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Abstract
Networks (or interchangeably graphs) have been ubiquitous across the globe and within

science and engineering: social networks, collaboration networks, protein-protein interac-

tion networks, infrastructure networks, among many others. Machine learning on graphs,

especially network representation learning, has shown remarkable performance in network-

based applications, such as node/graph classification, graph clustering, and link prediction.

Like performance, it is equally crucial for individuals to understand the behavior of ma-

chine learning models and be able to explain how these models arrive at a certain decision.

Such needs have motivated many studies on interpretability in machine learning. For ex-

ample, for social network analysis, we may need to know the reasons why certain users

(or groups) are classified or clustered together by the machine learning models, or why a

friend recommendation system considers some users similar so that they are recommended

to connect with each other. Therefore, an interpretable network representation is necessary

and it should carry the graph information to a level understandable by humans.

Here, we first introduce our method on interpretable network representations: the network

shape. It provides a framework to represent a network with a 3-dimensional shape, and

one can customize network shapes for their need, by choosing various graph sampling

methods, 3D network embedding methods and shape-fitting methods. In this thesis, we

introduce the two types of network shape: a Kronecker hull which represents a network

as a 3D convex polyhedron using stochastic Kronecker graphs as the network embedding

method, and a Spectral Path which represents a network as a 3D path connecting the

spectral moments of the network and its subgraphs.

We demonstrate that network shapes can capture various properties of not only the net-

work, but also its subgraphs. For instance, they can provide the distribution of subgraphs

within a network, e.g., what proportion of subgraphs are structurally similar to the whole

network? Network shapes are interpretable on different levels, so one can quickly under-



stand the structural properties of a network and its subgraphs by its network shape. Using

experiments on real-world networks, we demonstrate that network shapes can be used in

various applications, including (1) network visualization, the most intuitive way for users

to understand a graph; (2) network categorization (e.g., is this a social or a biological

network?); (3) computing similarity between two graphs. Moreover, we utilize network

shapes to extend biometrics studies to network data, by solving two problems: network

identification (Given an anonymized graph, can we identify the network from which it is

collected? i.e., answering questions such as “where is this anonymized graph sampled

from, Twitter or Facebook?”) and network authentication (If one claims the graph is sam-

pled from a certain network, can we verify this claim?). The overall objective of the thesis

is to provide a compact, interpretable, visualizable, comparable and efficient representa-

tion of networks.
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1

Chapter 1

Introduction

1.1 General Introduction

Networks have become a universal language for describing complex data from science,

engineering, and our daily life. Networks are used to study the role of a protein in bi-

ology [1], friendships in a social network [2], human emotions [3], among many other

phenomena [4]. A compact, interpretable, visualizable, and efficient representation of net-

works facilitates scientific discoveries in a wide range of disciplines. Machine learning

research aims to develop such network representations. Recent advances in network rep-

resentation, e.g., in network embedding [5–7] or latent representation learning [8], aim to

learn a mapping from a (sub)graph, or its nodes, to points in a low-dimensional vector

space. For example, a three node graph such as can be represented as a 2-dimensional

vector: (1.24, 8.91). These techniques have shown remarkable performance in many ap-

plications, but face two fundamental limitations:

I. Interpretability. It is often difficult to understand the intuition behind learned represen-

tations. For instance, node (or subgraph) embedding techniques map nodes (or subgraphs)

to points in a d-dimensional space, where no interpretation is often provided for such d di-

mensions. More specifically, when a graph is mapped to a point (a d-dimensional vector),

one can hardly determine its exact structural properties from this vector, e.g., is it a dense

network? The vector is mostly treated as a set of numerical features, limiting its usage.

II. Preserving Subgraph Information. As existing graph embedding approaches [9–11]

map a network into a d-dimensional vector, the information on the subgraphs of this net-
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work are mostly aggregated, or lost. Hence, given the embedding for the whole network,

it is challenging to identify how embeddings for its subgraphs would look like. One might

hypothesize that for a network with billions of nodes, samples (i.e., subgraphs) that are

close in size to the original network should have similar embeddings; however, for a small

subgraph such as a triad , which is a subgraph of many networks, the embedding should

not be necessarily similar to that of the original network. Statistically speaking, graph em-

bedding is taking a sample from a network (i.e., a subgraph) and computing a statistic (i.e.,

an embedding) for that one sample, ignoring the sampling distribution: the distribution of

embedding values for all subgraphs. We denote the distribution of embedding values for

all subgraphs of a network as the network’s embedding space. With a graph representa-

tion that can provide (1) the network’s embedding space, or (2) means to approximate the

embedding of a subgraph, e.g., using the embeddings of the whole network and/or some

of its other subgraphs, one can preserve subgraph information.

In descriptive statistics, a box plot visualization is often used to examine the distribution

of data. From the box plot, one can quickly get the statistics of the data, such as min-

imum, first quartile, median, third quartile, and maximum values, and one can compare

two datasets via their box plots. If there is something similar for networks, then one may

answer the questions such as: What does the 25% or 75% of the network look like? What

kind of structural properties do the network and its subgraphs have? Hence, in this work,

we aim to propose a network representation which is visualizable, interpretable, compara-

ble and preserving subgraph information.

1.2 Network Shapes

To address the aforementioned limitations, we propose to represent a network as a set

of vectors, representing the network and its subgraphs. These vectors will represent the

embedding space of the network. By ensuring that these vectors are in a 3-dimensional
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space, and by identifying a 3D shape that contains all such 3D vectors, the network (and its

subgraphs) can be represented as a 3D shape. We denote this shape as the network shape

of a network. As we will show, by representing networks with shapes, one can connect the

structural properties of a network with the properties of its network shape (e.g., location,

volume, patterns). For different networks, we may study their relationship through their

network shapes (e.g., the overlap or distances between two 3D shapes).

In the thesis, we propose two types of network shapes: the Kronecker Hull and the Spectral

Path (Examples are shown in Figure 1.2). In Figure 1.1, we demonstrate the organization

of our study on network shapes, mainly from the following three aspects:

Building Network Shapes. We first introduce how to build a network shape. In general,

it includes three steps: (a) to sample many subgraphs from the network, so we will discuss

the graph sampling methods; (b) to map the network and sampled subgraphs to points in a

3D space, and we will introduce the 3D embedding methods used; (c) to fit a shape which

contains the points in the space, and different shape fitting methods will be utilized. In
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Figure 1.2: Examples of Two Network Shapes

Table 1.1, we compare the two proposed network shapes in terms of their building steps.

Interpretability of Network Shapes. Then, we discuss how to interpret a network shape.

We will investigate the interpretability of network shapes at both the embedding level and

the shape level. On the embedding level, we aim to understand how to interpret each

dimension of the embedding space, and on the shape level we want to study how the

properties of network shapes (such as location, volume and shape patterns) are related to

network structures and properties.

Applications of Network Shapes. Finally, we demonstrate the applications of network

shapes, and they include network visualization, network categorization, graph similarity,

network identification, and network authentication.

In the rest of the thesis, we introduce the first network shape: Kronecker Hull and we

study its characteristics, interpretability and applications in Chapter 2; In Chapter 3, we

propose extending biometrics studies to network data and we introduce two new problems

in network studies: network identification and network authentication, and we demonstrate

that network shapes can be used to solve them; In Chapter 4, we present a 3D spectral
Table 1.1: Two Types of Network Shapes

Kronecker Hull Spectral Path
Sampling Random Node Random Node

Embedding Kronecker Points Spectral Points
Fitting 3D convex hull 3D path
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embedding method: spectral points, which utilizes the spectral moments of a graph to

enhance the interpretability of a network shape as it is closely related to network structures

and properties. We introduce the second network shape: Spectral Path in Chapter 5, and

we discuss its interpretability and applications. Chapter 6 extends the study on spectral

moments through its connection with network robustness. We discuss the future work of

the study and conclude in Chapter 7. In the appendix, a few products on network shapes

are introduced. More details are listed in Section 1.3.

1.3 Contribution of Dissertation

This research work discusses the interpretable network representations with 3D shapes on

the methods and its applications. The contribution of this research are explained below.

1.3.1 Chapter 2: Network Shapes I: Kronecker Hull

We propose network shapes, a 3D representation for a network that (a) is easy to inter-

pret; (b) captures various properties of not only the network, but also its subgraphs; (c)

facilitates easy network visualization; and (d) enables various applications and compara-

tive studies. We introduce the first network shape, a Kronecker hull, which represents a

network as a 3D convex polyhedron. We study the properties of Kronecker hulls, such

as the volume, the location, the internal points, and boundaries. The interpretability of

Kronecker points and Kronecker hulls has also been investigated (e.g., how does a 10%

subgraph of the network look like?). We demonstrate the utility of Kronecker hulls on

applications such as network categorization (e.g., is this a social or a biological network?)

and graph similarity.
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1.3.2 Chapter 3: Network-based Biometrics

In this chapter, we extend biometrics studies to network data by formulating two new

problems in network studies: network identification (i.e., identifying the source of an

anonymized graph) and network authentication (i.e., verifying one’s claim on the source of

a graph). To solve the problems, we introduce the network identity and two identity types:

embedding-based identity, and shape-based identity which utilize the network shapes. For

network identification, we introduce two methods to predict the network from which a

graph is sampled using the developed network identities. The first is a supervised learn-

ing method, which is highly accurate (84.4%). We also introduce an easier to implement

method that relies on the distances between the sample embedding to the network iden-

tities, achieving a 70.8% accuracy. For network authentication problem, we propose two

techniques: a supervised splitter with a low equal error rate, at which the false accept

rate (FAR) is equal to the false reject rate (FRR); and a Voronoi splitter, which allows

controlling the false reject with an acceptable false accept rate across networks.

1.3.3 Chapter 4: Embedding Network with Spectral Moments

In this chapter, we introduce Spectral Point, a 3D network embedding method that uses the

truncated spectral moments of the network. Spectral points have the following advantages:

(i) each dimension is closely related to the network structure and various network proper-

ties, so it is easy to interpret; (ii) the embedding space can help characterize various types

of networks; (iii) the embedding space provides easy network visualization; and (iv) the

embeddings are easy to compute. We demonstrate the interpretability of spectral points by

mathematically proving their relationship to basic subgraphs such as triangles and squares,

and the relationship to the network properties such as the degree distribution and the global

clustering coefficient. We mathematically derive spectral moments for various types of

graphs such as complete graphs, cycles, star graphs, and complete bipartite graphs. We
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compute the spectral moments of real-world graphs from various categories and show that

their structure and properties identified in past research is captured by spectral moments.

We demonstrate that spectral moments can be used for network identification.

1.3.4 Chapter 5: Network Shapes II: Spectral Path

We propose the second network shape: the Spectral Path, which is a path connecting

the spectral moments of the network and its subgraphs. We study the interpretability of

spectral paths by investigating the shapes of spectral paths. We provide the theoretical

relationship between the spectral moments of a network and those of its subgraphs. We

illustrate how this relationship is closely related to the network structure. We show that

spectral path can be used for applications such as network visualization and network iden-

tification. We theoretically explore the possibility of using the expected spectral moments

of subgraphs to help distinguish cospectral graphs.

1.3.5 Chapter 6: Spectral Moments and Network Robustness

We find that the second spectral moment m2 of a network can be used as a network ro-

bustness measure. We show that m2 captures network robustness on both synthetic and

real-world networks. Specifically, when m2 is smaller, the network is more robust. The

spectral moments can be used to assess the degree of robustness of a network, or to com-

pare the robustness of two networks varying in size. We show that we can control the

network robustness by manipulating its m2 value, to design a network that is more robust

under failures. We conduct experiments on real-world networks, and evaluate the method.

We demonstrate that with m2 as the robustness measure, one can study how a complex

networked system behaves under cascading failures by looking at how network robustness

evolves. By studying cascading failures in a power grid network, we show that after an

initial failure making the grid vulnerable, the grid stabilizes after the cascading failures.



8

1.3.6 Appendix A: Products of Network Shapes

Here, we introduce a web platform WEBSHAPES that enables researchers and practitioners

to visualize their network data as customized network shapes. We also provide a repository

of precomputed network shapes for various networks, which includes 102 public networks

from 12 different categories.

1.4 Publications

Part of the works presented in this thesis has appeared in multiple publications:

Conferences:

1. Jin, Shengmin, and Reza Zafarani. “Representing networks with 3d shapes.” In 2018

IEEE International Conference on Data Mining (ICDM), IEEE, 2018 [12].

2. Jin, Shengmin, Vir Phoha, and Reza Zafarani.“Network identification and authenti-

cation.” 2019 IEEE International Conference on Data Mining (ICDM). IEEE, 2019 [13].

3. Jin, Shengmin, Richard Wituszynski, Max Caiello-Gingold, and Reza Zafarani.

“WebShapes: Network Visualization with 3D Shapes.” Proceedings of the 13th In-

ternational Conference on Web Search and Data Mining. 2020 [14].

4. Jin, Shengmin, and Reza Zafarani.“The spectral zoo of networks: Embedding and

visualizing networks with spectral moments.” Proceedings of the 26th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining. 2020 [15].

5. Abdolazimi, Reyhaneh, Shengmin Jin, and Reza Zafarani. “Noise-enhanced com-

munity detection.” Proceedings of the 31st ACM Conference on Hypertext and So-

cial Media. 2020 [16].

6. Jin, Shengmin, Hao Tian, Jiayu Li, and Reza Zafarani.“A Spectral Representation of
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Networks: The Path of Subgraphs.” Proceedings of the 28th ACM SIGKDD Con-

ference on Knowledge Discovery and Data Mining. 2022 [17].

7. Jin, Shengmin, Rui Ma, Jiayu Li, Sara Eftekharnejad, and Reza Zafarani. “A Spec-

tral Measure for Network Robustness: Assessment, Design, and Evolution.” 2022

IEEE International Conference on Knowledge Graph. IEEE, 2022 [18].

Journals:

1. Jin, Shengmin, Vir Phoha, and Reza Zafarani. “Graph-based Identification and Au-

thentication: A Stochastic Kronecker Approach.” IEEE Transactions on Knowledge

and Data Engineering (2020) [19].

Tutorials:

1. Jin, Shengmin, Danai Koutra, and Reza Zafarani. “Interpretable Network Represen-

tations.”1 In Companion Proceedings of the Web Conference 2022 [20].

Moreover, some of our publications are not included in this thesis:

Conferences:

1. Jin, Shengmin, and Reza Zafarani. “Emotions in social networks: Distributions,

patterns, and models.” Proceedings of the 2017 ACM on Conference on Information

and Knowledge Management. 2017 [3].

2. Jin, Shengmin, and Reza Zafarani. “Sentiment Prediction in Social Networks.” 2018

IEEE International Conference on Data Mining Workshops (ICDMW) [21].

3. Zhou, Xinyi, Shengmin Jin, and Reza Zafarani. “Sentiment Paradoxes in Social

Networks: Why Your Friends Are More Positive Than You?.” Proceedings of the

International AAAI Conference on Web and Social Media. Vol. 14. 2020 [22].

4. Ma, Rui, Shengmin Jin, Sara Eftekharnejad, Reza Zafarani, and Wolf Peter Jean

1https://shengminjin.github.io/tutorials/www2022

https://shengminjin.github.io/tutorials/www2022
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Philippe. “A probabilistic cascading failure model for dynamic operating condi-

tions.” IEEE Access 8 (2020): 61741-61753 [23].

5. Li, Jiayu, Tianyun Zhang, Hao Tian, Shengmin Jin, Makan Fardad, and Reza Za-

farani. “Sgcn: A graph sparsifier based on graph convolutional networks.” In Pacific-

Asia Conference on Knowledge Discovery and Data Mining, pp. 275-287. Springer,

Cham, 2020 [24].

6. Li, Jiayu, Tianyun Zhang, Shengmin Jin, Makan Fardad, and Reza Zafarani. “Ad-

verSparse: An Adversarial Attack Framework for Deep Spatial-Temporal Graph

Neural Networks.” In ICASSP 2022-2022 IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), pp. 5857-5861. IEEE, 2022 [25].

Journals:

1. Li, Jiayu, Tianyun Zhang, Hao Tian, Shengmin Jin, Makan Fardad, and Reza Za-

farani. “Graph sparsification with graph convolutional networks.” International Jour-

nal of Data Science and Analytics 13, no. 1 (2022): 33-46 [26].

1.5 Related Work

Overall, our research is mainly related to interpretable network representation techniques

from the following three areas:

Network embedding methods. Network embedding techniques aim to map a node (or a

graph) into a low-dimensional vector and efficiently preserve the network structure. Some

of them are interpretable such as those that embed nodes based on return probabilities of

random walks [27], or those that perform graph embedding using spectral signatures (e.g.,

network density of states (DOS) [28, 29], trace signature based on heat diffusion [30]. In

this work, we introduce two network embeddings for the use of network shapes: Kronecker

Points and Spectral Points. Compared to other embeddings, Kronecker Points and Spectral
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Points capture network structures and network properties with three values, making the

embeddings visualizable.

Graph summarization methods. Graph summarization aims to find a short summary of

large graphs to capture their characteristics, and these methods often provide an aggre-

gated summary of a network [31]. In general, the output of graph summarization meth-

ods is either a ”supergraph”, a sparsified graph, or a structure list [31]. For example,

grouping-based graph summarization use clustering or community detection algorithms to

group nodes into ”supernodes”, so that the original network is summarized in terms of a

smaller graph (a supergraph) with several supernodes. Another example is VOG [32], or

vocabulary-based summarization of graphs, which constructs a ‘vocabulary’ of subgraphs

with network motifs and finds the most succinct description of a graph in terms of the vo-

cabulary. Both examples investigate the relationship between a network and its subgraphs.

One can also view network shapes a special kind of graph summarization method, which

summarize graphs with shapes in the 3D embedding space.

Network visualization. Visual displays of networks often can lead to a better under-

standing of networks. Examples include graph layout studies (e.g., spectral graph draw-

ing [33, 34]) that aim to draw graphs (node-edge diagrams) in an aesthetically-pleasing

way. Moreover, network visualization methods can also be used to enhance the inter-

pretability of network embedding and graph summarization methods. Network shapes

provide an interpretable and visualizable representation of networks.

Reconstruction Conjecture. Bollobás has shown that almost all graphs are reconstructible [35].

Moreover, not all subgraphs are necessary to reconstruct them: for almost all graphs, there

exist three subgraphs that uniquely identify the graph. Our setting matches that of the the-

oretical findings of Bollobás. Specifically, by taking samples from the graph for creating

network shapes, we aim to capture the subgraphs that can uniquely represent a graph.
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Chapter 2

Network Shapes I: Kronecker hull

2.1 Introduction

There has been a surge of interest in machine learning in graphs, as graphs and networks

are ubiquitous across the globe and within science and engineering: road networks, power

grids, protein-protein interaction networks, scientific collaboration networks, social net-

works, to name a few. Recent machine learning research has focused on efficient and

effective ways to represent graph structure. Existing graph representation methods such

as network embedding techniques learn to map a node (or a graph) to a vector in a low-

dimensional vector space. However, the mapped values are often difficult to interpret,

lacking information on the structure of the network or its subgraphs. Instead of using a

low-dimensional vector to represent a graph, we propose to represent a network with a 3-

dimensional shape: the network shape. We introduce the first network shape, a Kronecker

hull, which represents a network as a 3D convex polyhedron using stochastic Kronecker

graphs. We present a linear time algorithm to build Kronecker hulls. Network shapes

provide a compact representation of networks that is easy to visualize and interpret. They

captures various properties of not only the network, but also its subgraphs. For instance,

they can provide the distribution of subgraphs within a network, e.g., what proportion of

subgraphs are structurally similar to the whole network? Overall, the contributions are

mainly the following:

1. We propose network shapes, a 3D representation for a network that (i) is easy to

interpret; (ii) captures various properties of not only the network, but also its sub-
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graphs; (iii) facilitates easy network visualization; and (iv) enables various applica-

tions and comparative studies;

2. We propose Kronecker Hull, a network shape that represents a network and its sub-

graphs via a convex polyhedron in the three dimensional space;

3. We demonstrate how properties of a Kronecker hull (e.g., its volume or location)

are connected to the structure of the network it represents. We study Kronecker hull

properties using extensive experiments on eighteen real-world networks from four

different categories;

4. We show the interpretability of Kronecker hull, which helps to characterize graphs

(e.g., how does a 10% subgraph look like?); and

5. We show applications of network shapes in network categorization (e.g., is this a

social or a biological network?), and computing graph similarity.

Implications of Network Shapes. Representing networks as 3D shapes has multiple ben-

efits and applications:

▶ Compact Representation of Networks. Network shapes can help represent networks

(and their embedding space) compactly. In most of our experiments, we can represent

networks with million of nodes using shapes that can be represented with less than 40

boundary points.

▶ Visualizing Networks. Visualizing large graphs is challenging. This difficulty lies in

the natural clutter, crossing, and overdrawing issues [36]. Network shapes help visualize

networks (and their embedding space) with limited clutter.

▶ Interpretation. By properly designing network shapes, they can help illustrate struc-

tural properties of graphs and how a network is composed of subgraphs with different

properties.
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▶ Features. Features from network shapes such as their boundary points, center of grav-

ity, volume, and other geometrical properties can capture various information about the

network and its subgraphs and can be used for machine learning.

The rest of the chapter is organized as follows. In Section 2.2, we detail the necessary

steps to build network shapes. In Section 2.3, we discuss stochastic Kronecker graphs, the

foundation behind Kronecker hulls (a network shape). Section 2.4 provides the algorithm

for computing the Kronecker Hull and its time complexity analysis. We summarize our

experimental setup and data in Section 2.5. With various experiments, we look into the

characteristics of Kronecker Hulls including their volume, location, internal points and

boundries in Section 2.6. In Section 2.7, we discuss the interpretability of Kronecker Hulls.

Section 2.8 provides some applications which utilize network shapes. After reviewing

additional related work in Section 2.9, we conclude the chapter in Section 2.10.

2.2 Building Network Shapes

The following simple steps can help build a network shape:

Step 1: Sample many subgraphs from the network

Step 2: Map the network and its subgraphs to 3D vectors

Step 3: Fit a 3D Shape to the set of 3D vectors

The first requirement for constructing network shapes is a sampling method. Any sam-

pling method can work. In our algorithm, we have utilized Random Node Sampling strat-

egy [37]. Random node sampling selects a proportion p of nodes from a graph uniformly

at random and the sample subgraph is then the graph induced by these selected nodes.

Random node sampling is shown to perform well for various network measurements [37]
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and is a fast algorithm with linear time complexity. To sample systematically, one can

sample by varying proportions of nodes (e.g., from 0% to 100%) with some fixed step size

s. To control variations, for each proportion, one can sample t independently sampled

subgraphs, i.e., a total of t× s subgraphs for one network.

The second requirement for constructing network shapes is an embedding technique that

can map a network to a 3D point. The technique should provide embedding vectors that

are easy to interpret and can capture the properties of the network and its subgraphs. Given

such a technique, we can represent a network and its subgraphs as a set of 3D points. Sim-

ilarly, one can think of many fast techniques to map a graph into a 3D vector, e.g., repre-

sent it with its (diameter, average path length, clustering coefficient). Here, we consider

Stochastic Kronecker Graphs [38] as an appropriate candidate for mapping a graph into

an interpretable 3D point, which we denote as the Kronecker point. In Section 2.3, we

investigate the properties and interpretation of Kronecker points.

The third and final requirement for building network shapes is a technique to fit a 3D

shape to a set of 3D points obtained in Step 2 (3D embedding). While this can be done by

fitting a variety of shapes (e.g., spheres), we consider building a network shape from a set

of 3D points by computing its convex hull. A convex hull, for a set of points in a Euclidean

space, is the smallest convex set that contains all the points in the original set [39]. Convex

hull of a finite set of n points in a three-dimensional space can be computed with at most

O(n log n) operations [40].

2.3 Stochastic Kronecker Graphs

Stochastic Kronecker graphs [38] provide an approach to model large-scale graphs using

the Kronecker product ⊗ matrix operation. The Kronecker product generalizes matrix
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outer product, e.g., the Kronecker product of [ 1 2
3 4 ] and [ 0 5

6 7 ], denoted as [ 1 2
3 4 ]⊗ [ 0 5

6 7 ] is

[ 1 2
3 4 ]⊗ [ 0 5

6 7 ] =

[
1·[ 0 5

6 7 ] 2·[ 0 5
6 7 ]

3·[ 0 5
6 7 ] 4·[ 0 5

6 7 ]

]
=

[
1·0 1·5 2·0 2·5
1·6 1·7 2·6 2·7
3·0 3·5 4·0 4·5
3·6 3·7 4·6 4·7

]
=

[
0 5 0 10
6 7 12 14
0 15 0 20
18 21 24 28

]
.

When modeling a network using Stochastic Kronecker graphs, we aim to learn a small

probability matrix P ∈ Rn×n, known as the Kronecker initiator matrix, such that the

kth Kronecker power of P (i.e., P⊗k = P ⊗ P · · · ⊗ P︸ ︷︷ ︸
k times

) is most likely to have generated

the adjacency matrix A ∈ Rnk×nk of the graphs which we are modeling, i.e., P (A|P ) is

maximized (for further details refer to Ref. [38]). The KRONFIT algorithm can estimate

the Kronecker initiator matrix for a real-world graph using maximum likelihood and in

linear time [38].

2.3.1 Kronecker Points

Consider fitting a 2×2 Kronecker initiator matrix I =
[
a b
c d

]
to a network. In an undirected

network, where the adjacency matrix is symmetric, the Kronecker initiator matrix learned

is also symmetric, i.e., b = c. Thus, one can embed an undirected network, or any of its

subgraphs, to a point (a, b, d) in the 3-D space, which we denote as the Kronecker point of

a graph. As a 3D point, Kronecker point can be easily visualized.

Kronecker points (a, b, d) have basic properties:

I. By definition, Kronecker initiator matrices are probability matrices, i.e., values a, b and

d are all between 0 and 1. Hence, all possible graphs can be embedded in a 1×1×1 cube.

II. Without loss of generality, we can assume that a ≥ d. Consider two initiator ma-

trices
[
a b
b d

]
and

[
d b
b a

]
that only differ with respect to the positions of a and d, i.e., we

can obtain one by simultaneous shuffling of rows and columns of the other based on some
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permutation. Calculating the kth Kronecker power of both initiator matrices yields two ad-

jacency matrices for two graphs. We can simply prove that these two graphs are indeed the

same graph, i.e., the graphs are isomorphic. Assume P is a permutation matrix: a square

binary matrix with exactly one entry of 1 in each row and column, and 0s elsewhere.

Let X denote any initiator matrix. Then PXP T represents a simultaneous shuffling of

rows and columns of X according to permutation P . By Kronecker product properties

(PXP T )⊗k = P⊗kX⊗k(P⊗k)T . As P⊗k is also a permutation matrix, the graph repre-

sented by adjacency (PXP T )⊗k is the same as the one by X⊗k.

2.3.2 KRONFIT Limitations

KRONFIT can provide Kronecker points, but has a few limitations that may lead to over/un-

derestimation. When the number of nodes within a real-world network is not a power of 2,

KRONFIT will add isolated nodes so that the number of nodes becomes a power of 2 [41].

Adding isolated nodes may lead to underestimation of the parameters as it decreases the

overall edge density and core strength of the groups. On the other hand, as the input to

KRONFIT is a list of edges, when the network is extremely sparse and the graph size is

small, KRONFIT can overestimate as it overlooks real isolated nodes within the network.

In Section 2.7.1, the overestimation in sparse random network fits this second case.

2.4 Kronecker Hull

We introduce an algorithm to obtain the Kronecker hull of a network, and analyze its time

complexity. The algorithm pseudocode is provided in Algorithm 1. The algorithm utilizes

Random Node Sampling to sample many subgraphs from the network by (1) varying the

proportion of nodes from 0% to 100% with step size s and (2) taking t independent samples

for each proportion. For each sample (and the whole network), the algorithm computes

its Kronecker point via KRONFIT algorithm. Finally, the convex hull of these Kronecker
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Algorithm 1 KRONECKER HULL algorithm
input : an undirected network graph: G(V,E)
output : the Kronecker hull of G: KHG

parameter : s : sampling proportion step size;
t : number of samples for one proportion;

Kronecker points = { };

for ( p = s; p < 100%; p = p+ s ) {
for ( i = 1; i ≤ t; i = i+ 1 ) {

%Sample a subgraph Gp

Gp = RandomNodeSampling(G, p);
%Fit Kronecker Initiator to Gp

[
a b
c d

]
= KRONFIT(Gs, 2);

Kronecker point = (a, b, d);
Kronecker points.add(Kronecker point);

}
}[
a b
c d

]
= KRONFIT(G, 2);

Kronecker point = (a, b, d);
Kronecker points.add(Kronecker point);
KHG = Quickhull(Kronecker points);%Convex Hull
return KHG;

points are computed, using Quickhull algorithm [42], to obtain the Kronecker hull of the

graph. The implementation is available at: https://github.com/shengminjin/

KroneckerHull

Time Complexity. For one subgraph, random node sampling takes O(n +m) and KRO-

NFIT takes O(n + m), where |V |= n and |E|= m. Hence, for each subgraph, the time

complexity is O(n + m). We have a total of 100
s

× t + 1 graphs (a network and its sub-

graphs) for which we compute Kronecker points. As the number of Kronecker points is

very small compared to the size of the network, the time spent on computing the convex

hull is constant. Hence, the time complexity to compute Kronecker hull is O( t
s
(n +m)),

linear in the number of nodes and edges.

https://github.com/shengminjin/KroneckerHull
https://github.com/shengminjin/KroneckerHull


19

2.5 Experimental Setup

For our experiments, we generate Kronecker hulls for various real-world networks by

varying the proportion of nodes from 0% to 100% with step size 10%, i.e., s = 10% in

Algorithm 1; for each proportion (except for 100% which represents the whole graph), we

generate 20 independently sampled subgraphs, i.e., t = 20 in Algorithm 1. In total, we

generate 20 × 9 + 1 = 181 Kronecker points for each network, using which we obtain

the Kronecker hull for the network. Next, we summarize the network data used in our

experiments.

2.5.1 Datasets

For our experiments, we use eighteen real-world networks from four general network cat-

egories: social networks, collaboration networks, road networks, and biological networks.

Social Networks: In total, we have eight social networks from three sub-categories.

▶ Location-based Social Networks:

Brightkite and Gowalla [43]: were both once location-based social networking sites where

users shared their locations by checking-in. Both networks were originally directed but

have been converted to undirected where an undirected edge between users exist when

friendships in both directions exist.

▶ Friendship-based Social Networks:

Hyves [44]: the most popular social networking site in the Netherlands with mainly Dutch

visitors. It competes with sites such as Facebook and MySpace in that country.

Orkut [43]: was a social networking website owned and operated by Google, shutdown in

2014.
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Livejournal [45]: a social network where users can keep a blog or journal. Users can form

friendship or follow others. In this dataset, edges represent friendships (undirected).

