
University of Nevada, Reno

USA Rail Planner: A user-focused web-scraping
solution for rail travel planning in the United States

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science

in Computer Science and Engineering

by

Nicholas Alvarez

Dr. Sergiu M. Dascalu, Thesis Advisor
Dr. Engin Arslan, Thesis Advisor

December, 2022

© by Nicholas Alvarez 2022
All Rights Reserved

i

Abstract

Planning a cross-country train journey in the United States can be a time-

consuming process. The USA Rail Planner, presented in this thesis, provides travelers

an easy way to plan a multi-city rail trip to any of the destinations served by Am-

trak trains in the United States. The manual work of searching the Amtrak website

and inputting information into a spreadsheet is no longer necessary. By interfacing

with the website, information can be parsed by the application quickly and presented

to the user in a simpler, ordered, and less cluttered format, allowing them to make

educated decisions in their trip planning process. Dynamic route maps, detailed

train information, and many other planning features are present in the application.

Quality-of-life additions, such as train timetables, city tourism pages, and local tran-

sit connections, make the application well-rounded in the tourism and travel domains.

Furthermore, this user-centered Python-based application that employs web scraping

and other modern software technologies provides an efficient and easy way to create an

itinerary which can be exported later. User study results (N=12) show that the USA

Rail Planner is significantly better than existing methods, reducing the time to create

an itinerary by 47% and it was the preferred method for all but one participant.

ii

Dedication

To my entire family, and especially my wonderful parents, for their continuous

support throughout my academic career. Without your love and guidance, you

would not be reading this today.

iii

Acknowledgments

I want to thank my advisors, Dr. Sergiu Dascalu and Dr. Engin Arslan, and my

committee member Dr. Richard Plotkin for their time and support. Thanks to the

encouragement from Dr. Dascalu, there is a thesis to read here today.

Credit for the application’s city images goes to Google Images. Train informa-

tion and search results credit goes to Amtrak. The station list information is from

Wikipedia’s “List of Amtrak stations” page. Route files are from Transitland. Status

maps are made available via asm.transitdocs.com and dixielandsoftware.net.

And, of course, I want to thank Amtrak for inspiring me to build this application.

This research is in no way meant to diminish the Amtrak website’s comprehensive

capabilities; it is meant as a complementary aid in planning. Without Amtrak and

my cross-country trip, I would have had no reason to start my research and create

this application.

iv

Contents

Abstract i

Dedication ii

Acknowledgments iii

List of Tables vii

List of Figures viii

List of Algorithms x

List of Listings xi

1 Introduction 1
1.1 Problem Statement . 1
1.2 Motivation . 2
1.3 Solution . 3

2 Background 7
2.1 Rail Travel in the United States . 7
2.2 Trip Planning Issues . 8
2.3 Similar Planning Solutions . 11
2.4 Web Scraping . 12

3 Related Work 16
3.1 Trip Planning Overview . 16
3.2 Current Work . 18
3.3 Web Scraping in Action . 21

4 Software Specification and Design 22
4.1 Requirements . 22

4.1.1 Functional Requirements . 24
4.1.2 Non-Functional Requirements 28

4.2 Use Case Modeling . 29

v

4.3 Architecture . 31
4.3.1 High-Level Overview . 31
4.3.2 Application Behavior . 34
4.3.3 Searching for Trains . 38

4.4 Technologies . 41
4.4.1 Python Programming Language 41
4.4.2 Tkinter . 42
4.4.3 Rail Map View . 42
4.4.4 Selenium . 43
4.4.5 Beautiful Soup . 44

5 Prototype in Action 45
5.1 Interface Design . 45

5.1.1 Main Window . 47
5.1.2 Itinerary . 52
5.1.3 Journey View (Map) . 53
5.1.4 Additional Elements . 54

5.2 Common Usage Scenarios . 57
5.2.1 Cross-Country/Rail Pass Trips 57
5.2.2 Route Variations . 58

5.3 Limitations . 59
5.3.1 User Interface . 59
5.3.2 Searching and Web Drivers . 60

6 Validation 61
6.1 Subjects . 61
6.2 Apparatus . 64
6.3 Experimental Design and Procedure 66
6.4 Study Results . 71

6.4.1 Quantitative Results . 74
6.4.2 Qualitative Results . 76

6.5 Discussion . 79
6.5.1 Hypotheses . 81

7 Conclusions and Future Work 83
7.1 Conclusions . 83
7.2 Future Work . 84

7.2.1 Improved Search Functionality 84
7.2.2 Interface Additions . 86
7.2.3 Time-to-Travel Map . 87

Bibliography 88

A Map Utilities 92

vi

B Web Scraping Code Example 95

vii

List of Tables

4.1 Survey Questions, March 2022 . 23
4.2 Level 1 Functional Requirements . 25
4.3 Level 2 Functional Requirements . 27
4.4 Level 3 Functional Requirements . 28
4.5 Non-Functional Requirements . 29

6.1 Pre-Study Questionnaire . 63
6.2 User Study Task Steps . 67
6.3 User Study Trivia Questions . 68
6.4 Post-Study Questionnaire . 72
6.5 User Study Hypotheses . 73
6.6 Counterbalancing Effectiveness for Quantitative Results 74
6.7 Quantitative Results Analysis . 74
6.8 Qualitative Results Analysis . 77

viii

List of Figures

2.1 Amtrak Homepage . 9
2.2 Amtrak Multi-City Search . 10
2.3 Amtrak Travel Planning Map . 11
2.4 Eurail/Interrail Rail Planner Mobile Application 13
2.5 Rome2Rio Search Results . 14

4.1 Use Case Diagram . 30
4.2 System-Level Structural Diagram . 32
4.3 System-Level Behavioral Diagram . 34
4.4 Tkinter GUI Window with Tk and Ttk Widgets. 43

5.1 Main Rail Planner Window on Startup 46
5.2 Stations List and Station List Search 48
5.3 Detail View for Washington Union Station, DC 49
5.4 Calendar Popup in Date Selection Area 50
5.5 Main Window with Search Results 51
5.6 Train Right-click Context Menu for Results Table and Itinerary . . . 52
5.7 Detail View for Acela #2152 . 53
5.8 Itinerary Window with Five Saved Results 54
5.9 Map Window during Station Selection 55
5.10 Map Window with Single Train Route 55
5.11 Map Window with Journey (Itinerary) View 56
5.12 Display Column Editor . 57

6.1 Pre-Study Questionnaire Q9 Comparison Images 62
6.2 Participant Demographic Information 64
6.3 Testing Environment Setup . 65
6.4 Amtrak + Excel Task Setup in VM 69
6.5 USA Rail Planner Task Setup in VM 70
6.6 Mean Time to Complete . 75
6.7 Mean Task/Trivia Accuracy and Keyboard/Mouse Interactions 76
6.8 Mean Post-Study Ratings and User Time Perception/Preferences . . 77

ix

6.9 Confidence in Planning Before and After Study 78

x

List of Algorithms

4.1 Searching and Parsing Method . 38

xi

List of Listings

4.1 Locating an element by XPath with Selenium 39
A.1 Map Utilities Source Code . 92
B.1 Searching and Parsing Code Snippet 95

1

Chapter 1

Introduction

Planning a multi-city rail trip in the United States can be difficult. With so many

potential routes and destinations, it is easy to get overwhelmed trying to pick where

one wants to go in a short travel timeframe. This also comes with the need to

balance train connections, spend ample time in each destination, and to determine

the feasibility of arrival and departure times. The Amtrak website’s method for

planning trips is searching by origin, destination, and departure date, one at a time

[1]. A train must be selected from the results and its information recorded elsewhere,

such as a spreadsheet or other organizational software. This is a time-consuming

process, and if previous search results need to be checked, the search information

must be re-entered, and the search resubmitted. The proposed USA Rail Planner

(henceforth Rail Planner) provides a way for travelers to formulate a travel plan,

with the application navigating and parsing the Amtrak website so the user does not

have to. Selected trip segments (or “legs”) can be saved in an in-app itinerary with

relevant information for each train, which can be exported later to a spreadsheet.

1.1 Problem Statement

Immense planning is required to ensure a cross-country train trip comes together.

Riders must consider which routes to take, where they will stop, any points of interest

they want to see, the on-time performance of their desired train(s), connections to

local transit, and a plethora of other variables. Documenting the information they

2

research is a necessity, as building a rail travel itinerary is an iterative process, with

routes and segments being added over time as the rider’s potential travel paths come

to fruition. Multiple journeys (collections of routes and stops, “travel paths”) may be

considered, thus increasing the complexity of this task.

There are no similar software solutions available to effectively plan rail trips in the

United States. Manual work is required to search for and document each segment (leg

of a trip) and the potential trains one can take. One existing method is Microsoft

Excel, but this is a means for storing the data instead of finding it. The closest

solution is simply Amtrak’s website. While it is the absolute resource for finding

train journeys in the United States, anything past purchasing the trip right then is

limited due to the inability to save search results or specific trip segments. Results

can also be spread over several pages, requiring users to navigate through each to see

all listings, and are ordered by trip duration by default, not departure time. For this

reason, the Rail Planner may present itself as a breakthrough application in the train

travel field considering its novelty and feature set.

1.2 Motivation

I began very preliminary work on this application in December 2021. At that point,

it was less than 100 lines of code and only had basic web scraping functionality.

In short, it didn’t work. However, the reason I started working on the project in

the first place was because of my own upcoming cross-country train trip. I was

frustrated with how difficult it was to plan an itinerary, even with only ten Rail Pass

segments at my disposal. I had to perform each search by hand, inputting stations

and a date, then peruse search results and record the information of selected trains

to a spreadsheet. This spreadsheet quickly grew as I explored multiple route options

given my short travel timeframe (2.5 weeks). And, with multiple potential routes, a

lot of searches had to be performed, and a lot of train data needed to be transcribed

to the spreadsheet. It was getting to be tiring, but around the same time, I began

to seriously work on the application for a class, which required that I integrate a

3

GUI to complement the web scraping functionality. This working prototype was

used to formulate my final trip itinerary, which I used as a reference to book my

tickets and was also shared with family members who wanted to know my journey

so they could track my trains. A few months later, my professor saw the prototype

and recommended I continue researching and developing it and to write my thesis

about it. I began adding more features and polishing the interface, and the complete

application is the topic of this thesis.

