In order to apply
the second approach to conventional superconducting qubits, as we will see in Sec-
tions 2.3.3 and 2.3.4, there is a conflict for simultaneously reducing the susceptibility
to relaxation noise and dephasing noise. In Sec. 2.4, we introduce the concept of
protected qubit designs, which provide a way to achieve this.

2.3 Superconducting qubits

In this section, I describe superconducting circuits in the framework of cQED. Next, I
discuss different types of superconducting qubits and the common decoherence sources
that affect superconducting qubits.

2.3.1 Circuit QED

The LC circuit is one of the simplest resonant circuit. The Hamiltonian of a LC

circuit is

Ĥ =
Q̂2

2C
− Φ̂2

2L
. (2.10)

Here Q̂ is the charge operator and Φ̂ is the flux operator, which follow the commuta-
tion relation

[Φ̂, Q̂] = iℏ. (2.11)

We can rewrite the Hamiltonian in the energy basis

Ĥ = ℏω0

(
â†â+

1

2

)
, (2.12)
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where ω0 = 1/
√
LC, â† and â are the raising and lowering operators, respectively.

The Φ̂ and Q̂ operators are then

Φ̂ = Φzpf(â
† + â), (2.13)

Q̂ = iQzpf(â
† − â). (2.14)

The zero-point fluctuations of the Φ̂ and Q̂ operators are

Φzpf =

√
ℏZ0

2
, (2.15)

Qzpf =

√
ℏ

2Z0

. (2.16)

Here Z0 ≡
√
L/C is the characteristic impedance of the LC circuit [44].

L

C

(a) (b)

Φ

E
/ħ

|0⟩

|1⟩

|2⟩

|3⟩

0

ω0

ω0

ω0

Figure 2.2: (a) harmonic oscillator circuit. (d) parabolic potential.

The harmonic oscillator has evenly spaced energy levels, so we cannot selectively
drive the qubit between the |0⟩ state and |1⟩ state [Fig. 2.2(b)]. We will need to
introduce nonlinearity to the system to make a qubit with a unique transition between
|0⟩ and |1⟩.

2.3.2 Josephson junctions

Josephson junctions are widely used for introducing nonlinearity in superconducting
circuit. In superconductors, the nature of scattering between phonons and electrons
at low temperatures leads to an attractive interaction between electrons. This causes
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the electrons to form Cooper pairs, which are able to condense into a macroscopic
ground state described by a complex wavefunction with a magnitude and well-defined
phase φ [45, 46]. A Josephson tunnel junction consists of an SIS structure, with two
superconducting electrodes separated by an insulating barrier with a thickness of the
order of 1 nm. The behavior of a Josephson junction is related to the difference in
the phase of the superconducting wavefunction on the two sides of the barrier, ∆φ,
which is often simplified to just φ.

The current-phase relation for a Josephson junction is

I = I0 sinφ. (2.17)

Here I is the current through the junction, φ is the phase difference between the
wavefunctions in the two superconducting electrodes, and I0 is the critical current.
The critical current is given by the Ambegaokar-Baratoff relation [47]:

I0 =
π∆

2eRn

, (2.18)

where Rn is the junction resistance with the electrodes in the normal state. The
critical current is the maximum supercurrent that a junction can carry and this
depends exponentially on the thickness of the insulating barrier. When applying a
voltage across the junction, the phase changes with time

V =
Φ0

2π

dφ

dt
. (2.19)

Here, V is the voltage across the junction and Φ0 ≡ h/2e is magnetic flux quantum.
The inductance of the Josephson junction is given by

LJ =
V
dI
dt

=
Φ0

2πI0 cosφ
=

Φ0

2π
√
I20 − I2

, (2.20)

and we can see it is a nonlinear inductor, since LJ depends on I. The Josephson
energy is

E = −EJ cosφ (2.21)

EJ ≡ Φ0I0
2π

. (2.22)

Now we can replace the linear inductor in the LC circuit [Fig. 2.3(a)], and the Hamil-
tonian can be rewritten as:

Ĥ =
(2e)2(n̂− ng)

2

2C
− EJ cos φ̂. (2.23)
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Here, n̂ is the Cooper pair number operator, ng is the offset charge coupled with a
bias on a gate electrode, and the phase difference φ is now an operator φ̂.

In the phase basis, the potential has a cosφ dependence rather than a harmonic
form, so the transition frequencies ω01, ω12, ... are different and we can selectively
operate the qubit between the |0⟩ and |1⟩ states [Fig. 2.3(b)]. We thus can use the
|0⟩ and |1⟩ states as our computational states.

L
C

I0
C

(a)

|0⟩

|1⟩

|2⟩

|3⟩

(c)

-π π0
φ

φ

E
/h

(b)

ω12

ω01

Figure 2.3: (a) harmonic oscillator circuit schematic. (b) replacing the linear inductor
with Josephson junction. (c) The potential of the circuit in (b).

2.3.3 Transmon

One of the most promising superconducting qubits currently is the transmon, which
was first developed in 2007, as described in Ref. [25]. This qubit type forms the
building block for many modern quantum processors, including industrial systems at
Google, IBM, Rigetti, IQM, etc. The circuit schematic is shown in Fig. 2.3(b). We
can rewrite the Hamiltonian from Eq. (2.23)

Ĥ = 4EC(n̂− ng)
2 − EJ cos φ̂, (2.24)

where EC ≡ e2/2C [25]. In the following chapters, we will define EC differently as
EC ≡ (2e)2/2C, which follows the convention in the previous protected qubit research
[37]. When EJ >> EC , the width of the wavefunction in the charge basis is large
[Eq. 2.16], and the charge dispersion of the mth level ϵm is exponentially suppressed
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with EJ/EC [25]:

ϵm ≃ (−1)mEC
24m+5

m!

√
2

π

(
EJ

2EC

)m
2
+ 3

4

e
−
√

8EJ
EC . (2.25)

In the large EJ/EC limit, the mth energy level is [25]

Em ≃ −EJ +
√
8ECEJ

(
m+

1

2

)
− EC

12
(6m2 + 6m+ 3), (2.26)

and the corresponding 0-1 transition is [25]

E01 ≃
√
8ECEJ − EC . (2.27)

The transmon is different from a simple LC circuit because E01 and E12 are different.
The anharmonicity measures this difference and is defined as [25]:

α ≡ E12 − E01, (2.28)

and the anharmonicity for the transmon is

α ≃ −EC . (2.29)

We can see that reducing the charge dispersion also reduces the anharmonicity, which
could make the qubit difficult to control if it approaches a harmonic oscillator too
closely. However, while the charge dispersion exponentially depends on

√
1/EC ,

the anharmonicity depends on EC only linearly. We can thus suppress the charge
dispersion while keeping the anharmonicity on the order of 100-300 MHz. Typical
0-1 transition frequencies for a transmon are in the 4-5 GHz range.

The transmon with a single junction has a fixed E01 and the dephasing of the
qubit can be small due to the exponentially suppressed charge dispersion. However,
the lack of frequency tunability can cause frequency crowding issues if there are a
large number of qubits on the same chip. One way to avoid frequency crowding
involves using a superconducting quantum interference device (SQUID) design made
by replacing the single junction with two junctions in parallel. The EJ , and thus E01,
can be tuned by an external flux Φ [25]:

EJ = EJΣ cos

(
πΦ

Φ0

)√
1 + d2 tan2

(
πΦ

Φ0

)
, (2.30)
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where EJΣ ≡ EJ1+EJ2, d ≡ (EJ1−EJ2)/(EJ1+EJ2), EJ1 and EJ2 are the Josephson
energy of the two junctions. When d = 0, the flux dispersion is large, and the
qubit is sensitive to flux noise away from 0 Φ0. We can increase d to reduce the
flux dispersion while keeping a weak tunability [26]. Also, the tunable transmon can
achieve high-fidelity two-qubit gates that meet the surface code threshold for quantum
error correction [36]. One alternative way to solve the frequency crowding issue is to
do laser annealing for adjusting the critical currents of the junctions in single-junction
transmons after the initial device fabrication. [48].

The wavefunctions for the two states of the transmon are not disjoint, so it is sus-
ceptible to noise processes at the qubit frequency that cause relaxation. Thus, there
is no intrinsic protection against bit-flip errors. The way to reduce Γ1 in transmons
involves improving fabrication, materials, and packaging, as mentioned in Sec. 2.2.
Also, the small anharmonicity of the transmon can lead to leakage errors during gate
operation.

2.3.4 Fluxonium

Fluxonium, due to small coupling between the |0⟩ and |1⟩ state in the phase basis,
has small transition matrix element

∣∣∣ ⟨0|∂Ĥq/∂λ|1⟩
∣∣∣2, which results in small Γ1. In

addition, the anharmonicity is large. The Hamiltonian of fluxonium is [28, 49]

Ĥ = 4EC n̂
2 +

EL(φ̂− 2πφext)
2

2
− EJ cos φ̂, (2.31)

where EL = Φ2
0/(2π)

2L, φext = Φext/Φ0 and Φext is the magnetic flux passing through
the loop. The fluxonium is made by connecting a Josephson junction, a linear inductor
and a shunt capacitor in parallel [Fig. 2.4(a)]. Typically, the fluxonium is operated
at frustration, where Φext = Φ0/2, as in Fig. 2.4(b). At frustration, the fluxonium
has a double well potential and large barrier height, which results in small transition
matrix elements between computational states and a high T1. However, when the
flux is moved away from frustration, one well goes up in energy and the other goes
down. Because the slope of this flux-dependence |∂ω10/∂λ| is large, it is difficult to
maintain low dephasing and phase-flip error rates.

Because of the nature of the wavefunctions for transmon and fluxonium qubits,
we can see that there is a conflict of simultaneously suppressing both bit-flip errors
and phase-flip errors. The transmon has low Γϕ due to charge noise because of the
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Figure 2.4: (a) Fluxonium circuit diagram. (b) Fluxonium potential.

delocalized wavefunctions in charge space. However, because the |0⟩ and |1⟩ wave-
functions have significant overlap, it is difficult to achieve low Γ1 without significant
efforts to reduce noise at the qubit frequency. The fluxonium with large shunt ca-
pacitor and large barrier height has small transition matrix elements between the
computational states, but the resulting flux dispersion is large. Reducing the shunt
capacitance and the barrier height, the computational states have wavefunctions that
are more delocalized, and the flux dispersion is reduced. However, in this case, the
transition matrix elements increase and result in a larger Γ1. Thus, the fluxonium
qubit needs some trade-off between suppressing the Γ1 and Γϕ.

2.4 Protected superconducting qubit

Fault-tolerant quantum computation requires suppression of both bit-flip errors and
phase-flip errors. While these two requirements are in conflict for conventional qubits,
like the transmon and fluxonium design, more complex superconducting qubits have
been considered that in principle could make this possible. The 0-π qubit [50] is one
example of such a qubit design.

The 0-π qubit involves a cos 2ϕ potential that is achieved not with a flux bias,
but rather with exceedingly large inductances and a cross capacitance. In the ideal
parameter regime, which requires quite large inductance, the computational |0⟩/|1⟩
states for the 0-π correspond to superposition of even/odd numbers of Cooper pairs.
The protection again bit-flip error comes from the noise operator not being able to
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drive transitions between states with different parity.
The protection against dephasing from flux noise comes wavefunction spreading

out across multiple minima in the phase coordinate that couples to the external flux.
Thus, phase-flip errors due to flux noise are exponentially suppressed with the spread
of the wavefunction in this phase coordinate. The qubit is similarly protected against
dephasing from charge noise because of the spread of the wavefunction in the charge
basis.

However, the ideal parameters for these protected qubit designs are hard to realize.
The 0-π qubit requires exceedingly large and precisely matched inductances, as well
as a large and compact cross-capacitance. An alternate approach to the 0-π design
with relaxed parameter requirements but also reduced protection, the soft 0-π qubit,
was demonstrated recently with relaxation times beyond 1 ms and dephasing times
of order tens of µs [49].

2.4.1 Charge-parity qubit

The charge-parity qubit, based on the concatenation of cos 2φ elements, can simul-
taneously suppress bit-flip and phase-flip errors, and its ideal parameters are more
achievable with current fabrication techniques. The protection against bit-flip errors
is due to the disjoint wavefunctions for the computational states. The exponential
protection against flux noise comes from having a large coupling in certain directions
in phase space, so that the flux dispersion is exponentially flat in the number of cos 2φ
elements. The corresponding Hamiltonian for this process is equivalent to the imple-
mentation of quantum stabilizers in hardware. In the coming chapters, I will explain
the charge-parity qubit and our experimental realization and modeling of this circuit
in detail. Following the convention of Ref. [37], we will define the charging energy as
EC ≡ (2e)2/2C for the charge-parity qubit.

2.5 Decoherence in superconducting qubits

In this section, I will describe the dominant noise sources that impact relaxation and
dephasing in superconducting qubits.
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2.5.1 Dielectric loss

Dielectric loss plays a significant role in the energy relaxation of superconducting
qubits [51]. Two-level system defects in amorphous dielectric materials can couple to
qubit modes and absorb energy from the qubit, thus enhancing qubit relaxation. A
lossy dielectric material can be described by a complex permittivity ϵ = ϵ′ − iϵ′′ (ϵ′′

is positive number), where the loss tangent tan δ = ϵ′′/ϵ′ measures the dielectric loss
[52]. In the case of a typical superconducting qubit, lossy amorphous dielectric layers
can be found in various thin oxide layers on the substrate and metal-film surfaces, as
well as at the interface between the substrate and metal layers. To estimate the energy
decay rate due to dielectric loss, one must account for the electric field participation
ratio for each of the components and their respective losses:

Γ1 = ω
∑
i

pi
Qi

+ Γ0. (2.32)

Here, 1/Qi = tan δi is the quality factor of each material, pi is the participation ratio
that is given by the electric field energy stored in the ith material over the entire
electric energy for the circuit, and Γ0 is the relaxation rate from mechanisms other
than dielectric loss [53].

2.5.2 Charge and flux noise

Charge noise in superconducting circuits can be caused by multiple processes, includ-
ing fluctuations of microscopic defects having a charge dipole moment, and the impact
of high energy particles from background radioactivity [54] that generate electron-hole
pairs in the substrate. The first type of noise typically has a 1/f power spectrum,
with an amplitude at 1 Hz of ∼ 10−3e/Hz1/2 [55] and was studied extensively for
small mesoscopic devices, such as the Cooper-pair-box [56]. The second type of noise
leads to large discrete charge jumps in circuits with larger charge-sensing areas, such
as transmons with planar shunt capacitors, and typically has a power spectrum closer
to 1/f 2 [57].

Since 1987, it has been known that superconducting devices at mK temperatures
exhibit magnetic flux noise [58]. The power spectrum of this noise is typically close
to 1/f , with an amplitude at 1 Hz that is ∼ 1−5 µΦ0/Hz

1/2 [59, 60]. The mechanism
for flux noise has been studied intensively for many years and appears to be related to
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complex dynamics of adsorbed molecular oxygen, and potentially other contaminants,
on the device surfaces [61, 62].

2.5.3 Quasiparticles

From the BCS theory of superconductivity, excitations above the superconducting
ground state consist of quasiparticles (QPs), which dissipate energy when they carry
current [45]. Excess QPs in the junction electrodes of a qubit enhance the inductive
losses and reduce T1. Quasiparticles can be generated by thermal excitation of Cooper
pairs, but for a superconductor such as Al, with Tc ≈ 1.2K, at mK temperatures, the
ratio of QPs to Cooper pairs should be less than 10−50. By contrast, various exper-
iments with superconducting circuits measure this ratio to be more than 40 orders
of magnitude larger [63]. QPs can be generated by the absorption of pair-breaking
radiation in the superconducting film in the form of photons or phonons. Phonons
generated by high-energy particle impacts can create excess QPs and, most impor-
tantly, lead to correlated errors between qubits in an array [54, 64]. However, these
events occur too infrequently to account for the large QP background observed in
superconducting qubits. Nonetheless, the addition of phonon-downconverting struc-
tures can significantly reduce the correlated errors from the particle impacts [65, 66].
Recent experiments and theory have identified photon-assisted pair-breaking [67] as
a dominant source of excess QPs, in particular, through the absorption of blackbody
photons from the qubit environment by spurious antenna modes of typical qubit struc-
tures [68, 69]. One mitigation strategy for this mechanism involves the use of more
compact designs for the qubit.