MySpace [45]: a social network with emphasis on music.

▶ Video-Sharing or Movie Sites:

YouTube [43]: a video-sharing site with a social network.

Flixster [44]: a social movie site allowing users to buy, rent, or watch movies, share

ratings, and discover new movies.

Collaboration Networks: We include four collaboration networks from arXiv.org, which

include scientific collaborations between authors with different scientific interests. In a

collaboration networks, an undirected edge between nodes i and j exists, if authors i and

j have co-authored at least one paper.

Astro-Ph [43]: Astro physics.

Cond-Mat [43]: Condense matter physics.

Gr-Qc [43]: General relativity and quantum cosmology.

Hep-Th [43]: High energy physics theory.

Road Networks: We include three road networks. In road networks, nodes are inter-

sections/endpoints and undirected edges are the roads connecting these intersections/road

endpoints.

Road-CA [43]: the road network of California.

Road-PA [43]: the road network of Pennsylvania.

Road-TX [43]: the road network of Texas.

Biological Networks: We include three biological networks.
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Table 2.1: Dataset Statistics

Type Network |V |= n |E|= m
Average
Degree

Clustering
Coefficient

Social
Networks

Brightkite 58,228 214,078 7.353 0.1723
Flixster 2,523,386 7,918,801 6.276 0.0834
Gowalla 196,591 950,327 9.668 0.2367
Hyves 1,402,673 2,777,419 3.960 0.0448
Livejournal 3,017,286 85,654,976 56.776 0.1196
MySpace 854,498 5,635,296 13.190 0.0433
Orkut 3,072,441 117,185,083 76.281 0.1666
YouTube 1,134,890 2,987,624 5.265 0.0808

Collaboration
Networks

Astro-Ph 18,772 198,050 21.100 0.6306
Cond-Mat 23,133 93,439 8.078 0.6334
Gr-Qc 5,242 14,484 5.526 0.5296
Hep-Th 9,877 25,973 5.259 0.4714

Road
Networks

Road-CA 1,965,206 2,766,607 2.816 0.0464
Road-PA 1,088,092 1,541,898 2.834 0.0465
Road-TX 1,379,917 1,921,660 2.785 0.0470

Biological
Networks

Bio-Dmela 7,393 25,569 6.917 0.0119
Bio-Grid-Yeast 5,870 313,890 104 0.0516
Human-Brain 177,600 15,669,036 176 0.4580

Bio-Grid-Yeast [43]: a protein-protein interaction networks.

Bio-Dmela [43]: a protein-protein interaction networks.

Human-Brain [43]: the network of human brain.

The data statistics are summarized in Table 2.1. To assess the impact of network structure

on Kronecker hulls, for each real-world network, we generate a random synthetic network

with a perturbed network structure, but with the same degree distribution, i.e., a null model.

We create the null model using the configuration model [46], which can generate a random

network with the same degree distribution and edge density (i.e., |E|/
(|V |

2

)
) as the given

real-world network.

2.6 Kronecker Hull Characteristics

To investigate the characteristics of Kronecker Hulls, we compute the Kronecker Hull

for all networks. Figure 2.1 provides the Kronecker hull for one of our social networks:

Hyves. The points on the boundary (or within) the Kronecker hull are Kronecker points

(a, b, d) representing different sampling proportions. The Kronecker points are colored
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Figure 2.1: Kronecker Hull for Hyves Social Network

differently for different sampling proportions. We investigate different characteristics of

Kronecker Hulls, but more importantly how the structure of a network is connected to

those characteristics. In particular, we look at the volume, location, internal points, and

boundaries of Kronecker hulls.

2.6.1 Volume of Kronecker Hulls

As a Kronecker hull is a convex hull, its volume can be easily computed via triangulation.

How is the volume of a Kronecker hull connected to the properties of the network it rep-

resents? Table 2.2 provides the volumes of the Kronecker hulls, denoted by volume(G),

for all networks. We observe that for social, road, and biological networks, volumes are

between 3.5×10−5 to 1.7×10−3. The maximum possible volume of a Kronecker hull can

be 1 as values a, b, and d lie in range [0, 1]. Hence, the Kronecker hulls of these networks

are compact from a volume perspective, taking up only about one thousandth of the whole

space. Volumes of collaboration networks are much larger, varying from 3.4×10−3 to 0.2,

which we speculate is due to their specific network structure.

To investigate the impact of network structure on the volume of Kronecker hull, for any

graph G, we compare the volume of its Kronecker hull volume(G) to that of its null model

volume(Gnull). Note that null models have the same edge density and degree distribution

as the original graph, but with a random network structure. Hence, any change in volume

indicates that network structure has an impact on volume. To compare volumes, we com-
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Table 2.2: Kronecker Hull Volume
Type Networks

Edge Density
(×10−4)

Actual Graph Null-Model Ratio volume(G)
volume(Gnull)

overlap(G,Gnull)volume(G)
(×10−4)

Clustering
Coefficient

volume(Gnull)
(×10−4)

Clustering
Coefficient

Social
Networks

Brightkite 1.262 6.22 0.1723 8.56 0.0053 0.73 70.49%
Flixster 0.025 3.42 0.0834 4.39 0.0012 0.78 83.87%
Gowalla 0.492 13.00 0.2367 7.86 0.0103 1.61 51.63%
Hyves 0.028 4.22 0.0448 5.52 0.0030 0.76 78.44%
Livejournal 0.188 1.93 0.1196 1.44 0.0013 1.34 75.69%
MySpace 0.154 3.75 0.0433 2.90 0.0037 1.29 86.37%
Orkut 0.248 0.44 0.1666 0.99 0.0006 0.45 26.38%
YouTube 0.046 5.87 0.0808 5.94 0.0065 0.99 90.86%

Collaboration
Networks

Astro-Ph 11.241 34.00 0.6306 3.89 0.0094 8.67 0%
Cond-Mat 3.492 98.00 0.6334 15.00 0.0022 6.36 16.99%
Gr-Qc 10.544 200.00 0.5296 15.00 0.0053 13.50 8.23%
Hep-Th 5.325 90.00 0.4714 13.00 0.0018 7.19 29.07%

Road
Networks

Road-CA 0.014 10.00 0.0464 11.00 3.4× 10−7 0.89 87.57%
Road-PA 0.026 9.99 0.0465 9.72 3.5× 10−6 1.03 72.89%
Road-TX 0.020 7.05 0.0470 8.31 0.0000 0.85 74.98%

Biological
Networks

Bio-Dmela 9.360 17.00 0.0119 20.00 0.0067 0.85 95.35%
Bio-Grid-Yeast 173.950 9.72 0.0516 10.00 0.0694 0.97 91.72%
Human-Brain 9.937 0.35 0.4580 0.10 0.0169 3.50 33.59%

pute the ratio volume(G)
volume(Gnull)

. While we observe that for all networks, the ratio is not equal

to 1, indicating that network structure has an impact on the volume, the ratio often takes

a value between 0.5 to 2, i.e., the actual volume can be at most twice, or at least half of

that of its null model. We believe this finding can have implications in finding proper null

models. As speculated, collaboration networks are outliers, with their network structures

most damaged when constructing their null models: their Kronecker hull volume is much

larger than that of their null models. Our further analysis indicated a strong correlation

(ρ = 0.88) between volume ratios and the clustering coefficient of networks, which is

high in collaboration networks and is dramatically reduced in null models. We also con-

ducted a multiple linear regression to predict volume based on five predictors: |V |, |E|,

edge density, average degree, and clustering coefficient. The regression coefficients also

indicated that volume is strongly correlated to the edge density and clustering coefficient,

with regression coefficients being nearly 0 for the other three variables.

2.6.2 Location of Kronecker Hulls

To identify network properties that impact the location of a Kronecker hull, one must seek

properties that when changed within a network, the new Kronecker hull for the modified

network is at a different location in the 3D space, i.e., has less than 100% overlap with



24

the original Kronecker hull. Hence, to investigate the impact of network structure on

Kronecker hull location, we compute the overlap between Kronecker hulls of networks

with that of their null models. We define the overlap between Kronecker hulls for networks

A and B as

overlap(A,B) =
volume(KHA ∩ KHB)

min(volume(KHA), volume(KHB))
, (2.1)

where volume is the volume of a Kronecker hull, and KHA and KHB represent Kronecker

hulls of graphs A and B, respectively. We define the overlap as a ratio: the volume of the

intersection KHA∩KHB normalized by the volume of the smaller Kronecker hull. It is easy

to prove that given any collection of convex sets (finite, countable or uncountable), their

intersection is a convex set. Therefore, the intersection of two Kronecker hulls KHA∩KHB

is also convex, allowing us to easily compute its volume. The results are in Table 2.2.

We observe an overlap that is less than 100% in all networks, indicating that network

structure has an impact on the location of Kronecker hulls. Similar to our observations with

respect to volume, (i) collaboration networks are outliers with very small overlaps and (ii)

clustering coefficients of networks are strongly negatively correlated (ρ = −0.86) to their

overlaps. In addition, ratios volume(G)
volume(Gnull)

are strongly negatively correlated (ρ = −0.77)

to overlaps overlap(G,Gnull) indicating that, e.g., when network structure is damaged,

Kronecker hulls shrink in volume and move far from their original location.

2.6.3 Internal Points

By definition, a point within a Kronecker hull of a network represents a sample from this

network, i.e., a subgraph. Here, we investigate (1) how samples are distributed within

a Kronecker hull and (2) how distances between samples are connected to similarities

between corresponding subgraphs.

▶ Sample Distribution. In the Hyves example provided in Figure 2.1, a clustering phe-

nomenon is observed: points representing samples of the same proportion appear to be
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Figure 2.2: Kronecker Hull of Hyves with Sphere fit
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Figure 2.3: Radius of Spheres Fit to Subgraph Kronecker Points

clustered. To verify whether such a clustering exists, we fit a sphere to the points that

represent the same sample size (see Figure 2.2). The sphere better visualizes the loca-

tion of the cluster and its radius captures the variance. For all networks, we compute the

radii of all such spheres; the results are in Figure 2.3. We find that the clustering phe-

nomenon is observed for most networks, with relatively small radii that decreases as the

sampling proportions increase. Compared to other networks, the radii of spheres of collab-

oration networks are larger, especially in smaller samples, i.e., clustering is not obvious.

We speculate that this observation is due to samples being taken from different academic

communities within the graph. Overall, our observations indicate that given a point within

a Kronecker hull, nearby points are likely to be samples of the same size.

▶ Between-Sample Distances. Consider two subgraphs of a network, each represented as

a Kronecker point within the Kronecker hull of the network. Ideally, we hope that the

distance between these two Kronecker points is related to the similarity between these

two subgraphs. However, measuring similarity between two graphs can be challenging

and subjective. To circumvent the challenge of computing graph similarity, we compute
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Figure 2.4: Distances between Sphere Centers (representing subgraph Kronecker points)
and the Whole-graph Kronecker Point

the distances between Kronecker points of graphs for which we have an intuitive under-

standing of their similarity. Here, we compute the distances between Kronecker points

of different subgraphs and that of the whole network. This decision is based on the intu-

ition that by increasing the sampling proportion, subgraphs should become more similar to

the whole network (a 100% subgraph). As samples of the same proportion are clustered,

we compute the Euclidean distance between the Kronecker point of the whole network

and the sphere centers (representing Kronecker points for different sampling proportions).

Figure 2.4 illustrates that with the increase in sampling proportion, sphere centers become

closer to the Kronecker point of the whole network, indicating a convergence in Kronecker

points as graphs become more similar. Looking at networks from different categories, we

observe that (1) for social and biological networks, the distances drop fast when the sam-

pling proportion increases from 10% to 30%, which suggests network structure of a 30%

subgraph can be close to that of the whole network, when sampled using random node

sampling; (2) for road networks, the sphere centers are far when the sampling proportion

is small. With the increase in sampling proportion, the distances drop sharply when sam-

ples are below 60% and become very small after they reach 70%; (3) for collaboration

networks, we observe a decreasing trend in distances, but unlike other networks, there is

an oscillation.
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Figure 2.5: Kronecker Hull Boundary Points Distribution. The numbers in the legend
specify the number of boundary points.
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2.6.4 Boundaries

Figure 2.5 provides the number (in the legend) and the distribution of boundary points

(vertices) of Kronecker hulls. We find that number of boundary points ranges from 16 to

49, and for most networks is between 30-40, out of the total of 181 points. Points from

very small samples, especially those for sampling proportion 10%, are more likely to be

boundary points. Points from middle size samples are more likely to be within the hull.

Overall, we observe a continuity in points being on the boundary with the increase in

sampling proportion. These findings suggest that (1) a limited number of points (e.g., 40)

is required to store a Kronecker hull; (2) we can sample fewer points for each proportion

to construct a Kronecker hull; and (3) boundary points can be used as compact features for

machine learning on graphs.

2.7 Interpretability of Kronecker Hulls

2.7.1 Interpretability of Kronecker Points

One can interpret the 2×2 initiator
[
a b
b d

]
of an undirected network as a recursive expansion

of two groups of network nodes into subgroups [38]. We can interpret a and d as the

proportion of edges within each of the groups, and b as the proportion of edges between

the two groups. As proved, we can assume that a ≥ d; hence, we can split the whole space

into three regions, i.e., split all possible networks into three types. Each region represents



28

a different network structure. We denote these regions as Core-Periphery (a ≥ b ≥ d),

Dual-Core (a ≥ d ≥ b), and Random (b ≥ a ≥ d).

Core-Periphery (a ≥ b ≥ d)

In networks with this configuration, at the high-level, the network can be divided into two

groups. One group is dense with many connections as value a is the largest; fewer con-

nections exist within the nodes in the other group as highlighted by value d; and moderate

connections exist between nodes from different groups. Many real-world networks exhibit

a core-periphery structure [47], where they form a core group and another group which

acts as its periphery. Value a represents the core strength.

Dual-Core (a ≥ d ≥ b)

In this configuration, each group is internally well-connected but the connections between

the two groups are sparse. We denote this configuration as the Dual-Core structure. Basi-

cally, the two groups of nodes form two major cores of the network, of which one exhibits

a stronger core strength, and they are relatively independent of each other. Values a and d

represent the core strength of each group.

Random (b ≥ a ≥ d)

This configuration is quite different from the previous two. Essentially, one can not find

two recursive groups with more connections within each group than across groups. To

some extent, it is indication that there is not much difference in the importance, or “core-

ness” among nodes. This reminds us of random graphs, such as those generated by the

Erdös-Rényi G(n, p) model [48], where a random network of n nodes is created in which

every edge exists with an equal probability p. To validate our speculation, we generate

many random networks by fixing the number of nodes n = 1024 and varying the proba-

bility p. We compute the Kronecker points of these networks to obtain a, b, and d values.

Figure 2.6 illustrates that for a random network, we almost always have b ≥ a ≥ d, unless
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Figure 2.6: Distribution of Kronecker points (a, b, d) for Random Networks G(n, p). Here,
n = 1024. We observe that in random graphs, unless the graph is really dense, b ≥ a ≥ d.

the graph is really dense, e.g, p > 0.75. We observe the same pattern for n = 2048, 4096

and 8192. One may note that when p is close to 0, the random network is empty, but value

b does not converge to 0. This is an artifact caused by an overestimation in the KRONFIT

algorithm, due to the limitations of KRONFIT we have discussed in Section 2.3.2.

For any graph or its subgraphs, their Kronecker points should be located within one of

these three regions. This observation inspires us to represent a network using the location

of the Kronecker points of the network and its subgraphs, e.g., a network exhibiting a

core-periphery structure at the whole-network level, but most of its subgraphs are random.

2.7.2 Interpretability of Kronecker Hulls

As detailed in Section 2.7.1, a Kronecker point, representing any graph, is guaranteed to

fall within one of three regions: Core-Periphery, Dual-Core, and Random, where each

region represents a specific network structure. This property allows one to describe the

whole network, its subgraph(s), or a 3D space within its Kronecker hull.

We demonstrate the interpretability of Kronecker Hulls by analyzing our networks. For

each network, Table 2.3 provides the regions in which the whole graph and its 180 sub-

graphs are located. We make observations at the (I) whole-network or (II) subgraph levels:

I. Characterizing Networks. We identify region that the Kronecker point of the whole
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Table 2.3: Subgraphs of Networks. Subgraphs can exhibit a core-periphery structure ,

be dual-core , or random . Here, symbol → indicates that the network structure
observed (e.g., core-periphery) is the same as that of the smaller sampling proportion
(to the left). A parenthesis is used to list all network structures observed at a sampling
proportion.

Types Network
Sampling
Proportion 10% 20% 30% 40% 50% 60% 70% 80% 90% Whole Graph

Social
Networks

Brightkite

Flixster

Gowalla

Hyves ( )

Livejournal

MySpace ( )

Orkut

YouTube

Collaboration
Networks

Astro-Ph ( ) ( ) ( )

Cond-Mat ( ) ( )

Gr-Qc ( ) ( ) ( ) ( ) ( )

Hep-Th ( ) ( )

Road
Networks

Road-CA ( )

Road-PA ( ) ( )

Road-TX

Biological
Networks

Bio-Dmela

Bio-Grid-Yeast

Human-Brain

graph is within. We find that (1) all social networks are in the Core-Periphery region,

confirming past research indicating that social networks exhibit a core-periphery struc-

ture [47]; (2) three collaboration networks are in the Core-Periphery region, and the other

is in the Dual-Core region; (3) all road networks are within the Dual-Core region, which

can be explained by the fact that road networks often exhibit a recursive structure. For ex-

ample, the connections between two states are sparse, relying on a few highways or trunk

roads, while the connections within a state are denser. This road structure also applies to

two cities within a state; (4) all biological networks are in the Core-Periphery region, con-

firming past research that has observed a core-periphery structure within protein-protein

interaction networks [49] and human brain [50]; and (5) none is in the Random region.

II. Characterizing Subgraphs. By identifying the regions for subgraphs, we find that: (1)
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Figure 2.7: Kronecker hulls across Categories
(a) Road vs. Social
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(c) Road vs. Biological
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for social and biological networks, most subgraphs are in the same region in which the

whole network is in: the Core-Periphery region. This observation indicates that small

samples (e.g., 20%) of most social and biological networks exhibit properties similar to

that of the whole network. This observation also explains our previous observation on

the rapid drop of distances between sphere centers and the Kronecker point of the whole

network when the sampling proportion changes from 10% to 30%. We also observe that

when the sample is too small, the network core is not yet formed in some samples, leading

to those samples being in the Random region; (2) for road networks, we find sampled sub-

graphs that are less than 50% of the network are often in the Random region, and after that

exhibit a Dual-Core structure. This transition explains why the distances between sphere

centers and the Kronecker point of the whole network drop sharply when the proportion is

less than 60%; (3) for collaboration networks, the composition of subgraphs is complex.

For large samples, subgraphs exhibit either a Core-Periphery or a Dual-Core structure.

For small samples, we also observe some Random subgraphs. Also, subgraph structure

strongly depends on sampled nodes. This complexity explains why Kronecker points do

not cluster well in collaboration networks as same-size samples can exhibit various net-

work structures, e.g., for being from various academic communities.

2.8 Applications

We present some applications of network shapes. In particular, we use Kronecker hulls

to (A) identify the category a network belongs to (e.g., road), and (B) study the similarity

between two networks.
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Table 2.4: Overlap between Kronecker Hulls of Categories
Social Networks Collaboration Networks Biological Networks

Social Networks 100% 75.63% 8.92%
Collaboration Networks 75.63% 100% 4.22%

Biological Networks 8.92% 4.22% 100%

2.8.1 Network Categorization

Kronecker hulls can help categorize networks, i.e., determine whether a network is a so-

cial network or a biological one. We demonstrate the feasibility of network categorization

using Kronecker hulls. To categorize networks, we create a Kronecker hull for a family of

graphs (e.g., all social networks). Here, for each network category (biological/social/road-

/collaboration), we create a Kronecker hull from the Kronecker points (i.e., subgraphs) of

all the networks within that category. As depicted in Figure 2.7, Kronecker hull of road

networks is well-separated from those of the other three categories. Basically, given a

Kronecker hull of one road network, or Kronecker points of some subgraphs from a road

network, one can easily verify that it is not from the other three categories. For the other

three categories, we compute the overlap between their corresponding Kronecker hulls.

From Table 2.4, we find that biological networks have a small overlap with the other two

types of networks, meaning that it is not very difficult to distinguish a biological network

from a social or a collaboration network. However, the overlap between collaboration

networks and social networks is large, being over 75%. We plot both Kronecker hulls in

Figure 2.7d. This large overlap is not surprising, as both categories involve human so-

cial behavior. Clearly, a comprehensive supervised learning framework (e.g., that uses

Kronecker hull attributes as features) can further advance network categorization.

2.8.2 Computing Network Similarity

Kronecker hulls can capture various forms of (dis) similarity between two networks:

I. Consider two large graphs A and B to be 100% similar when A is a subgraph of B.

By construction, Kronecker hull of A will be within Kronecker hull of B, i.e., a 100%
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Table 2.5: Kronecker Hull Overlaps for Social Networks
Brightkite Flixster Gowalla Hyves Livejournal MySpace Orkut YouTube

Brightkite 100% 0.07% 12.2% 0 0 0 0 0
Flixster 0.07% 100% 50.14% 0 0 9.25% 0 49.03%
Gowalla 12.2% 50.14% 100% 0 10.56% 0 0 11.64%
Hyves 0 0 0 100% 0 0 0 0

Livejournal 0 0 10.56% 0 100% 0 0 0
MySpace 0 9.25% 0 0 0 100% 0 16.52%

Orkut 0 0 0 0 0 0 100% 0
YouTube 0 49.03% 11.64% 0 0 16.52% 0 100%

similarity leads to 100% overlap between the corresponding Kronecker hulls. Hence, the

overlap may indicate some level of similarity.

II. Consider two graphs to be similar, when they both belong to similar categories of

networks (e.g., a social network is similar to a collaboration network) and dissimilar, oth-

erwise. Our discussion in Section 2.8.1 showed that when networks belong to dissimilar

categories, there is little to no overlap between their Kronecker hulls. For instance, a

road network in our dataset will have no overlap with a random network from any other

category, while a social network is expected to have overlap with a collaboration network.

III. Consider two networks to be similar, when they are semantically similar, e.g., both

are video sharing networks. Here, we assume semantic similarity leads to some level

of network structure similarity. We show that Kronecker hulls can capture some level

of semantic (dis) similarity by taking social networks as an example. Table 2.5 lists the

overlap between the Kronecker hulls of each pair of the eight social networks. We make

the following observations: (1) various similar networks exhibit overlap. For example,

Brightkite and Gowalla, both location-based social networks, overlap. Also, MySpace,

YouTube and Flixster are well connected to each other, which may be explained by the

content they share. MySpace has a strong music emphasis, and YouTube and Flixster are

often used to share videos or music; and (2) social networks popular in specific countries

(e.g., Orkut and Hyves) are well separated from other networks.

We believe these observations motivate a systematic study on the connection between

graph similarity and overlap of Kronecker hulls, as part of our future work.
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2.9 Additional Related Work

In addition to related research discussed throughout the chapter, our work has links to the

following areas:

I. Network Visualization. Network visualization [51] aims to visualize large-scale net-

works in real-time to facilitate easy network exploration or specific applications, e.g., de-

tecting users with expertise [52]. Network shapes provide a compact and interpretable way

to visualize a network and its subgraphs.

II. Graph Compression. There has been an increasing interest in graph compression [53–

55], especially in large-scale networks. Storing the network shape provides an alternative

compact solution to graph compression. In our experiments on graphs with millions of

nodes, Kronecker hulls can often be represented with less than 40 boundary points.

2.10 Conclusions

We propose network shapes and a linear algorithm to construct one type of network shapes:

Kronecker Hulls. A Kronecker hull represents a network as a convex hull. Kronecker

hulls are compact, easy to visualize, and capture various properties of a network and its

subgraphs. We demonstrate the interpretability of Kronecker points, as a Kronecker point,

representing any graph, is guaranteed to fall within one of three regions: Core-Periphery,

Dual-Core, and Random. With this property, Kronecker hulls can be used to characterize

graphs (e.g., how does a 10% subgraph look like?), Moreover, we find that network shapes

can be used for applications such as network categorization (e.g., is this a social or a

biological network?), and for computing graph similarity.
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Chapter 3

Network-based Biometrics

3.1 Introduction

In Chapter 2, we demonstrate that network shapes can be used to characterize graphs,

to categorize networks, and to compute network similarity. In this chapter, we show

more applications of network shapes and we extend biometrics studies to network data,

by proposing two new problems in network studies: network identification and network

authentication. As we know, networks research has often been conducted on anonymized

graphs, especially for social networks, as data privacy is critical. To protect the users’

privacy while preserving network properties, anonymization techniques have been widely

used before publishing social network data [56, 57]. To validate the authenticity of such

anonymized graphs, it is natural to ask questions such as: Given a large graph G, can we

verify that it is a Facebook graph but not collected from Twitter, or a biological network?

Can we identify the source of an anonymized network, i.e., its network identity? To answer

these questions, the first natural solution that comes to mind is to check whether a network

contains a subgraph that is isomorphic to G. The problem is called subgraph isomorphism,

and is known to be NP-complete [58], so solving it is infeasible for most large networks.

Hence, we need an alternative solution that is reasonably accurate and highly efficient.

Problem Formulation. To identify a person, two types of systems have been designed

in biometrics literature: (1) identification systems and (2) authentication systems [59].

An identification system recognizes a subject without the subject claiming an identity,

i.e., “Who am I?”. It tries to match the subject with everyone enrolled in the system

database and obtains the best match. On the other hand, an authentication system either
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rejects or accepts the submitted claim of identity, i.e., “Am I who I claim to be?”. In

spite of their differences, sometimes the terms authentication and identification are used

interchangeably [59]. Inspired by biometrics research, we formulate two new problems:

1. Network Identification. Given a set of networks N = {N1, N2, ..., Nn}, and a sub-

graph G sampled from some Ni ∈ N using sampling strategy S, we want to identify

G, i.e., the network Ni from which G is sampled.

2. Network Authentication (or network identity-authentication). Subgraph G is claimed

to be sampled from a certain network Ni via sampling strategy S. The authentication

system either accepts or rejects this claim.

Following the problem formulation, our first aim is to build an identity to represent a

network, similar to how a fingerprint represents a person. We propose two ways to build a

network identity:

1. Embedding-based Identity. Intuitively, one can represent a network using a feature

vector or its graph embedding. Graph embedding methods aim to map a graph into

a low-dimensional vector that preserves the network structure [8]. Hence, one can

represent the identity of a network Ni with its embedding, and match the embedding of

subgraph G with that of other networks.

2. Distribution-based Identity. One limitation of the embedding-based identity is that

it is not unique, as graph embedding methods generally do not guarantee uniqueness

for different networks. Hence, inspired by ridge-based representation [60] for fin-

gerprints, we propose distribution-based identity. The ridge-based representation is

one of the most widely-used representations for fingerprints and it is based on the hy-

pothesis that ridge structures (minutiae, e.g. ridge ending and ridge bifurcation) and

their distributions are distinct across fingerprints. It inspires us to, instead of using

one embedding, represent a network identity as the distribution of embedding values
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for subgraphs of a network, so that the identity is unique and can preserve subgraph

information. These settings are a perfect match with network shapes.

The Present Work. We introduce network identification and network authentication with

the following contributions:

1. Network Identity. We introduce the network identity and two identity types: embedding-

based identity and distribution-based identity. We prove that the embedding-based

identity can capture graph structure information and/or other relationships between

samples (subgraphs) and the source network. We demonstrate that the distribution-

based identities are unique by showing that for real-world networks the similarity

among such identities for various networks is generally low. Our distribution-based

identities are visualizable in 3D and are easy to interpret; hence, we show examples on

how the structural differences in networks are reflected in their identities. We evaluate

the two types of identities in both identification/authentication problems.

2. Network Identification. We introduce two methods to predict the network from which

a graph is sampled using the developed network identities. The first is a supervised

learning method, which is highly accurate (84.4%). We also introduce an easier to

implement method that relies on the distances between the sample embedding to the

network identities, achieving a 70.8% accuracy.

3. Network Authentication. We propose two techniques to solve the network authenti-

cation problem: a supervised splitter, which has a low equal error rate, and a Voronoi

splitter, which allows controlling the false reject with an acceptable false accept rate

across networks.

The rest of the chapter is organized as follows. In Section 3.2, we introduce two types

of network identities, and connect the identities with the relationships between the sample

subgraphs and source network. The data used in our experiments is summarized in Section
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3.3. We discuss the uniqueness of identities and partial identity in Section 3.4. We pro-

pose methods to solve network identification in Section 3.5, and network authentication

in Section 3.6. An application in biometrics is explored in Section 3.7 and the limitations

of our work is discussed in Section 3.8. We review the related work in Section 3.9 and

conclude in Section 3.10.

3.2 Network Identity

The first step to identify a graph is to build an identity for it. We propose two types of

network identities: (1) embedding-based identity and (2) distribution-based identity.

3.2.1 Embedding-based Identity

In theory, any embedding method that can preserve network structural information and

the similarity between samples (subgraphs) and the network from which they are sampled

from can be used as an embedding-based identity. Here, we choose Kronecker points as the

embedding method and prove its utility for both network authentication and identification.

We focus on the connection between Kronecker Points and graph similarity.

Kronecker Points and Graph Similarity. Graph kernels have been traditionally used to

measure the similarity between two graphs [61]. Here, we prove that if Kronecker points

of two graphs are more similar (i.e., closer in the 3D space), the graphs are expected to

have higher similarity in terms of the random-walk graph kernel between them [62].

Theorem 3.2.1 (Kronecker Initiator and Graph Kernel). For graphs G1 and G2 generated

by probability matrices P1 and P2, where P1 and P2 are the kth Kronecker power of

Kronecker initiator matrices Θ1 and Θ2, i.e., P1 = Θ⊗k
1 ,P2 = Θ⊗k

2 , the expected random-

walk graph kernel between G1 and G2 is lower bounded by the product of the ℓ1-norm of
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Θ1 and Θ2, and the product of the sizes of G1 and G2:

E(K(G1, G2)) ≥ (|G1||G2|+|λ|(∥Θ1∥1∥Θ2∥1)k)−1, (3.1)

where λ denotes the decay factor of the graph kernel.

Proof. Random-walk graph kernel performs random walks on both graphs and counts the

number of matching walks, discounting longer walks. Random-walk graph kernel [62] is

formulated as K(G1, G2) = 1
|G1||G2|e

T (I − λA×)
−1e, where e denotes the all 1 vector,

λ denotes the decay factor of the graph kernel, I is the identity matrix, and A× is the

adjacency matrix of the direct product graph of G1 and G2, i.e., A× = AG1 ⊗AG2 . Hence,

I, A× ∈ R|G1||G2|×|G1||G2|,

K(G1, G2) =
1

|G1||G2|
eT (I − λA×)

−1e

=
1

|G1||G2|
∥(I − λA×)

−1∥1

≥ 1

|G1||G2|
∥I∥1

∥I − λA×∥1

=
1

∥I − λA×∥1

≥ 1

∥I∥1+|λ|∥A×∥1
.