1.3 Solution

The Rail Planner application presented here aims to simplify the travel planning

process by eliminating the need to use the Amtrak website and the associated manual

work. Every station in the United States national rail network is listed in alphabetical

order to eliminate any guesswork about where one can travel by train. The origin,

destination, and departure date will be selected, and the user can begin their search.

After results (if any) are found, a list of trains and their attributes (departure/arrival

time, number of segments, duration, etc) are be displayed and the user can select

their preferred trip. This selection is saved and the user can begin their next search,

repeating this process until their journey is complete. The final travel plan can be

saved in a spreadsheet with all associated information about each trip, ready for later

consultation. If the user wants to save their trip planning progress and continue

later, they can do so with the application’s .RailPlan files. The application features

picture displays of cities where the selected stations are located to provide context,

and they provide links to city tourism information if clicked. Additionally, helpful

options are be available to the user, such as enabling or disabling the display of

certain trip attribute columns, and supplemental information such as the Amtrak

system map.

The intended users of the application are travelers who have purchased an Amtrak

Rail Pass and need to plan their trip. The Rail Pass is a flat-rate ticket, purchased

through Amtrak, that allows riders ten segments of travel anywhere in the Amtrak

4

network [2]. In actuality, the user demographic extends beyond only pass holders,

as the underlying search functionality would still allow for shorter or longer trips

to be planned. However, one-way only searches and the UI elements related to the

number of segments do cater to the aforementioned pass. Potential users will benefit

from the application due to its immense time saving advantages. The inclusion of all

stations may help inspire new travel destinations, but if a user already has an idea

of which destinations they want to visit, the application will assist in compiling their

trip segments into a spreadsheet itinerary for later review. This organizational benefit

is not insignificant, especially if multiple potential groups of destinations are planned

but the feasibility, such as the length of the trip or transfer times, is undetermined.

The application should be both effective and efficient to use. That is, the desired

results (a travel plan) should be achieved in as little time as possible. Any issues

with a search or application function should be handled with an informational error

message, as error handling is another goal. Finally, the application should be easy

to learn, with the driving component of this goal being its minimal interactable UI

elements that will guide the user to a completed search and finished itinerary.

The application would have some impacts across global, environmental, eco-

nomic, and societal contexts. Globally, both Americans and non-Americans may

be inspired to take a train trip, with or without the Rail Pass. The more people that

choose to take a train trip over flying or driving, the less emissions are produced on a

per-passenger basis, which showcases the environmental impact. On a societal level,

it may promote train travel as a viable means for cross-country trips where urgency is

not a concern. Families or friends could plan a trip together. The application shines

with its economic impact, however. Those unaware of the Rail Pass and its benefits

may be prompted to investigate further and buy one, instead of paying for each seg-

ment individually. On a more abstract level, the amount of time saved planning the

journey, and potentially, the time maximized during the journey with a plan allowing

for the most time at destinations, would further contribute. Destinations served by

Amtrak may experience the impact of tourists arriving and spending money.

5

This Rail Planner application provides several enhancements over the existing

method of manually searching the Amtrak website for each trip segment and inputting

details into a spreadsheet. In summary, the thesis makes the following contributions.

First, the act of searching by the user is entirely removed as the web driver runs all

searches in the background and handles any errors as they arise. Second, all results

are displayed at once in the application, instead of potentially multiple pages on

Amtrak’s site. Each train in the results table is shown with user-selected attributes,

such as duration or prices. In addition, a popup window can provide more information

about the train, such as amenities, available seats, and a per-segment breakdown of

arrival and departure times. Third, results from previous searches can be viewed

without the need to perform another search. These specific searches can be exported

for later review as a spreadsheet but are also included alongside the user’s itinerary

in any saved .RailPlan file. Fourth, a specific trip from search results can be saved

to an itinerary, thus forming another leg in the user’s multi-segment journey. All

trains in the itinerary can be exported to spreadsheet form, thus eliminating the

need to scour the results when searching on Amtrak’s site, as they’ll already know

what train to book. Fifth, a map is shown in a separate window, which can place

markers for selected stations, a train’s route with associated station stops, or an

overview of the user’s entire journey. Sixth, the user can save their planning progress

in the application and revisit their work later without needing to start from scratch.

Other minor contributions include photo displays of currently selected cities, tourism

information about each city, and menu links to: route maps, train statuses, and

timetables, and links to a selected train’s information. These contributions are all part

of this standalone application, so the user would only need to navigate to Amtrak’s

website to book their now-known trip segments once an itinerary is created.

The rest of this thesis is structured as follows: a background of national and

regional rail travel in the United States, trip planning solutions for rail travel abroad

(Europe) and domestically, and a high-level overview of web scraping are presented

in Chapter 2. Related research to itinerary planning, both for rail travel and other

6

means, as well as web scraping applications, is discussed in Chapter 3. Chapter 4

examines the application’s specification, design, implementation, and the technologies

in use. Chapter 5 presents the user interface design, typical scenarios a user might

utilize the Rail Planner for, and the application’s limitations. Chapter 6 contains

the user study, including experiment methodology and environment, and its results.

Finally, conclusions and avenues for future expansions are presented in Chapter 7.

7

Chapter 2

Background

In this chapter, brief backgrounds are provided for key components of the application.

Section 2.1 covers the state of passenger rail travel in the United States. It provides

context for the application’s use and current challenges faced when travelling by rail.

In Section 2.2, trip planning issues are discussed. Existing solutions from Amtrak

are briefly presented. Next, Section 2.3 compares current trip planning solutions for

passenger rail travel, examining benefits and drawbacks to their use. Finally, Section

2.4 provides a brief overview of web scraping. It details the technology behind web

scraping, how it is used, and what it means for the Rail Planner.

2.1 Rail Travel in the United States

The United States is a large country with a national rail service. There are a variety

of cross-country and regional routes available, often traveling through parts of the

countryside that are otherwise inaccessible by road and serving communities where

the train may be one of the only transportation options. However, unlike its European

counterparts, the rail network in the United States is largely privately owned by

freight rail companies and approximately 70% of passenger train miles are traveled

on freight-owned tracks [3]. This can create delays, limit service, and inhibit route

expansion for passenger rail. Several commuter rail lines exist, such as Metrolink in

the Los Angeles area or Sound Transit in greater Seattle, and they may even own

some or all of their rail mileage, but they do not offer the countrywide connectivity

8

of a national rail system.

Amtrak [4] is the United States national rail network with service to over 500

destinations in 46 states. It is possible to travel from coast to coast on as little as two

trains. Founded in 1971, its purpose is to provide accessible passenger rail service

across the country. Some, such as those living in the northeastern United States or in

California, use Amtrak trains to commute to work or take short leisure trips, as their

service levels (frequencies) are much higher. Amtrak owns the Northeast Corridor

tracks, thus eliminating freight railroad delays, and state-supported commuter rail,

such as Capitol Corridor, generally see higher frequencies as well. Travel by rail

shines when destinations are too far to drive and to close to fly. However, there

are a selection of long-distance trains available for riders looking to go farther or

access underserved communities. Despite their long travel times, either due to freight

railroad trackage rights (defined as an Amtrak train using freight rails, despite not

owning them) or the sometimes-treacherous mountain terrain in the western United

States, they still provide an essential service and could be regarded as a lesser-known

means of transportation. For those wanting to travel across the country by train,

multiple connections (segments) are required, and the cost can often add up quickly.

For this reason, Amtrak offers a “Rail Pass” for a flat price, granting the traveler

ten segments between any destinations they choose, provided their entire excursion is

completed in one month [2]. Amtrak’s homepage provides destination ideas, current

deals, and, most importantly, a search form, shown in Figure 2.1. This search area

offers users a choice between one-way, round-trip, or multi-city searches.

2.2 Trip Planning Issues

For a rider who wants to plan their trip, options are limited. Spreadsheets, as men-

tioned, are the simplest option available, requiring the user to transcribe an individual

train’s information from the Amtrak website into their spreadsheet for reference later.

Microsoft Excel or Google Sheets are prominent solutions in this category. Unless the

user is saving each search result however, flexibility after inputting the information is

9

Figure 2.1: Amtrak Homepage

somewhat limited, such as returning to a set of search results to check alternate trains.

Similar issues exist with other services, such as Notion or a calendar, in that obtaining

the train data is a tedious, manual process of searching, parsing, and transferring the

data into some storage medium.

Amtrak does offer a multi-city search function on their website [5], shown in

Figure 2.2 with an error present. While it does include some of the functionality

of the Rail Planner, it is still limited in that only four segments can be searched

for at one time, and results are still listed on multiple pages with a great deal of

wasted space. Searching multiple routes simultaneously does not provide the user

any feedback as to whether there is sufficient connection time or if there is train

service on the selected departure days – something only a rider with prior timetable

knowledge would be able to discern. This can create unnecessary trial and error to

perform a search. Additionally, it does not offer any way to save trains for later to

an itinerary, unless the user books a ticket at the time of search.

10

Figure 2.2: Amtrak Multi-City Search

There is a counterpart to the multi-city search offered by Amtrak, and is some-

what more similar to the Rail Planner: the Travel Planning Map [6]. An interactive

map of all Amtrak stations (train and bus) with train routes displayed is presented

to the user, and they can select any station on the map as a start- or endpoint, or

they can be manually searched in the form fields for origin/destination. Users can

find which routes serve those two locations, shown in Figure 2.3 with routes from

Los Angeles to Chicago, however, it does not provide any distinction to the day of

the week, so tri-weekly routes would be shown but may not provide travel options on

the day the user is interested in. The “Find Fares” button opens a search form and,

when completed, will bring the user to a new tab with any results for a specified day,

somewhat solving this issue. One useful feature is the “nearby stations” portion of the

station list, so users can find alternative stops in the area. Station information is also

provided, such as amenities, parking, and hours of service – all useful information for

trip planning.