Photon shot noise

Because superconducting qubits are typically coupled to a readout resonator that is
connected to external circuitry, fluctuations in the photon number in the resonator
can cause noise in the dispersive shift of the qubit [70, 71], thus leading to dephasing
and phase-flip errors [72]. Photon shot noise can be suppressed by reducing the mean
photon number in the readout resonator through improvements in thermalization and
filtering.
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Chapter 3

Theory of superconducting hardware

for implementing quantum stabilizers

In this chapter, I describe how a superconducting circuit can be constructed with
built-in stabilizers. First, I introduce the basic element, a π-periodic Josephson pla-
quette, which we implement using a dc SQUID. Next, I describe how to form a
charge-parity qubit from a single plaquette with a large capacitive shunt. However,
while such a single-plaquette qubit can have a suppression of bit-flip errors, the large
flux dispersion makes it sensitive to phase-flip errors from flux noise. If two pla-
quettes are concatenated in series with a small capacitance to ground between the
plaquettes, quantum fluctuations allow the wavefunctions for the two plaquettes to
hybridize. This double plaquette qubit has an effective coupling Hamiltonian that
is equivalent to a stabilizer given by: −(∆SA1/2

/2)X1X2, where X1X2 = σ1
x ⊗ σ2

x.
This built-in stabilizer leads to a suppression of first order coupling to flux noise and
a reduction of the curvature of the flux dispersion near frustration. With the large
capacitive shunt, bit-flip errors are also suppressed. We will also discuss the triple
plaquette qubit, with three series concatenated plaquettes, where phase-flip errors
are further suppressed, with a stabilizer coupling term between the plaquettes given
by: −(∆SA1/2

/2)X1X2 − (∆SA2/3
/2)X2X3. I will also describe the dispersion of the

energy levels with offset charge bias to the various islands, as well as quasiparticle
poisoning for different degrees of frustration. As mentioned in Sec. 2.4.1, I will define
the charging energy as EC ≡ (2e)2/2C for the rest of the thesis.
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3.1 π-periodic Josephson elements from dc SQUIDs

In our device, we implement each π-periodic Josephson element with a plaquette
formed from a dc Superconducting QUantum Interference Device (SQUID), consist-
ing of two conventional Josephson junctions and a non-negligible loop inductance
[Fig. 3.1(a)]. Each junction has a critical current I0 and EJ = Φ0I0/2π; the inductance
in each arm of the SQUID L is related to the inductive energy EL = (Φ0/2π)

2/L. In
order to understand the origin of the cos2φ potential, we consider the two-dimensional
potential energy landscape as a function of the two junction phases, δ1 and δ2, which
is determined by EJ , EL, and the external flux bias Φext [73]. For now, we consider
symmetric plaquettes where both junction critical currents are identical; later in this
section we will consider the effects of junction asymmetry. Following convention for
dc SQUIDs we plot the potential energy in terms of the common-mode and differen-
tial phase variables: δp = (δ1 + δ2)/2 and δm = (δ2 − δ1)/2. The phase dependence
of the Josephson energy for each junction results in a 2D washboard pattern of po-
tential minima. At the same time the inductive energy associated with circulating
currents flowing through the inductors corresponds to a parabolic sheet with its min-
imum along a line running parallel to δp. Changing Φext shifts where the minimum
of this inductive parabolic sheet falls with respect to the minima of the Josephson
washboard, and thus determines the pattern of the global minima in the potential.

For a flux bias at unfrustration Φext = 0modΦ0, the minima are centered on
δm = 0 and are spaced by 2π in δp [Fig. 3.1(b)]. Along δm, there is only the one
minimum at δm = 0 [Fig. 3.1(d)], corresponding to no circulating current around the
SQUID loop. Along δp for δm = 0, the potential follows a cos δp dependence. Thus,
at unfrustration, the plaquette behaves like a single Josephson junction with critical
current 2I0. When flux biased at Φ0/2, the plaquette exhibits a staggered pattern of
energy minima about a line along δp for δm = π/2 [Fig. 3.1(c)]. Figure 3.1(e) shows
a linecut along a line between two adjacent minima as a function of δm; the two
minima correspond to opposite directions of circulating current around the plaquette
loop, similar to a flux qubit [74] or fluxonium [27]. However, unlike these other qubits,
these plaquettes also have another independent phase degree of freedom from δp, which
corresponds to the phase drop across the plaquette. Along δp, the potential is simply
E2 cos 2φ, with sequential minima separated by π [Fig. 3.1(g)], where the energy scale
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Figure 3.1: (a) Circuit schematic for dc SQUID plaquette. 2D potential as a function
of common-mode (δp) and differential (δm) phase variables at external flux bias Φext

of (b) 0, (c) Φ0/2. (d) Linecut along δm for δp = 0 for Φext = 0. (e) Linecut between
adjacent minima vs. δm for Φext = Φ0/2. (f) Linecut along δp at δm = 0 for Φext = 0.
(g) Linecut between adjacent minima vs. δp for Φext = Φ0/2.

E2 depends on the Josephson energies of the individual Josephson junctions EJ and
the inductive energy of the SQUID loop inductance EL.

While the behavior described here is generic for any dc SQUID, achieving a cos2φ
potential at frustration with a significant barrier height E2 requires a sufficiently
large ratio EJ/EL. In the conventional language of dc SQUIDs, screening effects are
characterized by the parameter βL = 2LI0/Φ0 = EJ/πEL. For SQUIDs in the limit
βL → 0 and perfect symmetry, the critical current of the SQUID will modulate to
zero at frustration. For such a device, not only is the first-order Josephson energy
suppressed, but E2 will be vanishingly small as well, and thus not support bound
states in a cos2φ potential. In order to have a significant E2, EJ/EL must be of order
unity. The dc SQUID in Fig. 3.1 has EJ/EL = π to highlight the development of the
π-periodicity at frustration.

We next consider deviations from this ideal π-periodic plaquette behavior. With
the flux bias moved below (above) frustration (Φ0/2), the π wells are raised above
(below) the 0 wells [Fig. 3.2(c)]. To account for asymmetries between the two junc-
tions in a plaquette we define α = (EJ2 − EJ1) / (EJ2 + EJ1), where EJ1 (EJ2) is the
Josephson energy of the left (right) junction. With a non-zero α, the common-mode
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Figure 3.2: (a) Circuit schematic for dc SQUID plaquette with asymmetric Josephson
junctions. Linecut between adjacent minima vs. δp for (b) Φext = Φ0/2, α = 0, (c)
Φext = 0.45Φ0, α = 0, (d) Φext = Φ0/2, α = 0.05.

potential along δp for Φext = Φ0/2 has equal minima for the 0 and π wells, but now
the barrier heights between wells become asymmetric.

3.2 Single plaquette qubit

Here we consider the simplest qubit based on a single π-periodic plaquette [Fig. 3.3(a)].
The qubit consists of a superconducting island that is connected to ground by a single
plaquette and a large shunt capacitor Csh. Because the phase φ between the logical
island and ground is the common-mode phase δp, it has cos2φ potential. The phase
φ is a compact variable living on a circle, so the 0 well is identical to the 2π well, 4π
well, etc. and the π well is identical to the 3π well, 5π well, etc. The Hamiltonian is

Ĥ = Esh
C (n̂− ng)

2 − E2 cos 2φ, (3.1)

where Esh
C = (2e)2/2Csh corresponds to the charging energy of the shunt capacitor;

Csh is typically large and corresponds to a large effective mass. The second term
in Eq. (3.1) corresponds to the cos 2φ potential, with a barrier height 2E2. The
computational qubit states are formed from the ground state doublet, which in the
phase basis is given by symmetric and antisymmetric superpositions of the lowest level
in the 0 and π wells. In the charge basis, these states correspond to superpositions
of even or odd numbers of Cooper pairs on the logical island (Fig. 3.4). As the
wavefunction in the phase basis becomes more localized, the tunnel splitting between
the logical states is exponentially suppressed and vanishing in the limit of large Csh

[37].
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Figure 3.3: Single cos2φ plaquette qubit. (a) Schematic of single π-periodic plaquette
shunted by capacitance Csh. (b) cos2φ potential at frustration (∆Φ = Φ−Φ0/2 = 0)
with localized wavefunctions in 0 and π wells. (c) Potential for ∆Φ < 0, raises π wells
above 0 wells, (d) Linear dispersion of 0 and π levels with respect to ∆Φ for vanishing
tunnel splitting.
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Figure 3.4: Wavefunctions for ground state doublets in (a) phase basis and (b) charge
basis.
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Figure 3.5: (a) Circuit schematic. (b) 4e dependence of charge modulation with
perfectly symmetric circuit. The blue (red) level corresponds to a superposition of
even (odd) numbers of Cooper pairs on the logical island. (c) For a circuit with
asymmetries between the two junctions in the plaquette, the charge dependence has
4e periodicity for energy levels corresponds to superposition of even (blue) or odd
(red) number of Cooper pairs, and the gap a 1e remains open.

When the offset charge on the logical island is varied, the splitting of the ground
state doublet will modulate, with each level of the doublet exhibiting a 4e periodic-
ity [Fig. 3.5(c)]. The charge modulation is an interference effect, as the tunneling can
proceed forward or backward in the cos 2φ potential, or clockwise/counterclockwise
around the circle, the phase particle acquires a different phase depending on the
offset charge on the logical island and the tunneling direction; this is equivalent to
Aharonov-Casher interference [75, 76]. The cos 2φ potential causes destructive in-
terference for tunneling of single Cooper pairs across the plaquette, but does allow
pairs of Cooper pairs to tunnel on and off the logical island, thus resulting in the 4e

periodicity. When there is an asymmetry between the two junctions, the potential is
no longer a pure cos 2φ [Fig. 3.1(d)]. In the charge basis, the ground state doublet
is no longer a pure superposition of even or odd number of Cooper pairs, so at an
offset charge of 1e mod 2e, the ground state splitting remains nonzero. The charge
modulation of the even- or odd parity energy levels is still 4e. Charge noise in the
qubit environment, which caused problematic dephasing for early charge-based su-
perconducting qubits such as the Cooper pair box, is not a problem here since the
maximum charge modulation is quite small, less than 1 kHz for our typical target
parameters.
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As described in Sec. 2.5.2, superconducting qubit chips are subject to flux noise.
When the flux fluctuates, the plaquette is not biased at frustration exactly and the
π well is raised (lowered) with respect to the 0 well [Fig. 3.3(c)]. The qubit will ac-
cumulate a random dynamical phase and cause phase-flip errors. The flux dispersion
of a single plaquette is linear in the limit of zero tunnel splitting [Fig. 3.3(d)]. The
slope is typically in the order of several hundreds of MHz/mΦ0. With such a large
slope, the single plaquette qubit will have poor dephasing properties.

3.3 Double plaquette qubit

Since the single plaquette qubit does not have protection against phase-flip errors, we
need to find a device configuration that has a flatter dispersion with respect to flux
to suppress the phase-flip errors, while preserving the suppression of bit-flip errors
as in the original single plaquette qubit. We need to delocalize the wavefunctions so
that they are not sensitive to flux noise. This can be done by making a chain of two
plaquettes as in Fig. 3.6(a). Here, Cisl is the capacitance of the intermediate island
between the plaquettes to ground.

First, we can start looking at the case when Cisl is large, which should not result
in effective hybridization [Fig. 3.6(a)]. At double frustration, when two adjacent pla-
quettes are simultaneously frustrated, there are four minima in the two-dimensional
surface defined by the common-mode phase variables for each of the two plaquettes:
00, ππ, 0π, π0 [Fig. 3.6(b)]. This surface has the topology of a torus [Fig. 3.6(e)], since
φ for each plaquette is a compact variable with 2π periodicity. Biasing both plaque-
ttes below 0.5 Φ0 makes 00 the global minimum, while biasing above 0.5 Φ0 makes
ππ the global minimum. Biasing Plaquette 1 below 0.5 Φ0 and Plaquette 2 above
makes 0π the global minimum. Finally, biasing Plaquette 1 above 0.5 Φ0 and Pla-
quette 2 below results in π0 being the global minimum. Because Cisl is large, in this
example the two plaquettes do not have effective concatenation and the plaquettes
behave independently. The left plot in Fig. 3.6(d) is a sketch of the level structure
with the flux bias scanned in the 00-to-ππ direction, which means tuning the flux in
both plaquettes together and in the same direction. The red line corresponds to the
ground state energy level in the 00 well, the blue line is the ground state energy level
in the ππ well, and the green line is the ground state energy level in the 0π or π0



25

ππ0π00 π0

00 ππΔΦ��ΔΦ���

π0�π

φ�������φ�

φ� �π������φ�

0 ΔΦ��−ΔΦ�

00,ππ

E

0π π0

ΔΦ�=ΔΦ�0

E

00 ππ

0π,π0

(b)

(d)

0 πφ�

0

π

φ�

(c)(a)

2φ1

Cisl

Csh
2φ2

Cg

Vg

(e)

Figure 3.6: Double cos2φ plaquettes with ineffective concatenation. (a) Schematic of
two series π-periodic plaquettes shunted by capacitance Csh with large capacitance
Cisl from intermediate island to ground. (b) Contour plot of potential with respect
to phase across each plaquette; periodic boundary conditions correspond to topology
of a torus. (c) 1D cut of potential between 00 and ππ wells (top) and 0π and π0

wells (bottom) at double frustration (∆Φ1 = ∆Φ2 = 0). (d) Linear dispersion of
00 and ππ (0π and π0) levels and flat dispersion of 0π and π0 (00 and ππ) levels
for simultaneous scan of plaquette fluxes along ∆Φ1 = ∆Φ2 (∆Φ1 = −∆Φ2) on left
(right) plot. (e)Visualizing the 2D potential on the surface of a torus, with the centers
of the 00, 0π, π0, and ππ wells labeled with black circles.
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Figure 3.7: Double cos2φ plaquettes with effective concatenation. (a) Schematic of
two series π-periodic plaquettes shunted by capacitance Csh with small capacitance
Cisl from intermediate island to ground, (b) Contour plot of potential with respect
to phase across each plaquette; periodic boundary conditions correspond to topology
of a torus. (c) 1D cuts of potential between 00 and ππ wells along ϕ1 = ϕ2 (left) and
0π and π0 wells along ϕ1 = ϕ2 + π (right) at double frustration (∆Φ1 = ∆Φ2 = 0)
with hybridized wavefunctions for symmetric (blue) and antisymmetric (red) super-
positions. (d) 1D cut of effective potential along ϕ1 = −ϕ2 at double frustration.
(e) Quadratic dispersion of even-parity (odd-parity) levels and flat dispersion of odd-
parity (even-parity) levels near double frustration for simultaneous scan of plaquette
fluxes along ∆Φ1 = ∆Φ2 (∆Φ1 = −∆Φ2) on left (right) plot.
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Figure 3.8: Visualizing the 2D potential on the surface of a torus with the centers of
the 00, 0π, π0, and ππ wells labeled with solid circles. The red and blue rings joining
wells of the same parity indicate the hybridization between states in wells of constant
parity.
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Figure 3.9: Sketch of double plaquette transition energy vs. the flux biases of Plaque-
ttes 1 and 2. The transition energy changes the most and with a quadratic dependence
with respect to flux in the direction of ∆Φ1 +∆Φ2 or ∆Φ1 −∆Φ2; the transition en-
ergy is flat with respect to each flux bias when the other plaquette is frustrated. This
shape is analogous to a doubly folded piece of paper.
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wells. When scanning the flux in the even-parity direction (00 to ππ), the even-parity
levels have a linear flux dispersion, while the odd-parity energy levels have a flat flux
dispersion. When scanning the flux in the odd-parity direction (0π to π0), the odd-
parity levels have a linear flux dispersion, while the even-parity energy levels have a
flat flux dispersion. This linear flux dispersion results in dephasing through the same
mechanism as for a single plaquette qubit and the qubit will have a high dephasing
rate due to flux noise.

However, when Cisl is small [Fig. 3.7(a)], the effective mass along the 0π to π0

direction is small, and thus the quantum fluctations are large due to significant tun-
neling between wells with the same parity [Fig. 3.7(b)]. Wavefunctions of the same
parity, so, 00 and ππ, and 0π and π0, hybridize quickly so that the two ground states
become 00+ππ and 0π+π0. Because the plaquette phases are compact variables, this
potential follows the surface of a torus. The wavefunctions correspond to the even- and
odd-parity energy levels can be represented as two separate but interlocking rings on
the surface of this torus (Fig. 3.8). The even- and odd-parity energy levels are then
the two logical states for this double-plaquette circuit. The hybridization between
wells of the same parity means that the ground state for each parity is a symmetric
superposition, while there is an excited antisymmetric state; the size of the splitting
between these depends on how large Eisl

C is, where Eisl
C = (2e)2/Cisl [Fig. 3.7(e)]. The

tunneling between states of opposite parity correspond to a single extra Cooper pair
tunneling on or off the island; this change of parity of the logical island is suppressed
by Csh. The large Csh corresponds to a large effective mass along the even-parity to
odd-parity directions, so the coupling between the even- and odd-parity ground states
is small [Fig.3.7(d)]. The tunnel splitting decrease exponentially with

√
Eeff

2 /Esh
C .