As ∥A×∥1= ∥AG1 ⊗AG2∥1= ∥AG1∥1∥AG2∥1 and E(∥AG1∥1) = ∥Θ1∥k1 and E(∥AG2∥1) =

∥Θ2∥k1, using Jensen’s inequality, we get

E(K(G1, G2)) ≥ E(
1

∥I∥1+|λ|∥A×∥1
)

≥ (|G1||G2|+|λ|(∥Θ1∥1∥Θ2∥1)k)−1.

Corollary 3.2.1.1 (Kronecker Points and Graph Kernel). In Theorem 3.2.1, when Θ1 and
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Θ2 are 2 × 2 Kronecker initiator matrices, E(K(G1, G2)) ≥ (|G1||G2|+|λ|(⟨Θ1,Θ2⟩F +

3
2
(∥Θ1∥22+∥Θ2∥22))k)−1, where ⟨·, ·⟩F denotes Frobenius inner product.

Proof. Assume Θ1 =
[
a1 b1
c1 d1

]
and Θ2 =

[
a2 b2
c2 d2

]
. ∥Θ1∥1∥Θ2∥1= (a1 + b1 + c1 + d1)(a2 +

b2 + c2 + d2) =
∑

x∈{a,b,c,d}
x1x2 +

∑
x,y∈{a,b,c,d}

x ̸=y

x1y2 ≤ ⟨Θ1,Θ2⟩F +
∑

x,y∈{a,b,c,d}
x ̸=y

x2
1+y22
2

=

⟨Θ1,Θ2⟩F + 3
2
(∥Θ1∥22+∥Θ2∥22).

Corollary 3.2.1.1 indicates that two graphs are expected to be more similar if their Kro-

necker initiator matrices have larger inner products.

Kronecker Points of Sample Subgraphs. Next, we demonstrate that Kronecker points

can preserve the relationships between sampled subgraphs and the network from which

they are sampled. In Theorem 3.2.2, we prove that if a network and its subgraph are

perfectly fitted by two Kronecker initiator matrices, then the Euclidean distance between

their Kronecker points is well bounded, corroborating previous empirical findings that

Kronecker points of large sampled subgraphs are close to that of the whole network [12].

Theorem 3.2.3 gives the error bound of the fitting process using KRONFIT algorithm.

Theorem 3.2.2 (Kronecker Points of Samples). For network G = (V,E), |V |= 2k gen-

erated by a Stochastic Kronecker graphs probability matrix P = Θ⊗k and its subgraph

Gs sampled using Random Node Sampling with sampling proportion p where p > 0.5,1

the expected ℓ1-norm of the difference of their adjacency matrices is E(∥AG − AGs∥1) =

(1− p2)∥Θ∥k1.

Corollary 3.2.2.1. If a network G and its subgraph Gs are perfectly fitted by two Kro-

necker initiator matrices Θ and Θs, ∥Θ−Θs∥1= k
√

1− p2∥Θ∥1.

Corollary 3.2.2.1 bounds the distance between Kronecker points of a graph and its sub-

graph, assuming perfect fit. It also indicates that the Kronecker points of small subgraphs

1The condition p > 0.5 ensures that the size of the subgraph is greater than 2k−1, and when performing
the fitting, KRONFIT will add isolated nodes so that the number of nodes becomes 2k [41].
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can be far away from the source network. However, a real-world graph can rarely be per-

fectly fit by Kronecker initiators. In Theorem 3.2.3 we will discuss the bounds on fitting

error.

Theorem 3.2.3 (Error Bound on Fitting Real-World Graphs). For graph G = (V,E) with

|V |= 2k, fitting the most likely Kronecker initiator matrix Θ provides an upper bound on

the expected error E(∥AG − P∥1).

Proof. Denote σ as a node mapping from AG to P and (AG −P)σ the difference between

AG and P , given σ. Then,

∥(AG − P)σ∥1=
∑

(u,v)∈E

(1− P [σu, σv]) +
∑

(u,v)/∈E

P [σu, σv]

= |V |2−(
∑

(u,v)∈E

P [σu, σv] +
∑

(u,v)/∈E

(1− P [σu, σv]))

≤ |V |2−|V |2(
∏

(u,v)∈E

P [σu, σv]
∏

(u,v)/∈E

(1− P [σu, σv]))
1

|V |2

= |V |2(1− (
∏

(u,v)∈E

P [σu, σv]
∏

(u,v)/∈E

(1− P [σu, σv]))
1

|V |2 ).

As
∏

(u,v)∈E P [σu, σv]
∏

(u,v)/∈E(1 − P [σu, σv]) is the likelihood P (G|P , σ) in Stochastic

Kronecker Graphs [38], so

E(∥AG − P∥1) =
∑
σ

∥(AG − P)σ∥1P (σ)

≤ |V |2(1−
∑
σ

P (G|P , σ)
1

|V |2P (σ))

= |V |2(1− E(P (G|P)
1

|V |2 )).

KRONFIT estimates the initiator matrix by maximizing E(P (G|P)); hence, KRONFIT

provides an approximation on the upper bound of E(∥AG − P∥1).
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Alternative Estimation of Kronecker Points. In some cases, the KRONFIT algorithm

may lead to over/underestimation. When the number of nodes within a real-world network

is not a power of 2, KRONFIT will add isolated nodes so that the number of nodes becomes

a power of 2 [41]. Adding isolated nodes may lead to underestimation of the parameters

as it decreases the overall edge density and core strength of the groups. On the other

hand, as the input to KRONFIT is a list of edges, when the network is extremely sparse

and the graph size is small, KRONFIT can overestimate, as it overlooks real isolated nodes

within the network [12]. Therefore, in this chapter, we use another estimator of Kronecker

initiator matrix for comparison. Instead of maximizing the likelihood, the method-of-

moments estimator [63] minimizes the difference between the counts for edges, triangles,

wedges, and 3-stars of a real graph and the expected counts of the fitted Kronecker graph.

Compared to KRONFIT, it gets closer to the counts of these local structures. However,

our experiments show that in general the Kronecker points estimated by the method-of-

moments estimator lead to less classification performance on graphs. In the rest of the

chapter, by default, we consider Kronecker points estimated by KRONFIT, and we will

explicitly mention, if the method-of-moments estimator is used.

3.2.2 Distribution-based Identity

Here, we aim to represent a network identity with the distribution of embedding values for

subgraphs of a network. Therefore, we construct the distribution-based identity based on

the network representation we proposed in Chapter 2: Network Shapes. Here, we build

a network shape, more specifically the Kronecker Hull for each network and use it as its

distribution-based identity, with the same setup in 2.5. The Kronecker hull is used as the

distribution-based identity.



43

3.3 Data Description

For our experiments, we use the same network dataset in Section 2.5, and we add two

more networks as follows:

• Road-BEL [43]: Belgium’s OpenStreetMap road network.

• Human-Brain [64]: the network of human brain.

In total, we have twenty real-world networks from four general network categories: social

networks, collaboration networks, road networks, and biological networks.

3.4 Uniqueness and Partial Network Identity

3.4.1 Uniqueness of Network Identity

Uniqueness is a basic requirement for an identity. As mentioned, graph embedding meth-

ods do not generally guarantee uniqueness, which is also true for Kronecker points. Hence,

we check whether distribution-based identity can capture the distinctiveness of networks.

We define the distribution-based identity similarity and investigate the similarity between

identities of different networks.

Distribution-based Identity Similarity. To view how similar two distribution-based

identities are, let us take a look at an example first. We define the similarity between
Table 3.1: Distribution-based Identity Similarity

Types Network Brightkite Flixster Gowalla Hyves Livejournal MySpace Orkut YouTube Astro-Ph Cond-Mat Gr-Qc Hep-Th Road-BEL Road-CA Road-PA Road-TX Bio-Dmela Bio-Grid-Human Bio-Grid-Yeast Human-Brain

Social
Networks

Brightkite 1 0 0.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0.09 0.18 0 0
Flixster 0 1 0.12 0 0 0.05 0 0.22 0.07 0 0 0.01 0 0 0 0 0 0 0 0
Gowalla 0.04 0.12 1 0 0.01 0.01 0 0.04 0.12 0.01 0.01 0.02 0 0 0 0 0 0.01 0 0
Hyves 0 0 0 1 0 0.01 0 0 0 0.03 0.02 0.04 0 0 0 0 0 0 0 0
Livejournal 0 0 0.01 0 1 0 0 0 0.04 0 0 0 0 0 0 0 0 0 0 0
MySpace 0 0.05 0.01 0.01 0 1 0 0.07 0.04 0.03 0.02 0.03 0 0 0 0 0 0 0 0
Orkut 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
YouTube 0 0.22 0.04 0 0 0.07 0 1 0.05 0.01 0.01 0.02 0 0 0 0 0 0 0 0

Collaboration
Networks

Astro-Ph 0 0.07 0.12 0 0.04 0.04 0 0.05 1 0.08 0.05 0.05 0 0 0 0 0 0 0 0
Cond-Mat 0 0 0.01 0.03 0 0.03 0 0.01 0.08 1 0.45 0.57 0 0 0 0 0 0 0 0
Gr-Qc 0 0 0.01 0.02 0 0.02 0 0.01 0.05 0.45 1 0.43 0 0 0 0 0 0 0 0
Hep-Th 0 0.01 0.02 0.04 0 0.03 0 0.02 0.05 0.57 0.43 1 0 0 0 0 0 0 0 0

Road
Networks

Road-BEL 0 0 0 0 0 0 0 0 0 0 0 0 1 0.23 0 0.13 0 0 0 0
Road-CA 0 0 0 0 0 0 0 0 0 0 0 0 0.23 1 0.22 0.48 0 0 0 0
Road-PA 0 0 0 0 0 0 0 0 0 0 0 0 0 0.22 1 0.25 0 0 0 0
Road-TX 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0.48 0.25 1 0 0 0 0

Biological
Networks

Bio-Dmela 0.09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.49 0 0
Bio-Grid-Human 0.18 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0.49 1 0 0
Bio-Grid-Yeast 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.02
Human-Brain 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 1
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identities using Jaccard Index:

similarity(A,B) =
volume(IDA ∩ IDB)

volume(IDA ∪ IDB)
, (3.2)

where volume is the volume of a distribution-based identity, and IDA and IDB represent

identities of networks A and B, respectively. It is easy to find that volume(IDA ∪ IDB) =

volume(IDA) + volume(IDB) − volume(IDA ∩ IDB), and volume(IDA ∩ IDB) is easy to

calculate as intersection of convex sets is convex. Table 3.1 lists the similarity between

all pairs of the identities (the results have been rounded to two digits). We observe that

(1) similarity between most identities (i.e., shapes) is small, i.e., below 0.1; (2) networks

from different categories in general have very low similarity. Road networks and biologi-

cal networks are not similar to networks from other categories, while social networks and

collaboration networks have some similarity; (3) within the same category, some similarity

exists. For example, the similarity between YouTube and Flixster is 0.22, road networks

are relatively similar to each other, and three collaboration networks are also relatively

similar. In general, the highest similarity is 0.57, which does not violate the uniqueness

of the network identity across different networks. Note that we do not claim absolute

uniqueness for the distribution-based identity, as it is built using graph sampling; how-

ever, we assume that the distribution of embedding values for subgraphs can capture the

distinctness of the network identities. Moreover, previous studies [12] have shown that

points representing samples of the same proportion exhibit a clustering phenomenon, indi-

cating the stability of a distribution-based identity to some extent, which we also observe

in our experiments (see Sections 3.5 and 3.6). When we estimate Kronecker points using

the method-of-moments estimator, we find similar patterns but the similarity between the

network identities are generally higher (see Table 3.2).
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Table 3.2: Distribution-based Identity Similarity (using method-of-moments estimator)
Types Network Brightkite Flixster Gowalla Hyves Livejournal MySpace Orkut YouTube Astro-Ph Cond-Mat Gr-Qc Hep-Th Road-BEL Road-CA Road-PA Road-TX Bio-Dmela Bio-Grid-Human Bio-Grid-Yeast Human-Brain

Social
Networks

Brightkite 1 0.06 0.03 0.02 0 0.03 0.13 0 0 0.02 0.03 0 0 0 0 0 0.06 0.28 0 0
Flixster 0.06 1 0 0.07 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0.04 0 0
Gowalla 0.03 0 1 0 0.01 0.21 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0
Hyves 0.02 0.07 0.01 1 0 0.03 0 0 0 0 0 0 0 0 0 0 0.01 0.03 0 0
Livejournal 0 0 0.01 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MySpace 0.03 0 0.21 0.03 0 1 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0
Orkut 0.13 0 0.06 0 0 0.03 1 0 0 0 0 0 0 0 0 0 0 0.02 0 0
YouTube 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Collaboration
Networks

Astro-Ph 0 0 0 0 0 0 0 0 1 0.02 0.03 0 0 0 0 0 0.06 0.02 0.01 0
Cond-Mat 0.02 0 0 0 0 0 0 0 0.02 1 0.48 0.05 0 0 0 0 0.49 0.15 0 0
Gr-Qc 0.03 0 0 0 0 0 0 0 0.03 0.48 1 0.12 0 0 0 0 0.49 0.13 0 0
Hep-Th 0 0 0 0 0 0 0 0 0 0.05 0.12 1 0.16 0.20 0.03 0.13 0.03 0 0 0

Road
Networks

Road-BEL 0 0 0 0 0 0 0 0 0 0 0 0.16 1 0.77 0.08 0.78 0 0 0 0
Road-CA 0 0 0 0 0 0 0 0 0 0 0 0.20 0.77 1 0.15 0.75 0 0 0 0
Road-PA 0 0 0 0 0 0 0 0 0 0 0 0.03 0.08 0.15 1 0.13 0 0 0 0
Road-TX 0 0 0 0 0 0 0 0 0 0 0 0.13 0.78 0.75 0.13 1 0 0 0 0

Biological
Networks

Bio-Dmela 0.06 0.01 0 0.01 0 0 0 0 0.06 0.49 0.49 0.03 0 0 0 0 1 0.25 0 0
Bio-Grid-Human 0.28 0.04 0 0.03 0 0 0.02 0 0.02 0.15 0.13 0 0 0 0 0 0.25 1 0 0
Bio-Grid-Yeast 0 0 0 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0 0 1 0.09
Human-Brain 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.09 1

3.4.2 Partial Distribution-based Network Identity

Theoretically, one can sample all the possible subgraphs from a network to build a distribution-

based identity that is “complete” (similar to how one can have a high resolution fingerprint

scan). However, this is inefficient. Let us assume the network identity we have constructed

is practically “complete”. A few questions comes up: How sensitive is a network identity

to the number of sample points taken? Due to the definition of convex hull, if we take

a subset of Kronecker points of the complete network identity to build a partial network

identity, the partial network identity should also be a subset of the complete network iden-

tity. In other words, the complete network identity shrinks to a partial network identity.

How different are the complete network identity and a partial one? To answer these ques-

tions, we study the partial network identity by varying the sampling step size s and the

number of independent samples for each proportion t, and check the similarity between

the partial identities and the complete one. We first fix s = 10% and vary t from 5 to

20. Figure 3.1 indicates that the distribution-based identity is in general insensitive to t as

(1) for the smallest t = 5, the similarity is over 50%; (2) for most networks, by sampling

13 to 14 subgraphs for each proportion, we can create a partial network identity that is

90% similar to the complete network identity. This means taking fewer samples of the
Figure 3.1: Distribution-based Identity Change with t
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Figure 3.2: Distribution-based Identity Change with s
(a) Social Networks
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same proportion will not change the identity much; the observation follows that of [12],

where Kronecker points representing samples of the same proportion exhibit a clustering

phenomenon. Next, we fix t = 20, and vary the step size s from 10% to 50%. Figure 3.2

shows that the network identity is more sensitive to s as (1) the similarity drops quickly

with the increase of sampling step size, and (2) the similarity drops to 0 as the volume

turns to 0 (when the identity becomes 2-dimensional). The observation shows that by set-

ting s smaller and taking more samples of different sizes will lead to a more stable network

identity. For the partial identities using the method-of-moments estimator, the patterns are

similar, but in general the partial identities are more sensitive to the change of t and s. In

Sections 3.5 and 3.6, we will discuss the performance of the partial identity for the network

identification/authentication problems.

3.5 Network Identification

3.5.1 Experimental Setup

From each network, we sample many subgraphs representing graphs G which are to be

identified/authenticated. We vary the sampling proportion from 10% to 99% and sample

using random node sampling. For each proportion, we sample two subgraphs. Hence, for

each network we have 90× 2 = 180 subgraphs, and for 20 networks, we have 180× 20 =

3, 600 samples to be identified/authenticated.
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3.5.2 Identification with Embedding-based Identity

To use the embedding-based identity for identification, we embed both G and all other Ni

as Kronecker points. We consider the identification problem in the following way: Given

the n (=20) identities of Ni’s, we split the whole embedding space, the 1×1×1 cube, into

n regions, so that each region represents the embedding space for the samples of a certain

network. In our work, we propose two splitters.

Voronoi Splitter. It calculates the Euclidean distance between the Kronecker point of a

graph G to that of all other networks (Ni’s) and reports the closest Ni as the identified

network. This is equivalent to building a Voronoi diagram [65] for the set of Kronecker

points of all Ni’s, where the Voronoi cell for Nj denotes the set of graphs identified as Nj .

Supervised Splitter. Instead of reporting the closest Ni, for each sample G, we use the

20 distances (from a sample to each Ni) as features, and the name of the networks as the

class label, to train a multiclass classification model. In this experiment, we use 10-fold

cross validation, and decision tree, linear SVM, k-NN and bagged trees as our classifiers.

We provide four baselines for comparison.

1. Top Eigenvalues. Top eigenvalues have been used to study graph similarity [66]. We

compute the top 5 eigenvalues of each sample as features for classification. The time

complexity of the method is O(n2), where n is the number of nodes.

2. Truncated Spectral Moments. The spectral moments of the random walk transition

matrix of a network have been proven to be closely related to the network structure

and various network properties [15]. Therefore, we compute the truncated (first four)

spectral moments of each sample as features for classification. We use the APPROX-

SPECTRALMOMENT algorithm proposed by [67] to compute the accurate estimates of

the low-order moments. The algorithm estimates the moments by simulating many ran-

dom walks and computes the proportion of closed walks. To compute the ℓ-th spectral
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Table 3.3: Network Identification Accuracy with Embedding-based Identity
Type Voronoi Supervised Baselines

Splitter Splitter Top Eigenvalues Truncated
Spectral Moments Graph2Vec Random

Prediction (1/n)
All
Networks 40.2% 84.0% 62.4% 82.0% 81.7% 5%

Social
Networks 50.3% 94.2% 74.8% 95.5% 83.7% 12.5%

Collaboration
Networks 58.2% 78.8% 70.9% 94.8% 97.4% 25%

Road
Networks 32.9% 67.0% 44.9% 51.2% 86.3% 25%

Biological
Networks 66.5% 98.3% 90.4% 99.7% 89.9% 25%

moment by simulating s random walks, it takes O(sℓ) time.

3. Graph2Vec. GRAPH2VEC is a graph embedding technique, which views a graph as a

document and the rooted subgraphs around each node as words. It extends document

embedding neural networks to embed a graph as a vector [68].

4. Random Prediction. A simple random prediction, so the accuracy will be 1/n, where

n is the number of networks.

We evaluate the methods for all networks and within each network category and report

the results in Table 3.3. For supervised splitter, we report the result of the best classifier,

as the prediction turns out to be insensitive to the choice of learning algorithm. Table 3.3

illustrates that (1) both Voronoi splitter and Supervised Splitter outperform the random

prediction; (2) Voronoi splitter does not perform as well as the other baselines. This is not

surprising, as Theorem 3.2.2 has shown that when the sampling proportion p is small, the

Kronecker point of the sample can be far from that of the whole network; (3) Supervised

Splitter performs best and achieves an overall accuracy of 84.0%. It is slightly better than

Truncated Spectral Moments and GRAPH2VEC, and significantly better than the other

methods; and (4) the performance on road networks is not as good as other categories,

while GRAPH2VEC performs relatively stable across different categories. Comparing both

methods, we find that (1) Voronoi Splitter is simple and does not need a training process,

but can make more mistakes, especially on smaller samples; (2) Supervised Splitter per-

forms better as it learns from the distances from the samples to different networks, making

more informed decisions. Table 3.4 lists the result of using the method-of-moments esti-
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Table 3.4: Network Identification Accuracy with Embedding-based Identity (method-of-
moments estimator)

Type Voronoi Supervised Baselines

Splitter Splitter Top Eigenvalues Truncated
Spectral Moments Graph2Vec Random

Prediction (1/n)
All
Networks 37.7% 61.6% 62.4% 82.0% 81.7% 5%

Social
Networks 53.5% 67.3% 74.8% 95.5% 83.7% 12.5%

Collaboration
Networks 39.9% 75.3% 70.9% 94.8% 97.4% 25%

Road
Networks 24.0% 35.1% 44.9% 51.2% 86.3% 25%

Biological
Networks 69.4% 88.1% 90.4% 99.7% 89.9% 25%

mator. The result is not as good as using KRONFIT, but is still comparable with the top

eigenvalues baseline.

3.5.3 Identification with Distribution-based Identity

To use the distribution-based identity for identification, we follow a roadmap similar to

that of the embedding-based method. The difference is that the network identity Ni is

represented as a 3D shape. Therefore, we need to define the distance between a 3D point

and a 3D shape. Considering definitions of the distance between two sets of points and

geometrical properties of a convex polyhedron, we consider the following three Euclidean

distances as candidates:

1. dshortest. dshortest is defined based on the shortest distance between two points from sets

A and B, respectively:

d(A,B) = inf{d(x, y)|x ∈ A, y ∈ B}. (3.3)
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Figure 3.3: Three Distances between a 3D point and a 3D Shape.
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Table 3.5: 90th Percentile of the Distance Distribution
Type Network dshortest dextreme dHausdorff

Social
Networks

Brightkite 0.0139 0.0861 0.6017
Flixster 0.0149 0.0344 0.3476
Gowalla 0.0257 0.0494 0.5898
Hyves 0.0149 0.0331 0.5218
Livejournal 0.0069 0.0247 0.1547
MySpace 0.0130 0.0325 0.4399
Orkut 0.0055 0.0161 0.1713
YouTube 0.0138 0.0394 0.4687

Collaboration
Networks

Astro-Ph 0.0196 0.0572 0.5938
Cond-Mat 0.0189 0.0670 1.0400
Gr-Qc 0.0143 0.0818 1.1514
Hep-Th 0.0147 0.0394 1.0730

Road
Networks

Road-BEL 0.0306 0.0598 0.8940
Road-CA 0.0182 0.0595 0.7866
Road-PA 0.0297 0.0917 0.8327
Road-TX 0.0220 0.0812 0.7651

Biological
Networks

Bio-Dmela 0.0087 0.0413 0.7175
Bio-Grid-Human 0.0127 0.0489 0.5932
Bio-Grid-Yeast 0.0040 0.0483 0.2489
Human-Brain 0.0063 0.0248 0.1341

In our case, it refers to the distance from a point to the closest point on the surface (all

the facets) of the shape if the point is outside the shape; otherwise it is 0.

2. dHausdorff . Hausdorff distance is used to measure how far two sets A and B are in a

metric space:

dH(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}. (3.4)

It is the largest of the distances from a point in one set to the closest point in the other

and is commonly used in computer vision research [69]. In our case, dHausdorff refers

to the distance from a point to the farthest boundary point (i.e., extreme points) of the

shape.

3. dextreme. All boundary points of a network shape are some of the Kronecker points of

samples used for generating the shape. Hence, we also use the distance from a point to

the closest boundary point of the shape.

Figure 3.3 is a simple example to illustrate these three distances. For each network and the

test samples drawn from it, we list the 90th percentile of the distances distribution in Tables

3.5 and 3.6. Based on the definitions, we know that dshortest ≤ dextreme ≤ dHausdorff . From
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Table 3.6: 90th Percentile of the Distance Distribution (method-of-moments estimator)
Type Network dshortest dextreme dHausdorff

Social
Networks

Brightkite 0.0143 0.0480 0.3896
Flixster 0.0104 0.0308 0.5672
Gowalla 0 0.0510 0.2606
Hyves 0 0.0307 0.5497
Livejournal 0 0.0459 0.0957
MySpace 0 0.0324 0.1788
Orkut 0.0171 0.0372 0.1825
YouTube 0 0.0272 0.1253

Collaboration
Networks

Astro-Ph 0.0176 0.0501 0.2997
Cond-Mat 0.0357 0.0695 0.8505
Gr-Qc 0.0263 0.0790 0.9066
Hep-Th 0.0375 0.1074 1.1391

Road
Networks

Road-BEL 0.0071 0.3314 1.6682
Road-CA 0.0295 0.5531 1.6576
Road-PA 0.0299 0.1365 1.6636
Road-TX 0.0502 0.5129 1.6470

Biological
Networks

Bio-Dmela 0.0208 0.0678 0.7309
Bio-Grid-Human 0.0215 0.0760 0.5702
Bio-Grid-Yeast 0.0050 0.0806 0.4375
Human-Brain 0.0115 0.0321 0.1902

Table 3.7: Network Identification Accuracy with Distribution-based Identity
Type Voronoi Splitter Supervised Baselines

dshortest dextreme dhausdorff dweighted Splitter Top Eigenvalues Truncated
Spectral Moments Graph2Vec Random

Prediction (1/n)
All
Networks 61.6% 63.8% 16.8% 70.8% 84.4% 62.4% 82.0% 81.7% 5%

Social
Networks 81.3% 81.4% 25.7% 86.7% 96.4% 74.8% 95.5% 83.7% 12.5%

Collaboration
Networks 65.7% 63.7% 25% 75.0% 84.2% 70.9% 94.8% 97.4% 25%

Road
Networks 48.8% 46.7% 35% 52.4% 76.8% 44.9% 51.2% 86.3% 25%

Biological
Networks 70.8% 63.1% 34.6% 76.3% 80.4% 90.4% 99.7% 89.9% 25%

the table, we observe that most of the Kronecker points of the subgraphs are around the

surface and the boundary of the network shape of the source network. For most networks,

dHausdorff is large, especially for collaboration networks, which indicates that different sub-

graphs of the same network can be far from each other.

Next, we use the three distances with the two splitters we used in the last section for iden-

tification. To make our approach clear, we provide an example in Figure 3.4. We report

the result in Table 3.7. We find that for Voronoi Splitter, compared with the embedding-

based identity, the distribution-based identity with dshortest and dextreme improves perfor-

mance significantly. It can outperform both Top Eigenvalues and Random Prediction, as

the distribution-based identity can preserve subgraph information. It is not surprising that

dHausdorff does not perform well as it can be explained by our observation and discussion of

the 90th percentile of the distance distribution. Based on these observations, we consider
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Figure 3.4: An example of the two splitters. Here, we have three distribution-based
identities in our database: Orkut, YouTube, and road network of California. Our goal is
to identify a candidate graph, which is the red point. To identify, we check the distances
between the red point and the three 3D shapes. For Voronoi splitter, we pick the closest
shape, in this case Orkut, as its identity. For supervised splitter, we use distances to all
network identities as features and the network name as the label to train a classifier.

using a combination of these three distances for identification. We use the weighted aver-

age dweighted = w1×dshortest+w2×dextreme+w3×dHausdorff , where w1+w2+w3 = 1. To get

the best weights, one can use supervised learning for learning the weights. Here, for sim-

plicity, we do grid search on the feasible weights w1, w2, w3 and plot the accuracy change

in Figure 3.5a. The plot shows that the accuracy is high when w1 +w2 ≈ 1 and it drops as

w3 increases. The best accuracy is 70.8% with w1 = 0.87, w2 = 0.13, w3 = 0. Figure 3.5b

provides the accuracy change when w3 is set to 0, i.e., w1 +w2 = 1. We find the accuracy

increases quickly when w1 increases from 0 to 0.7 and drops quickly when w1 is greater

than 0.9. Based on the observations, we set dweighted = 0.87 × dshortest + 0.13 × dextreme,

and in general dweighted performs best among these distances.

For Supervised Splitter, we use dshortest, dextreme, and dHausdorff as features. Each graph

G has 3 × 20 = 60 features for all networks, and we use the name of the networks as

the class labels. Table 3.7 shows that compared with the Embedding-based identity, the

performance slightly improves and it reaches an overall accuracy 84.4%.

We conduct the same experiments by using the method-of-moments estimator, and Table

3.8 indicates that it performs slightly better than the Embedding-based identity, but not as
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Table 3.8: Network Identification Accuracy with Distribution-based Identity (method-of-
moments estimator)

Type Voronoi Splitter Supervised Baselines

dshortest dextreme dhausdorff dweighted Splitter Top Eigenvalues Truncated
Spectral Moments Graph2Vec Random

Prediction (1/n)
All
Networks 45.9% 39.3% 20.2% 51.5% 64.1% 62.4% 82.0% 81.7% 5%

Social
Networks 52.5% 41.5% 28.1% 53.7% 68.5% 74.8% 95.5% 83.7% 12.5%

Collaboration
Networks 51.4% 52.5% 31.9% 67.8% 80.1% 70.9% 94.8% 97.4% 25%

Road
Networks 36.7% 26.8% 23.3% 32.6% 43.9% 44.9% 51.2% 86.3% 25%

Biological
Networks 77.5% 76.7% 25% 88.6% 89.6% 90.4% 99.7% 89.9% 25%
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Figure 3.5: Accuracy with Weighted Distance dweighted

good as using KRONFIT.

Identification with Partial Network Identity. As discussed in Section 3.4, partial distribution-

based network identity can be constructed similar to the complete network identity by

taking fewer sample subgraphs. We investigate how effective partial distribution-based

identities are in the network identification task. Based on the previous study on the sim-

ilarity of partial network identity and complete network identity, we speculate that the

network identification accuracy is more sensitive to the change of the sampling step size

s. Figure 3.6a and 3.6b illustrate the accuracy change of Voronoi splitter (using dweighted)

and Supervised Splitter respectively with different s and t configurations. In general, the

accuracy does not change with the number of samples t for each proportion and it slightly

drops with the increase in sampling step size s.
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Figure 3.6: Prediction Performance with Partial Identity. (1) The Supervised Splitter
is robust to the change of both t and s. The accuracy does not change with the number of
samples t for each proportion and it slightly drops with the increase in sampling step size
s from 85% to 83%. (2) Similar patterns are observed for Voronoi Splitter. Differently, the
accuracy decreases more with the increase of s, from 70% to 58%.