11

Figure 2.3: Amtrak Travel Planning Map

2.3 Similar Planning Solutions

The most similar approach to the Rail Planner is Eurail’s trip planner map [7]. Users

input travel dates and the number of passengers to be brought to the planner page. It

features a map of partner countries, showing a popup for common destinations within

the selected country, along with the number of days required at the destination.

Repeating this process yields an itinerary, however each locations dates appear to

be based on the number of days required at the destination and does not factor in

travel time. For example, a trip from Stockholm, Sweden to Lyon, France indicates

on the itinerary that the departure day is the same as the arrival day. This trip

would actually take over a day on multiple trains. There is a “travel day” section that

does appear to update based on the number of segments but not in regard to train

travel duration. However, specific (and/or optimal) train selections are not present

on this page. Alongside the web version is Eurail’s mobile “Rail Planner” app, which

holds an extended set of features compared to the web version, including the ability

12

to function offline. This application is functionally much similar to the USA Rail

Planner, in that users can search for trains between two locations and save them to

a trip (ex. “My Trip”). An example of saved trains to a user trip is shown in Figure

2.4, with a search from London to Paris and the saved journey from London – Paris

– Milano City. Their saved journeys can be viewed as a list or a map and includes

a statistics tab listing the number of countries visited, kilometers traveled, and CO2

savings. A big benefit of the mobile application is that timetables are saved offline, so

if a user does not have a cellular or WiFi connection, they can still plan their trip or

check trains. It is a very capable application but does not apply to North American

train travel.

Rome2Rio [8] is a popular travel planning website which incorporates air, bus,

rail, and other transportation means. There are options to book tickets and hotels.

Points of interest are not included, nor are exact prices for tickets, only an estimate. A

map shows the route for the selected travel method, seen in Figure 2.5. Detailed train

information cannot be viewed, only basic data such as arrival/departure times and the

frequency of service at the origin. In a test search, it appeared to favor “shortest time”

train journeys over one with fewer transfers, as it recommended the user disembark a

train bound for Washington, D.C in Rockville, MD only so they could board a Metro

train bound for Washington, D.C. Similar to Rome2Rio is Wanderu [9], another travel

planner website. Filtering of results is included on their site, and it appeared the test

search produced the “proper” Amtrak results (all via train) but was lacking in a map

or any specific scheduling information. One benefit was the exact price display instead

of an estimate. However, neither of these sites allowed the user to save results, add

multiple stops to their search, or display points of interest along the route.

2.4 Web Scraping

To understand how the application works in the background to retrieve Amtrak search

information, a brief overview of web scraping is necessary. Websites (or services,

generally) may provide an application programming interface (API) to retrieve or

13

Figure 2.4: Eurail/Interrail Rail Planner Mobile Application

send data from the site. One such example of this is booking an airline ticket from a

third-party travel website, such as Kayak. While the third-party site itself may not

know the current cost for a seat or how many tickets are remaining, it can ask the

airline company for this information so it can present it to the user. The exchange of

information is enabled by an API, which, at a very high-level, receives some data from

the client or user, processes it or does something on the server side, and returns some

data back to the client. In this way, an API acts as a messenger of sorts. It may seem

logical that a website (or application) could ask Amtrak’s API for train information

14

Figure 2.5: Rome2Rio Search Results

based on origin, destination, and date (number of travelers, flexible dates, etc. could

also be parameters). However, Amtrak does not have a public API to use for ticket

searches, only a semi-private API for train statuses (location tracking) [10], meaning

all of that information must be obtained by visiting the website. Without another

solution, users are back to the original problem of manually searching and recording

data.

Web scraping refers to the extraction of data from a website, even without an

API. Simple scrapers load the HTML code and nothing else, usually completing this

task quickly. This form of web scraping is used in the Rail Planner to gather station

information (name, transit connections, location, etc) and addresses. However, more

complex websites incorporate Javascript elements, often containing the desired infor-

mation. If the site can be loaded by a simple scraper, it is unlikely that it could gather

anything useful from the Javascript elements. However, just as websites become more

15

complex, so do web scrapers. When scraping with the help of a web driver, which

takes complete control of a full-fledged web browser like Chrome and uses it to scrape,

it can render more advanced parts of the website, such as Javascript elements, and

access the data from them. Selenium is a Python library to assist with this task, pro-

viding an interface to control the web driver. Commands such as inserting text into

(Javascript) forms, clicking on elements, scrolling, and other “interactive” functions

are available. In the context of this application, a web driver is used to render the

Amtrak site and is controlled via the Selenium library. Searches are performed as if a

user was controlling the browser: typing, clicking, and scrolling. The resulting search

page is interpreted by the application and parsed results are presented to the user.

16

Chapter 3

Related Work

In this chapter, related work in the trip planning domain is presented. The user inter-

faces for trip and transportation planning are important topics in human-computer

interaction. While the algorithms behind the applications can be impressive, they are

not of much use without a potential user being able to interact with them in a simple

and effective way. The primary stakeholders of these applications are people that are

planning a trip (at a small or large scale) and need to get from point A to point B,

and beyond. In some scenarios, the user may be unfamiliar with the city they are in

(such as a tourist) and are under stress because they might miss their connection to

their destination. While an application should be easy to use in normal conditions,

it is in these extreme situations where an intuitive design is critical. Public transit,

such as bus or rail transit, is prevalent, but other facets are also researched, including

ride-sharing [11] and tourism planning (walking tour) [12, 13]. Section 3.1 covers trip

planning solutions for a variety of travel modes. Recent work is discussed in Section

3.2. Trip planning solutions, schedule creation, and region-specific are all presented

here. Finally, web scraping is covered in more detail, including its applications in

previous work, in Section 3.3.

3.1 Trip Planning Overview

There are a variety of publications in this domain, especially with route planning

for local public transit networks. An early work in this field, at the dawn of the

17

information age, is Peng and Huang’s Web-based transit system with integrated GIS

map [14]. At the time, riders were limited to printed schedules which could be hard to

interpret and offered little in the way of service disruption notifications. The online

service could pre-calculate shortest paths every 30 minutes so the users would always

have up-to-date information about their route. Google Maps, nearly ubiquitous with

public transit planning now, did not launch their first transit-enabled city (Portland,

Oregon) until 2005 [15] and slowly expanded. This only demonstrated the need for

novel or specialized trip-planning research. Later work expanded on the public transit

routing idea by changing the mapping system interface, including point-and-click

origin/destination selection, and incorporating a different city [16].

In the area of transportation and trip planning development, there have been

three major accomplishments that increase the user’s ability to accomplish their

planning goals. First, the democratization of mapping and transit data, or Gen-

eral Transit Feed Specification (GTFS) data, has allowed numerous applications to

integrate local bus or train information into their services. This is largely thanks

to Google for pushing transit agencies to provide their data in this new specification

[17]. The early work in this domain relied on transit authorities providing stop, route,

and schedule data or the researchers would obtain the information themselves. With

the GTFS, agencies could now provide their data in a standardized format for use

in the wide range of applications soon to come. Google now has over 800 United

States transit authorities in their transit planner, and more worldwide [18]. The

second major accomplishment for transit/trip planning is Google Flights (and, simi-

larly, Kayak, Trivago, etc), the online service to research and book flights across the

world. Instead of potential travelers searching multiple airline websites for a price,

it’s available in one place with a simple user interface and near-instant results. It

also offers recommendations for different travel dates if prices are lower. While this

tool focuses on flights, the third major achievement comes in the form of car-based

trip planning with sites such as Roadtrippers [19] or Furkot [20]. Users can plan their

ideal road trip by inputting whichever destinations they want to visit. As they add

18

more places, they receive recommendations for lodging, food, and tourist attractions

within a customizable distance off the main travel path. There are some elements to

the website that can be unintuitive, and Roadtrippers charges a fee for more complex

trips. These sites, however, and those like them, allow users to accomplish their goal

and are products and accomplishments of the field.

3.2 Current Work

In this field, research generally focuses on trip routing algorithms with a UI element

accompanying it [12, 13, 14, 16]. Other work consists of requirements gathering and

user studies to assist with the development of transit/trip applications.

The Transportation Research Board of The National Academies released a pro-

gram report for an intercity travel planner in 2015 [21]. They note that there is no

single place to gather multi-modal ground transit information. Whereas airlines have

few destinations in the United States, the combination of bus and train stops is a

much larger number. The intercity trip planner acts as the single place for users to

plan longer trips. The interface was designed, schedule data for the test region (the

northeast portion of the country) was loaded, and stakeholders reviewed the applica-

tion. Despite its positive response, the primary issue with this tool, or those similar,

are private transit companies refusing to make their schedule data publicly accessible

(in GTFS form). Reviewers pointed out that some suggested routes were “nutty”

and asked the rider to make unreasonable connections when a simpler service was in

place. It is possible this is due to the application not having those services’ transit

data, but the authors do provide a plan to mitigate this issue.

In a 2016 paper, Zhang et al. gathered requirements for a collaborative trip

planning application [13]. Groups of users who were planning to travel were given

diaries to record individual planning processes, such as information gathering (ex.

search engine versus tourist applications) and group discussion (ex. face-to-face or

email). With consistent updates to the diaries, the researchers were able to glean some

design implications from the users studied. Regarding presentation of information,

19

they constructed a top-down approach, starting with an overview of the point-of-

interest, then transportation details, and finally a more detailed background of the

location. Or, with intra-group communication, they believe that each member’s travel

preferences can and should be visualized, allowing others to view their opinions and

potentially vote on itinerary changes. The authors planned to validate the proposed

requirements.

Elliott et al. completed similar work, but with the One Bus Away system require-

ments [22]. In this research, the application was already developed, and users were

studied when completing a pre-defined task. The results of the study were primarily

focused on errors, either system or human/intuitiveness, that arose during testing.

A significant issue was the specificity required to search for an address. If the user

inputs it incorrectly, the app does not have a way to offer “Did you mean” sugges-

tions. However, in other areas, users provided suggestions to increase the clarity of

the application, as another issue was the representation of bus, route, and stop data

(all as numbers). The research for One Bus Away provides information as to what

users look for when using this application, and, by extension, those like it.