The left plot of Fig. 3.7(e) shows a sketch of a flux scan along the even-parity direction
from 00 to ππ. The energy levels have the largest curvature along this flux direction,
so this direction sets the upper limit of the flux sensitivity (Fig.3.9). Because of
strong coupling between wells with the same parity, the even-parity energy level has
a large symmetric/antisymmetric gap (∆SA) at frustration as shown in Fig. 3.7(e).
Near frustration, the blue line corresponds to 00+ππ and the red line corresponding
to 00-ππ. The flux dispersion is no longer linear but quadratic. The odd-parity en-
ergy levels remain flat and also have two bands correspond to 0π+π0 (two degenerate
green lines) and 0π-π0 (two degenerate orange lines). The right plot of Fig. 3.7(e)
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shows a sketch of a flux scan in the odd-parity direction from 0π to π0. The blue line
corresponds to 0π+π0 and the red line corresponds to 0π-π0. The flux dispersion is
again quadratic. The even-parity energy levels remain flat and also have two bands
corresponding to 00+ππ (two degenerate green lines) and 00-ππ (two degenerate or-
ange lines). The flux dispersion is quadratic near frustration and the linear term in
the flux dispersion vanishes, thus, in the limit of a small amplitude of flux noise, the
relative energies of the two qubit states will not fluctuate, and thus the dephasing
will be suppressed.

In Fig. 3.10(b), we show the 2D potential when α = 0 with unwrapping the
compact phase variables so that they are no longer on a torus, but instead extend
to ±∞. Red lines correspond to the direction of hybridization for the even-parity
wavefunctions, while blue lines correspond to the direction of hybridization for the
odd-parity wavefunctions. We show the 1D cut of the potential of the even- and
odd-parity wavefunctions in Fig. 3.10(d), and they both have a cos 2φ potential.
Figure 3.10(c) shows the 2D potential when α is non-negligible. In this case, the even-
parity wavefunction experiences a cos 2φ potential, while the odd-parity wavefunction
experiences a cosφ component mixed in with the cos 2φ potential [Fig. 3.10(e)].

Similar to the single frustration case, the ground state doublet of a perfectly
symmetric circuit at double frustration has a 4e dependence on the offset charge on
the Csh island. When the circuit has asymmetries between the two junctions in a
plaquette, it still has a 4e dependence on the offset charge on the Csh island, but now
the gap remains open at 1e mod 2e.

Tuning the offset charge on the intermediate island between the two plaquettes
will modulate ∆SA periodically. Similar to the charge modulation of the ground-
state doublet splitting with offset charge on the Csh island, this is also equivalent to
the Aharonov-Casher effect, because the tunneling paths forward and backward, or
equivalently, clockwise or counterclockwise around the ring on the torus, along the
constant parity direction can interfere with a phase that depends on the offset charge
on the intermediate island. When α is 0, ∆SA for both the even- and odd-parity
closes with 4e periodicity. Thus, the levels cross at 1e mod 2e [Fig. 3.11(a)]. For
α ̸= 0, the energy levels for one parity will still have ∆SA going to 0 at 1e mod 2e,
but now ∆SA for the other parity will not fully close [Fig .3.11(b)]. This is equivalent
to the wavefunctions for one of the parities still experiencing a cos 2φ potential, while
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Figure 3.10: (a) Circuit schematic. (b) 2D potential when α = 0 with unwrapping
the compact phase variables so that they are no longer on a torus, but instead extend
to ±∞. Red lines correspond to hybridization for even-parity wavefunctions, while
blue lines correspond to hybridization for odd-parity wavefunctions. (c) 2D potential
when α is non-negligible. (d) α = 0: Left (right) plot is the 1D cut potential along
the direction of hybridization for even- (odd-) parity wavefunctions, and they both
have a cos 2φ potential. (e) α ̸= 0: Left/right plot is the 1D cut of the potential along
the direction of hybridization for even- (odd-) parity wavefunctions. The even-parity
wavefunctions experience a cos 2φ potential, while the odd-parity wavefunctions ex-
periences a potential with a cosφ component mixed in with the cos 2φ potential.
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Figure 3.11: 4e dependence of modulation of ∆SA at double frustration with offset
charge bias on intermediate island for (a) symmetric plaquettes with α = 0; (b)
plaquettes with α ̸= 0.

for the other parity, there is a cosφ component mixed in [Fig. 3.10(e)]. Due to
charge dynamics in the circuit environment, there can be offset charge jumps and
fluctuations on the intermediate island [57, 54]. Thus, it is important to periodically
tune the offset charge on the intermediate island to maintain it at 0 mod 2e on a
timescale faster than the jumps, which is typically tens of minutes. Because of the
flat charge dispersion at 0 mod 2e, dephasing due to fluctuations of the intermediate
island offset charge will be suppressed.

3.4 Concatenation and XX stabilizer

For two frustrated plaquettes in a chain, each plaquette can be treated like a spin-1/2
particle. The small intermediate island capacitance between the plaquettes corre-
sponds to a coupling between the spins. The effective stabilizer term in the Hamilto-
nian is then [77]:

HXiXj
= −(

∆SAi/j

2
)XiXj, (3.2)

for plaquettes i and j. Xi is the Pauli σi
x matrix for Plaquette i, and ∆SAi/j

is
the splitting between the symmetric and antimsymmetric levels at double frustration
for Plaquettes i and j. Thus, concatenation of the two plaquettes is equivalent to
having an XX stabilizer built in the Hamiltonian, which provides protection against
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Figure 3.12: Schematic of triple frustration flux dispersion for the two lowest levels.

phase-flip errors.

3.5 Triple plaquette qubit

At triple frustration for a chain of three plaquettes, there will be eight potential
wells: 000, 00π, 0π0, π00, 0ππ, π0π, ππ0, πππ. Similar to double plaquette circuit,
the energy levels has largest curvature along 000 to πππ, and the flux dispersion of
the difference between the computational levels along this direction sets the upper
limit of the sensitivity the flux noise. At frustration, the computational states are
the superposition of even-parity wells and odd-parity wells. A few mΦ0 away from
triple frustration, the lowest energy level corresponds to wavefunction localized in
000 or πππ well. The second lowest levels correspond to superposition of 00π, 0π0,
π00 on the left and 0ππ, π0π, ππ0 on the right. The energy level also has down-
ward flux dispersion, so the transition of 0 state and 1 state flux dispersion is flatter
than double frustration. This agrees with the effective coupling Hamiltonian being
−(∆SA1/2

/2)X1X2 − (∆SA2/3
/2)X2X3 stabilizer. Similar to double plaquette qubit,

we can bias the charge on both of the intermediate islands to be 0e to suppress the
phase-flip errors due to charge noise.
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Chapter 4

Numerical modeling of Charge-Parity

Qubits

4.1 Introduction to SuperQuantPackage

Numerical modeling of simpler qubit designs, like transmon and fluxonium, is straight-
forward and computationally inexpensive, because their Hamiltonian has one phase
degree of freedom. For the transmon, using ∼ 40 charge states is sufficient to model
the circuit. The truncated Hilbert space is ∼ 40 and the matrix size is ∼ 40×40. Mod-
eling multi-plaquette charge-parity qubits is much more challenging - our 3-plaquette
chip with SQUID switch has eleven phase degrees of freedom, and the truncated
Hilbert space is ∼ 2× 105. Instead of choosing generalized coordinates manually, we
use the SuperQuantPackage [78] to model the energy level spectra of charge-parity
qubits.

The SuperQuantPackage software framework was developed by Andrey Klots with
the supervision of Lev Ioffe. This package is capable of modeling the energy spec-
trum of superconducting circuits with arbitrary configurations of Josephson junctions,
capacitors, and inductors. The circuit is divided into a series of independent har-
monic oscillator coordinates, cyclic coordinates corresponding to islands with quan-
tized charge, and a set of Josephson junctions that facilitate the interaction between
the two sets of coordinates. With this choice of basis, the coordinates are maximally
separated, and many portions of the Hamiltonian are automatically diagonalized,
thus allowing us to extract the eigenvalues with minimal computational expense.
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Figure 4.1: Circuit schematic. (a) 3-plaquette chip circuit schematic. (b) Schematic
of single frustration modeling. (c) Schematic of double frustration modeling. (d)
Schematic of triple frustration modeling.

Despite of this optimization of the numerics, modeling the full circuit of our most
complex devices [Fig. 4.1(a)] would require at least several months on most powerful
processor in the research group. Thus, we must devise our strategies for simplifying
the modeled circuit to make the calculation practical. A plaquette or SQUID biased at
unfrustration behaves like a superconducting inductive short with an effective shunt
capacitance. For example, when modeling single frustration, we simplify the circuit
to a single plaquette connected in series with a LC resonator that represents the other
unfrustrated plaquettes and SQUID-switch elements [Fig. 4.1(b)]. The LC resonator
inductance and capacitance are shown in Fig. 4.1(b) as Lextra and Cextra. As shown
in Fig. 4.1, each plaquette contains two arms, each having one Josephson junction in
series with a linear inductor. The Josephson junction is characterized by EJ and EC ,
where EJ is the average energy of the Josephson junctions and EC is the charging
energy set by the junction capacitance. The linear inductor is characterized by EL

and ECL, where EL is the average inductive energy of the junction-chain inductor and
ECL is the charging energy across the junction-chain inductor. From our fabrication
uniformity tests, our nominally identical junctions exhibit a spread in EJ of a few
percent. We account for this asymmetry between the two junctions in a plaquette
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with the parameter α = (EJL−EJR)/(EJL+EJR), with EJL and EJR the Josephson
energy of the left and right junction, respectively. Each arm has capacitance to ground
and it is characterized by Cint. Csh is the capacitance of the shunt. We introduce the
parameter Lfactor to account for variations in Lextra due to small flux offsets in the
bias of the nominally unfrustrated plaquettes or SQUIDs. After this, we can input
the circuit elements in the SuperQuantPackage.

The next step is finding the minimum number of states for each coordinate. We
start by using three states for each cyclic coordinate and one state for each oscilla-
tor coordinate. We then vary the number of states from 1-20 for each coordinate,
while tracking how the transition frequencies change. When the transition frequen-
cies change by less than 5%, we choose the corresponding number of states for that
coordinates for next iteration. Using the new number of states, We repeat the same
procedure until the process converge. In Fig. 4.2, we show the convergence for each
of the coordinates as a function of the number of states for double frustration.

The matrix is typically quite sparse, thus we can use the scipy.sparse.linalg.eigsh()
function to find the eigenvalues and eigenvectors efficiently. This function only re-
quires calculating the first few lowest eigenvalues, so the calculation speeds up. Typ-
ically, we only care about the first ∼16-32 eigenvalues, but when we need to calculate
the transitions involving the cavity, we need to calculate the first 40 eigenvalues.
SuperQuantPackage also allows inputting offset charge at specific nodes. To input
offset flux in a loop, we need to introduce an inductor, then vary the phase across
this inductor. The corresponding inductance needs to be small enough so that the
mode couples to this inductor is at a sufficiently high energy that it does not affect
the energy levels of interest. The parasitic capacitance of this inductance needs to
be several order larger than the inductance, so that the characteristic impedance is
small and the wavefunction is localized in the phase space and the phase slip across
the inductor is suppressed. The typical inductance and capacitance we use is 10−5

pH and 1 fF.
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Figure 4.2: Convergence of transition frequencies at double frustration with respect
to the number of states used for each coordinate in the simulation. The red dashed
lines correspond to the number of states chosen for each coordinate for subsequent
device simulations. Coordinates 1 and 2 are cyclic coordinates and coordinates 3-7
are oscillator coordinates.
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a b

Figure 4.3: Single frustration energy levels and flux dispersion. (a) Schematic of
potential energy vs. phase across cos 2φ element for single plaquette with symmetric
junctions for exact flux frustration (top), and flux-bias 40 mΦ0 away from frustration
(bottom); lines indicate example plasmon (red) and heavy fluxon (blue) transitions.
(b) Energy-level dispersion as a function of flux bias relative to single frustration for
single plaquette with transitions indicated following earlier color scheme.

4.2 Single frustration modeling

In order to explore the implementation of stabilizers, we need to investigate the flux
dispersion of the energy bands for different frustration conditions of the various pla-
quettes. First, we model single frustration by considering a single plaquette connected
in series with an LC circuit [Fig. 4.1(b)]. Doing a similar convergence test as shown
in Fig. 4.2, we assign 31 states to the one cyclic coordinate that is necessary here;
we assign 15, 15, and 1 states to three oscillator coordinates. We only calculate the
lowest 32 eigenstates to speed up the calculation.

4.2.1 Single frustration flux dispersion modeling

Using the single plaquette model, we plot the numerically modeled dispersion of the
energy levels with flux for our experimental Plaquette 2 parameters in Fig. 4.3(b),
where the flux bias of one plaquette is scanned near Φ0/2, while the other plaquettes
and SQUID switch are kept at unfrustration with a flux bias of 0. The 0 and π wells
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both have ∼ 7 energy levels below the barrier height of ∼ 4.5 GHz [Fig. 4.3(a)]. If
tunneling is non-negligible, for flux bias points where levels line up between the 0 and
π wells, for example, at frustration, the wavefunctions will become doublets, with a
symmetric and antisymmetric superposition, split by the tunneling energy. Following
convention, we refer to transitions between levels in the same well, which disperse
with the same sign with respect to flux, as plasmons; transitions between wells with
opposite parity on the logical island that disperse with flux with the opposite sign are
heavy fluxons because of the vanishingly small gap for low-lying level crossings due
to the large effective mass from Csh. The plasmon transitions depend on the shape
of the potential, so they disperse gradually with flux. The heavy fluxon transitions
depend on the relative height between the 0 well and π well, so they vary quickly
with flux with a linear dispersion at single frustration; the typical slope of the fluxon
transitions for our device parameters is ∂f0L→0R/∂Φext ≈ 200 MHz/mΦ0. With such
a large slope, this circuit does not have protection against phase-flip errors caused by
dephasing from flux noise. Our computational states are the ground state doublet
and their separation is less than 100 kHz, so the coupling between the 0 well and π

well is small. This corresponds to a small transition matrix element and long T1 and
thus a suppression of bit-flip errors.

4.2.2 Single frustration charge dispersion modeling

When the plaquette is biased at Φ0/2 and the offset charge on the logical island (Qsh)
is at 0e, the lower energy state of the ground-state doublet corresponds to a symmetric
superposition |0⟩ + |π⟩ in the phase basis, and a superposition of even numbers of
Cooper pairs on the logical island in the charge basis. As described in Ch. 3, the
higher energy state of the ground-state doublet corresponds to an antisymmetric
superposition |0⟩ − |π⟩ in the phase basis, and a superposition of odd numbers of
Cooper pairs on the logical island in the charge basis. When Qsh is varied, the
splitting of the ground-state doublet will modulate periodically due to an analogue
of Aharonov-Casher interference, as described in Sec. 3.2. The energy levels for the
symmetric/antisymmetric state have a 4e periodicity and cross at ±1e mod 2e. In
the phase basis, because the phase is a compact variable, the phase particle can tunnel
either forward or backward from the 0 to the π wells, corresponding to a pair of Cooper
pairs tunneling on or off the logical island. When Qsh = 0e mod 2e, tunneling along



39

-2 -1 0 1 2

Q (2e)

0

1

2

3

4

5

E
/h

 (
G

H
z)

10-6

-10 0 10 20

(m
0
)

-2

0

2

4

6

E
/h

 (
G

H
z)

-1 -0.5 0 0.5 1

Q (2e)

0

1

2

3

4

5

6

E
/h

 (
G

H
z)

-1 -0.5 0 0.5 1

Q (2e)

0

1

2

3

4

5

6

E
/h

 (
G

H
z)

(a)

2φ
Csh

Vg

Cg

(b) (c)

(d)
(f)

|00⟩+|0π⟩

-2 -1 0 1 2

Q (2e)

-0.5

0

0.5

1

1.5

2

2.5

E
/h

 (
G

H
z)

10-6
(e)

|00⟩-|0π⟩

|00⟩+|0π⟩

|00⟩+|0π⟩

|00⟩-|0π⟩

|00⟩-|0π⟩

|00⟩-|0π⟩

|00⟩+|0π⟩

Figure 4.4: Single frustration energy levels and charge dispersion for ∆Φ = 0. (a)
circuit diagram. (b) Single plaquette energy levels vs charge on the shunt capacitor,
when α = 0. (c) Single plaquette energy levels vs charge on the shunt capacitor, when
α ≈ 0.03. (d) Energy levels vs. flux when the offset charge on the shunt capacitor is
biased at 0e (black) and 1e (blue). Below 3.5 GHz, the levels for 0e and 1e appear
to be on top of each other. (e) Zoomed-in single plaquette energy levels vs charge
on the shunt capacitor for the ground-state doublet, when α = 0. (f) Zoomed-in
single-plaquette energy levels vs. charge on the shunt capacitor for the ground-state
doublet when α ≈ 0.03.
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these two paths exhibits constructive interference so that the splitting is maximum.
When Qsh = 1e mod 2e, tunneling along the two paths interfere destructively and
the splitting goes to zero. This vanishing of the splitting at 1e only occurs when
the two junctions in the plaquette are perfectly symmetric [Fig. 4.4(b),(e)]. However,
for the fabricated devices, there is always some variation between nominally identical
junctions, with α typically between 0.01-0.03 for our plaquette junctions. For non-
zero α, the corresponding potential is no longer a pure cos 2ϕ, but has a residual
cosφ component (Fig. 3.2). This results in the tunneling along the two paths no
longer being equivalent, and thus the destructive interference at Qsh = 1e mod 2e is
incomplete and the splitting remains non-zero. In the charge basis, this means there
is the possibility that a single Cooper pair can tunnel on or off the logical island.
Thus, the lower energy state no longer corresponds to purely a superposition of even
numbers of Cooper pairs, but can also have have a small mixture of odd numbers of
Cooper pairs. Similarly, the higher energy state is no longer purely a superposition of
an odd numbers of Cooper pairs, but can include a small mixture of even numbers of
Cooper pairs. The nonzero single Cooper pair tunneling that arises for α ̸= 0 results
in a gap opening at 1e mod 2e [Fig. 4.4(c),(f)]. Figure 4.4(d) shows the energy level
flux dispersion when offset charge is biased at 0e (black) and 1e (blue) with α ≈ 0.03.
The large Csh suppresses the tunneling for the low-lying states, so, when combined
with the non-zero junction assymetry, the charge-modulation of these levels is small
and difficult to distinguish in our experimental data, which will be presented in Ch. 6.
Nonetheless, the higher levels near the top of the barrier and above still tune strongly
with offset charge. Because these higher levels are strongly coupled to the readout
cavity, we are able to observe a clear modulation of the cavity signal.