3.6 Network Authentication

For network authentication, given the distance from the identity of G to that of a network

Ni, we aim to accept or reject the claim that G is sampled from Ni.

3.6.1 Authentication

Different from network identification, for network authentication, we need to split the

whole embedding space into two regions: the accept and reject regions. We also propose

two methods: a Voronoi splitter and a supervised splitter.

Voronoi Splitter. For the embedding-based identity, we use the r-percentile of the dis-

tances from the Kronecker points of samples to that of the source network as a threshold.

If the distance between identities of G and Ni is less than threshold d, we accept the claim;

otherwise, we reject it. An advantage of this method is that we can control the false reject

rate (FRR) of the authentication system, e.g., in one experiment, we set r = 90, so FRR is

fixed at 10%. It allows one to have a geometric interpretation of this splitter. That is, we

create a ball centered at the Kronecker point of the network with a diameter equal to 2×d.

Everything inside the ball (the boundary included) will be accepted and everything outside
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Table 3.9: Authentication with Voronoi Splitter (r = 90)
Type Networks Embedding-based Distribution-based (dshortest)

Accuracy AUC FAR Accuracy AUC FAR

Social
Networks

Brightkite 39.83% 0.61 62.51% 97.81% 0.94 1.73%
Flixster 61.67% 0.67 38.92% 90.77% 0.90 9.18%
Gowalla 48.72% 0.67 53.27% 78.52% 0.84 22.16%
Hyves 39.50% 0.54 62.16% 99.04% 0.95 0.42%
Livejournal 84.58% 0.62 11.81% 98.52% 0.95 0.98%
MySpace 55.72% 0.70 45.82% 94.32% 0.92 5.42%
Orkut 85.31% 0.45 10.20% 99.44% 0.95 0.00%
YouTube 48.08% 0.64 53.71% 91.57% 0.91 8.33%

Collaboration
Networks

Astro-Ph 40.08% 0.59 40.08% 77.50% 0.83 23.24%
Cond-Mat 35.00% 0.56 67.37% 78.77% 0.84 21.90%
Gr-Qc 5.08% 0.50 99.91% 79.58% 0.84 21.04%
Hep-Th 21.17% 0.47 81.67% 84.54% 0.87 15.78%

Road
Networks

Road-BEL 5.03% 0.48 99.80% 88.33% 0.89 11.75%
Road-CA 16.67% 0.41 86.02% 90.70% 0.90 9.28%
Road-PA 7.42% 0.43 96.49% 89.20% 0.90 10.85%
Road-TX 8.06% 0.47 95.79% 89.97% 0.90 10.03%

Biological
Networks

Bio-Dmela 37.97% 0.46 62.89% 97.96% 0.94 1.57%
Bio-Grid-Human 36.58% 0.54 65.32% 92.80% 0.91 7.05%
Bio-Grid-Yeast 88.31% 0.84 11.17% 98.18% 0.94 1.34%
Human-Brain 95.19% 0.93 4.53% 98.95% 0.95 0.52%

Table 3.10: Authentication with Voronoi Splitter (moment based r = 90)
Type Networks Embedding-based Distribution-based (dshortest)

Accuracy AUC FAR Accuracy AUC FAR

Social
Networks

Brightkite 87.00% 0.46 8.42% 89.81% 0.90 10.20%
Flixster 89.14% 0.47 6.17% 98.39% 0.94 1.17%
Gowalla 90.22% 0.47 5.03% 82.44% 0.88 18.19%
Hyves 93.81% 0.49 1.26% 92.78% 0.93 7.19%
Livejournal 91.75% 0.48 3.42% 95.56% 0.96 4.47%
MySpace 91.53% 0.48 3.65% 84.80% 0.90 15.82%
Orkut 88.11% 0.48 7.46% 94.11% 0.92 5.67%
YouTube 94.78% 0.50 0.23% 90.86% 0.93 9.33%

Collaboration
Networks

Astro-Ph 88.56% 0.48 6.96% 89.86% 0.90 10.15%
Cond-Mat 25.97% 0.60 77.78% 84.97% 0.87 15.29%
Gr-Qc 26.44% 0.55 76.70% 84.03% 0.87 16.29%
Hep-Th 22.75% 0.59 81.23% 94.47% 0.92 5.29%

Road
Networks

Road-BEL 9.28% 0.32 93.30% 89.14% 0.90 10.91%
Road-CA 5.03% 0.50 99.94% 86.58% 0.88 13.60%
Road-PA 7.44% 0.37 95.79% 86.81% 0.88 13.36%
Road-TX 5.00% 0.50 100.00% 86.81% 0.88 13.36%

Biological
Networks

Bio-Dmela 31.28% 0.52 70.99% 86.47% 0.88 13.71%
Bio-Grid-Human 41.22% 0.61 60.99% 84.19% 0.87 16.11%
Bio-Grid-Yeast 43.67% 0.70 59.30% 93.47% 0.92 6.35%
Human-Brain 97.81% 0.94 1.78% 99.14% 0.95 0.38%

the ball is rejected. For the distribution-based identity, we know from the distribution of

dshortest, dextreme, and dHausdorff for samples of each network that most points are around

the surface of the network shape; hence, we can use the r-percentile of the distances to

the surfaces as the threshold. Similarly, one can interpret the splitter as creating a band

around the surface of the distribution-based identity with a diameter equal to 2 × d, ac-

cepting everything inside the band and rejecting everything outside. Table 3.9 shows that

the method does not work well with embedding-based identity, but performs well with

distribution-based identity. The false accept rate (FAR) varies from 0% to more than 20%,

and for most networks it is below 10%. When we use method-of-moments estimator, the

result does not change much ( see Table 3.10). Moreover, we vary r, when we use the

distribution-based identity, and plot the change of average FAR and FRR across networks

in Figure 3.7, and it turns out that r = 90 leads to the equal error rate.

Supervised Splitter. For distribution-based identity, we use dshortest, dextreme, and dHausdorff
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Figure 3.7: Equal Error Rate. (1) With the increase of r (decrease of FRR), FAR increases slowly.
(2) When r is 100, the FRR is around 25%. It shows that dsurface is a good indicator as the majority
of the samples from other networks are far away. (3) when r is 90, the FAR and FRR are equal,
which leads to the equal error rate.

Table 3.11: Authentication with Supervised Splitter
Classifier Embedding-based Distribution-based

Decision Tree 0.21 (0.02) 0.07 (0.01)
k-NN 0.21 (0.02) 0.09 (0.01)
SVM 0.28 (0.02) 0.10 (0.01)

Note: Mean and standard deviation of the EERs across networks.
between identities of G and Ni as three features, and whether G is sampled from Ni as a

binary label. We train a supervised learning classifier with 10-fold cross validation for each

network. For the embedding-based identity, we use the distance between the Kronecker

points of G and Ni as the only feature. We report Equal Error Rate (EER), at which

the false accept rate (FAR) is equal to the false reject rate (FRR), in Table 3.11. The

results show that classifiers using both identities have a low EER indicating a reasonable

performance, especially for using distribution-based identity. Comparing the two splitters,

one can see a trade-off between the FAR and the FRR.

Authentication with Partial Network Identity. Next, we use partial distribution-based

network identity for network authentication. Figures 3.8a and 3.8b illustrate the change of

the average FAR and FRR with the partial network identities for Supervised Splitter. We

notice that both FAR and FRR slowly increase with the sampling step size s and do not

change much with t. For Voronoi Splitter, Figure 3.8c shows the FAR quickly increases

with the increase in sampling step size s. This can be explained by the fact that with the

increase of s, the partial network identity rapidly shrinks as its similarity to the complete
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Figure 3.8: Authentication Performance with Partial Identity. (a-b) For Supervised
Splitter, both FAR and FRR increase with the sampling step size s slowly and they do not
change much with t. FAR is generally lower than 2% and FRR increases from 20% to over
35%; (c) For Voronoi Splitter, we use the distances to the surfaces and set the percentile
r = 90, so FRR is fixed at 10%. Similarly, we find the splitter is not sensitive to t, but the
FAR quickly increases with the increase in sampling step size s.

network identity drops fast, which in turn leads to the 90th percentile d becoming large.

A large threshold d will accept more false samples. In this case, we need to find the equal

error rate for the partial network identity to strike a balance between FAR and FRR.

3.7 Application to Biometrics

As we have shown, our methods can be used for network identification and network au-

thentication. Here, we explore whether they can help with real-world biometrics. Here, we

use two touch-based biometrics datasets to authenticate user identity: (1) La. Tech Touch

Dataset. This dataset was collected by Abdul Serwadda and his colleagues [70]. The

dataset contains touch data for 138 users on a phone screen. The subjects were students,

faculty, or staff at Louisiana Tech University; (2) SU Touch Dataset. The second dataset

is collected by us. It includes the touch data on both a phone screen and a tablet screen

from 116 students at Syracuse University. For both datasets, users were asked to answer

multiple questions through Android applications. Users had to scroll/swipe back and forth

to find the answers to the questions, and for each stroke representing the path taken by a

user’s finger during scrolling, the applications recorded points touched by the user’s finger

(the x and y coordinates) every 15 milliseconds. We aim to authenticate a user’s identity



58

Table 3.12: User Authentication Performance
Classifier Network Authentication Stroke Authentication

Horizontal Vertical
Decision Tree 0.30 (0.04) 0.31 (0.29) 0.38 (0.28)

k-NN 0.39 (0.11) 0.17 (0.14) 0.27 (0.15)
SVM 0.28 (0.04) 0.16 (0.14) 0.18 (0.14)

Mean and standard deviation of the EERs across the population. Stroke authentication separates
horizontal and vertical stroke.

Table 3.13: User Authentication Performance
Classifier Phone Tablet

Decision Tree 0.41 (0.01) 0.43 (0.05)
k-NN 0.40 (0.01) 0.42 (0.04)
SVM 0.42 (0.01) 0.45 (0.04)

Mean and standard deviation of the EERs across the population.

based on her overall swipe/scroll patterns on the screen. Therefore, we represent the whole

phone/tablet screen as a grid network. We set the whole screen as a grid network with each

node covering a square area. For the La. Tech dataset, where the layout of the phone is

480 × 800, we set the node as a 4 × 4 square area. For each user, we create an undi-

rected simple graph, a swipe graph. For each two consecutive recorded points along all

the paths (strokes) of the user, we connect the two nodes (areas) where the two points are

located. For each user swipe graph, we construct the distribution-based network identity

and sample 180 subgraphs for testing, and we use the supervised splitter for authentica-

tion. Serwadda et al. [70] propose a stroke-based authentication by using 28 features of

each stroke, including velocity and acceleration along the stroke, to authenticate user iden-

tity. Table 3.12 lists the EERs of the two methods, and the network authentication method

has comparable mean EERs and smaller standard deviation indicating that the method is

stable across users. For the SU dataset, two types of phones are used: Samsung Galaxy S6

whose layout is 1440 × 2560, where we set the node as a 12 × 12 square area; HTC-One

whose layout is 1080 × 1920, where we set the node size 9 × 9. We set these node sizes

to ensure the generated grid networks having similar size as those of the networks in the

Latech dataset. Also, the layout of the tablet is 1536 × 2048 and we set the node as a

13× 13 square area. Table 3.13 shows the EERs of the SU dataset are around 0.4 for both

phone and tablet.
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3.8 Limitations

We have demonstrated the effectiveness of using network identities for network identifi-

cation and network authentication. However, based on the problem settings, there are a

few assumptions and limitations for the methods: (1) the networks are not isomorphic,

i.e., if Ni and Nj are isomorphic, then i = j. If two networks are isomorphic, they are

basically the same graph after anonymization, and there is no way to distinguish them; and

(2) subgraph G is not too small to lose its identity. Consider a small subgraph such as a

triad , which can be found in most networks, so it does not make much sense to verify

its identity; (3) while networks can be sampled using different sampling strategies, here

we assume subgraphs are sampled by random node sampling, and we create distribution-

based network identities using the same sampling strategy; (4) we assume that we have the

whole networks, so we can build ground-truth network identities in the system; and (5) we

do not consider fraud in the identity collection process.

3.9 Additional Related Work

Additionally, our work has links to the following areas:

I. Subgraph Isomorphism. Subgraph isomorphism problem has been long studied in

graph theory. As solving subgraph isomorphism leads to the maximum clique problem

and testing the existence of a Hamiltonian cycle in a graph, it is an NP-complete prob-

lem [58]. Under certain conditions (e.g. the subgraph is a planar graph), the complexity of

the problem can be reduced to linear time [71]. However, the conditions are hard to fulfill

for large networks, which is the main motivation for us to investigate identification/authen-

tication methods. As we mentioned before, the time complexity to compute the network

identity (both embedding-based and distribution-based) is linear in the number of nodes n

and edges m of the network.
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II. Identification and Authentication. In biometrics, many human physiological or be-

havioral characteristic are used to facilitate identification, such as facial information [72],

iris [73], or gait [74]. Theoretically, if one converts these characteristic to network data,

our graph-based method can be applied leading to graph-based biometrics.

IV. Network Categorization and Network Classification. Network categorization aims

to predict the category (or domain) of a network, and most network classification studies

have been focused on the classification of graphs within a particular category such as

molecular graphs [75, 76]. C. James et al. [77] use 12 graph features, such as density,

number of triangle, and the like to predict the category of a network with a high accuracy.

Different from them, we are trying to identify whether a graph is sampled from a network

not a general category. However, these methods may help us improve our identification

systems introduced here by conducting network categorization as a preprocessing step.

3.10 Conclusions

To the best of our knowledge, we are the first to extend biometrics studies to network data

by formulating the network identification and network authentication problems. In this

study, we propose and compare two types of network identities, and we demonstrate their

utility in solving both problems. The embedding-based identity is easy to construct, but

the distribution-based identity performs better with simple methods. For network identifi-

cation, we propose two techniques to predict the network from which a graph is sampled.

The supervised learning method is highly accurate, and a simple method that uses only one

Euclidean distance has a reasonable accuracy. For network authentication, we show that

the supervised method yields a low equal error rate, and the Voronoi method enables con-

trolling the false reject rate, while attaining a reasonable false accept rate across networks.

We show that our graph-based methods can also be used for biometrics, authenticating

users based on their touch data on devices.
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Chapter 4

Embedding Networks with Spectral

Moments

4.1 Introduction

Collaboration 
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Figure 4.1: The Zoo of Networks

In the previous chapters, we use Kronecker Points as the embedding method to build a

network shape: a Kronecker hull. A Kronecker hull is interpretable as it reveals the re-

lationship between the network and its subgraphs and Kronecker points can capture three

global network structures: Core-Periphery, Dual-Core and Random (or no core). How-

ever, the interpretability of Kronecker points is limited as (1) it can hardly show network

properties other than its core strength; (2) it is computed by fitting the network model

(Stochastic Kronecker Graphs) to a network, which may not be accurate for real networks.

Therefore, we aim to look for a 3D embedding method with more interpretability, in other
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words, we want the embedding method captures as much graph information as possible

with only three values. In this way, we provide a interpretable, visualizable, and compact

embedding space for networks. We denote such embedding space as “a zoo of networks”,

where one can easily characterize networks based on their locations in this zoo, similar

to how animals are grouped and located in different regions of a zoo. Figure 4.1 illus-

trates a big picture of this zoo of networks obtained using the method developed in this

chapter. In the figure, we plot the embeddings of real-world networks from three different

categories: Social Networks, Collaboration Networks and Road Networks, and also plot

various types of graphs including complete graphs, cycles, complete bipartite graphs, and

wheels of different sizes (the number of nodes n are mostly above 100).

To build such an embedding space, we need the network embedding method to meet the

following criteria: (1) Easy to visualize. We want an embedding space that can be easily

visualized, so a 3D embedding of networks is needed; (2) Capture network structure.

The embedding values should help users understand the network structure; (3) Capture

network properties. The embedding values should shed light on different network prop-

erties such as the degree distribution or network connectivity; and (4) Easy and fast to

compute. The method should be scalable for large networks. Spectral graph theory can

help satisfy these constraints.

Spectral graph theory connects the structure of a network to the eigenvalues and eigenvec-

tors of its associated matrices such as the adjacency matrix or the Laplacian. The extreme

eigenvalues and associated eigenvectors are often used by various spectral methods. For

example, the ratio between the largest and smallest eigenvalues can help estimate the chro-

matic number [78, 79]; the second-smallest eigenvalue of a graph Laplacian is related to

graph connectivity and the associated eigenvector is used for spectral clustering [80]. Re-

cently, more attention is paid to the overall distribution of eigenvalues, also known as the

spectral density of the graph. Dong et al. [28] use methods from condensed matter physics

to study spectral densities in networks, and they show that the spectral density is a prac-
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tical tool to analyze large real-world networks. Inspired by the strong power of spectral

density analysis, we aim to find a succinct way to represent the spectral density, so as

to represent the network. Naturally, we propose using spectral moments, as in statistics,

moments are often used to capture the shape of a distribution. Specifically, we use the

spectral moments of the random walk transition matrix as the embedding method, as (1)

they have a very clear meaning, which is the expected return probability of a random walk;

(2) these spectral moments, as we will see in the rest of the chapter, are closely related to

the network structure and various network properties such as the degree distribution and

clustering coefficient; (3) using a few of these spectral moments (truncated moments),

more specifically, the second m2, third m3, and fourth m4 moments (the first moment is 0

as we only look into undirected graphs without self-loops), we can have a 3D embedding

of a network that can be visualized. We will show that the error of using truncated spectral

moments is bounded. We denote this 3D embedding as the spectral point of the network;

(4) by definition, these spectral moments are all between 0 to 1, so we can have a compact

embedding space for all possible graphs, which is a 1 × 1 × 1 cube (see Figure 1). The

points in Figure 4.1 are spectral points. In Section 4.5, we will go into further details on

how graphs can be represented using spectral points.

Overall, our contributions are mainly the following:

1. Network Embedding with Spectral Moments. We introduce Spectral Point, a 3D net-

work embedding method that uses the truncated spectral moments of the network. Spectral

points have the following advantages: (i) each dimension is closely related to the network

structure and various network properties, so it is easy to interpret; (ii) the embedding space

can help characterize various types of networks; (iii) the embedding space provides easy

network visualization; and (iv) the embeddings are easy to compute.

2. Spectral Moments and Network Structure. To the best of our knowledge, we are

the first to study relationship between the spectral moments of the random walk transition
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matrix (more importantly and equivalently, the spectral moments of the normalized Lapla-

cian matrix) and network structure. We connect the spectral moments to basic subgraphs

such as triangles and squares.

3. Spectral Moments and Network Properties. We find that the spectral moments pro-

vide various bounds on network properties such as the degree distribution and the global

clustering coefficient. We define a measure that assesses global connectivity using the

spectral moments, and we prove the relationship between the spectral moments of a net-

work and those of its connected components.

4. Representing Various Graph Types. We mathematically derive spectral moments

for various types of graphs such as complete graphs, cycles, star graphs, and complete

bipartite graphs. For k-regular graphs, we derive the exact value for the second moment

and the range of values that the third and fourth moments can take.

5. Representing Real-World Graphs. We compute the spectral moments of real-world

graphs from various categories and show that their structure and properties identified in

past research is captured by spectral moments. We show that spectral moments can help

get a quick understanding of a real-world network at hand.

6. Spectral Network Identification. We demonstrate that spectral moments can be used

for network identification, i.e., identifying the source of an anonymized graph. Our results

indicate that truncated spectral moments do not lose much predictive power.

The rest of the chapter is organized as follows. We first detail the preliminaries and nota-

tions used in the chapter in Section 4.2. In Section 4.3, we provide proofs on the relation-

ship between spectral moments and network structure, and Section 4.4 demonstrates the

relationship between spectral moments and network properties. In Section 4.5, we analyze

special graphs and real-world networks using their spectral moments. In Section 4.6, we

use spectral moments for network identification. After reviewing additional related work
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in Section 4.7, we conclude the chapter in Section 4.8.

4.2 Preliminaries and Notation

For an undirected graph G = (V,E) with vertices V = {v1, v2, ..., vn} and edges E ⊆

V × V , its adjacency matrix A ∈ Rn×n has Aij = 1 if (i, j) ∈ E and otherwise, Aij = 0.

The degree matrix D ∈ Rn×n is a diagonal matrix with node degrees on its diagonal,

i.e. Dii =
∑n

j=1 Aij . Various properties of graph G (e.g., connectivity or cuts) can be

identified using matrices defined in terms of A and D. The normalized Laplacian of G is

the matrix L = I − D− 1
2AD− 1

2 . The spectrum of a matrix is the set of its eigenvalues.

The normalized Laplacian has a bounded spectrum, i.e. 0 = µ1 ≤ µ2 ≤ . . . ≤ µn−1 ≤

µn ≤ 2, where µi’s are the eigenvalues of L. The transition matrix of the random walk

on G is matrix P = AD−1. As P is a stochastic matrix, its spectrum is also bounded:

1 = λ1 ≥ λ2 ≥ . . . ≥ λn−1 ≥ λn ≥ −1, where λi’s are the eigenvalues of P . As

P is similar to D− 1
2AD− 1

2 (i.e., they have the same eigenvalues), it is easy to find the

relationship between the eigenvalues of P and L: λi = 1− µi, for 1 ≤ i ≤ n.

In this work, we denote the ℓ-th spectral moment mℓ of a graph G using the spectrum of

its random walk transition matrix P , mℓ = E(λℓ), as 1
n

∑n
i=1 λi

ℓ = E(λℓ). We look at

the relationship between the spectral moments and network structure and use the first few

spectral moments to represent networks.

4.3 Relationship Between Spectral Moments and Network

Structure

In this section, we aim to see how spectral moments are related to network structure. As we

only look into undirected graphs without self-loops, it is easy to see that the first spectral
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moment m1 is 0. Therefore, we start with the second spectral moment.

4.3.1 Second Spectral Moment

Theorem 4.3.1. The 2nd spectral moment m2 of P is

m2 = E(λ2) = E(1/l),

where l follows p(l|k), the probability that a random neighbor of a node with degree k has

degree l.

Proof. The ℓ-th spectral moment of P can be viewed as the expected return probability

of an ℓ-step random walk starting from node i, where i is chosen uniformly at random

from all the nodes [67]. For any node i, its return probability of a 2-step random walk is

equal to
∑

j:j∼i
1

di·dj , where di and dj are the degrees of nodes i and j, respectively, and

j ∼ i means that j is a neighbor of i. Hence, the 2nd spectral moment of P is equal to

Ei∈V (
∑

j:j∼i
1

di·dj ), and

Ei∈V (
∑
j:j∼i

1

di · dj
) = Ei∈V (

1

di
·
∑
j:j∼i

1

dj
)

= Ei∈V (
1

di
· di · Ej:j∼i(

1

dj
))

= Ei∈V (Ej:j∼i(
1

dj
)).

Note that di follows the degree distribution of the graph p(k), and dj follows the condi-

tional degree distribution p(l|k) as j is constrained to be a neighbor of i, so

Ei∈V (Ej:j∼i(
1

dj
)) = Ei∈V (

∑
dj

1

dj
· p(l = dj|k = di)) (4.1)

=
∑
di

p(k = di) ·
∑
dj

1

dj
· p(l = dj|k = di) (4.2)
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=
∑
di

∑
dj

p(k = di) ·
1

dj
· p(l = dj|k = di) (4.3)

=
∑
di

∑
dj

1

dj
· p(l = dj, k = di) (4.4)

= E(
1

dj
). (4.5)

Note that in Theorem 4.3.1, p(l, k) is the joint degree distribution of nodes (k) and their

neighbors (l) and the 2nd spectral moment is E( 1
dj
) under this distribution. This joint

distribution is not symmetric, i.e., p(l = dj, k = di) ̸= p(l = di, k = dj), and can be

cumbersome to compute; hence, the following theorem states the connection between the

2nd spectral moment P and the joint degree distribution p(di, dj), which is symmetric.

Theorem 4.3.2. The 2nd spectral moment m2 of P is

m2 = E(λ2) = E(di)E(
1

didj
),

where E(di) denotes the average degree in the graph and didj follows the joint degree

distribution p(di, dj): the probability that a node with degree di is connected to another

node with degree dj .

Proof. Denote the joint degree distribution as

p(di, dj) =
ndi,dj

E(di)n
, (4.6)

where ndi,dj is the number of edges between nodes with degree di and nodes with degree

dj , n is the total number of nodes in the graph, and E(di) is the average degree. Let ndi
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denote the number of nodes with degree di. Then, p(l = dj, k = di) can be stated as

p(l = dj, k = di) = p(l = dj|k = di)p(k = di) (4.7)

=
ndi,dj

dindi

p(k = di) (4.8)

=
p(di, dj)E(di)n

dindi

p(k = di) (4.9)

=
p(di, dj)E(di)
dip(k = di)

p(k = di) (4.10)

=
p(di, dj)E(di)

di
, (4.11)

using which Equation (4.4) can be restated as

∑
di

∑
dj

1

dj
· p(l = dj, k = di) =

∑
di

∑
dj

1

dj
· p(di, dj)E(di)

di
(4.12)

= E(di)E(
1

didj
). (4.13)

One can interpret Theorem 4.3.2 in this way: the expected return probability of a 2-step

random walk is equal to (I) the average return probability through an edge, multiplied

by (II) the average number of edges a node has, as 1
didj

is the return probability of a

2-step random walk through a specific edge linking two nodes with degrees di and dj ,

respectively, and E( 1
didj

) is the average return probability over all edges. This observation

motivates us to extend Theorem 4.3.2 to higher moments.

4.3.2 Third Spectral Moment

Theorem 4.3.3. The 3rd spectral moment m3 of P is

m3 = E(λ3) = 2E(∆i)E(
1

dhdidj
),
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where E(∆i) is the average number of triads a node is in and dhdidj follows the joint

degree distribution of triads p(dh, di, dj): the probability that a triad is formed by nodes

with degrees dh, di, and dj .

Proof. As mentioned, the 3rd spectral moment of P can be viewed as the expected re-

turn probability of a 3-step random walk, which is equal to the summation of the return

probability of a 3-step random walk starting from any node i divided by the number of

nodes. Assume that nodes h, i, and j are connected to each other and form a triad. The

triad will increase the overall return probability by 6 1
dhdidj

as it includes 6 closed walks:

h → i → j → h, h → j → i → h, and so on. Denote ∆ as the total number of triads

in the graph, and there are ∆ · p(dh, di, dj) triads with nodes having degree dh, di and dj .

Therefore,

m3 = E(λ3) =

∑
dh,di,dj

6
dhdidj

·∆ · p(dh, di, dj)
n

. (4.14)

By definition, E(∆i) =
3∆
n

, so

m3 = 2E(∆i)E(
1

dhdidj
). (4.15)

4.3.3 Higher-Order Spectral Moments

The proof for Theorem 4.3.3 can be extended to a general case:

Theorem 4.3.4. The ℓ-th spectral moment mℓ of P is

mℓ = E(λℓ) = E(CWℓ,i)E(
1

d1d2 . . . dℓ−1dℓ
),

where E(CWℓ,i) denotes the average number of closed walks of length ℓ a node is in and
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Figure 4.2: Structures related to the 4th spectral moment of P .

d1d2 . . . dℓ−1dℓ follows the joint degree distribution of closed walk of length ℓ formed by

nodes with degrees d1, d2, . . . , dℓ.

Proof. The proof is straightforward:

E(λℓ) =
CWℓ E( 1

d1d2...dℓ−1dℓ
)

n
(4.16)

= E(CWℓ,i)E(
1

d1d2 . . . dℓ−1dℓ
), (4.17)

where CWℓ is the total number of closed walks of length ℓ.

Basically, when ℓ is small, we can connect the ℓ-th spectral moment of P with the local

structure of the graph. Next, we look at the case of ℓ = 4.

Theorem 4.3.5. The 4th spectral moment m4 of P is

m4 = E(λ4) = (E(di) + 4E
(
di
2

)
+ 2E(□i) )E(

1

didjdkdl
),

where E(di) is average degree, E(□i) is the average number of squares a node is in, and

didjdkdl follows the joint degree distribution of closed walks of length 4 formed by nodes

with degrees di, dj , dk, dl.

Proof. Figure 4.2 provides the three graph structures that result in closed walks of length 4:

an edge, a wedge, and a square. Each edge contributes 2 closed walks; each wedge adds

another 4 closed walks (without considering the walks that go through only one edge);

similarly, each square contributes additional 8 closed walks. Let |E| denote the number of
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edges, denote the number of wedges, and □ denote the number of squares in the graph.

Hence,

E(CW4,i) =
2|E|+4 + 8□

n
. (4.18)

As E(di) = 2|E|
n

, =
∑

di

(
di
2

)
ndi = nE

(
di
2

)
so 4

n
= 4E

(
di
2

)
, and E(□i) = 4□

n
, using

Theorem 4.3.4, the theorem is proved.

4.4 Relationship Between Spectral Moments and Network

Properties

4.4.1 Degree Distribution

Degree distribution plays a vital role in network analysis. Different degree distributions

have helped define different network families. Perhaps the most well-studied network fam-

ily with connections to real-world networks are scale-free networks that exhibit a power

law degree distribution, at least asymptotically [81, 82]. Degree distribution is often used

to assess how well a network model fits real-world networks. Here, we look into the rela-

tionship between the spectral moments and the degree distribution, and we prove that the

degree distribution helps bound the spectral moments.

Theorem 4.4.1. The 2nd spectral moment m2 of P is lower bounded by the degree distri-

bution’s expectation E(di) and variance Var(di):

m2 ≥
E3(di)

(E2(di) + Var(di))2
.

Proof. From Theorem 4.3.2, we have m2 = E(di)E( 1
didj

). By Jensen’s inequality, E( 1
didj

) ≥
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E2( 1√
didj

) ≥ 1

E2(
√

didj)
, and

E(
√

didj) ≤ E(
di + dj

2
) =

∑
(i,j)∈E(di + dj)

2|E|
(4.19)

=

∑
i d

2
i

2|E|
(as each di gets counted di times) (4.20)

=
nE(d2i )
2|E|

=
E(d2i )
E(di)

. (4.21)

Therefore, E( 1
didj

) ≥ E2(di)

E2(d2i )
and m2 ≥ E3(di)

E2(d2i )
. As E(d2i ) = E2(di) + Var(di), m2 ≥

E3(di)
(E2(di)+Var(di))2

.

In Theorem 4.4.1, if Var(di) = 0, the bound is tight: m2 =
1

E(di) . The bound can be stated

as m2 ≥ E3(di)
(E2(di)+Var(di))2

= 1

E(di)+
2Var(di)

E(di)
+

Var2(di)

E3(di)

. Hence, given a fixed average degree

E(di), a smaller degree variance Var(di) leads to a greater lower bound for m2. In statis-

tics, the value Var(di)
E(di) is defined as the index of dispersion D for the degree distribution, so

we can rewrite the bound as m2 ≥ 1

E(di)+2D+ D2

E(di)
.