Svangren et al. evaluated user perceptions in their study on ride-sharing services

[11]. While the majority of the data gathered from users related to perceptions on

planning trips, driver negotiations, considerations when selecting a driver/car, and

handling uncertainty in trips, the authors did discuss HCI implications from this

information. Multi-platform and multi-device recommendations were made, as they

found users liked the flexibility and options available from multiple services but wish

they did not have to check all of them to find the best deal or type of ride they were

looking for. The multi-device paradigm, they note, becomes especially important

when users move from ride-sharing to public transportation in the same trip. The

security and privacy aspect was also discussed, but focused on information sharing

(or lack of) prior to a ride due to social media usage.

Multi-modal trip planning in Greece was explored by Zografos et al. in their re-

search [23]. While this is older research from 2008, it is similar to Adler’s research [21]

20

in that it is multi-modal, incorporates local and regional transit, and provides users

with a completed itinerary. However, the system only supported Greece at the time

of publication. This research does go beyond Adler’s work in that a comprehensive

survey was issued to a key demographic (travelers at important Greek hubs) prior to

system development. With this, they created functional requirements and designed

a prototype, which was accepted by a secondary user study.

There are some more works and available options in the area of schedule creation.

One example is the “Intelligent Traveling Service” from Navabpour et al. [24]. Their

work is a travel planning service combing air, bus, and rail transportation. They did

use a REST service with OpenKapow to retrieve Amtrak results for rail portions of

the search. However, this paper was published in 2008, and the Amtrak service, along

with OpenKapow, is now defunct and unreachable. However, the data returned from

the service is similar to what the Rail Planner retrieves from Amtrak’s search results.

Other itinerary planning research has been conducted but does not necessarily re-

late to train travel. Roy et al. proposed an interactive itinerary planner focused on

points-of-interest (POIs) in a location [25]. Users provide feedback on the proposed

plans and the program creates new itineraries based on their feedback. In the context

of the USA Rail Planner, this would be akin to users providing a list of cities to visit

and the application generating potential routes and trains to take. Given the over-

head of performing an Amtrak search, even with an automated browser, generating

an itinerary could be very lengthy without an existing set of local timetables to run

against. However, with existing timetables, research such as Witt’s TripBased algo-

rithm for Pareto-optimal journeys in a public transit system [26] could be used. With

timetables for the public transit network and some preprocessing time to precompute

transfers, it can produce a set of journeys which minimize arrival time and the num-

ber of transfers, wherein the user will reach their destination. The prohibiting factor

would be finding a reliable, up-to-date, and parsable source of Amtrak timetable

data. The first two requirements are fairly simple but ensuring the application can

understand the schedule data could be a challenge.

21

3.3 Web Scraping in Action

Web scraping is not a new field, but there does not seem to be much, if any, existing

research using this technology with Amtrak’s site. Gheorghe et al. discuss methods

for scraping data from websites with varying layouts, such as pure HTML or with

the inclusion of Javascript elements [27]. They discuss the use of Selenium, as is used

in the application, and its automation capabilities with modern web browsers and

element parsing abilities. However, web scraping is not limited to Amtrak’s website.

It is often the technique chosen when APIs are limited or nonexistent (in Amtrak’s

case). For the former case, Twitter is a prime example [28]. Twitter provides an

API but limits how many requests can be sent to the API per application (i.e., per

API token, a unique identifier). Hernandez-Saurez et al. instead opted to use a web

scraper with the Twitter search function and the returned HTML content for each

query. In doing so, they were able to retrieve more tweets in less time, surpassing

the performance of Twitter’s own API. They also built a web service to act as a GUI

for their scraping solution. Similarly, Instagram’s API allows user profile content

retrieval but has restrictions on its use. Himawan et al. proposed a web scraping

solution that can bypass the API [29]. They include a media crawler to collect the

data, storage of scraped data in a NoSQL database, and a Flask application acting as

the interface between users and the underlying service. Overall, web scraping bridges

the gap between functional (and comprehensive) APIs and manual data collection

and is vital to the Rail Planner’s functionality.

22

Chapter 4

Software Specification and Design

In this chapter, the application’s software design specifications are covered, which

guided its development. Section 4.1 details the requirements imposed on the system.

Functional requirements, describing application functionality, and non-functional re-

quirements, covering system design constraints, are both here. Use cases are shown

and discussed in Section 4.2. Next, the application architecture is discussed in detail

in Section 4.3. A high-level overview of the application is provided alongside its be-

havior behind the scenes (UI design is discussed in Chapter 5). Finally, technologies

used by the application are briefly documented in Section 4.4.

4.1 Requirements

The Rail Planner had numerous initial requirements which were at the core of its

planned functionality. In the first subsection, functional requirements are discussed,

which detail key features of the application. Some were critical (level 1 requirements)

to the prototype while others were “nice to haves” (level 2 and 3 requirements) and may

not have been fully implemented in the final version. In the second subsection, non-

functional requirements are reviewed, which are not user-facing functionalities but

rather system-level requirements when considering its design. Some requirements were

gathered based on the responses in an informal survey early in the application research

and development, posted to the Reddit subreddits r/Amtrak (Amtrak enthusiasts,

riders, and general discussion) and r/SampleSize (users can post their own surveys

23

with the intended demographic and others will fill them out). The questions are listed

in Table 4.1.

Table 4.1: Survey Questions, March 2022
Number Question
Q1 What are your thoughts on Amtrak train travel?
Q2 Have you purchased train tickets through Amtrak’s website in the

past?
Q3 How often do you travel by Amtrak train?
Q4 What would the majority of those train trips be classified as?
Q5 Are you aware of Amtrak’s “Rail Pass” and what it is used for?
Q6 Have you ever purchased and used a Rail Pass?
Q7 If you answered YES, how did you plan/formulate your trip

itinerary?
Q8 When planning a multi-segment/city Amtrak trip, how do you de-

termine where to go?
Q9 When taking a multi-segment/city Amtrak trip, what is your final

destination?
Q10 Were an application available to plan a multi-segment/city Amtrak

trip, would you use it to assist in some or all of your planning?
Q11 What kind of features would you look for in an application that

would assist in planning a multi-segment/city Amtrak trip?
Q12 What are your thoughts on train trip planning?
Q13 When selecting a station for the origin/destination, what would you

expect this feature to do and/or look like?
Q14 When viewing a list of resulting trains from an in-app search, what

would you expect this feature to do and/or look like?
Q15 When viewing a list of saved segments (selected from earlier

searches), what functionality would you expect from this feature?
Some potential features were discussed.

Q16 Now that you know some of the included features in this applica-
tion, are there any that should be thought about or approached
differently?

Q17 Now that you are more familiar with the application, are there any
other features you would want to see? Are there any you wouldn’t?

Q18 How do you normally access the internet and/or complete everyday
technological tasks?

Q19 What is your preferred web browser?

24

4.1.1 Functional Requirements

Functional requirements are a list of features and functions implemented in the pro-

totype. Level 1 requirements are fully implemented and function as expected and are

considered the core functions of the application. In the context of the Rail Planner,

its core requirements relate to accomplishing the goal of creating an itinerary. Level

2 requirements are often extra features that are not essential to accomplishing the

goal but provide quality-of-life improvements or additional amenities for the user.

And, whereas level 1 and 2 requirements are fully or mostly implemented, Level 3

requirements are either partially implemented and may be non-functional or could be

classified as future work, discussed in Chapter 8.

Level 1 Requirements

There are 13 level 1 requirements which describe essential application features, listed

in Table 4.2. The first and second requirements detail the station selection feature,

where users can choose their origin and destination locations from dropdown menus.

Search functionality is included in each dropdown, meaning users can type some let-

ters and press the Tab or Enter key to view all entries containing the entered string. A

“Swap” button allows users to easily interchange the origin and destination selections

if they needed to include a round-trip segment or change the most recent destina-

tion to the new origin. The third and fourth requirements relate to the departure

date selection. Users can click the “Select Departure Date” button or the label of

the currently selected date to spawn a calendar area, which allows for a new date

selection. Clicking either “open” button or a new date on the calendar will close the

popup. Alternatively, users can use the plus and minus buttons to increment the

current date by one day to save the time of opening a calendar when only minor

date changes are necessary. The fifth, sixth, and seventh requirements establish how

train searches work. Clicking the “Find Trains” button launches the background web

search, updates the search header (from “here” to “there” on some date), creates a

progress bar, and the status bar reflects the current search actions to indicate the

25

Table 4.2: Level 1 Functional Requirements

Number Priority Description
FR01 1 The user will be able to select the origin and destination

from respective lists of stations, with the ability to search
in the list if necessary.

FR02 1 A Swap button will, when clicked, swap the origin and des-
tination selections.

FR03 1 Clicking the “Select Departure Date” button or the current
date label will display a calendar selection popup. If the
popup is already visible, clicking either will close the popup.

FR04 1 Clicking the increment (+/-) buttons should increment the
current date up or down by one day, respectively.

FR05 1 A “Find Trains” button, when clicked, will begin the (back-
ground) search for trains based on selected origin, destina-
tion, and departure date. It will also create a search progress
bar.

FR06 1 A heading area for the current search results, with “<Ori-
gin>to <Destination>” and the date, will appear when a
search is initiated. If already present, it will update with
new information, if any.

FR07 1 A status bar will be present at the bottom of the appli-
cation, which normally displays “Ready.” During a search,
details of what is occurring will display to signify something
is happening.

FR08 1 An area for the train search results table will be visible, and,
when a search is completed successfully, will populate with
results and a scrollbar, if necessary.

FR09 1 Clicking a train in the results area will reveal an option to
“Save Segment” so it can be recorded to the itinerary.

FR10 1 The user will be able to export the itinerary (of some n
saved segments) to a spreadsheet.

FR11 1 If the Amtrak search returns an error (no service between
stations, no trains on this day, etc), the user should be noti-
fied with an error popup box containing the contents of this
message.

FR12 1 Search validation should be performed in regards to station
selection and departure date.