4.3 Double frustration modeling

In this section, I describe the modeling of the flux- and charge-dispersion of the
energy-level spectrum near double frustration, while the third plaquette and SQUID
switch elements are remained at unfrustration. As explained earlier, we model these
unfrustrated elements as a single LC circuit in series with the two plaquettes that
are modeled near double frustration Fig. [4.1(c)].



41

1

0

π

φ2

0 πφ

(a)

E
/h

 (
G

H
z)

-10 0 10 20
-2

-1

0

1

2

3
(b)

ΔSA

1/2
(m

0
)

Figure 4.5: Modeling double plaquette flux dispersion. (a) Sketch of contour plot
of effective potential at double frustration accounting for different effective masses
plotted as a function of the phase across each plaquette with periodic boundary
conditions; lines indicate plasmon (red), plus heavy (blue) and light (magenta) fluxon
transitions. (b) Level diagrams around frustration for two concatenated plaquettes
with EJ , EC , EL, α = 1.75K, 3.54K, 1.20K, 0.031.

4.3.1 Double frustration flux dispersion modeling

The potential energy landscape for the two frustrated plaquettes has four wells in
the two-dimensional space of the two plaquette phases. Because the plaquette phases
are compact variables, this potential follows the surface of a torus (Fig. 4.8). If the
capacitance to ground of the intermediate island Cisl is sufficiently small, with a
charging energy Eisl

C = (2e)2/2Cisl ∼ EJ , quantum fluctuations of the island phase
along the direction between wells of the same parity lead to hybridization of 00/ππ
and 0π/π0 wells. In this case, the levels with the same parity of the plaquettes
develop a splitting near double frustration, with the ground states corresponding to
symmetric superpositions: |00⟩+ |ππ⟩ for even parity, and |0π⟩+ |π0⟩ for odd parity.
In Fig. 4.5(a), we plot out the effective potential at double frustration accounting
for different effective masses plotted as a function of the phase across each plaquette
with periodic boundary conditions. The red lines correspond to plasmon transitions,
the blue lines correspond to heavy fluxon transitions between hybridized states with
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different parities, and the magenta lines correspond to light fluxon transitions between
the symmetric and antisymmetirc states with the same parity.

We plot numerically modeled energy-level diagrams for our experimental device
parameters at double frustration, where Plaquettes 1 and 2 are biased near Φ0/2 and
Plaquette 3 is biased at Φ0 in Fig. 4.5(b). The bias flux in the two plaquettes is
varied simultaneously in the direction from where 00 is the lowest well to where ππ
is the lowest well. We begin our description by considering the lowest energy level
with a downward parabolic dispersion, corresponding to the ground state in the 00
(ππ) well for ∆Φ well below (above) zero. When we bias the two plaquettes near
double frustration, the large Eisl

C results in large quantum fluctuations between the
00 and ππ wells; in an effective potential picture, the barrier between the 00 and
ππ wells is reduced, while the large Csh across the plaquette chain maintains a large
effective barrier between the 00/ππ wells and the 0π/π0 wells [Fig. 4.5(a)]. The
wavefunctions are strongly hybridized between the 00 and ππ wells resulting in the
qubit ground state being |00⟩ + |ππ⟩ and a large gap ∆SA between the symmetric
and antisymmetric levels. Because the other logical state is the |0π⟩ + |π0⟩ level,
which is flat with respect to this particular direction in flux space, the heavy fluxon
transition near double frustration exhibits quadratic flux dispersion, compared to
linear dispersion for single frustration.

The antisymmetric energy level from the hybridization of the states in the 00
and ππ wells is visible near 2 GHz with an upwards parabolic flux dispersion near
frustration Fig. 4.5(b). When the flux is biased away from double frustration in the
negative direction, this energy level corresponds to the qubit in the ground state of
the ππ well; similarly, in the positive flux direction, the qubit is in the ground state
of the 00 well. At frustration, this level corresponds to the |00⟩ − |ππ⟩ state.

The second lowest energy level near frustration has almost flat flux dispersion,
and it corresponds to the wavefunctions hybridized between the 0π and π0 wells.
When the flux is biased away from double frustration in the negative direction, the
0 well potential in each plaquette goes down and the π well potential goes up, and
vice versa for flux bias in the positive direction. Thus, the flux dispersion of this
hybridized odd-parity level is nearly flat.

There are an additional set of energy levels with a downward parabolic shape flux
dispersion, which correspond to plasmon energy levels within the even-parity wells.
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The set of energy levels with flat flux dispersion correspond to plasmon energy levels
within the odd-parity wells. Near frustration, when the energy levels are about 2 GHz
above the ground states, they are so close to the top of the barrier that the tunneling
between the even or odd-parity states becomes significant. We can see an example
of this at 8 mΦ0 and 1 GHz, where there is an obvious anticrossing gap when the
even-parity energy level crosses the odd-parity energy level.

A key feature of this circuit is that we can can engineer the effective mass along
the directions of constant parity to be small, which results in a significant gap opening
and flatter bands at double frustration, including the heavy fluxons between states
of opposite parity. The wavefunction hybridization in such a direction corresponds
to an effective coupling Hamiltonian −(∆SA1/2

/2)X1X2, which is equivalent to im-
plementing an XX stabilizer in superconducting hardware. This results in flatter
flux dispersion and provides protection against dephasing due to flux noise. At the
same time, the large Csh still suppresses tunneling between the logical states of op-
posite parity. The modeled gap between the lowest even- and odd-parity levels is
∼100 MHz because the non-zero α results in differences in the potential for the even-
and odd-parity wavefunctions (Sec. 3.3). It is important to maintain small α so the
multi-plaquette circuit preserves the exponential protection against bit-flip errors.

4.3.2 Double frustration flux dispersion vs. intermediate island capaci-

tance

We modeled double frustration flux dispersion with different intermediate island ca-
pacitance, and we present some of these results in Fig. 4.6. When Cisl = 1 fF, the
effective mass is small along the magenta line in Fig. 4.5(a), and the quantum fluc-
tuations are large in this direction. The wavefunction is hybridized strongly between
the 00 and ππ wells, resulting in a large ∆SA ≈ 2.9 GHz and rather flat ground-state
energy band [Fig. 4.6(a)]. The ground state energy band is relatively flat near frus-
tration. When Cisl = 5 fF, the effective mass along this direction is larger, but there
is still somewhat effective hybridization between the 00 and ππ well [Fig. 4.6(b)]. In
this case, ∆SA ≈ 1.3 GHz, and the energy band curvature is larger. When Cisl =

10 fF, the hybridization is significantly weaker [Fig. 4.6(c)]. ∆SA ≈ 0.5 GHz and
the antisymmetric level is now lower than the first excited plasmon state. Also, the
energy bands have a nearly linear dispersion near double frustration. When Cisl =
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Figure 4.6: Double plaquette flux dispersion with different intermediate island ca-
pacitance (a) Cisl = 1 fF, which results in strong hybridization and ∆SA ≈ 2.9 GHz.
(b) Cisl = 5 fF. The hybridization is reduced and ∆SA ≈ 1.3 GHz. (c) Cisl = 10 fF.
The hybridization is significantly suppressed. ∆SA ≈ 0.5 GHz, and the flux disper-
sion is close to linear. (d) Cisl = 50 fF. The hybridization is almost suppressed, the
∆SA ≈ 0 GHz, and the flux dispersion is essentially linear.
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Figure 4.7: (a) Circuit schematic. (b) When α = 0, the charge modulation for the
symmetric/antisymmetric energy levels for even- and odd-parity (The even- and odd
parity levels are on top of each other) have 4e dependence. They cross at 1e and
the gap closes because of destructive interference. (c) When α =0.03, the charge
modulation for the symmetric/antisymmetric energy levels for even- and odd-parity
have 4e dependence. They cross at 1e and the gap closes for even-parity states,
because of destructive interference; at the same time, the splitting remains open for
odd-parity states, because of incomplete destructive interference.

50 fF, the effective mass is so large that all four wells are nearly independent with
vanishing coupling between them [Fig. 4.6(d)]; ∆SA ≈ 0 GHz and the flux dispersion
near double frustration is essentially linear.

4.3.3 Double frustration charge dispersion at double frustration

As described in Sec. 3.3, with effective hybridization at double frustration, the split-
ting between symmetric and antisymmetric levels also exhibits Aharonov-Casher in-
terference, similar to single frustration, but now based on the offset charge bias Qisl

of the intermediate island between the frustrated plaquettes (Fig. 4.7). When α = 0,
the symmetric/antisymmetric energy levels for both even and odd parity have 4e pe-
riodicity. When the symmetric and antisymmetric energy levels cross at 1e mod 2e,
the gap closes [Fig. 4.7(b)], because the even- (odd-) parity wavefunctions both expe-
rience a cos 2φ potential [Fig. 4.8(d)]. When α ≈ 0.03 [Fig. 4.7(c)], ∆SA vanishes at
1e mod 2e for the even-parity energy levels because these wavefunctions still experi-
ence a cos 2φ potential, while ∆SA for the odd-parity energy levels doesn’t fully close
because the potential for these wavefunctions is not exactly cos 2φ [Fig. 4.8(e)]. When
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Figure 4.8: Same figure as Fig. 3.10, repeated here for emphasis. (a) Circuit
schematic. (b) 2D potential when α = 0 with unwrapping the compact phase variables
so that they are no longer on a torus, but instead extend to ±∞. Red lines corre-
spond to hybridization for even-parity wavefunctions, while blue lines correspond to
hybridization for odd-parity wavefunctions. (c) 2D potential when α is non-negligible.
(d) α = 0: Left (right) plot is the 1D cut potential along the direction of hybridiza-
tion for even- (odd-) parity wavefunctions, and they both have a cos 2φ potential. (e)
α ̸= 0: Left/right plot is the 1D cut of the potential along the direction of hybridiza-
tion for even- (odd-) parity wavefunctions. The even-parity wavefunctions experience
a cos 2φ potential, while the odd-parity wavefunctions experiences a potential with a
cosφ component mixed in with the cos 2φ potential.
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we bias the the charge at 0e mod 2e, the transition between the even- and odd-parity
logical states is first-order insensitive to charge noise on the intermediate island. How-
ever, there can be discrete charge jumps of order 1e [57, 54]. For the charge sensing
area of the intermediate island on our device, this happens roughly every 10 minutes,
providing enough time for us to detect the charge jump and tune the offset charge
to stabilize it at 0e. When quasiparticles tunnel on and off the intermediate island,
this introduces a 1e change in Qisl and ∆SA closes. In this case, the system can end
up in the antisymmetric excited state, corresponding to a leakage error. Minimizing
quasiparticle poisoning on the intermediate islands is important for this system. We
can reduce the quasiparticle poisoning rate in our system by doing gap engineering,
using a more compact shunt capacitor to avoid absorbing pair-breaking radiation [54],
and using backside metallization to downconvert pair-breaking phonons [79, 65].

4.3.4 Double frustration flux dispersion at different Qisl

In Fig. 4.9, we plot the flux dispersion of the energy levels near double frustration
for different Qisl. We first look at when the circuit is perfectly symmetric and α = 0.
For α = 0, with Qisl = 0, the two paths between the 00 and ππ wells interfere
constructively so the strong tunnel coupling results in a large ∆SA [Fig. 4.9(a)]. This
strong coupling results in large ∆SA. When Qisl = 1e, the two paths have destructive
interference. The phase particle cannot tunnel and the coupling between the 00 well
and ππ well is suppressed, so ∆SA = 0 [Fig. 4.9(b)]. Next, we consider when the two
junctions in the plaquette are not symmetric and α = 0.03. When Qisl = 0e mod 2e,
the energy of the ground-state doublet is not degenerate at frustration, but degenerate
away from frustration [Fig. 4.9(c)]. When Qisl = 1e mod 2e, ∆SA for the even-
parity energy levels still closes [Fig. 4.9(c)] because it experiences a cos 2φ potential
[Fig. 4.8(e)], while ∆SA for the odd-parity energy levels remains open [Fig. 4.9(c)]
because it experiences a potential with a nonzero cosφ component.
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Figure 4.9: Energy levels vs. flux at double frustration with different intermediate
island offset charge. (a,b) α = 0: The phase particle can tunnel from 00 well to ππ well
along two identical paths leading to Aharonov-Casher interference depending on the
enclosed charge, in this case, the offset charge on the intermediate island. (a) When
Qisl = 0e mod 2e, constructive interference results in significant tunneling between
the 00 and ππ wells. (b) When Qisl = 1e mod 2e, the two paths have destructive
interference and tunneling is suppressed, thus ∆SA = 0. (c,d) α = 0.03: now the even-
and odd-parity wavefunctions experience different potentials. (c) When Qisl = 0e

mod 2e, the energy of the ground state doublet is not degenerate at frustration,
but instead this degeneracy is moved away from frustration. (d) When Qisl = 1e

mod 2e1e, the ∆SA for even-parity energy levels still closes because it experiences a
cos 2φ potential, while the ∆SA for odd-parity energy levels remains open because it
experiences a potential with a nonzero cosφ component.
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4.4 Triple frustration modeling

4.4.1 Structureless plaquette model

Modeling a full three-plaquette circuit is computationally expensive. It has 11 nodes
[Fig. 4.1(d)], and each node requires several charge states. The matrix size is 189,000×189,000,
so it requires ∼300 GB RAM and takes weeks to calculate the energy levels, even with
processors with 40 cores. As a more practical alternative, we can use the stuctureless
plaquette model to approximate the full-structure plaquette model.

We first connect one arm of the plaquette to form a loop, then vary the flux in
this loop to get the potential of this arm. We can extract the Fourier components
of this potential. The structureless plaquette model replaces the Josephson potential
with the potential we extract from one arm of the plaquette. Because of this, we do
not need the linear inductor in the circuit and we reduce the effective nodes from 11
to 5, and the matrix size becomes 7,000×7,000. We add a renormalization factor in
the junction capacitance to simulate the effect of higher internal levels. We find the
structureless plaquette model has good agreement with the full-structure plaquette
near frustration. We use the strucureless plaquette model for the rest of the section.

4.4.2 Triple frustration flux dispersion vs. intermediate island capaci-

tance

We model the triple frustration flux dispersion for a simultaneous scan of the flux
bias to each plaquette along a line from 000 to πππ in Fig. 4.10 with Cisl = (a) 1 fF,
(b) 8 fF, (c) 25 fF, (d) 50 fF. In Fig. 4.10(b), at frustration, the computational states
are the superposition of even-parity wells (000,0ππ,π0π,ππ0) and the superposition
of odd-parity wells (πππ,00π,0π0,π00).
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Figure 4.10: Structureless plaquette model. Energy level spectrum with α = 0 at
triple frustration for simultaneous scan of flux bias to each plaquette along a line
from 000 to πππ for Cisl = (a) 1 fF, (b) 8 fF, (c) 25 fF, (d) 50 fF.
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Chapter 5

Device design and fabrication

In this chapter, I describe the choice of device parameters and device layout. Next, I
present our simulations of capacitances between different islands, and inductances be-
tween flux bias lines and plaquette loops. Finally, I discuss our fabrication procedure
towards the end of the chapter.