4.4.2 Clustering Coefficient

The clustering coefficient helps measure the degree to which nodes in a graph tend to

cluster together. Clustering coefficient is specifically used to analyze transitivity (triangles)

in an undirected graph. Theorem 4.3.3 states that m3 = 2E(∆i)E( 1
dhdidj

), indicating that

m3 is closely related to the number of triangles. Next, we prove that m3 and the degree

distribution’s expectation and variance (E(di) and Var(di)) provide a lower bound for the

global clustering coefficient C. Also, m3 is upper bounded by C, E(di) and Var(di).

Corollary 4.4.1.1. The 3rd moment m3 is upper bounded by 1
4
E(∆i).

Proof. Because any node in a triangle has a degree of at least 2, E( 1
dhdidj

) ≤ 1
8
. Therefore,

m3 = 2E(∆i)E( 1
dhdidj

) ≤ 1
4
E(∆i).
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Theorem 4.4.2. Given the 3rd spectral moment m3 of P , E(di) and Var(di), the global

clustering coefficient C can be lower bounded as

C ≥ 8m3

E2(di)− E(di) + Var(di)
.

Proof. Starting from the definition of clustering coefficient C:

C =
|Closed Paths of Length 2|

|Paths of Length 2|
=

∆× 6∑
i 2
(
di
2

) =
2nE(∆i)

2nE
(
di
2

) (4.22)

=
E(∆i)

E
(
di
2

) (4.23)

Using Corollary 4.4.1.1, we get m3 ≤ C
4
E
(
di
2

)
, so C ≥ 4m3

E (di2 )
. As E

(
di
2

)
=

E(d2i )−E(di)
2

=

E2(di)−E(di)+Var(di)
2

, the proof is complete.

Therefore, given fixed E(di) and Var(di), when m3 is large, C has a greater lower bound.

Also, m3 can be upper bounded by C, E(di), and Var(di) using Theorem 4.4.2: m3 ≤
C
8
(E(di)2−E(di)+Var(di)). So, given fixed E(di) and Var(di), when the global clustering

coefficient is small, m3 has a smaller upper bound, which makes sense as the number of

closed walk of length 3 relies on the number of triangles.

4.4.3 Connectivity

Because mℓ is the expected return probability of an ℓ-step random walk, it is equal to the

fraction of walks of length ℓ that are closed. Hence, the graph is globally well-connected

when mℓ is small, as it is more likely to have a walk which travels far away from the

starting node. On the other hand, a large mℓ indicates that more walks are closed and it is

difficult to travel from a node to another one which is far away. Here, we link the spectral

moments to graph connectivity by extending the Estrada index [83]. The Estrada index

of a graph G is defined as EE(G) =
∑n

j=1 e
µj , where µj’s are the eigenvalues of the
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adjacency matrix A. As EE(G) = trace(eA) =
∑∞

k=0
trace(Ak)

k!
, the Estrada index actually

counts the number of closed walks, discounting longer walks; hence, it is sometimes used

to measure the global connectivity of a graph. Therefore, we propose a variation of the

Estrada index using the random walk transition matrix P , which we denote as EEP (G) =∑n
j=1 e

λj =
∑n

j=1 trace(e
P ) =

∑∞
k=0

trace(Pk)
k!

= n
∑∞

k=0
mk

k!
. Different from the Estrada

index, EEP (G) computes the expected return probability of a random walk of any length,

discounting longer walks. The smaller the EEP (G) value, the more well-connected the

graph G.

4.4.4 Connected Components

In Section 4.4.3, we discussed the spectral moments and network connectivity. Here, we

look into the relationship between the spectral moments of a network and those of its

connected components.

Theorem 4.4.3. Consider graph G = (V,E) with k connected components G1, G2, . . . , Gk−1, Gk.

For each Gi = (Vi, Ei), denote its ℓ-th spectral moment as mi,ℓ. Then, the ℓ-th spectral

moment of G is the weighted average of mi,ℓ’s weighted by |Vi|’s, i.e., mℓ =
∑

i|Vi|mi,ℓ

|V | .

Proof. The theorem can be proved in two ways, both of which are straightforward. The

first way is that one can view the transition matrix of the random walk on G as a block

matrix where each block represents the transition matrix of a connected component. The

second way is that a walk starting from node i cannot reach the nodes in other connected

components, so the overall return probability of an ℓ-step random walk is the weighted

sum of the expected return probability for each connected component.



75

Table 4.1: Spectral Moments of Various Types of Graphs with n nodes (n > 5)
Graphs E(di) E( 1

didj
) 2nd moment m2 E(∆i) E( 1

didjdk
) 3rd moment m3 E

(
di
2

)
E(□i) E( 1

didjdkdl
) 4th moment m4

Complete Graphs n− 1 1
(n−1)2

1
n−1

(
n−1
2

)
1

(n−1)3
n−2

(n−1)2

(
n−1
2

)
3
(
n−1
3

)
1

(n−1)4
n2−3n+3
(n−1)3

Cycles 2 1
4

1
2

0 NA 0 1 0 1
16

3
8

Star Graphs 2(n−1)
n

1
n−1

2
n

0 NA 0 (n−1)(n−2)
2n

0 1
(n−1)2

2
n

Complete Bipartite Graph Ka,b
2ab
a+b

1
ab

2
a+b

= 2
n

0 NA 0 ab(a+b−2)
2(a+b)

4(a2)(
b
2)

a+b
1

a2b2
2

a+b
= 2

n

Wheels 4(n−1)
n

n+2
18(n−1)

2(n+2)
9n

3(n−1)
n

1
9(n−1)

2
3n

(n−1)(n+4)
2n

4(n−1)
n

1
27(n−1)

2n+20
27n

4.5 Representing Networks with Spectral Moments

The results in Sections 4.3 and 4.4 show that spectral moments of a network are closely

related to its structure and various properties. As discussed, we propose to represent a

graph as a point in the 3D space using its truncated spectral moments: (m2,m3,m4),

where we denote this point as the spectral point of the graph.

4.5.1 Spectral Points of Various Types of Graphs

In this section, we first explore the spectral points of various types of graphs including

complete graphs, cycles, star graphs, complete bipartite graphs Ka,b, and wheels, which as

we will show their spectral moments are functions of the number of nodes n. We derive

the spectral moments for all such graphs. Table 4.1 lists the spectral moments of these

graphs and the related information. We observe that (1) For complete graphs, the three

spectral moments decreases when the number of nodes increases and when n → ∞ they

all converge to 0; (2) For cycles, the spectral point is fixed at (0.5, 0, 0.375), independent of

n; (3) Star graphs and complete bipartite graphs share the same spectral moments, as star

graphs are a special case of complete bipartite graph K1,n−1. Their third spectral moment

is 0 and the other two moments are 2
n

. (4) For wheels, the three spectral moments decreases

when the number of nodes increases and when n → ∞ they converge to (2
9
, 0, 2

27
). We

vary n from 100 to 10,000 and we plot the spectral points of these types of graphs in Figure

4.3. As expected, we find that (1) complete graphs, stars, and complete bipartite graphs

are lines converging to (0, 0, 0); (2) wheels form a line which converges to (2
9
, 0, 2

27
).

Next, we look into spectral points of the k-regular graphs (k > 0), where each node has
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Figure 4.3: Spectral Moments of Various Types of Graphs

the same degree k. We find that the three spectral moments of k-regular graphs are upper

bounded by 1
k
.

Theorem 4.5.1. For a k-regular graph, (m2,m3,m4) satisfies

m2 =
1

k
; (4.24)

m3 ≤
k − 1

k2
<

1

k
; (4.25)

m4 ≤
1

k
. (4.26)

Proof. For m2: as E(di) = k and E( 1
didj

) = 1
k2

, m2 =
1
k
.

For m3: clearly, E( 1
didjdk

) = 1
k3

. As each node has k neighbors, it is in at most
(
k
2

)
triangles, i.e., E(∆i) ≤

(
k
2

)
. Hence, m3 = 2E(∆i)E( 1

didjdk
) ≤ k−1

k2
< 1

k
.

For m4: E( 1
didjdkdl

) = 1
k4

, and based on Theorem 4 in [84], the total number of closed

walks of length 4, CW4 ≤ nk3, so E(CW4,i) ≤ k3. Using Theorem 4.3.4, m4 ≤ 1
k
.

Corollary 4.5.1.1. The spectral points for all k-regular graphs with k ≥ 2 are within the

[0, 0.5]× [0, 0.5]× [0, 0.5] cube.
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Figure 4.4: Spectral Points of Real-World Networks. Here, ∗’s are social networks, ⋄’s are
collaboration networks, □’s are road networks, and +’s are biological networks.

4.5.2 Representing Real-World Networks

Next, we move to real-world networks. We first introduce the datasets in our experiments.

Datasets

For our experiments, we use the same dataset in Section 3, which includes twenty real-

world networks from four general network categories: social networks, collaboration net-

works, road networks, and biological networks.

Spectral Points of Real-World Networks

Figure 4.4 plots the spectral points of real-world networks. We observe the following for

spectral moments of networks from different categories.

Social Networks. Social networks are often weakly scale free [81] with a log-normal

degree distribution [85, 86] and exhibit a core-periphery structure [47, 87]. Hence, social

networks have a relatively large degree variance, which makes the value m2 generally

smaller than that of road networks and collaboration networks. In general, social networks
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have relatively small spectral moments, which shows they have better global connectivity.

This observation accords to the fact that social networks exhibit the small-world phe-

nomenon [88, 89] (e.g. in May 2011 the average path length between individuals in the

Facebook graph was 4.7 [90]).

Collaboration Networks. Compared to networks from other categories, collaboration

networks have greater m3 values as the their clustering coefficient is much higher.

Road Networks. Compared to other categories, road networks have (1) a small degree

variance, as often not many roads intersect at the same point; (2) more squares, as many

parts of road networks resemble rectangular grids; (3) relatively low clustering coefficient,

as triangles are uncommon. Due to these properties, road networks have large m2 and m4

values, but small m3 values.

Biological Networks. Biological networks are often strongly scale free with a power-law

degree distribution [91, 92] and a core-periphery structure [49]. In general, they share

similar patterns with social networks.

4.5.3 Error Bound on Truncated Moments

Here, we provide an error bound on using the truncated spectral moments to represent a

graph. We discuss the problem from two views: (I) the spectral distribution and (II) the

network structure.

I. Spectral Distribution. Truncated spectral moments have been used to approximate the

spectral density [28, 67]. Here, we provide a theoretical error bound on the maximum

possible difference between the spectral distribution of two graphs that have the same

truncated moments, i.e., worst-case scenario.

Lemma 4.5.2. Given two graphs G1 and G2 with respective spectral density function

p1, p2 of their random-walk transition matrices P1 and P2, if G1 and G2 have the same
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spectral points (m2,m3,m4), then the Wasserstein distance W1(p1, p2) is upper bounded

by π
4
.

Proof. As we have discussed, both p1 and p2 are supported on [0, 1]. As m1 = 0, p1

and p2 share the same first four moments. Based on Theorem 3 of [93], W1(p1, p2) ≤
π
4
+ 34

∑4
ℓ=1|mℓ −mℓ|= π

4
.

Lemma 4.5.2 holds in the worst-case sense, as the first few moments can be good enough

to determine the distribution with high accuracy. When one approximates the spectral

density with the kernel polynomial method, only a few moments are needed by using

smoothing techniques as the spectrum approximation error will decay exponentially [28,

94]. The empirical studies also show that recovery of spectrum of real-world networks

using truncated moments performs much better than the theory would suggest [67].

II. Network Structure. As mentioned, mℓ represents the return probability of an ℓ-step

random walk. We notice that a long closed walk (e.g. k ≥ 5) can be a cycle of length

k, but in more cases the closed walk is composed of multiple short closed walks. Let us

see the cases of k = 5 in Figure 4.5. There are three cases which lead to a closed walk of

length 5. Case 1: the starting node a is in a pentagon, so the pentagon will provide two

closed walks of length 5; Case 2: The starting node a travels to b which is in a triangle,

then b takes a closed walk of length 3, and finally, goes back to a; Case 3: a is in a triangle

so it can have a close walk of length 3, and during this walk any node (a, b or c) takes a

closed walk of 2. In both Cases 2 and 3, the closed walk of length 5 is decomposed into

a closed walk of 2 and a closed walk of 3. In real-world networks, we find that most long

closed walks belong to the latter situation, as higher-order structures like a long cycle is

less frequent than lower-order structures such as edges, wedges, or triangles [95]. As m2,

m3, m4 can capture these short closed walks, we basically only lose the information on

uncommon structures like long cycles.
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Figure 4.5: Structures related to the m5.

4.5.4 Time Complexity

In this chapter, we compute the accurate estimates of the low-order moments with the

APPROXSPECTRALMOMENT algorithm proposed by [67]. The algorithm estimates the

moments by simulating many random walks and computes the proportion of closed walks.

To compute the ℓ-th spectral moment by simulating s random walks, it takes O(sℓ) time.

In our case, ℓ ≤ 4 and following the empirical results by [67], we set s = 10, 000. For

all networks used in our datasets, it takes only a few seconds to compute the three spectral

moments. The Python code for computing moments has been released.1

4.6 Spectral Network Identification

In Section 4.5, we showed how networks can be represented and visualized using their

truncated moments. Here, we demonstrate that spectral moments can be used for network

identification [13], a problem which we will briefly review next.

4.6.1 Network Identification

Network identification [13] aims to identify the source from which an anonymized graph

is sampled, to find the identity of a subgraph. Network identification can be formulated as

follows: given a set of networks N = {N1, N2, . . . , Nn}, and a subgraph G sampled from

1https://github.com/shengminjin/EstimateSpectralMoments

https://github.com/shengminjin/EstimateSpectralMoments
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Ni ∈ N using a sampling strategy S, we want to identify G, i.e., the network Ni from

which G is sampled.

Based on the perturbation analysis of spectral density [28], the Wasserstein distance be-

tween the spectral density of a graph and the perturbed graph is bounded by the Frobenius

norm of the perturbation. More specifically, suppose Ã = A+∆A is the perturbed graph

matrix with spectral density µ̃, then W1(µ, µ̃) ≤ ||∆A||F . As one can view a subgraph as a

result of a perturbation (removing nodes/edges) on the whole graph, the spectral moments

of the subgraphs and the whole graphs should also be close. Therefore, we use spectral

moments for network identification as they can capture the similarity between subgraphs

and the whole graph. We use spectral moments as features directly to find the graph iden-

tities. Before detailing the experiments, we present the experimental setup.

4.6.2 Experimental Setup

From each real-world network, we sample many subgraphs representing graphs G which

are to be identified. We vary the sampling proportion from 10% to 99% and sample using

random node sampling. For each proportion, we sample two subgraphs. Hence, for each

network we have 90× 2 = 180 subgraphs, and for twenty networks, we have 180× 20 =

3, 600 samples to be identified.

4.6.3 Experiments

We use the spectral moments of each subgraph as its features and the name of the source

networks as the class label, to train a multiclass classification model. We use 10-fold

cross validation, and decision tree, SVM, k-NN and bagged trees as our classifiers. For

spectral moments, we consider using the three spectral moments (m2,m3,m4) and using

the first 20 spectral moments. For evaluation, we provide the following two baselines for

comparison.
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Table 4.2: Network Identification with Spectral Moments
Type Three First 20 Baselines

Spectral Moments Spectral Moments Top Eigenvalues Random
Prediction (1/n)

All
Networks 82.0% 86.5% 62.4% 5%

Social
Networks 95.5% 96.1% 74.8% 12.5%

Collaboration
Networks 94.8% 97.1% 70.9% 25%

Road
Networks 51.2% 53.3% 44.9% 25%

Biological
Networks 99.7% 99.6% 90.4% 25%

1. Top Eigenvalues. Top eigenvalues have been used to study graph similarity [66]. We

compute the top 5 eigenvalues of each sample as features for classification.

2. Random Prediction. A simple random prediction, so the accuracy will be 1/n where

n is the number of networks.

We evaluate the methods for all networks and within each network category and report the

performance for the best classifier in Table 4.2. The results show that spectral moments

significantly outperform the baselines. The first 20 spectral moments perform best, but

using three spectral moments one does not lose much predictive power, which confirms our

discussion that the truncated spectral moments can keep most information on the spectral

distribution and network structure of real-world networks.

4.7 Additional Related Work

Additionally, our work has links to the following areas:

I. 3D Network Embedding. Jin et al. [12] propose a 3D embedding method using

Stochastic Kronecker Graph model. Their embedding method can capture the core-periphery

structure of a network, and the embedding values can quantify the core strength of the net-

work to some extent. Compared to their approach, spectral points carry further information

on the network structure and properties.

II. Spectral Moments of other Associated Matrices. Preciado and colleagues [96, 97]
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have provided detailed analysis on the spectral moments of the combinatorial Laplacian

matrix (D − A) of graphs to connect the spectral moments with network structure. Here,

we choose not to use the spectral moments of combinatorial Laplacian as the bounds on

its eigenvalues are related to the size of the graph, and we prefer using the random walk

transition matrix to have a compact embedding space.

III. Spectral Embedding. Recently, spectral information is used for different network

embedding methods. One example is FGSD [98], which proposed a family of graph spec-

tral distances that embeds the information as histograms and computes histograms on the

biharmonic kernel of the graph. Another example is NetLSD [30], which computes and

samples the heat or wave trace over the eigenvalues of a graph’s normalized Laplacian to

build embeddings. By using the spectral information, these embeddings are more focused

on the predictive power, but are still relatively difficult to be interpreted.

4.8 Conclusion and Discussion

In this chapter, we introduce an approach to map all possible networks to a bounded 3D

embedding space using the spectral moments of networks. We propose a 3D network

embedding method, the Spectral Point, by using the truncated spectral moments of the

network. We prove that spectral moments are closely related to network structure and var-

ious network properties. To the best of our knowledge, we are the first to study relationship

between the spectral moments of the random walk transition matrix and network structure.

We prove that the spectral moments are bounded by network properties such as the degree

distribution and the global clustering coefficient, and spectral moments can be used as a

measure for global connectivity. We prove the relationship between the spectral moments

of the network and those of its connected components. We derive the spectral points of

various types of graphs such as complete graphs, cycles, star graphs, complete bipartite

graphs, and wheels. For k-regular graphs, we prove each dimension of the spectral points
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Figure 4.6: Feasible Spectral Embedding Space

are bounded by 1
k
. We analyze the spectral points of real-world graphs and show that their

structure and properties identified in past literature are often captured by spectral points.

Finally, we demonstrate that spectral moments can be used for network identification, i.e.,

to identify the source of an anonymized graph. The result shows that the spectral moments

outperform the baselines and the truncated spectral moments do not lose much predictive

power. We believe the spectral embedding space (i.e., the spectral zoo) can help obtain

a better and quick understanding of the structure and properties of a network. Here, we

further discuss some properties of the spectral embedding space.

Feasible Embedding Space for Spectral Moments. By definition, m2, m3 and m4 are

between 0 and 1. Hence, the whole spectral embedding space is a 1×1×1 cube. However,

not the whole cube is the feasible embedding space for networks due to the intrinsic rela-

tionship between these moments. For any random variable X with moments mj = E(Xj),

m3 ≤
√

m4m2 −m3
2 and m3 ≤ ( 4

27
)1/4m

3/4
4 [99]. Therefore, the embedding space which

violates these conditions should be void. We plot the feasible spectral embedding space as

the blue area in Figure 4.6.
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Chapter 5

Network Shapes II: Spectral Path

5.1 Introduction

In Chapter 4, to represent a network with its spectral density, one can rely on its spectral

point. However, there are a few drawbacks in using the spectral density (or spectral mo-

ments) as a representation of a graph: (1) in theory, different graphs can have the same

spectral density. It is not difficult to construct such graphs. One way is to make a copy

of a graph and take its union with the original graph. In this way, one doubles the size of

the graph, but the spectral density does not change. Moreover, there exist non-isomorphic

graphs sharing the same graph spectrum (i.e. cospectral or isospectral graphs) [100]; (2)

the spectrum may dramatically change with a small change in graph structure [101].

To address these problems, we propose utilizing the spectral information of subgraphs.

In this chapter, we propose to represent a graph using a 3D path in the spectral embed-

ding space, which we denote as the Spectral Path. The spectral path connects the spectral

moments of a network and its subgraphs. Figure 5.1 plots the spectral paths of a social net-

work (YouTube) and a biological network. As we can see, though their spectral points of
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Figure 5.1: Spectral Paths of YouTube and Bio-Grid-Human
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the whole networks (marked with *) are close, their spectral paths show different patterns.

Graph A Graph B
Figure 5.2: Cospectral Graphs

Our idea is inspired by the Reconstruction Conjec-

ture, which is an open problem in theoretical com-

puter science. The reconstruction conjecture — ini-

tially due to Kelly [102] and Ulam [102–104] —

states that graphs are determined uniquely by their

subgraphs. Bollobás has shown that the probability

that a randomly chosen graph on n vertices is not reconstructible goes to 0 as n → ∞ [35].

In other words, almost all graphs are reconstructible with their subgraphs. Naturally, by

using the spectral density of subgraphs to capture subgraph information, one can bet-

ter represent the whole graph. Figure 5.2 provides an example of two graphs that share

the same spectral density but their subgraphs do not necessarily do so. In Figure 5.2,

graphs GA and GB have the same graph spectrum of the random walk transition matrix:

[−1, 0, 0, 1]. Hence, they also have the same spectral moments; for example, the second

moment m2 of their spectrum is m2,A = m2,B = 1
2
. If we randomly remove one node

(and edges connected to it) from GA, we get some subgraph GA′ . Subgraph GA′ is 100%

likely to be isomorphic to , whose spectrum is [−1, 0, 1] and its second spectral moment

is 2
3
. However, if we randomly remove one node from GB and get a subgraph GB′ , with

75% probability, we get , and with 25% probability, we get an empty graph of 3 nodes

whose spectrum is [0, 0, 0] and its second spectral moment is 0. Therefore, though GA and

GB are cospectral graphs, they have a different distribution of (second) spectral moments

across all the subgraphs by randomly removing one node. If we take the expectation of

the second spectral moment of GA′ (or GB′) over the distribution of the subgraphs, we get

E(m2,A′) = 2
3
× 100% = 2

3
, but E(m2,B′) = 2

3
× 75% + 0 × 25% = 1

2
. In expectation,

if we randomly remove one node, the second spectral moment of GA will increase by 1
6

but the second spectral moment of GB will not change. In Section 5.5, we will provide a

detailed theoretical analysis. These observations indicate that even if two networks have
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similar spectral density, one can capture their difference in terms of substructures by using

the expected spectral points (moments) of their subgraphs.

Overall, our contributions are mainly the following:

1. Spectral Path. We propose representing a network using its Spectral Path: a path

connecting the spectral moments of the network and its subgraphs. Spectral paths provide

an interpretable-by-design network representation.

2. Interpretability of Spectral Path. We study the interpretability of spectral paths by

investigating the shapes of spectral paths. We provide the theoretical relationship between

the spectral moments of a network and those of its subgraphs. We show how this relation-

ship is closely related to the network structure. To the best of our knowledge, this work is

the first to explore spectral moments of subgraphs and to study the relationship between

spectral moments of subgraphs and those of the whole network.

3. Spectral Path Applications. We show that spectral path can be used for applications

such as network visualization and network identification, i.e., identifying the source of an

anonymized graph.

4. Spectral Paths of Cospectral Graphs. We theoretically explore the possibility of

using the expected spectral moments of subgraphs to help distinguish cospectral graphs.

Organization. In Section 5.2, we present the algorithm to build a spectral path. In Section

5.3, we demonstrate the theoretical interpretation of spectral paths. We also present the

relationship between the spectral moments of a network and its subgraphs, and how spec-

tral paths are connected to the network structure. In Section 5.4, we show that spectral

paths can be used for network visualization and network identification (that is, answer-

ing questions such as “Is this anonymized graph sampled from Twitter?”). Section 5.5

demonstrates how spectral paths provide a potential way to distinguish cospectral graphs.

In Section 5.6, we provide more detailed proofs of some of the theorems in this chapter.
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We review additional related work in Section 5.7 and conclude in Section 5.8.

5.2 Spectral Path

Here, we introduce the proposed network representation: the spectral path of a graph,

which represents a network with the path connecting the spectral moments of a network

and its subgraphs. The following simple steps can help build a spectral path:

Step 1: Sample many subgraphs from the network

Step 2: Estimate the expected spectral points using the spectral points of samples

Step 3: Form a spectral path by connecting the expected spectral points

The pseudocode is in Algorithm 2. The algorithm uses Random Node Sampling [37] to

sample subgraphs from the network by (1) varying the proportion of nodes from 0% to

100% with step size s and (2) taking t independent samples for each proportion. We use

Random Node Sampling as the subgraph can be viewed as a result of randomly removing

nodes from a graph. For each sample and the whole network, the algorithm computes its

spectral point (m2,m3,m4). For all samples of the same size (sampling proportion p), the

algorithm takes the average of their spectral points to estimate the expected spectral points.

Hence, we get one (expected) spectral point for each sampling proportion p. Finally, it

draws a path connecting the expected spectral points from 100% → . . . → 2p% → p%.

Figure 5.3 illustrates the spectral path of YouTube with the spectral points of the samples.

The figure shows that the spectral path can capture structural variations in subgraphs of

different sizes.

Time Complexity. The majority of the computation time is dedicated to sampling sub-

graphs and computing three spectral moments for each subgraph. For one subgraph, ran-

dom node sampling takes O(n+m) where |V |= n and |E|= m. For large graphs, we com-
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Figure 5.3: Spectral Path of YouTube and its sample points

pute accurate estimates of the low-order moments with the APPROXSPECTRALMOMENT

algorithm [67]. The algorithm estimates the moments by simulating many random walks

and computes the proportion of closed walks. To compute the ℓ-th spectral moment by

simulating r random walks, it takes O(rℓ) time. In our case, ℓ ≤ 4 and we set r = 10, 000

following the empirical results of [67]. As the random walks can be taken in parallel, it

only takes less than a few seconds to compute the three spectral moments even for large

networks [15, 67]. Hence, for each subgraph, the time complexity is O((n + m)rℓ). We

have a total of 100
s

× t + 1 graphs (a network and its subgraphs) for which we compute

spectral points. Thus, the time complexity for computing a spectral path is O( trℓ
s
(n+m)),

linear in the number of nodes and edges.

5.3 Interpretability of Spectral Paths

The interpretability of spectral path can be studied from two aspects (1) the location of

the spectral path in the 3D embedding space. Here, we do not focus on this aspect. As

mentioned, each component (dimension) of the spectral points is closely related to the

network structure and network properties (see examples in [15]); (2) the shape of the

spectral paths, which we will focus on here. The spectral points of different sampling

sizes in the embedding space will determine the shape of a spectral path. Hence, we study
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Algorithm 2 SPECTRAL PATH algorithm
input : an undirected network graph: G(V,E)
output : the Spectral Path of G: SPG

parameter : s : sampling proportion step size;
t : number of samples for one proportion;

Expected spectral points = { };

for ( p = s; p < 100%; p = p+ s ) {
Spectral points = { }; %Spectral points for all the samples for

proportion p

for ( i = 1; i ≤ t; i = i+ 1 ) {
%Sample a p% subgraph Gp from G

Gp = RandomNodeSampling(G, p);
%Compute the spectral point of Gp (m2,m3,m4)

Spectral point = ComputeMoments(GP );
Spectral points.add(Spectral point);

}
%Compute the average m2,m3,m4 for all the samples for

proportion p

Expected spectral point = Average(Spectral points);
Expected spectral points.add(Expected spectral point);

}
%Compute the spectral point of G

Spectral point = ComputeMoments(G);
Expected spectral points.add(Spectral point);
%Form the spectral path of the (expected) spectral points, e.g.,

100→90%...→10%

SPG = Form Path(Expected spectral points)
return SPG;

the interpretability of spectral paths by investigating the relationship between the spectral

points of subgraphs and that of the whole network. We start with the following questions:

I1) Direction of the movement. In which direction will the spectral point of a graph move

if its nodes are randomly removed (equivalent to sampling a subgraph with random node

sampling)? In other words, will spectral moments increase, decrease, or stay the same?;

I2) Magnitude of the movement. How far will the spectral point of a graph move under

sampling?; and
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I3) Shape of spectral paths. How do the shapes of spectral paths reveal the structural

information of a network?

To answer these three questions (I1 to I3), we need to look into the spectral moments of

subgraphs.

5.3.1 Second Spectral Moment of Subgraphs

We first look into the second spectral moment m2 of subgraphs. In Theorem 5.3.1, we

show what m2 of a graph is expected to be when one node is removed, and the detailed

proof is provided in Section 5.3.1. Then, we extend the result to removing k nodes (k ≥ 1)

from a graph in Theorem 5.3.4.

Theorem 5.3.1 (Expected second spectral moment m2 of subgraphs after removing one

node). In undirected graph G = (V,E), where |VG|= n, |EG|= m, subgraph G′ of G is

obtained by removing one node from G uniformly at random. The expected second moment

of G′ is

E(m2,G′) = m2,G +
2

n(n− 1)
· (

∑
(i,j)∈G

di>1,dj>1

1

didj
−

∑
(i,j)∈G

di=1,dj=1

1

didj
+ δtriad),

where di, dj denote the degree of node i and j, and

δtriad =
∑

(i,j,k)
is a triad in G

(
1

didj(di − 1)(dj − 1)
+

1

didk(di − 1)(dk − 1)
+

1

djdk(dj − 1)(dk − 1)
).

Especially, if G is a triangle-free graph, then E(m2,G′) reduces to:

E(m2,G′) = m2,G +
2

n(n− 1)
· (

∑
(i,j)∈G

di>1,dj>1

1

didj
−

∑
(i,j)∈G

di=1,dj=1

1

didj
)
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Figure 5.4: Example of Spectral Moment of Subgraphs

In Figure 5.4, we provide an example of a triangle-free graph to illustrate Theorem 5.3.1.

We have a graph G with 7 nodes and 6 edges. The label on each edge is its value of

1
didj

. There are 7 subgraphs (G1, . . . , G7) by removing one node from G. Using Theorem

5.3.1, we get E(m2,G′) = m2,G + 2
n(n−1)

· (
∑

(i,j)∈G
di>1,dj>1

1
didj

−
∑

(i,j)∈G
di=1,dj=1

1
didj

) = 13
21

+ 2
7×6

(1
6
+

1
6
+ 1

4
+ 1

4
− 1) = 11

18
, which is by definition equivalent to E(m2,G′) =

∑7
i=1 m2,Gi

7
=

[2
3
+ 3

4
+ 2

3
+ 3

4
+ 2

3
+ 7

18
+ 7

18
]/7 = 11

18
.

For an example of a graph with triangles, consider a complete graph Kn(n > 3) as G.