26

program is functioning properly. As trains are found, the “number of trains” label

will update accordingly. The eighth and ninth requirements designate functionality

for the results list, which populates with all the trains found in the search. Clicking

a train allows the user to save the segment to their itinerary, which ties to the tenth

requirement: users can export their itinerary as a spreadsheet. While the applica-

tion does not allow the user to book tickets directly, nor is it the intention to do so,

the saved itinerary provides groundwork for later booking. Requirements 11 and 12

involve search handling. Searches must be validated before starting any web search.

For example, the origin and destination cannot be the same, or the departure date

should be greater than or equal to the most recent segment’s arrival date. Secondly,

once a web search is started, if an error related to the search is returned, the user

should be notified as to what went wrong and how it could be resolved.

Level 2 Requirements

The eight level 2 requirements were all implemented but do not drastically change

the core features of the application, and these are displayed in Table 4.3. The 13th

and 14th requirements note how photos of the selected stations’ cities appear and

their functionality. As users change their origin or destination cities, the associated

photos are found online and displayed. Alongside the updated photos is the ability

to click on either one to bring up that city’s tourism page, or the application’s best

guess as to what it is, as not every city has an official page. The 15th requirement

describes navigation through past searches with left and right arrows above the results

list. Requirement 16 relates to the results list in that the user can choose which

columns (name, arrival date, price, etc) are displayed. The itinerary window and its

functionality is described in requirements 17 and 18. The “View Itinerary” button

will, unsurprisingly, open the itinerary window where users can view their saved train

segments. In this window, they can delete or move segments up/down in the list.

Clicking a specific segment allows the user to recall that segment’s search results in

case they wanted to select another travel option from that search. The 19th and

27

20th requirements designate how the map window works. When selecting origin and

destination stations, the map will put markers down for each and draw a line between

the two. However, when a search is performed, right-clicking a train and selecting

the Route Map will redraw the map with the train’s route and intermediate stops,

with emphasis placed on the origin and destination. The last level 2 requirement

notes that users can save their progress in the application and load it later, instead

of starting from scratch. This saves their past search results and itinerary.

Table 4.3: Level 2 Functional Requirements

Number Priority Description
FR13 2 City photos will update themselves to a different location

based on any new user station selections associated with the
respective image.

FR14 2 Clicking on a photo of a city should bring up information
about the city, such as its tourism page.

FR15 2 Left/right arrows in the heading area will allow the user to
move between all searches performed while the application
is open, in case they need to check previous results.

FR16 2 The user should be able to select which train attributes
(columns such as departure time, price, travel time) are dis-
played in the search results table.

FR17 2 A popup window to list selected segments should open after
clicking a “View Itinerary” button.

FR18 2 The itinerary window should allow the user to reorder and
delete segments, as well as view their search results.

FR19 2 Clicking on the name of a train from within the results table
should update a map window with the train’s route and
intermediate stops.

FR20 2 A map of the United States with pins/markers for the origin
and destination should be displayed and dynamically up-
dated as station selections change. A line should be drawn
between the two points.

FR21 2 The user should be able to save and re-open planner files
into the app for further modification.

28

Level 3 Requirements

There are few level 3 requirements, and almost all have not been implemented but

would be useful for future iterations, shown in Table 4.4. The most advanced require-

ment is enabling the application to determine travel dates for the user solely based

on a list of stops. This would likely require schedule data to link trains (routes) to

stations. Schedule data is a part of the second level 3 requirement (23rd requirement

overall). Amtrak provides public General Transit Feed Specification data which con-

tains routes, stops, and other pertinent train data. Parsing the data into a usable

form and incorporating a routing algorithm would eliminate the need for a web search

in most cases. If arrival times were ignored, only a list of stops would be necessary,

which would be easier to implement. Such algorithms could be adapted from related

work, such as TripBased [26] or RAPTOR [30], or using a heuristic search algorithm

like A-star [31] (adapted from Djikstra’s algorithm). This can be considered the most

useful level 3 requirement. Third, and finally, displaying station information such as

distance to the city center or public transit options (partially implemented) is another

requirement. Future level 3 requirements, not listed, will be explored in Chapter 7.

Table 4.4: Level 3 Functional Requirements

Number Priority Description
FR22 3 Allow the user to input each stop on their journey, and let

the program figure out the travel dates.
FR23 3 Use GTFS and schedule data to perform searches instead of

the online website.
FR24 3 Display information related to each station, such as distance

to the city center, availability of parking, or other transit
connections.

4.1.2 Non-Functional Requirements

The non-functional requirements define a set of system operations and constraints.

As opposed to functional requirements defining application features, non-functional

29

requirements describe those that impact the system design. All requirements are

listed in Table 4.5 and are discussed in the following text.

Table 4.5: Non-Functional Requirements
Number Description
NFR01 The application will use the Python programming language.
NFR02 The application will use a Chrome webdriver controlled by Selenium.
NFR03 The application will run on Windows and MacOS.
NFR04 The application will be packaged as a standalone executable for Win-

dows.
NFR05 The application will require internet connectivity to perform searches.

The first non-functional requirement stipulates that the application is built in the

Python programming language. While this is not a requirement for an application of

this type, it is due to the ease of use of the Tkinter GUI library to create the interface,

as well as the web driver integration via the Selenium library. In fact, Selenium

and a Chrome web driver is requirement two. A Chrome installation is required to

run the application, and without one, no searches can be performed. Requirements

three and four detail the target operating systems for the application, Windows and

MacOS. However, a standalone version, created as a “click-once” executable with

the appropriate Python binaries and libraries packaged within, will only be created

for Windows. Finally, requirement five stipulates that the application requires an

internet connection to work, as this is necessary to perform searches, load images,

and populate some station data on the map. It is possible to load a saved planner

file and manipulate itinerary data, but any new searches cannot be performed.

4.2 Use Case Modeling

In this section, a use case model is showcased for the application and each use case is

described from Figure 4.1. Item colors correspond to their associated functionalities.

While there are certainly more use cases available, the essential features of the ap-

plication are included. As the Rail Planner is a single-user application, there is only

30

Figure 4.1: Use Case Diagram

one actor: the traveler (user).

As the traveler begins their planning, they can choose their origin and destination

stations to be used as search parameters. The second use case lets them select the

departure date to complete all the required search parameters. The third use case

is available based on the origin or destination station selections, as clicking the asso-

31

ciated photo opens the tourism site for that location. Fourth, users can find trains

(perform a search). Only after this is done does the application allow the user access

to the fourth, fifth, and sixth use cases. They can save a segment to their itinerary,

export the search results to a spreadsheet, and view additional details about each

result in the detail window. The sixth use case is viewing the route map, which could

be the origin and destination, the route of a selected train, or their complete journey

map. The seventh use case is opening the menu, which enables the user to save (or

load) their progress (8) and view timetables for specific trains (9). The last two use

cases are within the itinerary window, one that lets them view their itinerary (and

potentially make changes to it) or export it to a file. As mentioned, the route map

window can display a journey map when called from the itinerary window.

4.3 Architecture

In this section, a closer look at the application’s design is presented. A high-level

overview of the structure of the application is discussed. Information on classes and

their objects and methods are covered. Then, the application behavior is examined

in detail, from initialization on startup to the many features included in its main

areas. Information about the backend methods of specific functionalities is described.

Finally, the searching process is touched on, including its transition from a naïve

approach to a more resilient searching platform.

4.3.1 High-Level Overview

The Rail Planner has five GUI windows available to the user, notated by circles, which

interface with a host of helper classes in the application, shown as rectangles, and are

all seen interacting in the system-level structural diagram presented in Figure 4.2.

GUI windows are circles, while class objects are rectangles. The Main Window holds

most interactable elements, and, as the “parent” window, can control its children top

level windows.

Application startup primarily waits for the initialization of the Image Searcher

32

Figure 4.2: System-Level Structural Diagram

and Stations classes, as their startup blocks the application until they finish. The

Image Searcher is responsible for retrieving station (city) images for the Main Window

using a web driver from the Driver. Stations, similarly, retrieves all Amtrak stations

and provides numerous helper functions to provide various parts of the station data,

such as a “friendly” display string, its code, connecting trains, or city and state.

The Amtrak Searcher creates a thread at startup, after the blocking functions,

so it can initialize in the background when the Main Window is opened. Its function

is simply to perform a search and provide the train information found, if any. Those

33

results are transformed into Train objects and are available to retrieve data from later

on, which is especially useful when it comes time to export the itinerary. Train objects

provide data to the search results table in the Main Window, the per-train information

in the Detail Window (alongside Stations with its information), and results from each

search are saved to the Rail Pass object. By using the Train object across multiple

facets of the application, handling train data becomes much simpler with one object

type, and thus the concern becomes how to store the objects.

The Rail Pass class is the primary data storage means for the application. The

user’s itinerary and all search results are saved in this class. While it may have

made more sense to use a “proper” database structure, it was implemented for the

initial prototype creation and worked, and thus was kept as-is in favor of introducing

other application features. The benefit of this consolidation into one class is the ease

in saving and loading user progress (.RailPlan files) as the class is simply pickled

and un-pickled, respectively, using Python’s built-in pickle module. These RailPlan

files are lightweight, generally increasing in size at roughly 11 kilobytes per search

performed, depending on how many results are found. The Rail Pass also handles

file exports, such as the user itinerary or search results. The User Selections class,

originally meant to be what the Rail Pass is, holds the Rail Pass and user “preferences”

such as station selections, departure date, and display columns for the results table

and Itinerary.

The remaining elements are top level GUI windows. Column Settings is a simple

popup that asks the user which columns they would like displayed in the results table

and itinerary, such as departure date or coach class price. This interacts with the

User Selections class and update any visible tables. The Itinerary holds the user’s

saved trip segments and can modify their order or delete them, affecting the Rail Pass.

Critically, this window also has the export functionality required to save the user’s

itinerary to a spreadsheet file. Finally, the Map window displays a map of either the

selected stations, a specific train’s route, or the entire journey (via the Itinerary).