5.1 Device parameters

As discussed in Ch. 3, extablishing clear stabilizer behavior at double frustration
requires plaquettes with a dominant π-periodic potential and large quantum fluctua-
tions in the direction of constant φ1+φ2 in the space of common-mode phases across
each plaquette. The π-periodicity comes from a dc SQUID consisting of two con-
ventional Josephson junctions and a non-negligible loop inductance. The Josephson
energy of the junction is described in Eq. (2.22). Each junction has a critical cur-
rent given by Eq. (2.18). We implement inductors in each plaquette with chains of
large-area Josephson junctions, similar to typical fluxonium designs [27]. The induc-
tive energy of the junction chain can be extracted with EL = (Φ0∆/4e)/R

L
n , where

RL
n is the junction chain resistance at room temperature. If the EJ/EL ratio is too

small, E2 vanishes and we do not have a cos 2φ potential; if EJ/EL is too large, the
energy levels tune too strongly with flux so that even if there are large quantum
fluctuations, the device will not have protection against flux noise. To have large
quantum fluctuations in the direction of constant φ1 + φ2 for effective hybridization
between the two plaquettes, we need large EC and Eisl

C compared to the barrier height,
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which determines the coupling between the 00/ππ wells and the 0π/π0 wells. For our
device, we are considering energies in K and we target EJ ∼ 1.5K, EL ∼ 1.5K

and EC ≈ 3.5K (kB = 1). For a junction with large EJ and EC , if the junction
plasma frequency ωp =

√
2EJEC/ℏ approaches 2∆ for the junction electrodes, the

junction acquires an extra capacitance for quasiparticles on either side of the junc-
tion. The specific electronic capacitance can be expressed as Csp

elec = 3ℏeJC/16∆2

[80], where JC is the critical current density of the junction and ∆ is the super-
conducting gap. Our target EJ is ∼1.5 K and junction area is 110 nm × 130 nm,
and the corresponding JC ∼4 µA/µm2 and Celec ∼ 0.3 fF. Our estimated specific
geometric capacitance is ∼50 fF/µm2, so Cgeo ∼ 0.7 fF. The total capacitance of
the junction is CJ = Celec + Cgeo = 1 fF, and EC ∼4 K. Junctions of this size are
close to the lower limit where we can maintain reasonably small junction asymmetry
with our fabrication. Thus, making smaller junctions to reduce Cgeo is not practical.
The simulated geometric charging energy of each intermediate island to the ground
(Eisl

C = (2e)2/2Cisl) is ∼ 4.6K between Plaquette 1 and Plaquette 2, and ∼ 0.74K

between Plaquette 2 and Plaquette 3. The Eisl
C is significantly smaller between Pla-

quette 2 and Plaquette 3 because chains in Plaquette 2 contribute to the capacitance
to ground of the intermediate island. The intermediate island also has capacitance
to ground through the junction capacitors [Fig. 4.1], thus EC of each each of the four
junctions in the two plaquettes reduces the total charging energy of the intermediate
island.

To estimate E2 for this device, we model a circuit that embeds a plaquette in
an rf SQUID, vary the flux across the rf SQUID loop, calculate the energy levels,
and obtain the Fourier components for the lowest energy level. The E2 value then
corresponds to the Fourier component for the cos 2φ term. The extracted E2 for
this circuit is ∼ 0.05 K. For effective concatenation, both EC and Eisl

C need to be
large compared to E2. For this target value of E2, we require a rather large shunt
capacitor with Csh=1200 fF in order to suppress single Cooper pair tunneling on/off
the logical island. The charging energy for this shunt capacitor is Esh

C = 0.003 K,
and Esh

C /E2 = 0.06, so the coupling between the even- and odd-parity states will be
suppressed.

When there are small asymmetries in the circuit, particularly between the EJ

values of the two junctions in a plaquette, the even- or odd-parity states experience
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slightly different potentials and the states are not exactly degenerate at frustration
(Fig. 4.8). This results in an increase in the coupling between the even- and odd-
parity states and an increase in the gap between the computational states. The α in
our circuit is ∼ 0.02 - 0.04, and the splitting between the even- and odd-parity is on
the order of ∼100 kHz at single frustration.

5.2 Device design

In order to allow for local flux-biasing of the different plaquettes and charge-biasing
of the various superconducting islands, our device incorporates a series of on-chip
bias lines, indicated in Fig. 5.1. The heart of the device contains a chain of three
plaquettes, each with two small Josephson junctions and two junction-chain induc-
tors (17 junctions in series with size 140 nm × 1070 nm) (Fig. 5.3). As discussed in
Sec. 5.1, minimizing Cisl for each intermediate island between two adjacent plaquettes
is critical for successful concatenation. Thus, ideally the four Josephson junctions in
two adjacent plaquettes will all be located near the island between the plaquettes so
that the junction electrode that is closest to the island will be as short as possible
and contribute a minimal amount of excess capacitance to ground. However, in a
chain of three plaquettes, this is only possible for one of the two intermediate islands.
The other island will necessarily have to be connected to the two inductors for one
of the plaquettes, and the capacitance to ground for these inductors will enhance the
effective island capacitance (Fig. 4.1). In addition, the 3-plaquette chain has dummy
plaquettes at either end, which have the same geometry as the other plaquettes, but
the small junctions and inductor-chain junctions are intentionally shorted out. The
dummy plaquettes are included to symmetrize the geometry and minimize the in-
ductive coupling of the on-chip flux-bias lines to the LC mode of oscillation of the
plaquette chain, sometimes referred to as the M ′ coupling, as defined in Ref. [25].

There are four on-chip flux-bias lines for controlling the flux bias to each of the
three plaquettes. Each flux-bias line has a coplanar geometry that splits into a T-
shaped path adjacent to the plaquette chain, with the two ends of the T connected
directly to the ground plane. In order to have a well-defined path for the return cur-
rents and to suppress slot-line modes between different portions of the ground plane,
we fabricated superconducting ground straps across each flux-bias line in multiple
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Figure 5.1: Device schematic. Plaquettes are in the middle of the figure and connect
to the large shunt capacitor. We apply fluxes to different plaquettes through PB01,
PB12, PB23, PB30 flux bias lines. We apply fluxes to the two SQUIDs that comprise
the SQUID switch through SBC and SBO. We control the offset charges on the shunt
capacitor through CBsh and the offset charge on the intermediate island through CB1
and CB2 charge bias lines.
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Figure 5.2: Image from optical microscope with (a) colorized flux lines (blue) and
plaquette loops (red), (b) colorized charge lines and intermediate islands.

locations. In addition to the flux-bias lines, we also have three charge-bias lines for
tuning the offset charge to the shunt capacitor electrode and each of the two interme-
diate islands between pairs of plaquettes. These charge-bias lines are isolated from
ground, but also include similar ground straps to what is used on the flux-bias lines.

Our design also includes a pair of series dc SQUIDs between the plaquette chain
and Csh that could be used for gate operations in a future implementation of a pro-
tected qubit based on concatenated π-periodic plaquettes, which we will discuss in
Ch. 8. For the experiments presented here, these SQUIDs, which have their own
separate flux-bias lines from the plaquettes, were not used in the present measure-
ments and were maintained at a flux bias of 0modΦ0 throughout the experiment. At
this bias point, the SQUIDs behave primarily as superconducting shorts, although
we must still account for the nonlinearity of the SQUID junctions in modeling the
energy levels for our device.

The target shunt capacitance, Csh ∼ 1200 fF for our present device is rather large
compared to more conventional superconducting qubits. Nonetheless, in the present
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Figure 5.3: SEM images of (a) plaquette, (b) junction chain, (c) small junctions.
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experiment, we implemented Csh with a planar superconducting Nb electrode with a
small gap to the ground plane around the perimeter. Although this is the standard
technique for making shunt capacitors for transmons, whose shunt capacitors are
much smaller (∼50-80 fF), the large shunt capacitor has consequences for the device
performance that will be discussed later. For example, it results in low-frequency
spurious antenna modes, a large charge-sensing area for offset charge jumps, and
enhanced quasiparticle poisoning.

For measuring our device, we have a coplanar waveguide (CPW) readout resonator
with a fundamental resonance at 4.7 GHz. This is a 1/4-wave resonator with one end
inductively coupled to a CPW feedline that is connected to our measurement circuitry;
the other end of the resonator has a coupling capacitance Cc = 36 fF to our device.

5.3 Simulation

For designing these complex devices, we must rely on numerical simulations of the
circuit parameter values for different layouts. In this section, I first discuss the sim-
ulation of capacitances of the various islands and bias lines. Next, I describe our
simulations of inductances between plaquette loops and flux-bias lines.

5.3.1 Capacitance simulation

The capacitances are simulated using a finite-element analysis software (ANSYS Q3D
package) (Fig. 5.4). In Table 5.1, we show the capacitance between the islands and the
charge bias lines. The CB1 and CB2 lines are close to the shunt capacitor and have
a large capacitance to the shunt capacitor island. The intermediate island between
Plaquette 1 and Plaquette 2 (Island 1) is small, so the offset charge on Island 1 is
primarily tuned with CB1, although with a small crosstalk tuning from CB2. The
island between Plaquette 2 and Plaquette 3 (Island 2) has the contribution from the
junction-chain inductors in Plaquette 2, thus it has a signficantly larger capacitance
to ground compared to Island 1. This, combined with the proximity to CB1, leads to
a significant crosstalk capacitance between CB1 and Island 2.

In Table 5.1, we list different islands capacitances to ground. To estimate the
ground capacitance of Island 1 (Cisl1), we need to include the junction electrode that
directly connects to the intermediate island for simulation. Cisl2 for Island 2 is more
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Figure 5.4: (a) Q3D simulation image. (b) Zoomed in Q3D image and the highlighted
magenta color elements are CB1, CB2, Island 1 and Island 2. Island 2 is simulated
including part of the junction chain inductor.

Simulated capacitance matrix (aF)

CBsh CB1 CB2

Islandsh 54 420 350

Island 1 0 36 8.0

Island 2 0 78 120

Table 5.1: Capacitances between the various charge bias lines (CB) and different
islands.
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Simulated ground capacitances (fF)

Islandsh Island 1 Island 2

1000 0.81 5.0

Table 5.2: Simulated island capacitance to ground

Simulated Inductance Matrix (pH)

PB01 PB12 PB23 PB30

Plaq1 0.594 0.775 -0.174 0.106

Plaq2 0.146 -0.688 -0.547 0.237

Plaq3 0.066 -0.201 0.599 0.756

Table 5.3: Simulated mutual inductances between flux-bias lines and plaquette loops.

complicated, because the junction chain acts like a superconducting short, and it
partly contributes to Cisl2.

5.3.2 Inductance simulation

We import the device layout in InductEx [81], assign materials and film thicknesses
to the different circuit elements, and assign ports for current flow in and out. In-
ductEx can then simulate the mutual inductance between different circuit elements
[82, 83]. The simulated inductances are given in Table 5.3. We target primary mu-
tual inductances to each plaquette of roughly 1 pH to allow for biasing with fluxes
of order 1 Φ0 with sufficiently small currents to minimize heating in cryogenic cables;
at the same time, these mutual inductances are small enough to minimize dissipation
coupled inductively to the plaquettes through the bias-line circuitry.

5.4 Fabrication

The three-plaquette device presented in the subsequent chapters is fabricated on a
high resistivity (≥10 kΩ-cm) silicon wafer that was given a standard RCA clean,
which is a standard set of wafer cleaning steps, followed by an etch step in a buffered-
2% per volume HF bath to remove native oxides immediately before loading into the
vacuum chamber for the base-layer metal deposition. The base layer of 60-nm thick
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niobium is sputter-deposited and is then coated with DSK101-4 anti-reflective-coating
(ARC) and DUV210-0.6 photoresist before performing deep-UV photolithography on
a photostepper to define the ground plane, feedline, resonator, flux/charge bias lines,
and the logical islands. The exposed wafer is then baked at 135◦C for 90 seconds, de-
veloped with AZ 726 MIF, briefly cleaned with an ARC etch to remove any remaining
unwanted ARC, and then dry etched using BCl3, Cl2, and Ar in an inductively cou-
pled plasma etcher. The wafer is then subject to another buffered HF dip to remove
any further oxides that may have formed on the surface of the remaining niobium.

The next set of lithography steps creates ground straps that connect ground planes
on either side of the flux, charge, and feedlines. The first step uses lift-off resist
LOR3A and then DUV210-0.6 photoresist to expose a region underneath the intended
ground straps where we deposit SiO2 to function as an insulating dielectric support
for the aluminum ground straps to follow. The SiO2 is evaporated in an electron beam
evaporator at a rate 3.5 Å/s until 100 nm is deposited. The wafer is then placed
in 1165 Remover (N-Methly-2-pyrrolidone (NMP)) at 65◦C to lift off the excess SiO2

and resist and then another clean bath of 1165 Remover (NMP) at 65◦C for further
liftoff. The wafer is then sonicated for 10 seconds to remove any final remaining resist
and SiO2. The second layer of the ground strap process is exposed in the same way,
using LOR3A and DUV photoresist, but this time the pattern lays over the existing
SiO2 and extends further so that once developed, there is an exposed region of the
niobium ground plane for the aluminum to contact. The wafer is baked again and
developed, and the ground straps are then deposited by electron beam evaporation
of aluminum (100 nm thick). The wafer is once again subject to NMP to remove the
remaining resist and excess aluminum.

Once clean, the wafer is put through a light oxygen plasma resist strip (Glen 1000)
before a bilayer resist stack of MMA/PMMA is spun for electron beam lithography
to define the Josephson junctions. The Al-AlOx-Al junctions are written at 100 keV
for a standard double-angle evaporation process. Following a brief ion mill, the first
electrode is deposited by electron beam evaporation. The bottom (top) electrode is
40 (80) nm thick. Once the junctions are deposited, the wafer is covered in S1813
photoresist and then diced to (6.25 mm)2 chips. After the dicing, the aluminum
metallization is lifted off. The inductors in this plaquette are formed from narrow
granular-Al wires. The large kinetic inductance from the thin, narrow disordered
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Figure 5.5: (a) Circuit schematic for a plaquette embedded in an rf SQUID loop with
a shunt capacitor. (b) Resonance frequency at two different fluxes. (c) Resonance
frequency vs. plaquette and rf SQUID flux-bias currents. (d) Resonance frequency vs.
orthogonalized rf SQUID flux (Φrf ) and plaquette flux (ΦP ). The yellow color in the
two-dimensional plots corresponds to higher resonance frequency and the blue color
corresponds to lower resonance frequency. The horizontal red dashed lines correspond
to the locations of the cuts for the next figure.
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superconducting traces allows us to achieve our target EL. However, the granular-
Al process is challenging to maintain good reproducibility, thus, for our subsequent
plaquette-chain circuits, we use junction-chain inductors, as described previously.

5.5 Characterization of π-periodic Josephson element

To characterize and verify the π-periodic Josephson element, we design and fabricate
a plaquette with EJ ∼4 K, EL ∼3 K, EC ∼2 K, which can be tuned in and out
of frustration with the flux ΦP passing through the plaquette loop. The plaquette
is embeded in an rf SQUID so that we can vary the phase across the plaquette by
tuning the flux Φrf passing through the rf SQUID loop [Fig. 5.5(a)]. The rf SQUID
is shunted by a capacitor to form a resonant circuit whose frequency can be tuned
with Φrf or ΦP due to the change of inductances.

We measure the resonance of this circuit in an Adiabatic Demagnetization Refrig-
erator (ADR) with a base temperature ∼50 mK. Figure 5.5(b) shows an example of
the change of resonance frequency at different flux. Figure 5.5(c) shows the resonance
frequency modulating with the current through the plaquette flux bias line and the
rf SQUID flux bias line. The yellow color in the two-dimensional plots corresponds
to a higher resonance frequency and the blue color corresponds to a lower resonance
frequency. After extracting the inductance matrix, we apply a pure rf SQUID flux
in the rf SQUID loop and a pure plaquette flux in the plaquette loop [Fig. 5.5(d)].
When ΦP = 0, the resonance frequency has a Φ0 periodicity with respect to Φrf ;
when ΦP =0.5 Φ0, the resonance frequency has a 0.5 Φ0 periodicity with respect to
Φrf , which which corresponds to the plaquette having a π-periodicity.

Figure 5.6 shows microwave transmission through the feedline vs. frequency and rf
SQUID flux when ΦP = 0 and ΦP = 0.5 Φ0, which also also exhibits the two regimes
of 2π-periodicity and π-periodicity. Figure 5.7(a) shows the extracted resonance fre-
quency vs. rf SQUID flux when ΦP = 0.5 Φ0. When we zoom in near the higher
resonance frequency, we observe a slightly imperfect π-periodicity [Fig. 5.7(b)], which
could be caused either by an asymmetry in the two junctions or a deviation of ΦP from
exact frustration. From the measured variation, we estimate E1/E2 ≈ 0.02, which
corresponds to having a π-periodic device with a residual 2π-periodic component at
the 2% level.
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Figure 5.7: (a) Extracted resonance frequency vs. rf SQUID flux when ΦP = 0.
(b) Zoomed-in plot near the upper frequency range.
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Chapter 6

Measurement of 3-plaquette chip

In this chapter, I describe the measurement setup, cavity flux tuning, and spec-
troscopy measurements at single, double, and triple frustration.

6.1 Fridge setup

Our chip is packaged in an Al sample box, with the on-chip control lines connected
to the coaxial cables in the fridge through wirebonds and PCB traces. We cover the
sample box with an Al lid to prevent light leaks inside the box, and then place the
box on the cold-finger in the BlueFors dilution refrigerator.