We get n subgraphs (G1, . . . , Gn) by removing one node, each also being a complete

graph Kn−1. We know that m2,G = 1
n−1

, and using Theorem 5.3.1, we get E(m2,G′) =

m2,G + 2
n(n−1)

· (
∑

(i,j)∈G
di>1,dj>1

1
didj

−
∑

(i,j)∈G
di=1,dj=1

1
didj

+ δtriad) = 1
n−1

+ 2
n(n−1)

· (
(
n
2

)
1

(n−1)2
+

(
n
3

)
3

(n−1)2(n−2)2
) = 1

n−2
, which is the m2 of Kn−1.

Interpretations of Theorem 5.3.1.

We provide interpretations for Theorem 5.3.1 by answering the aforementioned questions

I1 to I3. In the proof of Theorem 5.3.1 (see Section 5.3.1), we partition any edge (i, j) of

G into three types based on its end-points i and j’s node degrees di and dj:
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▶ Type I: di = 1, dj = 1;

▶ Type II: di > 1, dj = 1;

▶ Type III: di > 1, dj > 1.

Theorem 5.3.1 shows the expected m2 of subgraphs when removing one node is closely re-

lated to frequencies of these three types of edges. Next, we will take triangle-free graphs as

an example to show the interpretability of spectral paths, in terms of m2. By removing one

node from a triangle-free graph G, we get a subgraph G′. Compared to the second spectral

moment of G, m2,G′ is expected to add the term 2
n(n−1)

· (
∑

(i,j)∈G
di>1,dj>1

1
didj

−
∑

(i,j)∈G
di=1,dj=1

1
didj

).

I1) Direction of the movement of spectral point.

The direction of the movement of spectral point (moments) is basically the sign of the

term, which is determined by the difference between the summation of 1
didj

over Type III

and Type I edges. If the difference is positive (or negative), then m2,G′ is expected to

increase (or decrease). Roughly speaking, if the graph G has more Type III edges and

fewer Type I edges, m2,G′ is expected to increase.

I2) Magnitude of the movement of spectral point.

Similarly, how far the spectral point will move is decided by the magnitude of the term.

Besides the frequency of different types of edges, the size of a graph n also has an impact.

When n is larger, the magnitude of the term is smaller, indicating that the more nodes G

has, the smaller the impact on m2 when one node is removed.

I3) Shape of spectral paths.

Assume that we start with a graph with many Type III edges. If we remove nodes one

by one from it, it is very likely that (a) the second spectral moment will increase first, as

there are still many Type III edges and the summation of 1
didj

over them increases when the

node degrees decrease; (b) if we keep removing more nodes, Type III edges get converted
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to Type II or Type I, which makes the difference negative, and the second spectral moment

starts to decrease. In other words, we will see a turning point; (c) finally, the moment

will converge to 0 as more nodes are removed and the graph becomes an empty graph. In

this case, the spectral path will show an increasing-decreasing pattern. Technically, it is

possible for the turning point to happen in samples smaller than those taken to compute

the spectral path. In that case, the spectral path will show an increasing-only pattern.

Similarly, if the starting graph has mostly Type I edges, then the trend will be decreasing-

only.

For general graphs with triangles, as theorem 5.3.1 shows, we need to consider an extra

term δtriad but in general they follow a similar pattern. These patterns will be observed in

our later experiments.

Proof of Theorem 5.3.1.

To prove Theorems 5.3.1, we need Theorem 5.3.2 and Lemma 5.3.3.

Theorem 5.3.2 (Theorems 3.2, 3.3, 3.5 in [15]). The 2nd, 3rd, and 4th spectral moments

(m2, m3, m4) of random walk transition matrix P are m2 = E(λ2) = E(di)E( 1
didj

), m3 =

E(λ3) = 2E(∆i)E( 1
dhdidj

), and m4 = E(λ4) = [E(di) + 4E
(
di
2

)
+ 2E(□i) ]E( 1

didjdkdl
),

where E(di) is the average degree, didj follows the joint degree distribution p(di, dj),

E(∆i) is the average number of triads a node is in, dhdidj follows the joint degree dis-

tribution of triads p(dh, di, dj), E(□i) is the average number of squares a node is in, and

didjdkdl follows the joint degree distribution of closed walks of length 4 formed by nodes

with degrees di, dj , dk, dl.

Note that in this theorem, for example, the term E( 1
didj

) is the expected value of 1
didj

over

all edges, where di and dj are the degree of the nodes connected by some edge.

Lemma 5.3.3. Graph H = (V,E) is a disjoint union of k graphs G1, G2, . . . , Gk−1, Gk,

i.e., H =
⋃k

i=1Gi. Let mℓ,Gi
denote the ℓ-th spectral moment for Gi = (Vi, Ei). Then,
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the ℓ-th spectral moment of H is the weighted average of mℓ,Gi
’s weighted by |Vi|’s, i.e.,

mℓ,H =
∑

i|Vi|mℓ,Gi

|V | .

Proof. The lemma is a generalized version of Theorem 4.3 of [15], if we consider any

graph as a disjoint union of its connected components. Therefore, the proof is similar.

Note that one can view the transition matrix of the random walk on H as a block matrix

where each block represents the transition matrix of some Gi.

A special case of Lemma 5.3.3 is that if all graphs Gi have the same order, i.e., |Vi|= c,

for some constant c, then mℓ,H =
∑

i mℓ,Gi

k
.

Proof of Theorem 5.3.1.

Proof. As G has n nodes, we have n choices to remove only one node, so we can get n pos-

sible subgraphs (G′). We denote these subgraphs as G1, G2, . . . , Gn, e.g., G1, G2, . . . , G7

in Figure 5.4. Here, we aim to get the expected spectral moment of G′, which is E(m2,G′) =∑
i m2,Gi

n
.

We use proof by construction. Construct a new graph H = (VH , EH) as a disjoint union of

all these subgraphs Gi’s, i.e., H =
⋃n

i=1Gi. From Lemma 5.3.3, we have m2,H =
∑

i m2,Gi

n

as each Gi has n− 1 nodes. Hence, deriving E(m2,G′) is equivalent to finding m2,H . From

Theorem 5.3.2, we have m2,H = EH(di)EH(
1

didj
). For EH(di),

EH(di) =
2 · |EH |
|VH |

=
2 · (n− 2)m

n(n− 1)

(as each edge of G appears n− 2 times in H , and Gi has n− 1 nodes.)

=
n− 2

n− 1
· EG(di). (5.1)

To derive EH(
1

didj
), we compare it to EG(

1
didj

): for any edge (i, j) of G, there are n − 2
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copies in H , but if the removed node is a neighbor of i (or j) in G, the degree di (or dj)

will decrease which leads to an increase of 1
didj

. Therefore, EH(
1

didj
) > EG(

1
didj

). To get

the exact increase quantity, we partition any edge (i, j) of G into three types based on its

node degree:

▶ Type I: di = 1, dj = 1. For such an edge, all of its n− 2 copies in H have 1
didj

= 1 as

neither of i and j can lose other neighbors, so there will be no increment;

▶ Type II: di > 1, dj = 1. For an edge of this type, if the removed node is a neighbor of

i, then the edge contributes an increment 1
(di−1)dj

− 1
didj

= 1
didj(di−1)

. Among the n − 2

copies in H , there are di − 1 such cases as each neighbor of i gets removed once, so the

overall contribution is (di − 1) · 1
didj(di−1)

= 1
didj

;

▶ Type III: di > 1, dj > 1. Assume nodes i and j have cij common neighbors. If the

removed node is a neighbor of i but not j, then the edge contributes an increment 1
(di−1)dj

−
1

didj
= 1

didj(di−1)
. Among its n−2 copies in H , there are di−1−cij such cases (excluding j

and the common neighbors), so the total contribution is di−1−cij
didj(di−1)

. Similarly, if the removed

node is a neighbor of j but not i, the total contribution for such cases is dj−1−cij
didj(dj−1)

. If the

removed node is a common neighbor of i and j, the increment is 1
(di−1)(dj−1)

− 1
didj

=

1
didj(di−1)

+ 1
didj(dj−1)

+ 1
didj(di−1)(dj−1)

. As there are cij common neighbors, the contribution

by such cases is cij
didj(di−1)

+
cij

didj(dj−1)
+

cij
didj(di−1)(dj−1)

. Overall for one edge of Type

III in G, it contributes the increment: di−1−cij
didj(di−1)

+
dj−1−cij
didj(dj−1)

+
cij

didj(di−1)
+

cij
didj(dj−1)

+

cij
didj(di−1)(dj−1)

= 2
didj

+
cij

didj(di−1)(dj−1)
.

Therefore, the total increment δ is δ =
∑

(i,j)∈G
di>1,dj=1

1
didj

+
∑

(i,j)∈G
di>1,dj>1

( 2
didj

+
cij

didj(di−1)(dj−1)
). We

know that
∑

(i,j)∈G
di>1,dj>1

cij
didj(di−1)(dj−1) =

∑
(i,j,k)is a triad in G

( 1
didj(di−1)(dj−1)+

1
didk(di−1)(dk−1)+

1
djdk(dj−1)(dk−1)) and we denote it as δtriad.
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Thus, the total increment δ is δ =
∑

(i,j)∈G
di>1,dj=1

1
didj

+ 2 ·
∑

(i,j)∈G
di>1,dj>1

1
didj

+ δtriad; normalized by

|EH |, we get

EH(
1

didj
) = EG(

1

didj
) +

δ

(n− 2)m
. (5.2)

Next, we compute m2,H using Equations 5.1 and 5.2:

m2,H = EH(di)EH(
1

didj
)

=
n− 2

n− 1
EG(di) · (EG(

1

didj
) +

δ

(n− 2)m
)

=
n− 2

n− 1
EG(di)EG(

1

didj
) +

δ · EG(di)

(n− 1)m

= EG(di)EG(
1

didj
) +

δ · EG(di)

(n− 1)m
−

EG(di)EG(
1

didj
)

n− 1

= m2,G +
EG(di)

(n− 1)m
· (δ −m · EG(

1

didj
))

= m2,G +
2

n(n− 1)
· (δ −m · EG(

1

didj
)) (as EG(di) =

2m

n
)

Note that m ·EG(
1

didj
) =

∑
(i,j)∈G

1
didj

, so we obtain the following which finalizes the proof:

δ −m · EG(
1

didj
) =

∑
(i,j)∈G

di>1,dj=1

1

didj
+ 2 ·

∑
(i,j)∈G

di>1,dj>1

1

didj
+ δtriad −

∑
(i,j)∈G

1

didj

=
∑

(i,j)∈G
di>1,dj>1

1

didj
−

∑
(i,j)∈G

di=1,dj=1

1

didj
+ δtriad,

If G is triangle-free, then δtriad = 0. The theorem is proved.

A more general case.

Next, we explore a more general case, so we provide a bound for the expected m2 by

removing k nodes from a triangle-free graph in Theorem 5.3.4. When k = 1, the theorem

is reduced to Theorem 5.3.1, so the bound is tight.
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Theorem 5.3.4. (Expected m2 by Removing k Nodes) In undirected triangle-free graph

G = (V,E), where |VG|= n, |EG|= m, subgraph G′ of G is obtained by removing k nodes

from G uniformly at random. For E(m2,G′), the expected second moment of G′, we have

E(m2,G′) ≤ m2,G +
2k

n(n− 1)
· (n− 1

n− k
·

∑
(i,j)∈G

di>1,dj>1

1

didj
−

∑
(i,j)∈G

di=1,dj=1

1

didj
),

where di and dj denote the degrees of node i and j, respectively.

For the detailed proof of Theorem 5.3.4, please refer to Section 5.6. We use the same

triangle-free graph G in Figure 5.4, and we list all the 21 subgraphs by removing two nodes

from G, in Figure 5.5. By Theorem 5.3.4, E(m2,G′) ≤ 13
21
+ 2×2

7×6
(6
5
· (1

6
+ 1

6
+ 1

4
+ 1

4
)−1) =

13
21

≈ 0.619, while the actual E(m2,G′) =
∑21

i=1 m2,Gi

21
≈ 0.594 < 0.619.

5.3.2 Third and Fourth Spectral Moments

In this part, we provide two theorems for the expected third and fourth spectral moments

of subgraphs (E(m3,G′) and E(m4,G′)) when one node is removed. Theorem 5.3.5 provides

an upper bound for E(m3,G′) indicating that whether E(m3,G′) is expected to increase or

not over that of the original graph (m3) depends on the weighted summation of 1
didjdk

over

four different types of triads. In general, if there are more triads formed by higher degree

nodes, m3,G′ is expected to increase; if there are more triads with low degree nodes (i.e.,

with degree 2), m3,G′ is expected to decrease. The forth moment m4 is related to closed

walks of length 4 (generated by edges, wedges, or squares). We provide a loose bound

on E(m4,G′) in Theorem 5.3.6. Our experiments also show that m4 has a high correlation

with m2. For detailed proofs, please refer to Section 5.6. In general, if we view triads or

squares as higher-order edges of a network, a similar analysis on m2 can be applied to m3

and m4, leading to increasing-decreasing, increasing-only, and decreasing-only patterns

for these moments.
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Theorem 5.3.5 (Expected third spectral moment m3 of subgraphs after removing one

node). In undirected graph G = (V,E), where |VG|= n, |EG|= m, subgraph G′ of G is

obtained by removing one node from G uniformly at random. For E(m3,G′), the expected

third moment of G′, we have

E(m3,G′) < m3,G +
6

n(n− 1)
· (2

∑
(i,j,k)∈G

di>2,dj>2,dk>2

1

didjdk
+

1

4

∑
(i,j,k)∈G

di>2,dj>2,dk=2

1

didjdk

−
∑

(i,j,k)∈G
di>2,dj=2,dk=2

1

didjdk
− 2

∑
(i,j,k)∈G

di=2,dj=2,dk=2

1

didjdk
).

Theorem 5.3.6 (Expected forth spectral moment m4 of subgraphs after removing one

node). In undirected graph G = (V,E), where |VG|= n, |EG|= m, subgraph G′ of G is

obtained by removing one node from G uniformly at random. For E(m4,G′), the expected

fourth moment of G′, we have

E(m4,G′) ≤ 16(n− 2)

n− 1
m4,G.

5.4 Applications

5.4.1 Experimental Setup

In our experiments, we generate spectral path for each network by varying the proportion

of nodes from 0% to 100% with step size 10%, i.e., s = 10% in Algorithm 2; for each

proportion (except for 100% which represents the whole graph), we generate 20 indepen-

dently sampled subgraphs, i.e., t = 20 (for which we have a discussion in Section 5.8). In

total, we generate 20× 9+ 1 = 181 spectral points for each network, and we compute the

expected spectral points for each sampling proportion. Hence, for each network, a spec-

tral path connects 10 expected spectral points from (100% to 10%). Code and datasets are
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Figure 5.6: Spectral Paths of Networks
(a) Social Networks
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publicly available.1

Datasets. We use the same dataset in Chapter 4 including 20 real-world networks from

four network categories: social networks, collaboration networks, road networks, and bi-

ological networks.

5.4.2 Network Visualization

As a spectral path is a path connecting several 3D spectral points of a network and its

subgraphs, we are able to plot them for visualization and to capture the network proper-

ties. In Figure 5.6, we plot the spectral paths of 20 real-world networks from four dif-

ferent categories. We have the following observations: (1) For m2 and m4, we see two

common patterns: increasing-decreasing, and increasing-only which indicates the turning

point happens before 10% samples of the graph. The observation shows that for most

real-world graphs more edges are Type III edges; (2) among the eight social networks,

1https://github.com/shengminjin/SpectralPath

https://github.com/shengminjin/SpectralPath
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Brightkite, Gowalla, and YouTube show the increasing-decreasing pattern for both m2

and m4. It can be explained by their relatively low average degree and smaller graph size,

so in small samples like 10% or 20%, most of the edges become Type I edges. Moreover,

Brightkite and Gowalla show an increasing-decreasing trend on m3 while Orkut shows an

increasing-only trend on m3, as Orkut has a much higher average degree so most of its

triads are composed of high degree nodes. For the remaining networks, there is not much

change on m3 as they have a low clustering coefficient so they do not have as many triads

as in those three; (3) for Collaboration networks, only Astro-Ph shows the increasing-only

trend as it has a much higher average degree than other networks, so even 10% of the graph

still has more edges among high-degree nodes. We observe the large change on m3 for

Cond-Mat, Gr-Qc and Hep-Th as in general collaboration networks have a high clustering

coefficient and small samples of these sparse networks lose most triads or only have triads

with low-degree nodes; (4) for road networks, we can see an early turning point (40%) on

all m2, m3, and m4. This can be explained by their low average degree so most edges and

triads are among low degree nodes; (5) all biological networks show increasing-only trend

as they all have a high average degree or high edge density. Overall, using the spectral

path, one can get various insights on the graph structure.

5.4.3 Network Identification

Network identification [13] aims to identify the source network from which an anonymized

graph is sampled, to find the identity of a subgraph. Network identification can be formu-

lated as follows: given a set of networks N = {N1, N2, . . . , Nn}, and a subgraph G sam-

pled from Ni ∈ N using a sampling strategy S, we want to identify G, i.e., the network

Ni from which G is sampled. In the problem setting, there are a few assumptions: (1) The

networks are not isomorphic, i.e., Ni and Nj are isomorphic =⇒ i = j, as isomorphic

graphs are basically the same graph after anonymization; and (2) Subgraph G is not too

small to lose its identity. It does not make much sense to verify the identity of a small
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subgraph such as a triad, since it can be found in most networks.

Experimental Setup

From each of the 20 real-world networks, we sample many subgraphs representing graphs

G which are to be identified. We vary the sampling proportion from 10% to 99% by using

random node sampling with step size 1%. For each proportion, we sample two subgraphs.

Hence, for each network, we have 90×2 = 180 subgraphs, and in total, 180×20 = 3, 600

samples to be identified.

Experiments

As the spectral path has both spectral points of subgraphs and their relationship, we aim

to explore whether one can improve the network identification performance by using the

distances between an unidentified subgraph and the spectral path. For each subgraph, we

compute the euclidean distances from its spectral point to the 10 expected spectral points

of the spectral path, respectively. As there are 20 networks in total, for each subgraph we

use the 10×20 = 200 distances as features and the name of the source networks as the

class label, to train a multiclass classifier. We use 10-fold cross validation, and decision

trees, SVM, k-NN, and bagged trees as our classifiers. For evaluation, we compare to the

following four baselines: (1) Three Spectral Moments, where the spectral point (m2, m3,

m4) of each subgraph is used as features; (2) First Twenty Spectral Moments, where

the first 20 spectral moments of each subgraph are used as features; (3) KRONECKER

HULL [13], which uses Stochastic Kronecker Graph model to embed a network and its

subgraphs and then a convex hull to represent the distribution of the embeddings. We use

the distances between a subgraph to the convex hull of the whole network as features;

(4) GRAPH2VEC is a graph embedding method which views a graph as a document and

the rooted subgraphs around each node as words. It uses document embedding neural

networks to embed a graph as a vector, which we use as a feature [68].
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Table 5.1: Network Identification Accuracy with Spectral Path
Type Spectral

Path
Baselines

Three Spectral
Moments

First 20
Spectral Moments

Kronecker
Hull GRAPH2VEC

All
Networks 96.3% 82.0% 86.5% 84.4% 81.7%

Social
Networks 100.0% 95.5% 96.1% 96.4% 83.7%

Collaboration
Networks 99.9% 94.8% 97.1% 84.2% 97.4%

Road
Networks 86.8% 51.2% 53.3% 76.8% 86.3%

Biological
Networks 100.0% 99.7% 99.6% 80.4% 89.9%

We evaluate the methods for all networks and within each network category. We report

the performance for the best classifier in Table 5.1, where spectral path significantly out-

performs the baselines.

5.5 Spectral Path of Cospectral Graphs

Two non-isomorphic graphs are said to be cospectral with respect to a given matrix if

they share the same graph spectrum. Well-known examples of cospectral graphs for the

normalized Laplacian (as well as the random walk transition matrix) are complete bipartite

graphs [78]. Butler et al. [105] propose constructing cospectral graphs by swapping in a

bipartite subgraph with a cospectral mate. In general, cospectral graphs for the random

walk transition matrix are related to the bipartite (sub)graphs.

Here, we aim to show that using the expected spectral moments (or spectral paths) of

cospectral graphs may provide a potential way to distinguish two cospectral graphs. In

this work, we use complete bipartite graphs as an example. It is known that the spectrum

of a complete bipartite graph Ka,b is −1[1], 0[n−2], 1[1], where n = a + b and the exponent

indicates multiplicity. Hence, its spectral moments are mi = 0 for an odd i, and mi =
2
n

for an even i. It is easy to see that complete bipartite graphs of the same order are all

cospectral, i.e., one can find another complete bipartite graph Ka′,b′ where a′ + b′ = a+ b.

In Theorem 5.5.1, we prove that if one samples a subgraph from a complete bipartite graph

using random node sampling, the expectation of its spectral moments are not only related
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to n but also related to the values of a and b.

Theorem 5.5.1. Given an undirected complete bipartite graph G = (U, V,E) where |U |=

a, |V |= b, a + b = n, and a ≤ b, G′ is a subgraph of G by removing k nodes from G

uniformly at random. Then, when i is odd, E(mi,G′) = 0, and when i is even,

E(mi,G′) =


2

n−k k < a

2
n−k (1−

( b
k−a)
(nk)

) a ≤ k < b

2
n−k (1−

( b
k−a)+(

a
k−b)

(nk)
) k ≥ b

Proof. As G′ is a subgraph by removing k nodes from a complete bipartite graph G, G′ is

either a complete bipartite graph or an empty graph. Hence, mi,G′ is always 0 when i is

odd. When i is even, if k < a, G′ is always a complete bipartite graph of n− k nodes, so

E(mi,G′) = 2
n−k

; if a ≤ k < b, among all
(
n
k

)
possible subgraphs, there are

(
b

k−a

)
cases

of G′ being an empty graph where all the nodes in U are removed, and in the remaining

cases, G′ is a complete bipartite graph. Hence, E(mi,G′) =
2

n−k
·((nk)−(

b
k−a))+0·( b

k−a)
(nk)

=

2
n−k

(1 − ( b
k−a)
(nk)

); finally, if k ≥ b, there are
(

b
k−a

)
cases where all the nodes in U are

removed, and
(

a
k−b

)
cases when all the nodes in V are removed, where in both cases G′

becomes an empty graph so we get E(mi,G′) = 2
n−k

(1− ( b
k−a)+(

a
k−b)

(nk)
).

Using Theorem 5.5.1, we get the following corollary:

Corollary 5.5.1.1. Given two complete bipartite graphs G1 = (U1, V1, E1) where |U1|=

a1, |V1|= b1, and G2 = (U2, V2, E2) where |U2|= a2, |V2|= b2, and a1 + b1 = a2 + b2 = n,

a1 < a2 ≤ b2 < b1. Let G′
1 (or G′

2) be a subgraph of G1 (or G2) by removing k nodes from
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G1 (or G2) uniformly at random. Then, for an even i, we have

E(mi,G′
1
−mi,G′

2
) =



0 k < a1

− 2
n−k ·

( b1
k−a1

)

(nk)
a1 ≤ k < a2

2
n−k ·

( b2
k−a2

)−( b1
k−a1

)

(nk)
a2 ≤ k < b2

2
n−k ·

( b2
k−a2

)+( a2
k−b2

)−( b1
k−a1

)

(nk)
b2 ≤ k < b1

2
n−k ·

( b2
k−a2

)+( a2
k−b2

)−( b1
k−a1

)−( a1
k−b1

)

(nk)
k ≥ b1

From Corollary 5.5.1.1, we notice that in general E(mi,G′
1
−mi,G′

2
) is nonzero as long as

k ≥ a1 (the special case is when k = n or n− 1, in which E(mi,G′
1
−mi,G′

2
) = 0). Hence,

if we remove more than a1 nodes from two cospectral graphs (G1, G2) respectively, the

expected (even) spectral moments of the corresponding subgraphs are different. Moreover,

a1 <
n
2

as a1+b1 = a2+b2 = n, a1 < a2 ≤ b2 < b1. Hence, when k ≥ n
2
, E(mi,G′

1
−mi,G′

2
)

can be used to distinguish between two complete bipartite graphs. In other words, one

can use random node sampling to sample subgraphs of less than n
2

nodes, and estimate

E(mi,G′
1
) and E(mi,G′

2
), to distinguish two complete bipartite graphs. The idea can be

extended to general cospectral graphs, as long as they have an explicit form of spectrum.

5.6 More Proofs

5.6.1 Proof of Theorem 5.3.4

Proof. As we are removing k nodes, there are
(
n
k

)
possible subgraphs, denoted as G1, G2, . . . , G(nk)

.

Each Gi has n − k nodes. We construct H =
(nk)⋃
i=1

Gi. For each edge (i, j) in G, there will

be
(
n−2
k

)
copies in H when neither of the ending nodes is removed. Therefore,

EH(di) =
2 · |EH |
|VH |

=
2m ·

(
n−2
k

)
(n− k)

(
n
k

) =
2m(n− k − 1)

n(n− 1)
=

n− k − 1

n− 1
· EG(di). (5.3)
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Similarly, to get EH(
1

didj
), we need to analyze the three types of edges. (1) Type I: di =

dj = 1. There will be no increment for edges of Type I; (2) Type II: di > 1, dj = 1. If we

consider x neighbors of node i are removed, the increment on the edge is 1
(di−x)dj

− 1
didj

=

x
(di−x)didj

. Among the
(
n−2
k

)
copies, there are

(
di−1
x

)
·
(
n−2−(di−1)

k−x

)
cases where x neighbors

of i is removed. Moreover, x varies from 0 to min(di − 1, k), so the overall increment

of an edge of Type II is
min(di−1,k)∑

x=0

x
(di−x)didj

(
di−1
x

)
·
(
n−2−(di−1)

k−x

)
= 1

didj

min(di−1,k)∑
x=1

(
di−1
x−1

)
·(

n−2−(di−1)
k−x

)
≤ 1

didj
·
(
n−2
k−1

)
(as x

di−x

(
di−1
x

)
=

(
di−1
x−1

)
and the bound is tight when k ≤

(di − 1)); (3) Type III: di > 1, dj > 1. Assume x neighbors of i and y neighbors of j are

removed, then the increment is 1
(di−x)(dj−y)

− 1
didj

= x
(di−x)didj

+ y
(dj−y)didj

+ xy
(di−x)(dj−y)didj

.

As G is a triangle-free graph, H is also triangle-free, and i and j have no common

neighbors. Therefore, among the
(
n−2
k

)
copies, there are

(
di−1
x

)(
dj−1
y

)(
n−di−dj
k−x−y

)
cases

when x neighbors of i and y neighbors of j are removed. Moreover, x varies from 0

to min(di − 1, k), y varies from 0 to min(dj − 1, k) and x + y ≤ k, so the overall in-

crement of an edge of Type III is
min(di−1,k)∑

x=0

min(dj−1,k−x)∑
y=0

(
di−1
x

)(
dj−1
y

)(n−di−dj
k−x−y

)
( x
(di−x)didj

+

y
(dj−y)didj

+ xy
(di−x)(dj−y)didj

). Note that

min(di−1,k)∑
x=0

min(dj−1,k−x)∑
y=0

(
di − 1

x

)(
dj − 1

y

)(
n− di − dj
k − x− y

)
x

(di − x)didj

=

min(di−1,k)∑
x=0

(
di − 1

x

)
x

(di − x)didj
·
min(dj−1,k−x)∑

y=0

(
dj − 1

y

)(
n− di − dj
k − x− y

)

=

min(di−1,k)∑
x=1

(
di − 1

x− 1

)
1

didj
·
(
n− di − 1

k − x

)
≤ 1

didj
·
(
n− 2

k − 1

)
; (the bound is tight when k ≤ (di − 1)).

Due to the symmetry, the summation over y
(dj−y)didj

is also less or equal to 1
didj

·
(
n−2
k−1

)
. For

the summation over xy
(di−x)(dj−y)didj

:
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min(di−1,k)∑
x=0

min(dj−1,k−x)∑
y=0

(
di − 1

x

)(
dj − 1

y

)(
n− di − dj
k − x− y

)
xy

(di − x)(dj − y)didj

=

min(di−1,k)∑
x=1

min(dj−1,k−x)∑
y=1

(
di − 1

x− 1

)(
dj − 1

y − 1

)(
n− di − dj
k − x− y

)
1

didj
≤ 1

didj
·
(
n− 2

k − 2

)

The increment of an edge of Type III is ≤ 1
didj

·(2
(
n−2
k−1

)
+
(
n−2
k−2

)
), so the total increment over

all the edges is less or equal to δ =
(
n−2
k−1

)
·

∑
(i,j)∈G

di>1,dj=1

1
didj

+(2
(
n−2
k−1

)
+
(
n−2
k−2

)
) ·

∑
(i,j)∈G

di>1,dj>1

1
didj

,

and we normalize it by |EH |:

δ

|EH |
=

(
n−2
k−1

)
·

∑
(i,j)∈G

di>1,dj=1

1
didj

+ (2
(
n−2
k−1

)
+
(
n−2
k−2

)
) ·

∑
(i,j)∈G

di>1,dj>1

1
didj

(
n−2
k

)
m

=
k

(n− k − 1)m
·

∑
(i,j)∈G

di>1,dj=1

1

didj

+ (
2k

(n− k − 1)m
+

k(k − 1)

(n− k)(n− k − 1)m
) ·

∑
(i,j)∈G

di>1,dj>1

1

didj

=
k

(n− k − 1)m
· (

∑
(i,j)∈G

di>1,dj=1

1

didj
+ (2 +

k − 1

n− k
)

∑
(i,j)∈G

di>1,dj>1

1

didj
)

For simplicity, we denote δ′ =
∑

(i,j)∈G
di>1,dj=1

1
didj

+ (2 + k−1
n−k ) ·

∑
(i,j)∈G

di>1,dj>1

1
didj

, and we get:

EH(
1

didj
) ≤ EG(

1

didj
) +

k

(n− k − 1)m
δ′ (5.4)

Next, we compute m2,H using Equations 5.3 and 5.4:

m2,H = EH(di)EH(
1

didj
)

≤ n− k − 1

n− 1
EG(di) · (EG(

1

didj
) +

k

(n− k − 1)m
δ′)



109

=
n− k − 1

n− 1
EG(di)EG(

1

didj
) +

kδ′ · EG(di)

(n− 1)m

= EG(di)EG(
1

didj
) +

kδ′ · EG(di)

(n− 1)m
−

kEG(di)EG(
1

didj
)

n− 1

= m2,G +
kEG(di)

(n− 1)m
· (δ′ −m · EG(

1

didj
))

= m2,G +
2k

n(n− 1)
· (δ′ −m · EG(

1

didj
)) (as EG(di) =

2m

n
)

Note that m · EG(
1

didj
) =

∑
(i,j)∈G

1
didj

, so

δ′ −m · EG(
1

didj
) =

∑
(i,j)∈G

di>1,dj=1

1

didj
+ (2 +

k − 1

n− k
) ·

∑
(i,j)∈G

di>1,dj>1

1

didj
−

∑
(i,j)∈G

1

didj

=
n− 1

n− k
·
∑

(i,j)∈G
di>1,dj>1

1

didj
−

∑
(i,j)∈G

di=1,dj=1

1

didj
,

which finalizes the proof.