It interacts with the Route and/or Route Collection classes to glean required data

34

(path coordinates and stops) to display a train’s route and can also retrieve station

addresses from the Amtrak website, which are converted to coordinates.

4.3.2 Application Behavior

In Figure 4.3, a behavioral diagram is shown with the most important behaviors of the

Rail Planner. Smaller features, such as some individual menu options, were excluded.

Arrows with a solid line are blocking functions, while those with dashed lines are

non-blocking functions. A legend in the bottom-right describes the color scheme by

application elements.

Figure 4.3: System-Level Behavioral Diagram

Initialization

The user will launch the application which begins the startup processes. Since web

drivers are used in the application, the user must have an up-to-date Google Chrome

35

browser installed on their system. The application will download the appropriate web

drivers if they are not present, but they will be for the latest Chrome version. Any

errors with this process are displayed to the user, but the application will quit if it

faces web driver issues. An image web driver is created, which finds the origin and

destination images to be displayed in the main window. Google Images is used for

obtaining these photos. The web driver will query the site with the city and state,

find the first returned image, and attempt to convert it from base 64 or find the

full-resolution version. The image is turned into a Tkinter PhotoImage object the

application UI (Tkinter) can display and is cropped to a reasonable size. Amtrak

station data is then retrieved from Wikipedia [32], in an effort to be up-to-date

and not rely on a static list of stations. While new or decommissioned stations are

not necessarily a common occurrence in the Amtrak network, long-term use was the

goal for the application, which means providing users an accurate station list. For

example, Amtrak plans to restore train service along the Gulf Coast, which was

previously suspended due to Hurricane Katrina [33]. Stations formerly served, such

as Pensacola, Florida, are not in the “Active” train station table on Wikipedia but

would be moved from the “Suspended” table as appropriate, whereas a list included

with the application could not react to this change as easily. Alternatively, station

data could be retrieved from the browser’s session storage when visiting the Amtrak

website (stationsData_stations), but the breadth of Information available from

the Wikipedia list, as well as its discrimination between train-served stations and

thruway motorcoach stations, meant Wikipedia was the preferred method. Next, the

map window is created, which, at this point, will have a line drawn between two

markers on the map: the origin and destination stations. After the map window is

created, the main Rail Planner window is shown, and the application is ready for

use. Simultaneously, a thread is created to spawn another web driver, this time for

the Amtrak searching functionality. Using this web driver after it navigates to the

Amtrak website, a list of trains can be extracted from session storage (traincodes)

and parsed for unique values. Then, with those trains, URLs are created that can

36

be launched in the user’s web browser to find timetables. Since Amtrak no longer

provides PDF timetables for their routes as of June 2018, the application relies on

DuckDuckGo’s “Ducky” search (automatically redirecting to the first result) and a

specific search term: “<Train Name> train timetable schedule Amtrak filetype:pdf”.

In testing, a reasonably high success rate was observed with DuckDuckGo usually

finding the correct schedule. With URLs created, train names are added to a new

Timetable menu and are available for the user.

Main Window

With the main Rail Planner window now present, the user can begin their trip plan-

ning work. There are a multitude of functions available to the user, but they will

be presented in an order similar to how the user would interact with the system.

While progress can be loaded from (or saved to) an existing .RailPlan file, it can be

assumed the user will not have any saved work on their first use of the application.

When changes are made in the application, an asterisk (*) will appear in the title bar

of the main window to denote unsaved work. Exiting the application with unsaved

work will prompt the user to save their changes, discard them, or cancel the exit

operation.

Selecting origin and destination stations will likely be the first thing the user will

do. As a new station is picked, the application will ask the Image Searcher to find a

photo of the new station’s city for display, and the appropriate image is updated. Ad-

ditionally, the map will use the new station’s code to find the address from Amtrak’s

site, which is converted to coordinates and used to update the appropriate marker.

Source code for retrieving Amtrak coordinates is available in Appendix A. Finally,

the path between the station markers is redrawn and the map view is recentered on

the two points. The user will then choose a departure date, either by using the plus

and minus (increment by day) buttons, or the calendar “dropdown” feature. They

cannot choose a date earlier than the current day. Now, with the origin and destina-

tion stations selected and the departure date chosen, the user can start their search.

37

Specifics of how searches work are discussed in Section 4.3.3.

With the search results table now populated, the user has multiple options avail-

able to them. Left-clicking any train result allows them to save a segment to their

itinerary. However, by right-clicking an entry, the user can select multiple options

relating to that specific train. They may want to view its timetable or view Amtrak’s

official page relating to that train (this URL uses a standard format and can be gen-

erated easily: www.amtrak.com/<the-train-name>-train). They might view the

train’s route map, which clears the map window of any existing markers or paths,

then uses included GeoJSON data from Transitland [34] to draw a true route: one

that follows the train tracks, and not just a straight line between two points. The

user may also be interested in details about the train or its destination, in which a

separate Detail Window can be launched. Both Detail Windows (station or train)

can have their information exported as HTML, JSON, or text files. After the user has

performed multiple searches, they can review earlier results without needing to find

them again, saving a significant amount of time. This can be done with the “<Previ-

ous Search” and “Next Search>” buttons, which navigate the searches in chronological

order. Previous searches are also included in saved .RailPlan files.

Itinerary

The most important part of the user’s trip planning experience is the Itinerary, which

can be opened from the Main Window. There are a variety of functions available in

this window, but the most important is the export feature, which allows the user to

save their trip itinerary to a spreadsheet file, which signifies the user’s goal (endpoint)

in the diagram and application use. They can also modify segments by reordering or

deleting them. The right-click context menu from the main window is also available in

this Itinerary window, so users can view additional train information about their saved

segments or return to their search results. Finally, they can view their entire journey

in the map window, which adds sequential numbering to the displayed stations.

38

4.3.3 Searching for Trains

When the user initiates a search, multiple preparatory tasks are done before the

searching begins. This starts with data validation for the user’s departure date and

station selections. There is only one failure state for data validation, otherwise the

user is instead asked if they want to continue if any errors arise. For example, they

may be starting a search with the same stations or departure date selections as they

had with a previous segment, thus prompting for confirmation of their search. The

only condition that would prohibit a search is if the origin and destination stations

are the same. If the search is to continue, the Amtrak Searcher is provided pertinent

search data, such as stations and date, as well as the UI elements to control: the

progress bar and “number of trains” label. With all pre-search tasks complete, the

application will then start a thread for the search.

Algorithm 4.1 Searching and Parsing Method
Initialization
Load Amtrak search page
Input origin station
Input destination station
Input departure date
Click search button
Search handling
if search results found then

if scraping method in use then ▷ By default, False
Check every page
Gather page results data

else
Find session storage data
Parse train results
if parsing fails then

Use scraping method
end if

end if
return search data

else
return error message

end if

39

A high-level overview of the search algorithm is shown in Algorithm 4.1. A sam-

ple of the AmtrakSearcher class source code relating to searches is in Appendix B.

Any residual data from previous searches are cleared from the class and the web driver

loads the Amtrak search page (https://www.amtrak.com/tickets/departure.html)

and scrolls to the top if it is not already loaded. However, if the previous search re-

turned any errors, the page will be reloaded regardless. The “New Search” button is

clicked, and the web driver waits for the form elements to appear, then fills in the

origin station code, departure station code, and the departure date. Uppercase sta-

tion codes were used as they will autofill after sending a Tab key, and the search will

not be allowed to start unless the stations are “properly” inputted (meaning Amtrak

recognizes them as a station, not just inputted text). Finally, the web driver waits

until the “Find Trains” button is enabled and clicks it, thus starting the search on

Amtrak’s website. Errors may occur for any given search, such as no trains running

on a given day or a lack of service between two stations. Were this to occur, the

application will capture the error message and present it to the user as a warning,

and they will need to restart their search after adjusting their selections. However, if

no errors are returned, then the application will assume that trains have been found,

and it will begin to parse results.

Listing 4.1: Locating an element by XPath with Selenium
x = driver.find_element(by=By.XPATH, value="//button\
[@aria-label=’FIND␣TRAINS’␣and␣@aria-disabled=’false’]")

The original method for parsing results was tedious to implement and prone to

failure if Amtrak changed their website implementation or layout. This is due to its

heavy reliance on XPath, a syntax for defining parts of an XML document (in this

application, the web page), for element location. In combination with Selenium, it

can be used to find one or many elements that match a given XPath or search string.

Such an example is Listing 4.1, where the driver is finding an button by XPath that is

labeled “Find Trains” and is not disabled. For the first iteration of the search parsing,

each required element in the search had to have its corresponding XPath manually

40

located and added to the searching logic. A multitude of try-except blocks were

present to handle any number of errors that could be encountering when scraping for

data in this manner. Often, the data would be in a “human friendly” form but would

require additional processing and cleanup when loaded into the application. This

also required logic for a variety of formats the data could appear in while searching.

It was incorrectly assumed the elements (and their XPaths) on the page would not

change. However, as application testing continued, the names of a significant number

of elements changed, and each problem element needed to be re-checked and added

back to the search logic. The primary issue with the web scraping method was its

speed, often consuming almost five seconds to scrape information per page of results.

During the time of web crawling and XPath search implementation, an experi-

mental approach was underway, focused on obtaining search data while reducing or

eliminating the use of a web driver. Determining the endpoint to which Amtrak form

data was submitted was the first approach. This was done by analyzing network

traffic at both the browser level and interface (Wireshark) level. However, due to

the data encryption and obfuscation, this method was deemed unfeasible. Another

method involved finding request headers for a search and attempting to modify and

resubmit them, but the aforementioned challenges were also present with the headers.

The final approach was examining browser session storage before and after searches,

and this was where progress was made. After a search is completed, Amtrak stores a

dictionary in the storage (searchresults) containing information about the results.

Since the application is parsing a dictionary object (with its associated built-in meth-

ods), results are obtained in a fraction of a second once the session storage data is

retrieved. In fact, the dictionary provides a wealth of information compared to web

scraping with Selenium and enabled the addition of the Detail Window. Data could

now be extracted at a per-segment level as opposed to viewing each result holistically.