In Fig. 6.1, we show a schematic of the BlueFors fridge indicating the various stages
at different temperatures: 300 K, 50 K still, heat exchanger, and mixing chamber, with
temperatures in descending order. The sample is mounted on the mixing chamber
stage, which runs at a temperature around 15 mK. At each stage, there is metal
shielding to block the blackbody radiation from higher temperature stages. There is
a mu-metal can inside the vacuum jacket of the fridge and a Cryoperm shield around
the cold-finger where the device is mounted for a two-stage configuration for shielding
against external magnetic fields.

We connect the room-temperature electronics and the coaxial cables from room-
temperature down to the mixing chamber (Fig. 6.1). Because photons from blackbody
radiation can leak from higher temperature stages to the plaquette chip through the
coaxial cables, we include cryogenic attenuators to absorb these photons. The atten-
uators are essentially resistive dividers, so they heat up when they absorb microwave
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signals. At the same time, an attenuator will emit photons with a noise power that
depends on the physical temperature of the attenuator. Because the mixing chamber
does not have enough cooling power to take away all the heat generated from the
attenuators, instead of installing all the attenuators on the mixing chamber, we dis-
tribute them to different stages. For the microwave input line, there are also low-pass
K&L filters and high frequency eccorsorb filters to block the unwanted photons.

Because the attenuators also suppress the signal we send in the microwave input
line, we need to amplify the signal before readout. We do not put any attenuators in
the output microwave line because this will further reduce the signal and degrade the
signal-to-noise ratio. Instead, we use two-stage isolators and 8-GHz low-pass K&L
filters to block the unwanted photons from higher temperature stages and the HEMT
amplifier.

Because our waveform generators for supplying the flux-bias signals only have a
+/- 1 V range, we only place 20 dB attenuators in the flux lines so that we can
tune the flux by more than 2 Φ0 in each of the loops. The flux-bias lines also have
low-pass filters and eccorsorb filters on the mixing chamber to filter high-frequency
noise. Each charge-bias line has a 20-dB attenuator at 3 K, along with a 10-kΩ series
resistor at room-temperature for dividing the voltage delivered to the on-chip charge-
bias line by a factor of 1000. The resistor to ground for the voltage divider is on the
3 K stage to reduce the Johnson–Nyquist noise. The charge-bias lines also have an
80 MHz Mini-Circuits low-pass filter and eccosorb filter on the mixing chamber to
filter high-frequency noise.

6.2 Electronics setup

In Fig. 6.1, we show the electronics setup. We use a microwave source to generate
the local oscillator for the cavity readout signal. The signal is then mixed with a
13 MHz waveform output from BBN APSII arbitrary waveform generator (AWG). It
can output ±1 V with 14 bits of vertical resolution, and has a 1.2 GS/s sampling rate.
The signal goes through a digital attenuator, microwave switch, and fixed attenuator
before it goes into the fridge. The signal output from the fridge goes through a
DC block, room-temperature amplifier (2-8 GHz Narda), two-stage Mini Circuits
amplifer, then it is mixed with the local oscillator (LO) signal to downconvert the
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signal to 13 MHz. This downconverted signal then goes through two low-pass filters
and an rf amplifier before it is digitized by our Alazar data acquisition card.

The flux control signals are generated by our BBN APSII, then go through a
323 MHz gaussian filter and a 32 MHz Mini-Circuits low-pass filter to filter out the
high frequency noise on the signal lines.

The voltage signals for controlling the offset charges are provided by SRS SIM928
voltage sources. We have an Anritsu K250 bias-T for the shunt capacitor charge bias
line on the mixing chamber. This is to allow sending the microwave signal to the
shunt capacitor to drive transitions between the energy levels in the plaquette while
also allowing the addition of a dc signal for scanning the offset charge bias to the
shunt capacitor island.

6.3 Cavity flux tuning

The 3-plaquette device has three plaquette loops and two loops for the SQUID switch
elements. Because the flux bias lines have non-negligible mutual inductances to the
different loops, we have six on-chip flux bias lines so that we can control a pure flux
to each of the loops, while keeping the fluxes in the other loops constant.

We first measure the readout cavity vs. voltage on the PB12 flux line [Fig. 6.2(b)].
The PB12 flux line mainly couples to the Plaquette 1 and Plaquette 2 loops. When
either of the plaquettes is near frustration, the plaquette’s frequency decreases due to
increased inductance, thus causing the cavity to shift to lower frequency. However,
from this measurement alone, it is impossible to identify which dips correspond to
which plaquette being near frustration.

In order to differentiate the plaquettes at frustration, we scan two different flux
lines while fixing the cavity excitation signal at the frequency of one plaquette being
at frustration [Fig. 6.2(c,d)]. When the plaquettes are away from frustration, we are
driving the cavity away from its resonant frequency, and get a higher transmission,
which corresponds to yellow shades. When any of the plaquettes are near frustration,
we are driving the cavity near its resonance frequency and get a lower transmission,
which corresponds to blue shades. Thus, each of the three sets of parallel blue lines
corresponds to one of the three plaquettes being at frustration. The crossing of two
lines corresponds to double frustration, and the crossing of three lines corresponds to
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Figure 6.2: (a) Device image and blue false-color highlighting of the different pla-
quette flux-bias lines. (b) Readout cavity frequency vs. PB12 flux bias line. (c,d)
Scanning different combinations of the plaquette flux lines, while fixing the cavity at
the frequency of the resonance when one plaquette is at frustration. The three sets of
parallel lines correspond to three plaquettes near frustration. (c) Scanning PB01 and
PB30 flux bias lines. (d) Scanning PB12 and PB23 flux bias lines. (e) Scanning cavity
transmission vs. the two SQUID flux lines, while fixing the cavity at the frequency
of the resonance when one of the SQUIDs is at frustration. The two sets of parallel
lines correspond to the two SQUIDs tuning through frustration.
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while varying PB01 and PB12 near double frustration of Plaquettes 1 and 2. (b)
Scanning pure Plaquette 1 and pure Plaquette 2 flux using the extracted inductance
matrix, with centering at Plaquette 1/2 double frustration.

triple frustration.
To identify which plaquette corresponds to which set of parallel blue lines, we

can look at Fig. 6.2(d). Plaquette 2 frustration corresponds to the negative slope
blue lines, because PB12 and PB23 have the same sign of mutual inductance to
the Plaquette 2 loop. Because PB12 and PB23 both have different sign of mutual
inductance to the Plaquette 1 and Plaquette 3 loops, the two sets of positive slope
parallel blue lines correspond to Plaquette 1 and Plaquette 3 frustration. PB12 is
closer to Plaquette 1 than PB23. Thus, to maintain Plaquette 1 at frustration, a small
change in PB12 requires a larger change in PB23, so the positive slope blue lines that
have larger slopes correspond to Plaquette 1 being at frustration. The remaining set
of blue lines corresponds to Plaquette 3 being at frustration. The period within the
parallel lines corresponds to changing that plaquette loop by 1 Φ0. We can calculate
the inductance matrix from the different slopes and periods:

Φ⃗ = LI⃗ + Φ⃗offset, (6.1)

where Φ⃗ is a vector that contains the three pure plaquette fluxes, I⃗ is a vector that
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Simulated Inductance Matrix (pH)

PB01 PB12 PB23 PB30

Plaq1 0.594 0.775 -0.174 0.106

Plaq2 0.146 -0.688 -0.547 0.237

Plaq3 0.066 -0.201 0.599 0.756

Extracted Inductance Matrix (pH)

PB01 PB12 PB23 PB30

Plaq1 0.639 0.660 -0.146 0.053

Plaq2 0.201 -0.661 -0.539 0.155

Plaq3 0.134 -0.244 0.674 0.591

Table 6.1: Simulated and extracted inductance matrix.

contains the four plaquette bias currents, L is the mutual inductance matrix that
has 3 × 4 matrix size, and Φ⃗offset corresponds to the small background magnetic
flux that can be trapped randomly near the plaquettes when the ground plane goes
superconducting. These flux offsets can be stable for several weeks. We did a similar
calculation for the SQUID switch elements [Fig. 6.2(e)], and then we bias the SQUID
switches at unfrustration for all of the measurements shown here.

To protect the plaquettes from flux noise, we need to bias each plaquette at
frustration to better than 1 mΦ0 accuracy. The inductance matrix extracted based
on Fig. 6.2 does not have such accuracy; instead, we rely on the symmetric fine
structure observable in high-resolution flux scans of the cavity, such as the plot in
Fig. 6.3(a), to refine the inductance matrix. As we tune the plaquettes towards double
frustration, the higher level fluxon transitions disperse sharply and cross the cavity
at small intervals, which causes the fine structure in the cavity signal. Calculating
the slope and period based on the fine structure, we can get the flux accuracy of
frustration to better than 1 mΦ0. The corresponding extracted inductance matrix
and simulated inductance matrix are shown in Table 6.1. The inductance matrix is
simulated with InductEx, as mentioned in Ch. 5. Using this inductance matrix, we
scan combinations of the plaquette flux lines to produce a scan of the pure Plaquette
1 flux and pure Plaquette 2 flux in Fig. 6.3(b), with centering at Plaquette 1/2 double
frustration.
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6.4 Spectroscopy measurement

In this section, I describe the initialization, spectroscopy vs. flux and spectroscopy vs.
charge measurements of the 3-plaquette chip. The spectroscopy tone is joined with
the shunt capacitor charge bias line with a bias-T on the mixing chamber. Because
we are interested in a frequency range of 0.2 - 7 GHz, which is outside of our IQ
mixer range, the spectroscopy pulse is controlled by a microwave switch without an
IQ mixer. Our readout relies on the different cavity transmission when the plaquette
chain is in different states.

6.4.1 Initialization

To describe the stabilizer behavior, we need to initialize the plaquettes in the 0/π basis
for single frustration and even/odd basis for double frustration. We realize this by
biasing the plaquettes we would like to frustrate to 100 mΦ0 away from frustration in
the direction where the π well is deep and the 0 well vanishes, thus allowing the phase
particle to relax in the π well. In principle, we can choose an initialization flux larger
than 100 mΦ0, but applying a larger flux causes more significant flux distortions. If
we choose an initialization flux smaller than 100 mΦ0, the phase particle needs a
longer time to fully relax in the π well. After initialization, we apply a fast flux pulse
with a characteristic edge time of 500 ns, then we idle for 5 µs at this flux point, then
apply a 5 µs spectroscopy pulse before reading out.

6.4.2 Single frustration

At single frustration, we initialize the plaquette in the π well. We show the single
frustration flux dispersion data near single frustration in Fig. 6.4. The transitions
that tune with flux gradually are plasmon transitions and the transitions that tune
with flux rapidly are heavy fluxon transitions. The three sets of horizontal transitions
near 2-2.5 GHz correspond to |0π⟩ → |3π⟩, |1π⟩ → |3π⟩, |2π⟩ → |5π⟩. The plaquette
system has nonzero occupation in the higher energy states because the plasmon tran-
sition energies are rather low compared to kBT and the large shunt capacitor acts as
an antenna that absorbs high energy photons that drive spurious excitations of the
plaquettes [68].
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Figure 6.4: (a) Device image and blue false-color highlighting of plaquette flux-bias
lines. Single frustration spectroscopy measurement vs. flux for (b) Plaquette 1, (c)
Plaquette 2, (d) Plaquette 3.
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Figure 6.5: Repeated measurements of the cavity modulation with the offset charge
bias to the shunt capacitor island.

We see multiple heavy fluxon transitions, which correspond to transitions from
|0π⟩ , |1π⟩ , |2π⟩ to energy levels in the 0 well near the top of the barrier. Although the
heavy fluxon transitions for |0π⟩ → |00⟩ or |1π⟩ → |10⟩ have small matrix elements
because of the large Csh, the heavy transitions from the lower energy in the π well
to the energy levels near top of the barrier in the 0 well have larger matrix elements.
The positive slope of the dominant heavy fluxon transitions shows that we initialize
the plaquette predominantly in the π well.

As described in Ch. 3 and 4, the energy levels and transition frequencies tune with
the offset charge on the logical island charge due to the Aharonov-Casher effect, but
the large Csh and large barrier cause the maximum splitting for the low-lying levels to
be small. When α is 0, the splitting should modulate to 0 periodically with the offset
charge. When α is not 0, the splitting modulates to a smaller value, but not to 0. We
will discuss in Ch. 7 that the expected charge modulation amplitude is comparable
to the spectroscopy line width for the actual value of α on our device, which prevents
seeing the charge modulation directly of the low-lying level splittings with the Csh

offset charge. However, the higher-level transitions have significant charge modulation
and are close to the readout cavity frequency. This results in the cavity transmission
tuning with the offset charge on the logical island (Fig. 6.5). There are random
shifts of the total background offset charge besides the offset charge induced by the
charge bias line. This can be explained by high energy particles colliding with the
Si substrate of our device, which generates a large number of electron-hole pairs that
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Figure 6.6: (a) Device image and false-color highlighting of charge-bias lines. (b)
Plaquette 1/2 double frustration spectroscopy at 17 mΦ0 vs. offset charge on island
between Plaquette 1 and Plaquette 2 with two quasiparticle bands. (c) Plaquette
2/3 double frustration spectroscopy at 11 mΦ0 vs. offset charge on island between
Plaquette 1 and Plaquette 2 with two quasiparticle bands.

diffuse based on the band structure. Eventually, they are trapped in defects and
change the local charge environment [57, 84, 54]. The background charges jump on
average every few minutes because of the large charge sensing area of Csh for this
device. A future parallel-plate capacitor could be much more compact and have a
much smaller sensing area, which we will discuss in Ch. 8.

6.4.3 Double frustration

Near double frustration, we initialize the two plaquettes in the ππ well, then do a
500 ns Gaussian ramp to a range of flux points along the direction from 00 to ππ and
passing through double frustration. Analogous to the Aharonov-Casher effect, the
energy levels near double frustration depend on the offset charge both on the shunt
capacitor and on the intermediate island between the frustrated plaquettes. Similarly
to the single frustration case, the modulation of the splittings for the low-lying levels
with the offset charge on the shunt capacitor island has a rather small amplitude.
However, the modulation amplitude for the offset charge on the intermediate is large
due to the small Cisl. In Fig. 6.6(a), we measure the spectroscopy at 17 mΦ0 near
Plaquette 1/2 double frustration, while scanning the offset charge on the intermedi-
ate island between Plaquette 1/2, and the modulation amplitude is ∼40 MHz. In
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Figure 6.7: Cavity transmission vs. CB1 and CB2 for (a) Plaquette 1/2 double
frustration, (b) Plaquette 2/3 double frustration, (c) Plaquette 1/3 double frustration,
(d) Plaquette 1/2/3 triple frustration.
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Figure 6.8: Island 1 and 2 charge modulation drift over 11-hour span. Nearly si-
multaneous measurement for the charge offset on Island 1 and Island 2. The scan is
performed by first scanning island charge for Plaquette 1/2 double frustration while
keeping Plaquette 3 at 50 mΦ0. The flux is then pulsed quickly to Plaquette 2/3
double frustration, while keeping Plaquette 1 at 50 mΦ0.
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Figure 6.9: (a) Device image and false-color highlighting of flux-bias lines. Double
frustration spectroscopy vs. flux for (a) Plaquette 1/2 double frustration, (b) Plaque-
tte 2/3 double frustration, (c) Plaquette 1/3 double frustration. The flux for both
plaquettes is scanned along the line from 00 to ππ and passing through double frus-
tration.
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Simulated capacitance matrix (aF)

CBsh CB1 CB2

Islandsh 54 419 351

Island 1 0 36 8

Island 2 0 78 122

Extracted capacitance matrix (aF)

CBsh CB1 CB2

Islandsh 57 501 327

Island 1 0 35 6

Island 2 0 73 120

Table 6.2: Simulated and experimentally extracted capacitances between the charge
bias lines (CB) and different islands.

Fig. 6.6(b), we measure the spectroscopy at 11 mΦ0 near Plaquette 2/3 double frus-
tration, while scanning the offset charge on the intermediate island between Plaquette
2/3, and the modulation amplitude is ∼25 MHz. We can see the two quasiparticle
bands clearly in these scans.

In Fig. 6.7, we show an example of the offset charge scan for Plaquette (a) 1/2,
(b) 2/3, (c) 1/3, and (d) 1/2/3 frustrations. For Plaquette 1/2 double frustration, we
can see the features modulate faster with the CB1 line because it is closer to Island
1. For the Plaquette 2/3 double frustration, we see a faster charge modulation for
both CB1 and CB2. This is because part of the junction chain contributes to the
Island 2 and makes the effective island bigger capacitance to ground. For Plaquette
1/3 double frustrtion, the charge modulation is even faster, because now the whole
Plaquette 2 and the geometric Island 1 and Island 2 become the effective intermediate
island. From these scans, we can extract the capacitance matrix and compare with
the simulated capacitance matrix (Table 6.2); the agreement is good.