5.6.2 Proof of Theorem 5.3.5

Proof. The idea of the proof is similar to that of Theorem 5.3.1. There are n subgraphs

G1, G2, . . . , Gn. We construct H =
⋃n

i=1Gi, so m3,H =
∑

i m3,Gi

n
= E(m3,G′). From

Theorem 5.3.2, m3 = E(λ3) = 2E(∆i)E( 1
didjdk

). In the formula, E(∆i) is the average

number of triads a node is in, and by definition E(∆i) = 3∆
n

, where ∆ is the number

of triads of a graph. E( 1
didjdk

) is the expected value of 1
didjdk

over all triads. Hence,

m3,H = 2EH(∆i)EH(
1

didjdk
). For any triad (i, j, k) in G, it has n− 3 copies in which no

member of i, j, k is removed, so EH(∆i) =
3∆H

|VH | =
3(n−3)∆G

n(n−1)
= n−3

n−1
EG(∆i).

To get EH(
1

didjdk
), we consider four types of triads based on their node degrees.

▶ Type I: di = 2, dj = 2, dk = 2. For such a triad, all of its n− 3 copies have 1
didjdk

= 1
8

as neither of i and j can lose other neighbors, so there will be no increment;



110

▶ Type II: di > 2, dj = 2, dk = 2. For a triad of this type, if the removed node is a

neighbor of i, then the triad contributes an increment 1
(di−1)djdk

− 1
didjdk

= 1
didjdk(di−1)

.

Among the n − 3 copies, there are di − 2 such cases, so the overall contribution is (di −

2) · 1
didjdk(di−1)

= 1
didjdk

· di−2
di−1

< 1
didjdk

.

▶ Type III: di > 2, dj > 2, dk = 2. If the removed node is a neighbor of i but not con-

nected to j (or a neighbor of j but not connected to i) and not including k, the triad

contributes an increment 1
(di−1)djdk

− 1
didjdk

= 1
didjdk(di−1)

(or 1
didjdk(dj−1)

). If the re-

moved node is a common neighbor of i and j, the increment is 1
(di−1)(dj−1)dk

− 1
didjdk

=

1
didjdk(di−1)

+ 1
didjdk(dj−1)

+ 1
didjdk(di−1)(dj−1)

. Assume i and j have cij common neigh-

bors not including k, then the overall increment of a triad of Type III is (di − 2 − cij) ·
1

didjdk(di−1)
+(dj−2−cij)· 1

didjdk(dj−1)
+cij ·( 1

didjdk(di−1)
+ 1

didjdk(dj−1)
+ 1

didjdk(di−1)(dj−1)
) =

1
didjdk

(di−2
di−1

+
dj−2

dj−1
+

cij
(di−1)(dj−1)

). Note that c varies from 0 to min(di, dj)−2, so the overall

increment is less than 9
4
· 1
didjdk

.

▶ Type IV: di > 2, dj > 2, dk > 2. If the removed node is a neighbor of i but not

connected to j or k, the increment is 1
didjdk

· 1
di−1

; if the removed node is a common

neighbor of i and j but not connected to k, then the increment is 1
didjdk

· ( 1
di−1

+ 1
dj−1

+

1
(di−1)(dj−1)

); if the removed node is a common neighbor of i, j and k, the increment is

1
(di−1)(dj−1)(dk−1)

− 1
didjdk

= 1
didjdk

· ( 1
di−1

+ 1
dj−1

+ 1
dk−1

+ 1
(di−1)(dj−1)

+ 1
(di−1)(dk−1)

+

1
(dj−1)(dk−1)

+ 1
(di−1)(dj−1)(dk−1)

). Similarly, we can get the overall increment for a triad

of Type IV: 1
didjdk

· (di−2
di−1

+
dj−2

dj−1
+ dk−2

dk−1
+

cij
(di−1)(dj−1)

+ cik
(di−1)(dk−1)

+
cjk

(dj−1)(dk−1)
+

cijk
(di−1)(dj−1)(dk−1)

), where cij (or cik, cjk) is the number of common neighbors of i and j (or

i and k, j and k), not including i, j, k; and cijk is the number of common neighbors of i, j

and k. The increment is less than 4 · 1
didjdk

.

Therefore, the total increment over all the triad is less than δ =
∑

Type II

1
didjdk

+9
4

∑
Type III

1
didjdk

+

4
∑

Type IV

1
didjdk

and after normalizing it by —∆H— we get: EH(
1

didjdk
) < EG(

1
didjdk

) +

δ
(n−3)∆G

.
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Next, we compute m3,H :

m3,H = 2EH(∆i)EH(
1

didjdk
)

< 2
n− 3

n− 1
EG(∆i)(EG(

1

didjdk
) +

δ

(n− 3)∆G
)

= 2(
n− 3

n− 1
EG(∆i)EG(

1

didjdk
) +

EG(∆i)δ

(n− 1)∆G
)

= 2(EG(∆i)EG(
1

didjdk
) +

EG(∆i)δ

(n− 1)∆G
− 2

n− 1
EG(∆i)EG(

1

didjdk
))

= m3,G +
2EG(∆i)

(n− 1)∆G
(δ − 2∆G EG(

1

didjdk
))

= m3,G +
6

n(n− 1)
(δ − 2∆G EG(

1

didjdk
)) (as EG(∆i) =

3∆G

n
).

Notice that ∆G EG(
1

didjdk
) =

∑
(i,j,k)∈G

1
didjdk

, so δ − 2∆G EG(
1

didjdk
)

= 1
4

∑
Type III

1
didjdk

+ 2
∑

Type IV

1
didjdk

−
∑

Type II

1
didjdk

− 2
∑

Type I

1
didjdk

. The theorem is proved.

5.6.3 Proof of Theorem 5.3.6

Proof. Similarly, there are n subgraphs G1, G2, . . . , Gn. We construct H =
⋃n

i=1Gi,

so m4,H =
∑

i m4,Gi

n
= E(m4,G′). From Theorem 5.3.2, m4 = [E(di) + 4E

(
di
2

)
+

2E(□i) ]E( 1
didjdkdl

). In the formula, E(di) is the average degree; E
(
di
2

)
is the average

number of wedges a node is in, so it equals to w
n

where w is the number of wedges;

E(□i) is the average number of squares a node is in. E( 1
didjdkdl

) is the expected value

of 1
didjdkdl

over all the closed walks of length 4. Hence, for graph H , we have m4,H =

[EH(di) + 4EH

(
di
2

)
+ 2EH(□i) ]EH(

1
didjdkdl

).

From Equation 5.1, we have EH(di) = n−2
n−1

· EG(di); As each wedge in G has n − 3

copies in H (when none of the three nodes is removed), EH

(
di
2

)
= wH

n(n−1)
= (n−3)wG

n(n−1)
=

n−3
n−1

· EG

(
di
2

)
; Similarly, EH(□i) =

n−4
n−1

· EG(□i) as each square in G has n− 4 copies in

H .

To get EH(
1

didjdkdl
), of course we can discuss all the possible closed walks of length 4

(generated by edges, wedges or squares), as we have done in the previous theorems.
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However, for a simpler exposition, we provide the following upper bound. Notice that

EH(
1

didjdkdl
) ≤ EG(

1
(di−1)(dj−1)(dk−1)(dl−1)

) and the bound is tight when G is a complete

graph (n ≥ 3) or all of its components are k-cliques (k ≥ 3), and 1
(di−1)(dj−1)(dk−1)(dl−1)

=

1
didjdkdl

·
∏

x∈{i,j,k,l}
dx

dx−1
≤ 16

didjdkdl
, so EH(

1
didjdkdl

) ≤ 16 · EG(
1

didjdkdl
). Therefore,

m4,H = [EH(di) + 4EH

(
di
2

)
+ 2EH(□i) ]EH(

1

didjdkdl
)

≤ [
n− 2

n− 1
EG(di) + 4

n− 3

n− 1
EG

(
di
2

)
+ 2

n− 4

n− 1
EG(□i) ]

× 16 · EG(
1

didjdkdl
)

≤ n− 2

n− 1
[EG(di) + 4EG

(
di
2

)
+ 2EG(□i) ]× 16 · EG(

1

didjdkdl
)

=
16(n− 2)

n− 1
m4,G

5.7 Additional Related Work

I. Subgraph Spectrum. Past studies on the spectrum of subgraphs often focus on the

Cauchy’s interlacing theorem which bounds subgraph eigenvalues with the eigenvalues of

whole graphs [106, 107]. However, interlacing theorem can only provide loose bounds on

the spectral moments, whereas our bounds are either exact or tight.

II. Spectral Embedding. Recently, spectral information is used for different network

embedding methods, such as FGSD [98] and NetLSD [30]. Compared to them, spectral

path is easy to be interpreted and utilizes the spectral information of subgraphs.
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5.8 Conclusion

We propose representing a network with a 3D spectral path: a path connecting the spectral

moments of a network to the expected spectral moments of its subgraphs. We demonstrate

the interpretability of spectral paths. We show the utility of spectral paths in network

visualization, network identification and distinguishing cospectral graphs. To the best of

our knowledge, this is the first study to explore spectral moments of subgraphs and study

the relationship between spectral moments of subgraphs and those of the whole network.

Limitations and Future Work. For a graph of n nodes, there are
(
n
k

)
subgraphs of size

k. When k is around n
2
, the number of subgraphs is the largest. Hence, one may consider

taking different numbers of samples to estimate the expected moments. In our experiments

on real-world networks, we take 20 samples for each sampling proportion, and the standard

deviation of spectral moments is often less than 5%. In the future, we aim to study the

distribution of spectral moments of subgraphs.
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Chapter 6

Spectral Moments and Network

Robustness

6.1 Introduction

In Chapter 4 and 5, we propose embedding a graph with its spectral points, and we intro-

duce spectral path, which represent a network with a 3D path in the spectral embedding

space. We have shown that both representations provides interpretability, especially on

network structural properties of a network and its subgraphs. In this chapter, we will

discuss the connection between spectral moments and network robustness.

The study of network robustness in complex systems plays an important role in various

fields such as biology, economics, and engineering. Network robustness is often defined

as a network’s ability to continue functioning when part of the network is either naturally

damaged or targeted for attack [108–110]. In the study of network robustness, there are

two fundamental research goals: (1) the assessment of the robustness of a network, i.e.,

how to quantify the network robustness? (2) the utility of network robustness, i.e., how

to use the robustness of a network? In this chapter, we aim to have a systematic study on

network robustness, by answering the following three questions: [Q1] how to assess the

robustness of networks?; [Q2] how to design networks with controlled robustness?; [Q3]

how to study the behavior of a complex system by observing the evolution of its network

robustness?

The Present Work: Spectral Moments for Network Robustness Assessment. In this
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chapter, we propose utilizing spectral moments, especially the second spectral moment

m2 of the random walk transition matrix of a network as a robustness measure, justified

by various reasons: (a) Capture network robustness. We prove that spectral moments

are tightly connected to existing network robustness measures including average distance,

diameter, spectral radius, and the existence of a giant component; (b) Interpretablity.

Spectral moments have been used to capture the shape of a spectral density, and they

have been proved to capture various network structures and properties in Section 4 and 5.

Specifically, m2 has a clear meaning, which is the expected return probability of a 2-step

random walk. Intuitively, in a graph with a small expected return probability for a random

walk (a walk which travels far away from its starting node) is more likely an indication of

a well-connected graph. This observation motivates the use of m2 as a measure of network

robustness. (c) Easy and fast to compute. For large networks, m2 can be approximated

accurately in seconds.

Overall, our contributions are mainly the following:

I. A Spectral Measure for Network Robustness. We propose using the second spectral

moment m2 of a network as a network robustness measure. We show that m2 can capture

network robustness on both synthetic and real-world networks. Specifically, when m2 is

smaller, the network is more robust. The spectral moments can be used to assess the degree

of robustness of a network, or to compare the robustness of two networks varying in size.

II. Connection to Existing Network Robustness Measures. We prove that the second

spectral moment m2 is closely related to four well-known robustness measures (average

distance, diameter, spectral radius, and the existence of a giant component) for random

graphs with given expected (or exact) degree sequences.

III. Designing Networks with Controllable Robustness. We show that we can control

the network robustness by manipulating its m2 value, to design a network that is more

robust under failures. We conduct experiments and evaluation on real-world networks.
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IV. Evolution of Network Robustness under Cascading Failures. We demonstrate that

with m2 as the robustness measure, one can study how a complex networked system be-

haves under cascading failures by looking at how network robustness evolves. By studying

cascading failures in a power grid network, we show that after an initial failure making the

grid vulnerable, the grid stabilizes after the cascading failures.

The rest of the chapter is organized as follows. We propose the use of m2 as a network

robustness measure, and we show the relationship between the second spectral moment

and other robustness measures in Section 6.2. We use the second spectral moment to assess

robustness of real-world networks in Section 6.3, and discuss ways to design networks

with controllable robustness in Section 6.4. Section 6.5 details our observations on the

evolution of robustness under cascading failures in a power grid. After reviewing further

related work in Section 6.6, we conclude in Section A.5.

6.2 Spectral Moments as a Robustness Measure

As we have mentioned, we propose using the second spectral moments m2 of random walk

transition matrix as a network robustness measure.

6.2.1 Second spectral moment m2 and the Estrada Index

As mentioned above, m2 is the expected return probability of a 2-step random walk. Natu-

rally, one may have a valid concern that it does not directly capture robustness in terms of

higher-order information, i.e., the return probability of longer walks. Here, we show that,

on the contrary, m2 actually provides tight upper and lower bounds on the expected return

probability of a random walk of any length, discounting longer walks. For that, we first in-

troduce the normalized Estrada index of the random-walk transition matrix EEP−norm(G).

The Estrada index of a graph G is defined as EE(G) =
∑n

j=1 e
µj , where µj’s are the
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eigenvalues of the adjacency matrix A [83]. The Estrada index counts the number of closed

walks, discounting longer walks, as EE(G) = trace(eA) =
∑∞

k=0
trace(Ak)

k!
. Therefore,

Estrada index is sometimes used to measure the global connectivity of a graph. In [15],

a variation of the Estrada index using the random walk transition matrix P is denoted as

EEP (G) =
∑n

j=1 e
λj =

∑n
j=1 trace(e

P ) =
∑∞

k=0
trace(Pk)

k!
= n

∑∞
k=0

mk

k!
. Unlike the

Estrada index, EEP (G) computes the expected return probability of a random walk of

any length, discounting longer walks. Intuitively, if a walk can travel far away from its

starting node, it is an indication that the graph is well-connected. Generally, the smaller

the EEP (G) value, the more well-connected the graph G. Here, we normalize EEP (G)

by the size of the graph and get EEP−norm(G) = 1
n
EEP (G) =

∑∞
k=0

mk

k!
, to cancel the

effect of the size of the graph.

In Theorem 6.2.1, we prove that the second moment m2 provides both tight upper and

lower bounds on EEP−norm(G). In other words, the expected return probability of longer

random walks can be bounded by functions of m2.

Theorem 6.2.1 (Bounds on EEP−norm(G) by m2). For an undirected graph G without

self-loops, its normalized Estrada Index EEP−norm(G) is bounded by the second moment

m2:

1 +
m2

2
≤ EEP−norm(G) ≤ 1 +m2

Proof. We first prove 1 + m2

2
≤ EEP−norm(G). For an undirected graph without self-

loops, it is clear that m0 = 1 and m1 = 0. By definition, EEP−norm(G) =
∑∞

k=0
mk

k!
≥∑2

k=0
mk

k!
= m0 +m1 +

m2

2
= 1 + m2

2
, as mk ≥ 0.

Next, we prove EEP−norm(G) ≤ 1 + m2. As ex ≤ 1 + x + x2, EEP−norm(G) =

1
n
EEP (G) = 1

n

∑n
j=1 e

λj ≤ 1
n

∑n
j=1(1 + λj + λ2

j) = 1 +m1 +m2 = 1 +m2.

The bounds are tight; consider an empty graph. Then, mk = 0 for k ≥ 1. Hence, m2 = 0

and EEP−norm(G) = 1.
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6.2.2 Spectral Moments and Existing Robustness Measures

Next, we connect m2 with four well-known robustness measures: diameter, average dis-

tance, spectral radius, and giant component. Particularly, we show that spectral moments

are connected to the robustness of graphs generated by two network models: Chung-Lu

and Configuration Model.

Consider a random graph with an expected degree sequence (also known as the Chung-Lu

model [111, 112]). Chung-Lu model is a general model G(w) for random graphs with a

given expected degree sequence w = (w1, w2, . . . , wn). For a random graph G ∈ G(w),

the edge between nodes vi and vj is chosen independently with probability pij =
wiwj∑

i wi
,

which is proportional to the product wiwj . Denote d̃ =
∑

w2
i∑

wi
as the second-order average

degree. Chung et al. have shown that d̃ is closely related to various graph properties [111–

113]. In the rest of the chapter, a random graph G with degree sequence (d1, d2, . . . , dn)

refers to one realization of those generated by the Chung-Lu model, i.e., G ∈ G(w) where

w = (d1, d2, . . . , dn). We show that the spectral moments of the graphs generated by the

Chung-Lu model capture various robustness measures in them.

Similarly, we consider random graphs generated by the configuration model (Molloy-Reed

model), where the graph has a fixed degree sequence. We show that spectral moments also

capture robustness, in terms of the existence of the giant component, in such graphs.

We start with the Chung-Lu model and in Lemma 6.2.2, we demonstrate that second-order

average degree d̃ is lower bounded by the inverse of second spectral moment m2 of a

Chung-Lu random graph.

Lemma 6.2.2. For a random graph G with given expected degrees, the second-order av-

erage degree d̃ satisfies

d̃ ≥
√

E(di)
m2

,

where m2 is the second spectral moment of G and E(di) is the average node degree in G.
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Proof. By definition, d̃ =
∑

w2
i∑

wi
=

∑
d2i∑
di

=
E(d2i )
E(di) . From Theorem 4.1 of [15], for any graph

E( 1
didj

) ≥ E2(di)

E2(d2i )
, so E( 1

didj
) ≥ 1

d̃2
, implying d̃2 ≥ 1

E( 1
didj

)
and d̃ ≥

√
1

E( 1
didj

)
. By Thm.

4.3.2, m2 = E(di)E( 1
didj

), so d̃ ≥
√

E(di)
m2

.

Next, we will show the connection between spectral moments with the following robust-

ness measures: (1) average distance, (2) diameter, and (3) spectral radius of a graph with

a given expected degree distribution.

I. Average Distance. In a graph G, denote distance d(u, v) as the length of the shortest

path between u and v. Average distance of a graph G, denoted by duv, is the average

distance over all pairs of vertices (u, v) in G. A smaller duv shows that nodes are closer to

each other and the network is well-connected and more robust [109].

Theorem 6.2.3. For a random graph G with given expected degree sequence, if w =

(d1, d2, . . . , dn) is admissible, for the average distance duv, we have

duv ≤ (1 + o(1))
2 log n

logE(di)− logm2

.

Proof. From [113], the average distance duv is almost surely (1 + o(1)) logn
log d̃

, when the

degree sequence is admissible (see definition in [113]). Specifically, duv is upper bounded

by (1 + o(1)) logn
log d̃

. By Lemma 6.2.2, d̃ ≥
√

E(di)
m2

. Moreover, in our settings, di’s are the

degree of the nodes, so di ≥ 1 or di = 0, and d̃ =
∑

d2i∑
di

≥ 1, and E(di)
m2

= 1
E( 1

didj
)
≥ 1.

Therefore, 1
log d̃

≤ 1

log

√
E(di)
m2

. Hence, duv ≤ (1+ o(1)) logn

log

√
E(di)
m2

= (1+ o(1)) 2 logn
logE(di)−logm2

.

From Theorem 6.2.3, for a random graph with a given expected degree distribution (natu-

rally, n and E(di) is fixed), the average distance of the graph is upper bounded by a term

that depends on m2. Specifically, when m2 is smaller, the upper bound is smaller. Hence,

in terms of the average distance, a smaller m2 indicates a more robust network.
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II. Diameter. The diameter of graph G, denoted by D(G), is the maximum distance

over all pairs of nodes in G. The diameter is closely connected to robustness, as it is a

tight upper bound on the distance between any two nodes in the network. Thus, a smaller

diameter shows more robustness [109].

Theorem 6.2.4. For a random graph G with given expected degree sequence, if w =

(d1, d2, . . . , dn) is specially admissible, the diameter D(G) is almost surely O( 2 logn
logE(di)−logm2

).

Proof. From [113], D(G) is almost surely Θ( logn
log d̃

), when the degree sequence is specially

admissible (see definition in [113]). As 1
log d̃

is upper bounded by 1

log

√
E(di)
m2

, we have D(G)

is almost surely O( 2 logn
logE(di)−logm2

).

Similar to the average distance, Theorem 6.2.4 shows that the diameter of a random

graph G with a given degree sequence is upper bounded by a term that depends on m2.

Specifically, when m2 is smaller, the upper bound on the diameter is smaller. Hence,

in terms of the diameter, a smaller m2 indicates a more robust network.

III. Spectral Radius. The largest eigenvalue of the adjacency matrix A is called its spec-

tral radius ρ. The spectral radius is closely related to the path capacity or loop capacity

of the graph. A larger ρ implies that the graph has many loops and paths, so the graph is

well-connected [114, 115]. In general, a larger ρ indicates a more robust network.

Theorem 6.2.5. For a random graph with given expected degree sequence, if d̃ >
√

dmax(G) log n,

then ρ ≥ (1 + o(1))
√

E(di)
m2

, where dmax(G) is the maximum degree.

Proof. Chung et. al [112] proved that when d̃ >
√
dmax(G) log n, ρ is roughly equal to the

the second order average degree d̃, i.e., ρ is almost surely (1 + o(1))d̃, and especially ρ is

lower bounded by (1+ o(1))d̃ [112,116]. By Lemma 6.2.2, we get ρ ≥ (1+ o(1))
√

E(di)
m2

.



121

Theorem 6.2.5 indicates that if m2 is smaller, then ρ has a greater lower bound. Hence,

in terms of the spectral radius, a smaller m2 indicates a more robust network.

Finally, we show that even when in the random graph the degree sequence is fixed, the

spectral moments are related to network robustness. For that, we consider the graphs gen-

erated by the configuration model (Molloy-Reed model) and show that spectral moments

capture the existence of the giant component.

IV. Giant Component. For a graph G = (V,E), a giant component of G is a connected

component having at least O(|V |) nodes [117,118]. A component is called c-giant if it has

at least c · |V | nodes (or c · |E| edges) [111]. In studies of network robustness, c is often

defined as the fraction of nodes contained in the largest connected component, to measure

network availability i.e., what percentage of the nodes can be reached [109]. Though the

existence of a giant component does not mean that the network is robust (as in some cases

the component can be split into small components by losing a few edges due to bridges in

the network), it shows that the network keeps most nodes and maintains “functionality.”

In Theorem 6.2.6, we show that m2 can capture the existence of the giant component for

Molloy-Reed random graphs.

Theorem 6.2.6. For a random graph G with an exact degree sequence generated by the

Molloy-Reed model, when m2 <
1
4
E(di), a giant component exists.

Proof. Molloy-Reed Criterion states that for a random graph G generated by the Molloy-

Reed model, when κ =
E(d2i )
E(di) > 2, a giant component exists [119, 120]. Similar to Lemma

6.2.2, we can show that κ ≥
√

1
E( 1

didj
)
. Thus, if E( 1

didj
) < 1

4
, we can ensure κ > 2 and a

giant component exists. Further, the condition E( 1
didj

) < 1
4

is equivalent to m2 <
1
4
E(di),

proving the theorem.

For a random graph G with an exact degree sequence, the average degree E(di) is fixed.

Hence, from Theorem 6.2.6, we find that for such a graph when m2 is smaller, it is more
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likely to have a giant component.

6.2.3 Experiments on Synthetic Networks

We have shown the theoretical connection between m2 and existing robustness measures.

Here, we explore this connection empirically as well. To that end, we generate syn-

thetic networks using the random graph model G(n, p). For random graphs generated

by G(n, p), the behaviour of the size of the largest component is well-studied for p near 1
n

.

For p < 1
n

, the size of the largest component is almost surely O(log n); for p = 1
n

, the size

of the largest component is almost surely Θ(n2/3); and for p > 1
n

the size of the largest

component is almost surely Θ(n) [117, 118, 121]. For p > 1
n

, this largest component is

commonly referred to as the giant component of G(n, p), and the point p = 1
n

is referred to

as the critical point (for the phase transition). Here, we study the behavior of the second

spectral moment m2 and other network robustness measures near this critical point.

In our experiments, we set n = 1, 000 nodes and vary p from 0.0001 to 0.01 with step

size 0.0002. For each variation, we generate 20 random graphs, and in Figure 6.1, we plot

the average value of m2, duv (the average distance), D(G) (the diameter), ρ (the spectral

radius) and c (the fraction of nodes in the largest connected component). When the graph

is not connected, we use duv and D(G) of its largest connected component. We find that

(1) with the increase of p, m2 has a similar changing pattern to duv and D(G): they all

increase first and then decrease; (2) all of the turning points are at p = 0.0013, which is

slightly greater than the critical point p = 0.001. In essence, the average distance and di-

ameter increase with p when there is no giant component in the graph. However, when the

giant component emerges, they keep increasing until a certain point and start to decrease.

Our results show that m2 captures this behavior well. Note that the time complexity to

compute the average distance and diameter both requires O(n3/2Ω(logn)1/2) [122] which is

not feasible for large networks, but m2 can be computed in a few seconds. Next, we look
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Figure 6.1: n = 1, 000 and dashed line shows the turning point at p = 0.0013.

into using the second spectral moment m2 to assess robustness in real-world networks.

6.3 Assess Robustness in Real-World Networks

In this section, we aim to investigate spectral moment m2 as a network robustness measure

in real-world networks in Chapter 4, and Table 6.1 lists the m2 value of each network. We

aim to answer the question: [Q1] how to assess the robustness of networks with m2?

Therefore, we need to understand the connection between the robustness of a real-world

network and its second spectral moment m2. In other words, should a robust network have

a larger or smaller m2 value? Before presenting experiments, we review experimental

setup.

6.3.1 Assess Network Robustness with Spectral Moments

To evaluate m2 as a network robustness measure, we first define robustness of a real-world

network. In its most abstract form, robustness is the ability of a network to continue to
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Table 6.1: Dataset Statistics
Type Network m2

Social
Networks

Brightkite 0.1799
Flixster 0.0261
Gowalla 0.1403
Hyves 0.0610
Livejournal 0.0174
MySpace 0.0923
Orkut 0.0187
YouTube 0.1574

Collaboration
Networks

Astro-Ph 0.1007
Cond-Mat 0.1672
Gr-Qc 0.2831
Hep-Th 0.2488

Road
Networks

Road-BEL 0.4646
Road-CA 0.3545
Road-PA 0.3557
Road-TX 0.3577

Biological
Networks

Bio-Dmela 0.1278
Bio-Grid-Human 0.1787
Bio-Grid-Yeast 0.0198
Human-Brain 0.0236

perform well under failures or attacks [108]. To quantify such a definition in our experi-

ments, we consider the robustness of a network by looking at how c – the fraction of nodes

in its largest connected component – changes under random edge failures. In other words,

when losing the same number (or proportion) of edges, a more robust network exhibits

a smaller drop in c value as most nodes within the “core” of the network are kept intact.

Hence, for each network, we randomly remove x% of the edges of the graph by varying

x% from 5% to 95% with step size 5%. For each x%, we run the experiments 20 times

and report the average c and its standard deviation in Figure 6.2. From the figure, we find

that (1) road networks are much more vulnerable under random failures. For each road

network, the size of its largest component drops sharply when losing edges randomly. Es-

pecially, by losing 35% of the edges, c becomes less than 10%. We notice that m2 values

of road networks are much larger than those of networks from other categories. Among

road networks, Road-BEL is more vulnerable than others and has the largest m2; (2) for

networks from other three categories, c decreases smoothly as more edges are removed.
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Figure 6.2: x value: fraction of edges removed; y value: fraction of nodes in the largest
connected component c.

Furthermore, if a network has a larger m2, the fraction of nodes in its largest component

shrinks faster. For networks with smaller m2 values, such as Orkut and Human-Brain, they

maintain more than 70% of the nodes in their largest component even after losing 90% of

their edges. In general, these observations provide an answer to Q1: a real-world network

with a smaller second spectral moment m2 is more robust under random failures. Hence,

we can compare the robustness of two networks by comparing their m2 values, even if the

networks vary in size.

6.4 Design Networks with Controllable Robustness

Next, we want to answer the question: [Q2] how to design networks with controlled ro-

bustness? In other words, can we design strategies to control (increase or decrease) ro-

bustness in a real-world network? From Section 6.3, we know that a robust network has a

smaller m2 value. Naturally, if we can control the network robustness by manipulating its

m2 value, we can “design” a network that is more robust under failures; or equivalently,
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develop more efficient attack models to harm the robustness of a network. Thus, we will

design various edge removal strategies here and assess their impact on the m2 value of a

network.

Theorem 4.3.2 shows that m2 = E(di)E( 1
didj

). Assume we remove a fixed number of

edges from some graph G to get a new graph G′. The average degree of G′ will only rely

on the number of edges removed and is independent of which edges were removed from

graph G. Hence, when a fixed number of edges are removed, what can make m2 different

is how these removed edges change the value of E( 1
didj

). Intuitively, by removing edges

(i, j) corresponding to higher didj values (di and dj are the degress of i and j), we should

get a larger value of E( 1
didj

) in G′. Hence, we design edge removal strategies that rely on

the didj values of edges. Here, we detail the developed edge removal strategies.

We define didj value as the edge score for an edge (i, j) between nodes i and j with

degrees di and dj . We propose two strategies to remove edges based on the edge score:

(1) High Score Removal, removing the edges with the highest scores from the graph; and

(2) Low Score Removal, which removes the edges with the lowest scores. When an edge

is removed from the graph, the scores of edges incident to the endpoints of the removed

edge will change, which may impact the current ranking of edges based on this edge score.

Hence, for the removal process, we propose two methods: (1) Batch Removal, where we

pick top x% of edges in the graph based on each strategy (high score or low score removal)

and remove them in one batch; (2) Sequential Removal, where each time we remove only

the top-1 edge based on each strategy and after each removal, we update the ranks. In

total, we remove x% of edges of the graph. For both methods, we vary x% from 5% to

95% with the step size 5%, and we report the changes in m2 for networks in Figure 6.3

and 6.4.