Where the web scraper would report a multi-segment result as “Multiple Trains” or

“Mixed Service”, the new method could examine each segment and find information

such as remaining seats, individual departure/arrival times, and on-board amenities,

41

with the last item being a highly requested feature during initial requirements gath-

ering. The “Train JSON” method of gathering data is the application’s preference,

however, as seen in Algorithm 4.1, it will fail over to the old web scraping method if

parsing encounters an issue.

As the searches are conducted, the status bar at the bottom of the main window

will update with what the application is currently doing, such as “Searching – entering

travel dates” and will either revert to “Ready” when the search is complete or “Error”

if something went wrong. Such examples of errors include failure at any point in the

searching process, such as web driver failures or search problems (no trains between

these two stations, no service on this date). Additionally, the progress bar that

appears during searches will also update corresponding to search progress. If the

search is successful, results are examined to ensure none of the trips are sold out. If

they are, they are excluded from the returned entries. Finally, all data is sent to the

results table while also being saved in the RailPass class.

4.4 Technologies

The Rail Planner, at its core, is a user interface heavy application, with a large part

of the background tasks consisting of data gathering and manipulation and does not

necessarily call for any specific language. However, the incorporation of web scraping,

as well as familiarity and experience with the technologies implemented, prompted

for their use in this application. However, an application such as the Rail Planner

would not necessarily need to be made using these exact technologies, only ones that

support the same functionality and UI design capabilities.

4.4.1 Python Programming Language

Python [35] is an interpreted language, so it does not necessarily enjoy the speed bene-

fits of a compiled language, but its extensive community support and custom modules

make it useful for this application. Additionally, it is a cross-platform solution, and

only required minor adjustments in code for application compatibility. Modules such

42

as PyInstaller allow a programmer to create packaged executables that can be run

on a client machine that might not even have Python libraries installed, as it includes

them in the executable. The entirety of the application’s codebase was written in

Python. While not deserving of their own subsection, some useful built-in modules

were json, for parsing scraped data, and threading, to create threads for background

tasks to keep the user interface responsive during intensive workloads.

4.4.2 Tkinter

While technically tkinter [36] is a built-in Python module, it requires its own section

due to its breadth, both as a module and for its use in the application. It provides

an interface for the Tcl/Tk GUI toolkit, which allows Python to work with operating

system facilities for user interfaces, such as Cocoa on MacOS. The application uses

Tkinter for all user interface elements. To incorporate a more modern look in the

application, widgets from the ttk (themed Tkinter) submodule were used, shown

in Figure 4.4. Some additional modules besides what was built-in to Tkinter were

necessary to get the required functionality. TkCalendar [37] was used for the date

selection area in the main window. It provides an accurate calendar widget for the

user to select a departure date, with some styling options to make it look how the

programmer wants. pillow was also used to add support for displaying image files

from the web in the application.

4.4.3 Rail Map View

Another Tkinter subsidiary is the TkinterMapView module [38], which is a “tile based

interactive map renderer widget” for Python. It uses OpenStreetMap as its default tile

server, and provides a selection of functions for drawing markers, paths, and shapes

on the map based on given coordinates. However, the default styling of the map

(notably: marker positioning and style) was not consistent with the Rail Planner’s

design and ideal look. For this reason, stylistic changes were made and included

with the application as railmapview, but functionally the module is identical. The

43

Figure 4.4: Tkinter GUI Window with Tk and Ttk Widgets.

application utilizes this module to create markers for station stops and draw route

paths.

4.4.4 Selenium

Selenium automates (controls) web browsers and provides libraries for five program-

ming languages, such as C, Java, and Python [39]. There are a range of tools available

within Selenium, but the Webdriver API is what is primarily used in the Rail Plan-

ner. Both the Image Searcher and Amtrak Searcher require Selenium to control the

web drivers for their respective functions. Were it not for this library, the applica-

tion could not emulate user interaction with the Amtrak website, and therefore could

not find any search results. The Webdriver API only provides methods to control a

web driver so the correct web driver must be obtained externally. To promote the

ease-of-use of the application, the webdriver_manager module is included, which au-

tomatically downloads and runs the correct version of the Chrome browser web driver

without any interaction from the user [40]. Without this module, end-users would be

44

required to download the correct Chromedriver (which changes with each new version

of the Chrome browser) and add it to their system PATH environment variable so the

application could find and use it. Additionally, a specific version of the Chromedriver

is used for the Amtrak Searcher, which tries to circumvent web scraping protections

on websites. The undetected_chromedriver [41] module is used for this purpose.

4.4.5 Beautiful Soup

The last important technology utilized is the bs4 module which has BeautifulSoup,

and this package can be used to parse HTML pages [42]. This has some useful web

scraping implications, as using this module is much quicker and less resource intensive

than a Selenium and web driver configuration. However, as it only receives HTML, it

cannot handle Javascript elements (critical for the Amtrak Searcher). The application

uses Beautiful Soup to scrape station information, both from Wikipedia and Amtrak.

45

Chapter 5

Prototype in Action

In this chapter, an in-depth look at the Rail Planner interface is contained. In Section

5.1, the application is broken down window-by-window and its design elements are

discussed. Multiple snapshots of the interface are provided. Then, two user interac-

tion scenarios are presented in Section 5.2. These detail what a typical user might

look for and do in the application. Finally, application limitations are discussed in

Section 5.3, which are known problems with the application that may or may not be

resolvable.

5.1 Interface Design

The Rail Planner is comprised of a main window and some subsidiary windows that

each provide a unique type of information. The Main Window is where the user will

spend most of their time, as it contains the tools to start searches and view results.

The Itinerary window is the second-most important, containing all saved segments,

and thus comprising a trip plan – the user’s goal. Third, the Map window serves as a

useful visualization for selected trains and/or stations, and information on its design

is discussed. Finally, some additional elements, not necessarily substantial enough for

their own subsection, are covered.

46

Figure 5.1: Main Rail Planner Window on Startup

47

5.1.1 Main Window

Upon first launching the application, the user is presented with the Main Window

(henceforth MW) and can begin their trip planning. This window is shown in Figure

5.1 as it would be at launch. Elements were placed in a specific manner from top to

bottom to guide users towards the search button: start with station selection, then

a departure date, and then they are ready to find trains. If no searches have been

performed, the search results header displays a message about how to start searching.

Stations

The station selection area provides two dropdown menus with the complete list of

Amtrak train stations, scraped from Wikipedia. This is displayed in Figure 5.2. They

are formatted as “Station name, State (Code)” to provide as much identifying infor-

mation as possible. As users change their selections, the images above the dropdown

menus change to reflect the station’s city and/or location. Simultaneously, the map

window will move the appropriate marker to the station’s position in the United

States. Clicking an image will load a tourism website for that location, such as a

tourism bureau (ex. VisitNewYork.com). The mouse pointer will also change to

reflect the image is a clickable element. However, users may want some logistical

information about the selected station. To view this, they can click the information

“i” icon adjacent to its associated station. This will spawn a pop-up Detail View win-

dow, shown in Figure 5.3. It has pertinent station information, such as its address,

Amtrak routes serving it, and local transit connections.

There are also features that make navigating station selection an easier process.

Users may want to move their destination station to the origin slot and select a new

destination, such as after saving a train segment. The swap button accomplishes this,

swapping both the listed station and the images, without the additional overhead from

re-searching for images. It is also apparent that the length of the dropdown menus

and the number of stations included can be overwhelming to peruse. For this reason,

an autocomplete feature was included to cut down on the amount of scrolling required

48

Figure 5.2: Stations List and Station List Search

for navigation. After typing in a keyword in the dropdown menu, the user can press

Tab or Enter to load all the matching results, shown in Figure 5.2.

Departure Date

The next step in trip planning is selecting a departure date. As the application is

meant for rail journeys, and not necessarily a round-trip between two points, a return

date area was not included. However, that could be easily included in a later revision.

Users have two options for modifying the date: choosing from a calendar, allowing

the most freedom, or incrementing the displayed departure date forward or backward

by one day. The first option is most useful when selecting a start date for the entire

journey, while the second is better for subsequent selections where the date difference

is not as drastic between searches. Users may click the “Select Departure Date” button

or the currently displayed date to open a calendar selection area, seen in Figure 5.4.

They can close this calendar by clicking the select button again or by choosing a new

departure day on the calendar. Incrementing the date is simply done by using the

plus and minus buttons to the right of the displayed date. One stipulation to the

date selection functionality is that users cannot select a date in the past.

49

Figure 5.3: Detail View for Washington Union Station, DC

Searching and Results

With the stations and departure date selected, users can begin their search. The

searching area contains a host of buttons and information for the user and could

be perceived as the most complex part of the application to use. Only two buttons

are initially enabled. The “Find Trains” button begins the background search, and

the user is presented with a progress bar. The “start a search” header is replaced

with the title of the current search, which includes the origin, destination, and date.

While seemingly redundant when juxtaposed with the station and date areas above

it, the true use of the header comes when the user performs more searches. Once

searching is complete, a label with the number of trains found is updated and the

search results table is populated with all results, pictured in Figure 5.5. Result “type”

is shown by an icon to the left of the entry, alongside its order in the table. Default

50

Figure 5.4: Calendar Popup in Date Selection Area

columns list the most important information, but the user can change the displayed

columns through a menu setting and include prices or station codes. Take note of

the departure and arrival times: trains arriving on the same day will not have a date

listed. For multi-day or overnight trips, more detail is included, like the weekday and

day of the month.

With results in the table, users now have more options available to them. They

can export the results, if so desired, and, after clicking on any table entry/row,

can then use the “Save Segment” button to record it into their itinerary. However,

more functionality is present from within the Train Menu, a right-click activated con-

text menu spawning from a selected result, seen to the left (results table) and right

(Itinerary) in Figure 5.6. They can view online information (official Amtrak page for

the train) or its timetable (from a “best guess” search for timetables). Both options

will launch the user’s web browser to display the data. Offline functionality is viewing

the train’s route map or more details, the latter of which will launch a Detail View

window, similar to that of a station. In the spawned pop-up, users will find informa-

tion about the trip as a whole, such as price or duration, displayed in 5.7. However,

it also breaks down the information to a per-segment level, including additional in-

formation like available seats, on-board amenities, and individual arrival/departure

times. This is especially useful for multi-segment trips which involve a connecting

51

Figure 5.5: Main Window with Search Results

52

train or bus, as users can determine the transfer time and modes of travel.