Because the intermediate island is much smaller than the shunt capacitor, the
charge sensing area for the background offset charge drift and discrete jumps s smaller.
We observe the intermediate island offset charge to be stable for timescales of roughly
30 minutes, compared to the 2-minute timescale between jumps of the offset charge
on the much larger shunt capacitor island. In Fig. 6.8, we show a nearly simultaneous
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measurement for the charge offset on Island 1 and Island 2. The scan is performed by
first scanning the island charge for Plaquette 1/2 double frustration, while keeping
Plaquette 3 at 50 mΦ0. We then pulse the flux bias quickly to Plaquette 2/3 double
frustration while keeping Plaquette 1 at 50 mΦ0. We observe somewhat larger drift
and offset charge jumps for Island 2 compared to Island 1 because of the larger sensing
area.

Because of the large modulation with offset charge on the intermediate island at
double frustration, for long spectroscopy measurements, we must stabilize this offset
charge at a particular value to compensate for occasional offset charge jumps. The
charge stabilization is performed by applying a spectroscopy tone at the 0-1 transition
while scanning one of the offset charge bias lines. The spectroscopy vs. flux data is
shown in Fig. 6.9, with the offset charge on the intermediate island between the
frustrated plaquettes stabilized at 0e. In contrast to single frustration, the double
frustration spectroscopy data is symmetric with respect to flux because the small Cisl

causes strong coupling between the 00 and ππ wells. In the context of Landau-Zener
tunneling [85], our coupling energy is ∼ 2.4 GHz for Plaquette 1/2 double frustration
and ∼ 0.5 GHz for Plaquette 1/3 double frustration, and our fast ramp is 500 ns that
corresponds to ∼2 MHz, so our ramp is an adiabatic process, which results in the
plaquettes remaining in the ground state and transitioning smoothly from the 00 well
to the ππ well upon passing through frustration. We choose a readout flux point for
which the signal is strong for a 0e offset charge and weak for a 1e offset charge, so
that even though we have fast quasiparticle poisoning, we only see the transitions at
0e offset charge and do not see the transitions at 1e offset charge.

For the double frustration flux spectroscopy scans in Fig. 6.9, the transitions that
disperse gradually with flux are the plasmon transitions. Similar to single frustration,
we see the transitions out of |0ES⟩ and |1ES⟩ states, where E corresponds to the even-
parity energy levels, and S corresponds to symmetric energy levels. In addition to
these transitions, near Plaquette 1/2 double frustration, we see a downward dispersing
transition at ∼ 800 MHz. This is the |0EA⟩ → |1EA⟩ transition caused by the fast
quasiparticle poisoning which results in some population in the |0EA⟩ excited state.

Near Plaquette 1/2 double frustration, we can see the heavy fluxon transitions
below 2.25 GHz, which correspond to transitions between the even-parity energy
levels and odd-party energy levels. For example, the transition near 2 GHz at around
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Figure 6.10: (a) Device image and false-color highlighting of the flux-bias lines. (b)
Spectroscopy vs. flux at triple frustration by simultaenously scanning the three pla-
quette fluxes along the direction from 000 to πππ and passing through triple frustra-
tion.

8 mΦ0 corresponds to |0ES⟩ → |2OS⟩.
The transitions with the largest slopes correspond to light fluxon transitions, which

are between levels with the same parity but between symmetric and antisymmetric
levels. For example, within ±5 mΦ0, the transitions above 2 GHz for 1/2 double
frustration, the transitions between 1-2.7 GHZ for 2/3 double frustration, and the
transitions between 0.5-2.7 GHz for 1/3 double frustration are the light fluxon tran-
sitions. Near Plaquette 2/3 and 1/3 double frustration near 12-18 mΦ0, we observe
another light fluxon transition, which is the transition involving an excitation in the
readout cavity.

6.5 Triple frustration

In Fig. 6.7(d), we apply the spectroscopy tone at the 0-1 plasmon transition for the
triple frustration, and scan the offset charge bias to the two intermediate islands
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between the plaquettes with CB1 and CB2. Because there are two relevant islands
at triple frustration, we observe two periods: one along the pure Island 1 charge, the
other along the pure Island 2 charge.

Near triple frustration, we initialize the three plaquettes in the πππ well, then do
a 500 ns Graussian ramp to a range of flux points along the direction from 000 to πππ
and passing through triple frustration. The transitions that tune with flux gradually
are plasmon transitions. In general, we observe flatter curvature for the dispersion of
the various transitions at triple frustration compared to double frustration.
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Chapter 7

Fitting of spectroscopy measurements

In this chapter, I describe the process for fitting spectroscopy data vs. flux for single,
double, and triple frustrations. I demonstrate that we can fit the plasmon, heavy
fluxon, and light fluxon transitions within 10% difference of the spectroscopy data
with parameter values that are consistent with our device design and fabrication.

7.1 General fitting strategy

Before fitting, we need to identify the transitions correctly in our model of the energy-
level spectrum. To visualize this issue, we can study Fig. 7.1. Here, we use the
notation that the levels without a subscript have the numerical value of the level
counting up in energy from the ground state at 0 for a given flux; for the levels with
subscripts, the subscript accounts for which well the level resides in (at least for the
states below the barrier). Between 5 to 20 mΦ0, the lowest transition (|0⟩ → |1⟩
transition) is the plasmon transition |0π⟩ → |1π⟩. However, between 0 to 4 mΦ0, the
lowest transition (|0⟩ → |1⟩ transition) corresponds to the heavy fluxon transition
|0π⟩ → |00⟩. Also, the |0π⟩ → |1π⟩ is the |0⟩ → |2⟩ transition between 0 to 4 mΦ0.
Between -4 to 0 mΦ0, the |0π⟩ → |1π⟩ is the |1⟩ → |3⟩ transition. We use the
initial parameters to calculate the energy levels, which generally match the data
qualitatively, and from this we can identify most of the transitions. During the first
round, we only fit the transitions that we have identified correctly. After that, the
fitted energy levels typically match with the data quite well and we can identify more
transitions. We then use the newly identified transitions to further refine the fit.
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Figure 7.1: (a) Device image. (b) Plaquette 2 single frustration fitting. The red
lines are plasmon transitions, blue lines are fluxon transitions. The dotted lines are
transitions out of the |0π⟩ state. The dash-dotted lines are transitions out of |1π⟩ state.
The dashed lines are transitions out of |2π⟩ state. (c) Zoomed-in plaquette 2 single
frustration fitting. (d) Fitted energy levels with arrows indicating corresponding
transitions from spectroscopy measurements.
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Figure 7.2: Circuit schematic. Same figure as Fig. 4.1. (a) 3-plaquette chip circuit
schematic. (b) Schematic of single frustration modeling. (c) Schematic of double
frustration modeling. (d) Schematic of triple frustration modeling.

After extracting the plasmon transitions, heavy fluxon transitions, light fluxon
transitions, and anticrossings from the spectroscopy flux dependence and charge de-
pendence data, we use the single (double) plaquette model for the energy-level spectra
described in Ch. 4 to fit the single (double) frustration spectroscopy data. At sin-
gle frustration, we fit EJ , EC , EL, ECL, Csh, α, Lfactor using the model showed in
Fig. 7.2(b). We fix Cint to be 1 fF, which is estimated from Q3D modeling and a
theoretical estimation of the effect of the junction chain capacitance to ground. We
introduce the parameter Lfactor to account for variations in Lextra due to small flux
offsets in the bias of the nominally unfrustrated plaquettes or SQUIDs. At double
frustration, we fit the same parameter set as in the single frustration case, but with
the addition of Cisl. Similarly to the single frustration case, we fix Cint to be 1 fF. We
assume the two plaquettes at frustration share the same set of parameters, because
the actual parameters between the two plaquettes are typically only different by a
few percent based on our test structures during the device fabrication. This allows
us to reduce the fitting parameters from 15 to 8, and thus makes the fitting more
practical.
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The cost function of our fitting procedure is
∑

nWn∆f
2
n, where ∆fn is the dif-

ference between the modeled and experimental frequencies for transition n, and Wn

is the weight that we assign to transition n. The goal of the fitting process is to
minimize the cost function and find the parameter set that has less than a 10% dif-
ference between the modeled transitions and the experimental transitions. We use
the scipy.optimize.minimize function in Python to do the fitting. We have 7 and 8
parameters for single and double frustration fitting, respectively. We find that the
Nelder-Mead method fits better than gradient descent methods in terms of avoiding
local minima.

With this high-dimensional fit, we need to choose the initial parameters carefully.
We use the initial EJ and EL values calculated from the Ambegaokar-Baratoff relation
[Eq. (2.18)], using the on-chip test junction resistances. The initial α of the junctions
is estimated from our test chips that each contain 6 identical junctions. As mentioned
in Sec. 2.4.1, we will define the charging energy as EC ≡ (2e)2/2C. The initial EC

and ECL values are calculated from the the relevant junction areas measured with
scanning electron microscopy with a total specific capacitance ∼70 fF/µm2 specific
capacitance. The initial Csh is estimated from Q3D simulation. The initial Lfactor is
set to 1 because our unfrustrated plaquettes are nominally biased at unfrustration.
We choose the initial simplex for the minimization so that it covers the possible
parameter range, which is typically ±5% to ±30% of the initial values.

7.2 Single frustration fitting

Initially, we fit the single frustration data with our single plaquette model [Fig. 7.2(b)].
We put equal weight on different transitions by setting Wn = 1 for the fitting. The
fit runs on a computer with a 12-core processor and takes ∼1 day and 500 iterations
to converge. In Fig. 7.1(b), we show the fitting of plaquette 2 single frustration. The
red lines correspond to the fitted plasmon transitions, and the blue lines correspond
to the fitted heavy fluxon transitions. The dotted lines are transitions out of the |0π⟩
state. The dash-dotted lines are transitions out of the |1π⟩ state. The dashed lines are
transitions out of the |2π⟩ state. In Fig. 7.1(c), we zoom in near the anticrossings and
show the anticrossings also fit well. The transitions match with the data within 10%
error. In Fig. 7.1(d), we show the modeled energy levels using the fitting parameters
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Figure 7.3: (a) Device image. Single frustration data and fitting of (b) Plaquette 1 ,
(c) Plaquette 2 and (d) Plaquette 3. The red lines are plasmon transitions, blue lines
are fluxon transitions. The dotted lines are transitions out of the |0π⟩ state. The
dash-dotted lines are transitions out of |1π⟩ state. The dashed lines are transitions
out of |2π⟩ state.
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EJ

(K)
EC

(K)
EL

(K)
ECL

(K)
Csh

(fF)
α Lfactor

Plaquette 1 1.65 3.65 1.12 5.60 1160 0.03 1.1

Plaquette 2 1.65 3.67 1.11 6.36 1190 0.02 1.1

Plaquette 3 1.97 4.00 1.27 6.66 1440 0.04 0.91

Estimated
parameters

1.45 3.82 1.39 6.46 1000 0.02 1.0

Table 7.1: Single frustration fitted parameters and estimated parameters from design
and fabrication tests.

and indicate some example plasmon and fluxon transitions out of the |0π⟩, |1π⟩ and
|2π⟩ states.

In Fig. 7.3(b-d), we show the single frustration fitting of Plaquette 1, 2, 3 single
frustration. Plaquette 1 behaves similarly to Plaquette 2, so the fitted transitions
and parameter values are similar. Plaquette 3 single frustration behaves somewhat
differently, and the fitted energy levels and parameters parameters differ by a larger
amount compared to Plaquettes 1 and 2. The fitted parameters are listed in Table
7.1 and they are within 20% of the of the parameters that we estimate from the design
and fabrication tests, although a few of the parameters for Plaquette 3 have a slightly
larger discrepancy. The spectroscopy measurements at Plaquette 3 single frustration
are not as clean as for Plaquettes 1 and 2 single frustration, thus potentially account-
ing for the larger variation with the estimated values. We will discuss estimates for
bounds on the uncertainties in the fitting parameters in Sec. 7.5.

7.3 Double frustration fitting

We next use the model in Fig. 7.2(c) to fit the double frustration data. Because the
Hilbert space is ∼11 times larger at double frustration using this model, we use a
48-core computer to do the fitting. This process takes between 4-7 days and ∼ 300
iterations to converge. The anticrossings between different transitions are important
features to fit because they determine the coupling between the computational states,
so we put ∼20 times more weight for the regions in the spectroscopy data that exhibit
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Figure 7.4: (a) Circuit image. (b) Flux spectroscopy data and fitting of Plaquette
1/2 double frustration. The red lines are the fitted plasmon transitions, the blue
lines are the fitted heavy fluxon transitions, the purple lines are the fitted light fluxon
transitions. The dotted lines are transitions out of the |0⟩ state of the symmetric
energy levels in the even-parity wells. The dash-dotted lines are transitions out of |1⟩
state of the symmetric energy levels in the even-parity wells. The dashed lines are
transitions out of |2⟩ state of the symmetric energy levels in the even-parity wells. The
solid red line is the plasmon transition between the antisymmetric energy levels in the
even-parity well. (c) Calculated energy-level spectrum using the fitting parameters
with arrows indicating the various corresponding transitions from the spectroscopy
data.

significant anticrossings. We also simultaneously fit the corresponding charge modu-
lation data and we only use the minimum and maximum of the charge modulation for
fitting. In order to compensate for the relatively small number of charge modulation
data points, we put ∼50 times more weight for these features in the fitting.

In Fig. 7.4(b), we show the Plaquette 1/2 double frustration data and fitted tran-
sitions. The red lines are the fitted plasmon transitions, the blue lines are the fitted
heavy fluxon transitions, the purple lines are the fitted light fluxon transitions. The
dotted lines are transitions out of the |0ES⟩ state, where E corresponds to the even-
parity hybridized well between Plaquettes 1 and 2, S corresponds to the symmetric
hybridized energy level of Plaquettes 1 and 2 and 0 corresponds to the lowest energy
level with these conditions. The dash-dotted lines are transitions out of |1ES⟩ and the
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Figure 7.5: (a) Circuit image. (b) Plaquette 1/2 double frustration charge modulation
data of |0ES⟩ → |3ES⟩ transition at 17 mΦ0. The red and blue dotted lines are the
fitted transitions that correspond to different quasiparticle parity on intermediate
Island 1. (c) Plaquette 2/3 double frustration charge modulation data of |0ES⟩ →
|3ES⟩ transition at 11 mΦ0. The red and blue dotted lines are the fitted transitions
that correspond to different quasiparticle parity on intermediate Island 2.

dashed lines are transitions out of |2ES⟩ state. The red solid line is |0EA⟩ → |1EA⟩,
which is the transition out of the 0 state of the antisymmetric energy levels in the
even-parity wells to the 1 state of the antisymmetric energy levels in the even-parity
wells. We see this transition because we have quasiparticle poisoning on the inter-
mediate islands that is faster than our measurement timescale. When we prepare
the qubit in the |0ES⟩ state, the fast quasiparticle poisoning closes and opens the
symmetric and antisymmetric gap randomly, which allows the system to occasionally
transfer population from the |0ES⟩ to |0EA⟩ states, thus leaving population in the
excited antisymmetric state. This results in the transition indicated by the solid red
line in Fig. 7.4(b). In Fig. 7.5(b), we show the Plaquette 1/2 double frustration charge
modulation data of the |0ES⟩ → |3ES⟩ transition at 17 mΦ0. We can see clearly two
quasiparticle bands. The red and blue dotted lines are the fitted transitions that
correspond to different quasiparticle bands. We show the fitted energy levels and
corresponding transitions in Fig. 7.4(c). In Fig. 7.5(c), we show the Plaquette 2/3
double frustration charge modulation data of |0ES⟩ → |3ES⟩ transition at 11 mΦ0.

In Fig. 7.6(b-d), we show the fit results for the flux spectroscopy at Plaquette 1/2,
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Figure 7.6: (a) Device images and plaquette labeling. Flux spectroscopy data and fit-
ting of (b) Plaquette 1/2, (c) Plaquette 2/3 and (d) Plaquette 1/3. The red lines are
the fitted plasmon transitions, the blue lines are the fitted heavy fluxon transitions, the
purple lines are the fitted light fluxon transitions. The dotted lines are transitions out
of the 0 state of the symmetric energy levels in the even-parity wells. We denote it as
|0ES⟩. The dash-dotted lines are transitions out of 1 state of the symmetric energy lev-
els in the even-parity wells, |1ES⟩. The dashed lines are transitions out of |2ES⟩ state.
The solid black lines between -20 to -10 mΦ0 in the Plaquette 2/3 and 1/3 double
frustration correspond to transitions involving the cavity: |0ES, n⟩ → |1EA, n− 1⟩,
where n and n − 1 inside the ket are the photon numbers in the cavity. The solid
black lines between -10 to -0 mΦ0 in the Plaquette 2/3 double frustration correspond
to |0OS → 5ES⟩ and |1OS → 6ES⟩. The solid black lines between -10 to -0 mΦ0 in the
Plaquette 1/3 double frustration correspond to |0OS → 4ES⟩ and |0EA → 4OA⟩.
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EJ

(K)
EC

(K)
EL

(K)
ECL

(K)
Csh

(fF)
α

Cisl

(fF)
Lfactor

plaquette
1/2

1.75 3.54 1.20 6.34 1240 0.03 1.52 0.99

plaquette
2/3

1.76 3.53 0.900 7.40 1290 0.04 5.68 1.0

plaquette
1/3

1.73 3.48 0.903 6.62 1310 0.03 8.14 0.98

Estimated
parameters

1.45 3.82 1.39 6.46 1000 0.02 Vary 1.0

Table 7.2: Double frustration fitted parameters and estimated parameters
The estimated Cisl for Plaquette 1/2 and 2/3 double frustration are 1.17, 3.10.