We observe that for both batch and sequential removal: (1) for High Score Removal, with

more edges removed, m2 of most networks increases first and after a certain point, m2
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Figure 6.3: x: proportion of edges removed; y: m2.
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Figure 6.4: x: fraction of removed edges; y: m2. (Note: For large graphs with more
than 5 million edges such as Livejournal and Orkut, sequential edge removal is too time-
consuming to compute, as sequential edge removal requires update on the order each time
we remove only the top-1 edge. Therefore, for each category we choose three networks.)
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Table 6.2: Phase Transition of m2

Network Proportion of Edges
Removed (Turning Point)

Average Degree of
the Remaining Graph

Brightkite 0.85 7.353×0.15 = 1.10
Flixster 0.85 6.276×0.15 = 0.94
Gowalla 0.90 9.668×0.10 = 0.97
Hyves 0.85 3.960×0.15 = 0.59
YouTube 0.85 5.265×0.15 = 0.79
Astro-Ph 0.90 21.10×0.10 = 2.11
Cond-Mat 0.85 8.078×0.15 = 1.21
Gr-Qc 0.75 5.526×0.25 = 1.38
Hep-Th 0.70 5.259×0.30 = 1.66
Road-BEL 0.40 2.143×0.60 = 1.29
Road-CA 0.65 2.816×0.35 = 0.99
Road-PA 0.65 2.834×0.35 = 0.99
Road-TX 0.55 2.785×0.45 = 1.25
Bio-Dmela 0.85 6.917×0.15 = 1.04
Bio-Grid-Human 0.85 13.09 × 0.15 = 1.96

drops sharply. Further, if we look at the turning point of the curve, it always happens when

the average degree of the remaining graph is around 1.0 (see Table 6.2), indicating a phase

transition for m2. However, if a network has a very high average degree (such as Bio-

Grid-Yeast or Orkut), by removing 95% of its edges, the average degree of the remaining

graph can be much greater than 1.0. For such networks, the phase transition will not

appear in the figures; (2) for Low Score Removal, m2 decreases monotonously as more

edges are removed. So, generally, in response to Q2, removing edges (i, j) corresponding

to highest didj values decreases network robustness (increases m2), and removing edges

corresponding to lowest didj values increases network robustness (decreases m2).

6.4.1 Evaluation

We evaluate whether the proposed manipulations on m2 can change network robustness.

For a network G, we first remove 10% of its edges with High Score Removal (and Low

Score Removal) in batch to get GHigh (and GLow); then we let GHigh (and GLow) experience

the same random edge failures as detailed in Section 6.3.1. The results are shown in Fig-

ure 6.5. From the figure, we find that (1) we initially observe in GLow a smaller largest
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Figure 6.5: (Note: Due to the large size, Livejournal and Orkut are not included in this experiment.)

connected component, as low degree nodes are removed from the component. However,

this observation does not mean that GLow is vulnerable as the remaining nodes in the com-

ponent can be well-connected; (2) In terms of the robustness, GHigh is more vulnerable

under random failures. By looking at the slope of the curve, we observe that when under

the same random failures (randomly losing the same number of edges), the size of the

largest connected component of GHigh shrinks faster than that of GLow. Hence, High Score

Removal increases m2 of a network, making it less robust.

6.5 Evolution of Network Robustness under Cascading

Failures

Next, we are going to answer the question: [Q3] how to study the behavior of a complex

system by observing the evolution of its network robustness? We specifically consider the

evolution of network robustness under cascading failures. In reality, in a network-based

system the activity of an edge (or a node) often depends on the activity of its neighboring

edges (or nodes) [123]. Hence, the failure of an edge can trigger the failure of the edges
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Input: G

{line 1 failure}
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Input: G \ {line 1}

{lines 4, 5 failure}
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Input: G \ {lines 1, 4, 5}

{line 2 failure}

State 4

Input: G \ {lines 1, 2, 4, 5}

{}

Initial Failure
No more Failure:

Cascade Stops

Unstable States Stable States

Figure 6.6: A Cascade Example

incident to it, and such sequences of failures are called cascading failures. For example, a

power grid network is composed of busses (nodes) and transmission lines (edges). If one

(or multiple) transmission lines are disconnected (e.g., due to natural disasters or operator

mistakes), it can cause some other transmission lines to fail by exceeding their power

flow limit and trigger more failures. Different from random failures or failures caused

by attacks, cascading failures are closely related to the governing laws of the underlying

networked system, e.g., power flow equations. Hence, during cascading failures, how a

network evolves in terms of its robustness can indeed shed light on the governing laws of

the underlying system.

6.5.1 Data Collection

We study the cascading failures in a well-studied power grid network (see [124] for de-

tails). We generate the cascading failures with the methods provided by Ma et al. [23].

We sample 100,000 different initial loading conditions on this power grid. For each initial

loading condition, we choose all single-line failures as the initial failures. Then, we use

the AC-based power flow to obtain the cascading failures. As this power grid has 41 trans-

mission lines, we have 41 × 100, 000 = 4, 100, 000 initial failure events in total. Among

these initial failures, 1,644,135 of them trigger a cascading failure sequence. Figure 6.6

provides an example. In this example, we define state 4 as the stable state of the cascade,

and other states as unstable states as they trigger subsequent failures of power lines.
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m2 Number of Patterns Proportions
↗ 2,466,379 46.4%
↘ 2,836,207 53.4%
→ 10,583 0.2%

Table 6.3: Changing Pattern of m2 in Cascading Failures. ↗: m2 increases; ↘: m2 decreases; →:
m2 does not change.

6.5.2 Analysis

In a cascade, at each state, the system can be viewed as a subgraph of the previous states

as we are losing power lines (edges). Thus, we can view each cascade as a sequence of

subgraphs. We represent each cascade using the m2 values of its subgraphs, and we study

the changing patterns of m2 between consecutive states. For example, if a cascade has four

states and m2 values of the sequence of subgraphs are: [0.3632, 0.3893, 0.3726, 0.3514],

then the changing patterns are ↗↘↘ which is composed of one increase and two de-

crease of m2. Across all the cascades, we report the total number of changing patterns

in Table 6.3. We find that in general, decreasing patterns (53.4%) are slightly more than

the increasing patterns (46.4%). Next, for each cascade, we compare the m2 of the initial

failure state and that of the final (stable) state. Table 6.4 demonstrates that for 76.7% of the

cascades, the m2 value of the final state is smaller than that of the initial state, compared

to 23.2% on the other direction. The difference is much more significant than that of the

consecutive changing patterns. Notice that a smaller m2 indicates the network is more

robust. Hence, in general, an initial failure happens at a vulnerable state, and after the

cascading failures change system robustness, the system stabilizes (converges to a more

robust network).
m2 Number of Cases Proportions
mInitial

2 > mFinal
2 1,261,201 76.7%

mInitial
2 < mFinal

2 382,934 23.2%
mInitial

2 = mFinal
2 0 0.0%

Table 6.4: Comparison of m2 of the initial failure state and the final state. mInitial
2 : m2 of

the initial state; mFinal
2 : m2 of the final state.



133

6.6 Additional Related Work

Additionally, our work has links to the following areas:

I. Edge Modification. Studies have shown that edge modification, such as adding, rewiring [110],

or protecting some edges, can enhance network robustness. Our work theoretically con-

nects edge removal with spectral moments.

II. Spectral Robustness. Wu and his colleagues propose natural connectivity, which can

be regarded as the “average eigenvalue” of the adjacency matrix [125]. In our work, we

look at the eigenvalue distribution of the random walk transition matrix via its spectral

moments (equivalently, the spectral moments of the normalized Laplacian matrix).

6.7 Conclusion

We propose a spectral measure for network robustness: the second spectral moment m2 of

the random walk transition matrix. We study the m2 as a spectral measure from (1) the as-

sessment of the network robustness; (2) the design of networks with controlled robustness;

(3) the behavioral study of a complex system through the observation of the evolution of

its network robustness, under cascading failures. We theoretically and empirically demon-

strate that m2 can capture network robustness: a graph with a smaller second spectral

moment m2 is more robust. We show the relationship between m2 and edge properties so

that one can control the network robustness by manipulating its m2 value.

For future work, we consider (1) studying the connection between higher order spectral

moments and network robustness, e.g., the clustering coefficient is also a robustness mea-

sure as it captures the degree of transitivity of a network, and it is known to be lower

bounded by the third spectral moment m3 [15]; and (2) using the spectral moment predict-

ing cascading failures.
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Chapter 7

Summary and and Future Work

In this chapter, the main contributions of this dissertation are summarized, and the future

research directions are also discussed here.

7.1 Summary

The dissertation proposes a compact, interpretable, visualizable, comparable and efficient

representation of networks: Network Shapes, which represent any network with a 3D shape

in the embedding space. We introduce two network shapes: Kronecker hull and Spectral

path. We discuss how to build a network shape, how to interpret a network shape and the

applications of network shapes.

In Chapter 2, we provide a general framework to build a network shape, which including

three steps: (1) sample many subgraphs from the network; (2) map the network and its

subgraphs to 3D vectors; and (3) fit a 3D shape to the set of 3D vectors. We introduce the

first network shape: Kronecker hull, which utilizes random node sampling as the graph

sampling method, Kronecker points as the embedding method, and convex hull as the

shape fitting method. We show the interpretability of Kronecker points and Kronecker

hulls in both theory and experiments. We study the characteristics of the Kronecker hulls

of real-world networks. We demonstrate that Kronecker hulls can be used on applications

such as network categorization and computing graph similarity.

In Chapter 3, we demonstrate that network shapes can be used to extend biometrics stud-

ies to network data, by solving two new problems in network studies: network identifi-
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cation and network authentication. We propose two types of network identities, and we

demonstrate their utility in solving both problems. The embedding-based identity is easy

to construct, but the distribution-based identity utilizing network shapes performs better

with simple methods. For network identification, we propose two techniques to predict the

source of an anonymized graph, and for network authentication, we show that the super-

vised method yields a low equal error rate, and the Voronoi method enables controlling the

false reject rate, while attaining a reasonable false accept rate across networks. We show

that our graph-based methods can also be used for biometrics, authenticating users based

on their touch data on devices.

In Chapter 4, we propose a spectral embedding space for networks, and we denote the

3D network embedding method, the Spectral Point, by using the truncated spectral mo-

ments of the network. Spectral points are interpretable as we prove that spectral moments

are closely related to network structures such as edges, triads and squares, and the spec-

tral moments are bounded by network properties such as the degree distribution and the

global clustering coefficient. We derive the closed form of spectral points for various spe-

cial graphs such as complete graphs, cycles, star graphs, complete bipartite graphs, and

wheels. The experiments on real-world graphs show that their structure and properties

identified in past literature are often captured by spectral points. Finally, we demonstrate

that spectral moments can be used for network identification. The result shows that the

spectral moments outperform the baselines and the truncated spectral moments do not

lose much predictive power.

In Chapter 5, we introduce the second network shape: Spectral Path, which represent each

network as a 3D spectral path in the embedding space, by connecting the expected spectral

moments of the network and its subgraphs. We demonstrate the interpretability of spectral

paths by investigating the shapes of spectral paths. We provide the theoretical relationship

between the spectral moments of a network and those of its subgraphs. We show spec-

tral paths can be used in network visualization, network identification and distinguishing
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cospectral graphs.

In Chapter 6, we find that spectral moments, especially m2, can capture the robustness of

a network. More specifically, a graph with a smaller second spectral moment m2 is more

robust, for which We provid theoretical proofs and empirical results. We show that we can

control the network robustness by manipulating its m2 value, to design a network that is

more robust under failures. Moreover, one can study how a complex networked system

behaves under cascading failures by looking at how network robustness (m2) evolves.

Next, we are going to look at the open questions about network shapes.

7.2 Future Research Directions

Here, we list some of the open questions from different perspectives.

7.2.1 Build a Network Shape

Sampling Subgraphs. In Kronecker hulls, we use random node sampling mainly because

it is simple and fast. For spectral paths, we use random node sampling as the sampled

subgraph can be viewed as a result of randomly removing nodes from a graph.

• If we use different sampling methods, how will the network shapes change? In

Appendix A, we have a case study on other sampling methods such as Random

Edge Sampling and Random Walk Sampling. A more systematic study may help us

to have a better understanding.

• Can we learn the subgraphs that are the best representative for building or interpret-

ing a network shape, towards specific applications or with extra information? For

example, if a network is a node/edge attributed graph, one may consider sampling

subgraphs with attribute information.
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• Can we combine the graph sampling step with the network embedding step? For

example, some network embedding methods utilize sampled subgraphs and sub-

structures of a network.

Network Embedding. In Kronecker hulls, we are using Kronecker point as it captures the

core-periphery structure of a network. In spectral paths, we use Spectral Points to capture

networks structures/properties and the relationship between network and its subgraphs.

The basic requirements of a proper embedding for a network shape includes visualizability,

interpretability and carrying much structural information of the graph.

• Can we use other graph embeddings, and what are the critical properties of a proper

embedding? Can we learn the embeddings based on different applications or objec-

tives?

• Network shapes proposed in this thesis, mainly focus on the structural properties

of a network and its subgraph. Can we add node/edge attribute information to the

embeddings if attributed graphs are given?

Shape Fitting. In Kronecker hulls, we are using convex hull as the shape fitting as it is

the most compact convex set covering all the points. In Spectral Paths, we utilize a path

connecting the expected spectral points of subgraphs and that of the whole network.

• How about using other shapes (e.g., cubes, spheres) and what is their interpretabil-

ity? We have a case study in Appendix A, and more systematic studies should be

conducted. For spectral paths, we are using the expected spectral points of sub-

graphs with the same size. Can we include the variance/standard deviation of the

spectral points?

• Network shapes do not reflect the density of the point distribution within the shape.

Can we get the probability of a network having a subgraph on a certain point inside

the shape? One idea is using density estimation to learn the function.
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7.2.2 Applications

Graph Similarity. Can we connect the relationship between two network shapes (e.g.,

distance, overlap) with existing graph similarity measures such as graph edit distance or

graph kernels?

Graph Classification. Graph classification is a problem with practical applications in

many different domains, mainly to distinguish between graphs of different classes. Since

network shapes capture the structural info of a network and its subgraphs, can we find

proper features of network shapes, for graph classification use?

Network Models. For any network, we can compute its spectral moments. So, can we

generate a random graph with given spectral moments? As spectral moments are closely

related network structures and properties, a network model using spectral moments may

provide synthetic graphs for benchmark.
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Appendix A

Products of Network Shapes

A.1 Introduction

In this chapter, we designed various products for that enables researchers and practitioners

to visualize their network data as customized 3D shapes. These products include a web

platform WEBSHAPES. We provide a case study on real-world networks to explore the

sensitivity of network shapes to different graph sampling, embedding, and fitting methods,

and we show examples of understanding networks through their network shapes. Further-

more, we build a repository of precomputed network shapes for various networks.

A.2 WEBSHAPES

As we have mentioned, one can select various sampling methods (Step 1), embedding

methods (Step 2), and fitting methods (Step 3) to build a network shape. Hence, we de-

veloped WEBSHAPES, a web platform for users to create customized network shapes for

their need. Using WEBSHAPES, users can upload their network data or choose an exist-

ing dataset, select predefined methods and parameters (a sampling method, an embedding

method, and a fitting method), and can visualize their network data as a 3D shape. Users

can download the information of the network shape for further analysis. Figure A.1 is a

screenshot of the platform. Next, we will briefly introduce the sampling methods, embed-

ding methods, and fitting methods currently supported by WEBSHAPES.

(1) Three sampling methods:
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Figure A.1: WEBSHAPES Interface

▶ Random Node Sampling. Selects p% of nodes uniformly at random and outputs the

subgraph induced by the selected nodes [37].

▶ Random Edge Sampling. Select p% of edges uniformly at random and outputs the sub-

graph induced by the selected edges [37].

▶ Random Walk Sampling. Starting from an initial random node performs a random walk

to sample nodes. At each step, the random walk restarts from the initial node with

probability (=0.15) [37]. The process continues until p% of nodes are sampled.

(2) Two embedding methods:

▶ Kronecker Point [12] is a 3D point (a, b, d) that embeds an undirected network, or any

of its subgraphs, obtained using Stochastic Kronecker Graphs [38]. Values a, b and d are

in range [0, 1] and are closely related to the network structure. Generally, one can view a

network as two groups of nodes and interpret a and d as the proportion of edges within

each of the groups, and b as the fraction of edges between the two groups. Hence, we

can split the whole embedding space into three regions based on a, b, d values: Core-

Periphery (a ≥ b ≥ d), Dual-Core (a ≥ d ≥ b), and Random (b ≥ a ≥ d), and value a

represents the core strength [12].

▶ Graph2vec views a graph as a document and the rooted subgraphs around each node

as words. It extends document embedding neural networks to embed a graph as a vec-
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Figure A.2: Platform Architecture

tor [68]. For creating network shapes, we set the output dimension to 3.

(3) Three fitting methods:

▶ Convex Hull yields the smallest convex set that contains all 3D points given [39]. To

save a convex hull, we save its boundary.

▶ Cuboid computes the minimal box (with right angles) around the 3D points. To save the

cuboid, we save the 8 extreme points.

▶ Sphere uses the arithmetic mean of the points as the center and the longest distance from

the points to the center as the radius to fit a sphere. To save it, we save the center and

the radius.

After WEBSHAPES creates a network shape, users can download the figure and the files

including boundary points (Convex Hull), extreme points (Cuboid) or the center and the

radius (Sphere).

Architecture. Here, we briefly introduce the software architecture of the Web platform.

The WEBSHAPES platform is composed of three components: the Web client (i.e., front-

end), the Web server and the back-end server. The Web client is basically the webpages

designed by the bootstrap framework using CSS and Javascript. Users can use the Web

client to interact with the Web server through HTTP calls. The Web server uses the Linux

stack, Apache Web server, and PHP. When the server receives a request to create a network

shape, it will send a remote call to a strong back-end server. The back-end server creates a

network shape and saves the figure file and related information of the shape in a directory,

which is shared with the Web server using the Network File System (NFS). Figure A.2

illustrates the architecture and the servers configuration.
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Table A.1: Shape Volumes for Sampling Methods (×10−4)
Type Network Random Node Random Edge Random Walk

Social
Networks

Hyves 1.39 0.30 0.20
MySpace 0.76 0.09 0.13
YouTube 1.80 0.18 0.39

Collaboration
Networks

Astro-Ph 1.55 4.22 0 (reduced to 2D)
Cond-Mat 9.31 1.22 1.36
Hep-Th 5.11 0.80 0.48

Road
Networks

Road-CA 4.65 0.17 0.57
Road-PA 3.65 3.83 0.26
Road-tx 1.00 1.08 0.24

A.3 Case Study

Sampling methods. Table A.1 lists the volume of the network shapes created using dif-

ferent sampling methods. The result shows that shapes using Random Node sampling

are in general large, while shapes using Random Walk sampling are generally small, and

shapes using Random Edge sampling vary in volumes for different networks. As the vol-

ume captures the variance of the Kronecker points of the network and its subgraphs, it

indicates that Random Node sampling generates samples with more variance, while Ran-

dom Walk sampling generates more similar subgraphs. Figure A.3 provides the network

shapes of Hyves and YouTube obtained using different sampling methods. It turns out that

the three shapes intersect at the Kronecker point of the whole graph, and the Kronecker

points of subgraphs are distributed in different directions. We can connect the observation

to the sampling strategies: (1) The blue shapes have a much larger a value than others, as

the Random Walk sampling (restarting with some probability from its initial node) prefers

visiting the initial node and its near neighbors, i.e., 1-hop or 2-hop neighbors, which forms

a dense core of the sample; (2) Though the yellow shapes and the red shapes are both in
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Figure A.3: Red: Random Node; Yellow: Random Edge; Blue: Random Walk
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the core-periphery region (a ≥ b ≥ d), the yellow shapes are above the red ones (having

greater d value). This can be explained by the fact that Random Edge sampling has a

slight bias towards high degree nodes and it generates denser samples than Random Node

sampling does. Hence, for subgraphs sampled by Random Edge sampling, the group of

periphery nodes have more internal connections.

Embedding methods. Figure A.4 provides the network shapes of the nine networks using

Kronecker Point and graph2vec respectively. We have colored the shapes based on their

network category. We observe (1) For Kronecker Point, as values a, b and d are all between

0 and 1, the whole embedding space is a 1 × 1 × 1 cube; For graph2vec, the embedding

values have no such bound; (2) When using Kronecker Point, the networks from the same

category exhibit a clustering phenomenon. Moreover, social networks and collaboration

networks are close while road networks are relatively far from others. This observation

can be explained by previous results [12], i.e., most social networks and collaboration

networks exhibit the core-periphery structure and these two categories have overlaps as

they both involve human social behavior, but road networks often exhibit the dual-core

structure. However, when using graph2vec, networks from different categories seem to

form an onion-like structure: the collaboration networks are in the inside layer, social

networks in the outside layer, and road networks are in the middle.

Fitting methods. Based on the definition of our three fitting methods, we know that for the
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Figure A.5: Comparison of Different Fitting Methods

Table A.2: Shape Volumes for Different Fitting Methods (×10−4)
Type Network Convex Hull Cuboid Sphere

Social
Networks

Hyves 0.30 1.15 673
MySpace 0.09 0.30 189
YouTube 0.18 0.61 344

Collaboration
Networks

Astro-Ph 4.22 13.00 2398
Cond-Mat 1.22 5.06 2246
Hep-Th 0.80 2.18 1977

Road
Networks

Road-CA 0.17 0.51 158
Road-PA 3.83 13.00 3756
Road-tx 1.08 3.59 2879

same set of points, ConvexHull ⊆ Cuboid ⊆ Sphere. Figure A.5 provides an example

of the network shapes of Hyves. We list the volume of the shapes using different fitting

methods in Table A.2. In general, we find that compared with other methods, convex hull

is very compact, while sphere is very loose. Cuboid is in the middle, with 3 times volume

of convex hull. As the process of building a network shape involves the graph sampling

step, a good approximation of the embedding space of a network and its subgraphs should

be both accurate and robust to sampling variance. Considering the trade-off, we believe

convex hull and cuboid perform better in this case.

A.4 Network Shapes Repository

As computing network shapes can be computationally expensive and to enable researchers

and practitioners to analyze those well-known public network data, we build a repository

of precomputed network shapes for various networks. We collect 102 public networks
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from 12 different categories. Furthermore, we generate various neural network architec-

tures (graphs) for five different types of neural network families. The networks analyzed

are mostly large, where our largest network have millions of nodes and edges. We build

network shapes for each of these networks with different graph sampling, embedding, and

shape fitting methods. Our repository that includes all the network shapes information is

released on our website: (http://b.link/shapesrepository) and the code for

generating network shapes is shared on Github. We provide a series of statistics of the

network shapes and detailed analysis for understanding networks through their network

shapes.

A.4.1 Large Network Data Collection

Our main sources for our large network data are four public repositories of networks:

Network Repository [64], SNAP Datasets [43], Social Computing Data Repository at

ASU [44], and AMiner [45]. In total, we collect 102 networks from 12 different cat-

egories. Following are the details of these network categories, with some examples of

these types of networks. For a full list of networks and their statistics, please refer to the

repository’s website.

1. Social Networks: In social networks, nodes represent social network users and edges

represent friendship or follower/followee relationships. We include thirteen social net-

works. Examples are MySpace [45] and YouTube [43].

2. Biological Networks: In our collection, biological networks mainly include protein-

protein interaction networks. In particular, we include six biological networks. Exam-

ples are Bio-Grid-Yeast [64] and Bio-Human-Gene2 [64].

3. Citation Networks: Citation networks represent the references in papers (nodes in these

networks). If a paper i cites paper j, the graph contains a directed edge from node i

to j. In our study, as we consider undirected networks and citation networks often do

http://b.link/shapesrepository
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not have mutual connection (an edge from i to j and vice versa), we simply remove

the direction of the edges. We include two citation networks, where an example is

cit-DBLP [64].

4. Collaboration Networks: Collaboration networks represent scientific collaborations be-

tween scientists. In a collaboration network, an undirected edge between nodes i and j

exists, if authors i and j have co-authored at least one paper. Our repository includes

ten collaboration networks, e.g., Astro-Ph [43].

5. Interaction Networks: Interaction networks capture communications between individ-

uals. Examples include an email network or a Wikipedia talk pages. For a Wikipedia

talk page network, an undirected edge indicates that user A and user B made edits on

each others’ talk page. We include ten interaction networks, e.g., ia-email-EU [64].

6. Road Networks: In road networks, nodes are intersections/endpoints and undirected

edges are the roads connecting these intersections/road endpoints. In our repository,

we analyze five road networks, where an example is Road-CA [43].

7. Web Networks: In web networks, nodes represent web pages and directed edges rep-

resent hyperlinks between them. In our study, we simply remove the direction of the

edges. We include four web networks, e.g., web-Google [43].

8. Recommendation Networks: Recommendation networks are often bipartite networks,

representing users rating items with the rating scores being the edge weights. In our

study, we consider unweighted networks, so we remove the weight information. As

long as a user has rated an item, there is an edge between the user and the item. We

include two of recommendation networks, where an example is the Rec-Github [64]

network.

9. Economic Networks: An economic network represents a set of individuals or groups

interacting (e.g. trading) for profit. We include only one economic networks: Econ-
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Table A.3: Statistics for Neural Network Datasets
Neural Network Type # Layers Nodes Edges Average Degree Density

Recurrent Neural Network 4 2,000 750,000 750.0 0.375
Deep Convolutional Network 8 1,659 166,813 201.1 0.121
Deep Belief Network 7 2,750 750,000 545.5 0.198
Autoencoder 3 2,000 640,000 640.0 0.320
Deep Fully-connected Network 7 2,365 984,578 832.6 0.352

Poli-Large [64].

10. Heterogeneous Networks: Heterogeneous have different types of nodes, for example

users and groups, and edges often denote membership relations (a user is a member of

a group). We analyze eight heterogenous networks, e.g., actor [64]

11. Labeled Networks: Labeled networks have labels on their nodes or edges. We include

36 labeled networks. Example: AIDS [64].

12. Miscellaneous Networks: These networks cannot be classified under the above-mentioned

categories. We include five such networks, where an example is 3Dspectralwave [64]

As these network datasets are collected from different platforms, they follow different

formats; hence, we transform each of the them to a unified tab-delimited format, which

can be downloaded from the repository’s website.

In addition to the above-mentioned networks, recent studies have shown the success of

deep neural networks in many applications [126]. With many recently proposed deep neu-

ral network architectures [127, 128], there is a strong need to study these architectures

in-depth. A neural network architecture can be represented as a graph; hence, we generate

five different neural network architectures for the repository: Recurrent Neural Networks

(RNN) [129], Deep Convolutional Networks [130], Deep Belief Networks [131], Autoen-

coders [132], and Deep Fully-connected Networks [130]. Table A.3 provides the details

for the generated networks.
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A.5 Conclusion

In this chapter, we first present WEBSHAPES, a web platform implementing the network

shape framework which allows users to visualize their network data as 3D shapes with

different methods. We have a case study on networks from different categories. We

demonstrate that the properties of different graph sampling methods can be connected to

the network shape; with different embedding methods networks have individual network

shapes; convex hull and cuboid provide a better approximation of the embedding space of

a network from the view of the accuracy and robustness trade-off. As the network shape

framework is flexible, we can integrate more new graph sampling methods, embedding

methods and fitting methods in WEBSHAPES in the future.

Moreover, we provide the first network data repository with network embeddings and 3D

network representations, NETWORK SHAPES REPOSITORY, to the best of our knowledge.

For visualizing and downloading network shapes and network embeddings, we build a

website and we share the code for building network shapes to public. To build the network

shapes repository, we collect 102 public networks from 12 different categories. We have

transformed the network data into a consistent unified format and all the network data can

be downloaded from the repository. We generate graphs representing five different neural

network families as public network data for research.
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[48] P. Erdös and A. Rényi, “On random graphs, i,” Publicationes Mathematicae (De-

brecen), vol. 6, pp. 290–297, 1959.

[49] F. Luo, B. Li, X.-F. Wan, and R. H. Scheuermann, “Core and periphery structures

in protein interaction networks,” in Bmc Bioinformatics, vol. 10, no. 4. BioMed

Central, 2009, p. S8.

[50] D. S. Bassett, N. F. Wymbs, M. P. Rombach, M. A. Porter, P. J. Mucha, and S. T.

Grafton, “Task-based core-periphery organization of human brain dynamics,” PLoS

computational biology, vol. 9, no. 9, p. e1003171, 2013.

[51] M. Bastian, S. Heymann, M. Jacomy et al., “Gephi: an open source software for

exploring and manipulating networks.” Icwsm, vol. 8, pp. 361–362, 2009.

[52] J. Zhang, M. S. Ackerman, and L. Adamic, “Expertise networks in online

communities: Structure and algorithms,” in Proceedings of the 16th International

http://snap.stanford.edu/data
http://socialcomputing.asu.edu


155

Conference on World Wide Web, ser. WWW ’07. New York, NY, USA: ACM,

2007, pp. 221–230. [Online]. Available: http://doi.acm.org/10.1145/1242572.

1242603

[53] T. Feder and R. Motwani, “Clique partitions, graph compression and speeding-up

algorithms,” in Proceedings of the twenty-third annual ACM symposium on Theory

of computing. ACM, 1991, pp. 123–133.

[54] A. Apostolico and G. Drovandi, “Graph compression by bfs,” Algorithms, vol. 2,

no. 3, pp. 1031–1044, 2009.

[55] C. A. Packer and L. B. Holder, “Graphzip: Dictionary-based compression for min-

ing graph streams,” arXiv preprint arXiv:1703.08614, 2017.

[56] B. Zhou, J. Pei, and W. Luk, “A brief survey on anonymization techniques for

privacy preserving publishing of social network data,” ACM Sigkdd Explorations

Newsletter, vol. 10, no. 2, pp. 12–22, 2008.

[57] L. Backstrom, C. Dwork, and J. Kleinberg, “Wherefore art thou r3579x?:

anonymized social networks, hidden patterns, and structural steganography,” in Pro-

ceedings of the 16th international conference on World Wide Web. ACM, 2007,

pp. 181–190.

[58] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of

STOC. ACM, 1971, pp. 151–158.

[59] A. K. Jain, L. Hong, S. Pankanti, and R. Bolle, “An identity-authentication system

using fingerprints,” Proceedings of the IEEE, vol. 85, no. 9, pp. 1365–1388, 1997.

[60] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of fingerprint recog-

nition. Springer Science & Business Media, 2009.

http://doi.acm.org/10.1145/1242572.1242603
http://doi.acm.org/10.1145/1242572.1242603


156

[61] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt,

“Graph kernels,” Journal of Machine Learning Research, vol. 11, no. Apr, pp.

1201–1242, 2010.
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