2/3, and 1/3 double frustration. The ∆SA for 1/2, 2/3 and 1/3 double frustration are
∼ 2.7, 0.8 and 0.5 GHz, as expected for a decreasing ∆SA and less weaker hybridization
for a larger intermediate island capacitance to ground. The fitted curves capture the
transitions, anticrossings, and charge modulation to within 10% error. The fitted
parameters are show in Table 7.2. The fitted parameters are close to our estimated
parameters.

In Fig. 7.6(c,d), the solid black lines between -20 to -10 mΦ0 in the Plaquette 2/3
and 1/3 double frustration correspond to transitions involving the readout cavity:
|0ES, n⟩ → |1EA, n− 1⟩, where n and n − 1 inside the ket are the photon numbers
in the cavity. The solid black lines between -10 to -0 mΦ0 in the Plaquette 2/3
double frustration correspond to |0OS → 5ES⟩ and |1OS → 6ES⟩. The solid black
lines between -10 to -0 mΦ0 in the Plaquette 1/3 double frustration correspond to
|0OS → 4ES⟩ and |0EA → 4OA⟩.

7.4 Triple frustration modeling

We model the triple frustration data with the model in Fig. 4.1(d). The Hilbert space
of this triple frustration model is ∼100 times larger than double frustration model.
Modeling one flux point takes ∼10 days, so it is impossible to model several flux
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Figure 7.7: (a) Device image. (b) Flux spectroscopy data and fitting of Plaquette
1/2/3. The red lines are the modeled plasmon transitions, the blue line is the modeled
heavy fluxon transition, the purple line is the modeled light fluxon transition. The
dotted lines are transitions out of the 0 state of the symmetric energy levels in the
even-parity wells.
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points and fit to the triple frustration data. We model the triple frustration energy
levels by simultaneously modeling different flux points on four virtual machines in
parallel, which have 48-, 24-, 12- and 12-core processors, respectively. In each of
the virtual machines, we use the multiprocess function in Python to model different
flux points in parallel so that it uses all the computational power in that virtual
machine. Because we cannot do the fitting, we use the fitted parameters from single
and double frustration, and only adjust the Lfactor to account for the SQUIDs not
being at exact frustration. Figure 7.7 shows the triple frustration flux spectroscopy
data and modeled transitions for Plaquette 1/2/3. The red lines are the modeled
plasmon transitions, the blue line is the modeled heavy fluxon transition, the purple
line is the modeled light fluxon transition. The dotted lines are transitions out of
the 0 state of the symmetric energy levels in the even-parity wells. Based on our
modeling, we find the plasmon and light fluxon transitions are in good agreement
between our modeled curve and the triple frustration data. Thus, in general, the
transitions at triple frustration have an even flatter dispersion with respect to flux
compared to double frustration.

7.5 Fitted parameter error estimation

Each different type of transition has a different sensitivity to the various fitting pa-
rameters for the device. In order to estimate the error range for each fitted parameter,
we compute the energy level spectrum while varying each parameter one at a time
and keeping the other parameters at their best-fit values. We thus find the range over
which each parameter can be varied while keeping the transition frequencies within
10% of the measured values. In Fig. 7.8, we show the four transitions we choose to
estimate the fitted errors. In Table 7.3, we list the fitted errors obtained with this
method for the |0ES⟩ → |3ES⟩ plasmon transition at 20 mΦ0. From this table, we see
the plasmon transition is sensitive to EJ , EC , EL, Csh and Lfactor, so we are confident
of the parameters extracted from fitting the plasmon transitions. In Table 7.4, we list
the fitted errors for the |0ES⟩ → |2OS⟩ heavy fluxon transition at 6.5 mΦ0. The heavy
fluxon transition is especially sensitive to EJ , EC , while moderately sensitive to the
rest of the parameters, so by fitting to the heavy fluxon transition, we can trust the
fitted EJ , EC with especially high confidence, with moderate confidence in the rest
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Figure 7.8: Flux spectroscopy data and fitting of Plaquette 1/2 double frustration.
The four orange arrows point to the four transitions we use to estimate the fitted
errors.

Error estimation based on plasmon transition (|0ES⟩ → |3ES⟩ transition at 20 mΦ0)

EJ

(K)
EC

(K)
EL

(K)
ECL

(K)
Csh

(fF)
α

Cisl

(fF)
Cint

(fF)
Lfactor

Within
10%
error

1.65
∼

1.85

3.00
∼

4.00

0.770
∼

1.35

3.50
∼

15.0

1100
∼

1400

0.0
∼
0.1

0.200
∼

6.00

0.800
∼

2.10

0.83
∼
1.1

Table 7.3: Fitted parameter error estimation based on plasmon transition.

of the parameters. In Table 7.5, we list the fitted errors for the |0ES⟩ → |0EA⟩ light
fluxon transition at 0 mΦ0. The light fluxon transition is very sensitive to EJ , EC ,
EL, ECL, Cisl and Cint, so these fitted parameters extracted from fitting the light
fluxon transition have very small errors. In Table. 7.6, we list the fitted errors for the
anticrossing between the |1ES⟩ → |4ES⟩ transition and the |1ES⟩ → |2OS⟩ transition
at 12 mΦ0. The anticrossing is highly sensitive to EJ , EC , EL, so the errors for these
fitted parameters by fitting the anticrossing are very small. Our fitting method fits
all four types of transitions, so we are confident that the parameters of the actual
chip are within the intersection of the estimated errors extracted from the four type
of transitions, as shown in Table. 7.7.
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Error estimation based on heavy fluxon transition (|0ES⟩ → |2OS⟩ transition at 6.5 mΦ0)

EJ

(K)
EC

(K)
EL

(K)
ECL

(K)
Csh

(fF)
α

Cisl

(fF)
Cint

(fF)
Lfactor

Within
10%
error

1.73
∼

1.77

3.30
∼

3.70

1.10
∼

1.30

5.50
∼

8.00

1050
∼

1300

0.00
∼

0.04

1.26
∼

2.09

0.880
∼

1.13

0.83
∼
1.1

Table 7.4: Fitted parameter error estimation based on heavy fluxon transition.

Error estimation based on light fluxon transition (|0ES⟩ → |0EA⟩ transition at 0 mΦ0)

EJ

(K)
EC

(K)
EL

(K)
ECL

(K)
Csh

(fF)
α

Cisl

(fF)
Cint

(fF)
Lfactor

Within
10%
error

1.73
∼

1.77

3.45
∼

3.62

1.15
∼

1.22

5.40
∼

7.80

1000
∼

1500

0.00
∼

0.05

1.48
∼

1.66

0.970
∼

1.06

0.71
∼
1.1

Table 7.5: Fitted parameter error estimation based on light fluxon transition.

Error estimation based on anticrossing between
the |1ES⟩ → |4ES⟩ transition and the |1ES⟩ → |2OS⟩ transition at 12 mΦ0

EJ

(K)
EC

(K)
EL

(K)
ECL

(K)
Csh

(fF)
α

Cisl

(fF)
Cint

(fF)
Lfactor

Within
10%
error

1.71
∼

1.76

3.50
∼

3.85

1.14
∼

1.38

5.80
∼

12.5

1000
∼

1500

0.02
∼

0.06

0.980
∼

1.67

0.880
∼

1.01

0.91
∼
1.2

Table 7.6: Fitted parameter error estimation based on plasmon-fluxon anticrossing.
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Intersection of fitted errors estimated from four types of transitions

EJ

(K)
EC

(K)
EL

(K)
ECL

(K)
Csh

(fF)
α

Cisl

(fF)
Cint

(fF)
Lfactor

1.73
∼

1.76

3.50
∼

3.62

1.15
∼

1.22

5.80
∼

7.80

1100
∼

1300

0.02
∼

0.04

1.48
∼

1.66

0.970
∼

1.01

0.91
∼
1.1

Table 7.7: Intersection of fitted errors estimated from four types of transition.
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Chapter 8

Summary and Future Directions

8.1 Summary

The plaquette devices are fabricated with arrays of Josephson junctions, with multiple
on-chip flux- and charge-bias lines for local biasing of the various device elements.
Microwave spectroscopy measurements allow for a characterization of the transitions
between the different energy levels of the plaquette chain and their dispersion with flux
and charge bias of the various device elements. Extensive numerical modeling of the
energy-level structure and comparison with the measured transition spectra indicates
that the device corresponds to a hardware implementation of stabilizer terms between
plaquettes in the Hamiltonian and thus exhibits protection against local noise. This
work paves the way for future qubits based on this design with optimized parameters
and implementations that are capable of achieving dramatic reductions in error rates
beyond the current state of the art.

In this thesis, I describe the experimental realization of quantum stabilizers in
superconducting hardware with the plaquette-chain devices. The plaquette devices
are fabricated with arrays of Josephson junctions and junction chains, with multiple
on-chip flux- and charge-bias lines for local biasing of the various device elements.
We characterize the transitions between different energy levels of the plaquette chain
with respect to the flux and charge offset with microwave spectroscopy measurements.
We indicate the protection against local noise by extensive numerical modeling of
the energy-level structure and comparison with the measured transition spectra. In
particular, we can relate the heavy fluxon transitions to the protection against bit-flip
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Figure 8.1: (a) Modeled energy levels near triple frustration with improved parame-
ters, as described in text. (b) Modeled transitions near triple frustration. (c) Zoomed-
in transition plot between 0 to 0.3 GHz.

errors and light fluxon transitions to the protection against phase-flip errors from flux
noise. The presence of the light fluxon transition with a significant ∆SA at double
frustration is an indication of the implementation of an XX stabilizer between the
two frustrated plaquettes.

In order to operate this circuit as a qubit, we need to improve our circuit param-
eters. We can replace the large planar shunt capacitor with a compact parallel-plate
capacitor to reduce the effects of spurious antenna modes from the current large
capacitor. To enhance the wavefunction hybridization, we can target larger EC by
reducing the electronic capacitance through an enhancement of the superconducting
gap in the junction electrodes, either by using thin Al or granular Al grown in the
presence of oxygen. We can operate the qubit without leaving the protected states
by implementing protected gates with the SQUID switch.

8.2 Improved parameters

In Fig. 8.1, we show the triple plaquette modeling with improved parameters: EJ ,
EC , EL, Csh and α = 3 K, 5 K, 2 K, 1000 fF, 0.01. The EJ , EL, EJ/EL and Csh are
chosen so that we have large E2 and large effective mass to suppress bit-flip errors. The
ground-state doublet splitting ∆EO near triple frustration is < 50 kHz. Assuming we
fabricate a parallel-plate shunt capacitor using electron-beam evaporated SiO2, which
is compatible with our current ground-strap process, we must consider the loss tangent
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of the SiO2, which is ∼1/300 [86]. The transition matrix element between the even-
parity and odd-parity ground states at triple frustration for the above parameters is∣∣∣ ⟨O|N̂ |E⟩

∣∣∣ ∼ 2 × 10−5. We can then estimate T1 between the ground-state doublet

caused by dielectric loss in the parallel-plate by T1 ∼ 1/
∣∣∣ ⟨O|N̂ |E⟩

∣∣∣2∆EO tan δ >> 1 s.
The flux dispersion slope and curvature at triple frustration for a device with the

parameters listed above is ∼ 1 × 10−3 GHz/mΦ0 and ∼ 3 × 10−4 GHz/mΦ2
0. The

slope at exact triple frustration is not zero because α ̸= 0. Our flux bias precision
limited by our equipment is ∼ 100µΦ0. Assuming we can bias the plaquettes within
100µΦ0 of triple frustration and assuming a 1/f flux-noise amplitude of 1µΦ0/

√
Hz

at 1 Hz, the T2 predicted by our theory collaborators is ∼1 ms.

8.3 Parallel plate capacitor

We use a planar shunt capacitor in the current design, so the area of the capacitor
needs to be quite large to achieve Csh ∼1000 fF. The large-area shunt capacitor is
very sensitive to background charge drift and acts as an antenna that absorbs energy
from background radiation in the qubit environment that excites the qubit to higher
levels and breaks Cooper pairs in the plaquette junctions. In order to mitigate these
effects, it is important to make significantly more compact capacitors. In the future,
we can achieve this by making parallel-plate capacitors, which will result in a much
smaller footprint and thus higher spurious antenna mode frequencies and reduced
charge sensing area.

8.4 Reducing electronic capacitance

As mentioned in Ch. 5, the electronic capacitance increases the total effective capaci-
tance of the intermediate island, thus suppressing the effectiveness of the wavefunction
hybridization at double and triple frustration. In order to have a large EJ in a junc-
tion with a simultaneous large EC , this requires a large Jc. Thus, suppressing the
electronic capacitance requires a larger ∆. This can be achieved in junctions with Al
electrodes either by using thin Al or growing the Al in the presence of oxygen, both
of which enhance ∆. The TC of our conventional Al electrode is ∼1.2 K, while thin Al
or granular-Al films can have Tc as high as 2 K [87], thus suppressing the electronic
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Figure 8.2: Schematic for implementing protected gates on charge-parity qubit. The
cos 2φ element connects to the shunt capacitor or the superinductor through SQUID
switches. The SQUID switch between the cos 2φ element and the shunt capacitor is
normally closed, and opened briefly for X gates in the phase basis; the SQUID switch
between the cos 2φ element and the superinductor is normally open, and closed briefly
for Z gates in the phase basis.

capacitance by nearly a factor of 3.

8.5 Protected gates

We can operate a future charge-parity qubit with protected gates, so that during the
gate operation, the qubit never leaves the protected state [88]. In Figure 8.2, we
show the schematic for implementing protected gates on a charge-parity qubit. The
cos 2φ element connects to the shunt capacitor or the superinductor through SQUID
switches. The SQUID switch between the cos 2φ element and the shunt capacitor is
normally closed, and opened briefly for X gates in the phase basis; the SQUID switch
between the cos 2φ element and the superinductor is normally open, and closed briefly
for Z gates in the phase basis.
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Kanazawa, Abhinav Kandala, George A. Keefe, Kevin Krsulich, William Lan-
ders, Eric P. Lewandowski, Douglas T. McClure, Giacomo Nannicini, Adinath
Narasgond, Hasan M. Nayfeh, Emily Pritchett, Mary Beth Rothwell, Srikanth
Srinivasan, Neereja Sundaresan, Cindy Wang, Ken X. Wei, Christopher J. Wood,
Jeng-Bang Yau, Eric J. Zhang, Oliver E. Dial, Jerry M. Chow, and Jay M. Gam-
betta. Demonstration of quantum volume 64 on a superconducting quantum
computing system. Quantum Sci. Technol., 6(2):025020, March 2021.

[17] Google A. I. Quantum, B. Foxen, C. Neill, A. Dunsworth, P. Roushan, B. Chiaro,
A. Megrant, J. Kelly, Zijun Chen, K. Satzinger, R. Barends, F. Arute, K. Arya,
R. Babbush, D. Bacon, J. C. Bardin, S. Boixo, D. Buell, B. Burkett, Yu Chen,
R. Collins, E. Farhi, A. Fowler, C. Gidney, M. Giustina, R. Graff, M. Harrigan,
T. Huang, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, P. Klimov,
A. Korotkov, F. Kostritsa, D. Landhuis, E. Lucero, J. McClean, M. McEwen,
X. Mi, M. Mohseni, J. Y. Mutus, O. Naaman, M. Neeley, M. Niu, A. Petukhov,
C. Quintana, N. Rubin, D. Sank, V. Smelyanskiy, A. Vainsencher, T. C. White,
Z. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis. Demonstrating a
Continuous Set of Two-Qubit Gates for Near-Term Quantum Algorithms. Phys.
Rev. Lett., 125(12):120504, September 2020.

[18] Google Quantum AI. Exponential suppression of bit or phase errors with cyclic
error correction. Nature, 595:383–387, July 2021.



105

[19] Jay M. Gambetta, Jerry M. Chow, and Matthias Steffen. Building logical qubits
in a superconducting quantum computing system. npj Quantum Inf., 3(2):1–7,
January 2017.

[20] John Clarke and Frank K. Wilhelm. Superconducting quantum bits. Nature,
453:1031–1042, June 2008.

[21] Rainer Blatt and David Wineland. Entangled states of trapped atomic ions.
Nature, 453:1008–1015, June 2008.

[22] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vander-
sypen. Spins in few-electron quantum dots. Rev. Mod. Phys., 79(4):1217–1265,
October 2007.

[23] Jeremy L. O’Brien, Akira Furusawa, and Jelena Vučković. Photonic quantum
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