Figure 5.6: Train Right-click Context Menu for Results Table and Itinerary

As the user performs more searches and gradually grows their itinerary, they

may want to revisit a previous search. Perhaps a future connection can only be made

with an earlier train, so an earlier segment needs to be modified. With the “Previous

Search” and “Next Search” buttons in the search area, users can traverse their past

searches without the need to perform another one. This is a major advantage over

the Amtrak website and saves a considerable amount of time. The search number at

the top of the area reflects the search number, and the heading changes to the proper

stations and date. The respective buttons will become disabled when reaching either

endpoint: first search or most recent search.

5.1.2 Itinerary

The Itinerary is a valuable resource to the user as it contains all their saved segments

and the ability to export them, seen in Figure 5.8. The table listing the segments

is identical to the search results table except for an extra column at the beginning,

denoting what leg of the trip the entry represents. The departure/arrival columns

also include the full date and time as trains in the itinerary likely have different days

for their departures. Users still have the right-click context menu functionality for

any train in the itinerary. The most important feature in this window is the ability to

export the itinerary to a spreadsheet so it can be used to help book the trains later.

Users can also reorder or delete itinerary elements, where the former would be useful

53

Figure 5.7: Detail View for Acela #2152

if the trip was planned out of chronological order. Finally, users can select a saved

train and view the search results (from right-click menu) from where it was selected

in case they need to view alternate options for the same parameters (stations and

date).

5.1.3 Journey View (Map)

The map window is launched at application startup but can be closed or reopened

(by using any route map button/menu option). It has three modes of map display.

The first and primary mode is displayed during station selection, showcased in Figure

5.9. As the user changes their origin and destination choices, the map will redraw the

appropriate markers and the line between them. This map mode will take priority

over anything currently on the map, erasing it. Figure 5.10 displays the second mode,

54

Figure 5.8: Itinerary Window with Five Saved Results

which is associated with individual train trips. As users inspect search results or their

itinerary, they can right-click an entry to access the route map functionality. This

redraws the map with updated styling specific to the Rail Planner. Inclusion of

intermediate stops on the route was another highly requested feature, and a map is

a better option than a simple list. The third mode is similar to the second mode but

features all segments of the user’s itinerary and is entitled the Journey View, seen in

Figure 5.11. Routes are still displayed but intermediate stops are excluded as it would

make the map too cluttered. Additionally, all important stops are prefixed with a

number corresponding to the leg of the journey, so the users can follow their trip

on the map. Stations with multiple trips through them will have multiple numbers

prefixed, and stations acting as an origin and destination will have two numbers. For

all modes, clicking on emphasized stations (large font) will open the station’s Detail

View window. The map view, no matter the mode, provides a useful visualization for

every aspect of the user’s trip planning.

5.1.4 Additional Elements

There are some additional features that did not warrant their own section but still

provide value and enhance the user experience.

55

Figure 5.9: Map Window during Station Selection

Figure 5.10: Map Window with Single Train Route

56

Figure 5.11: Map Window with Journey (Itinerary) View

Detail View

The Detail View window, discussed earlier, provides additional information about a

station or train. Data already stored in the application is taken from its dictionary

object and displayed in a friendly form for easier reading. Keys are in bold, while

segment information has some additional styling to differentiate the section from the

main information. The user can also export the information into a .txt or .json

file, or a formatted HTML document, which is nearly identical to the Detail View.

Menu Options

At the top of the Main Window is a menu bar with five menus embedded. The

File Menu provides file manipulation functions (New, Open, Save) for the .RailPlan

files. The itinerary can also be exported from this menu. The Edit menu provides

one option: modifying the display columns for the results/itinerary tables. From this

popup menu, shown in Figure 5.12, users can choose which columns are shown. By

default, prices, origin, and destination columns are hidden. The View menu can open

57

the Itinerary and Map windows, if closed. It also provides links to the Amtrak system

map (all routes in the network) and on-time performance information via Amtrak or

the Bureau of Transportation Statistics. The Status menu provides links to train

statuses across the country. The Nationwide option loads an interactable map with

all trains currently in service and their details, while regional links load the respective

region. The Help menu has a link to the application’s GitHub page and the About

pop-up displays the current version of the Rail Planner.

Figure 5.12: Display Column Editor

5.2 Common Usage Scenarios

The Rail Planner is not a “generalist” application; its goal is to find trains and create

itineraries. As such, usage scenarios are not all that varied. However, its included

features allow for some variations on the planning process.

5.2.1 Cross-Country/Rail Pass Trips

For the average user, this is where their usage will be. Perhaps they purchased a

Rail Pass, which allows for ten travel segments, and they need to use them all. They

58

may have a start point and end point and everything in-between is undecided. The

Amtrak system map, accessible from the application, can provide them with ideas

of where to go. From there, they can begin searching for trains. They may inspect

results for certain trains and view their route maps, and perhaps a station along the

way piques their interest, and they change that segment to stop there instead. The

user may not want to ride any buses along the way, so they view the train details for

multi-segment results (trips with transfer(s)) to make sure each segment is a train

or check the icons next to table entries for the trip type. Similarly, they may look

for trains with WiFi on-board or with ADA accessible boarding, information which

is also provided in the train Detail View. Perhaps they want to check local transit

connections at the station (ex. SEPTA at Philadelphia’s 30th Street Station) so

they can get to a tourist attraction they found by checking the site linked from the

location’s picture. Finally, once their itinerary is complete, they want to see their

entire journey on a map and export their itinerary so they can book the tickets.

Perhaps that same exported itinerary is shared with family members or those they’re

meeting along the way, so they know which trains to watch or track. In this way,

the application demonstrates that it is more than an “Amtrak searcher” and provides

useful information to those who plan trips in detail and at their own pace.

5.2.2 Route Variations

Advanced travelers (or railfans) may have multiple train routes they want to ride

but have a short timeframe or a limited number of travel legs (Rail Pass). For this

reason, the ability to save and load progress is invaluable. Users could have two

or three potential sets of destinations to visit but must choose based on feasibility

given their limitations. Separate itineraries can be searched for and planned, all saved

in separate files for later use or comparison. Without this feature, all searches and

itineraries would be ethereal unless exported to an itinerary spreadsheet file. Previous

searches would need to be redone and the itinerary recreated. With a user’s preference

for specific routes in mind, the train detail view also becomes an important planning

59

tool. Multi-segment trips list which trains make up the journey, and their respective

departure/arrival times and origin and destination stations.

5.3 Limitations

While the application was designed to handle errors thoroughly and avoid interface

glitches, it is important to document limitations in its design so future work can avoid

these pitfalls. Problems primarily exist with the user interface and with searching the

Amtrak website.

5.3.1 User Interface

Tkinter widget managers (pack, place, grid) can sometimes take finesse when pro-

gramming to make elements appear correctly and behave properly during window

geometry changes. However, some widgets do cause issues when application win-

dows, or the elements themselves, are resized. One example is the “button area” in

the Detail View window, which is squished out of the window when the height is

decreased. Another case is the itinerary table when more columns are added. Instead

of changing column widths according to the window size, the length of the table in-

creases. A horizontal scrollbar is present, which mitigates the issue, but the vertical

scrollbar is pushed out of the window. With some experimentation, these issues could

be resolved, but they were a lower priority than new features in the application.

With high-DPI screens and a high scaling percentage, some portions of the appli-

cation may be cut off at the top or bottom of the screen. This is especially prevalent

on smaller screens (such as a 13” or 14” laptop screen). As the application has a

minimum defined size for all the elements to fit properly, this is a current limitation

for laptop users. Moving the results table/area to the side or a separate window is a

potential workaround.

60

5.3.2 Searching and Web Drivers

The automated search of Amtrak’s website is, by far, the weakest link in the appli-

cation. Aside from locating elements by XPath, and the issues that brings, Amtrak

is not privy to web scraping. In the past, the application was blocked from searching

using the web driver, and the Undetected Chromedriver [41] was used in place of a

regular web driver to mitigate this. However, it seems that the blocking was based on

IP address and browser type, as repeating the search from a different location (dif-

ferent IP) did work. As such, using a virtual private network (VPN) service with the

application prevents this browser block, and initial testing of this method supported

the theory.

It also seemed that using the browser in “headless” mode (no window is created)

increases the likelihood that it is flagged, something that is noted in the Undetected

Chromedriver documentation as well. To mitigate that, the browser was started as

a minimized window, but that produced mixed results. For example, sometimes the

page would not load properly or at all if the window was minimized. Generally, the

first search would be successful, but future searches would timeout, thus providing an

unpleasant user experience. Hiding the browser by placing the Chrome window on a

separate desktop (multiple desktops feature in Windows/MacOS) also provides mixed

results. At this time, leaving the browser window open and maximized is the safest

way to use the application. Finally, the data retrieved from Amtrak is expected to

follow a similar form so the application can parse the information it needs properly.

While it is not expected that Amtrak would change how search result data is stored

(such as key-value information/names), this too would break the application’s parsing

feature.

61

Chapter 6

Validation

In this chapter, the user study to evaluate the performance of the USA Rail Planner

is presented. In Section 6.1, details about the participants are discussed, such as

demographic information and train familiarity. The pre-study questionnaire is also

included. Section 6.2 describes the testing environment. Specifically, hardware and

software utilized and the physical setup of the study. Section 6.3 covers the ex-

perimental design and testing procedure. The study results are presented in Section

6.4 with significant conclusions. Finally, a general discussion of the study, with user

experiences and habits, is in Section 6.5.

6.1 Subjects

For the user study, 12 participants were recruited. Each of them were given a pre-

study questionnaire, listed in Table 6.1. Question 4 was a somewhat vague question,

as “train” can be interpreted in a variety of ways. One participant asked if a shuttle,

such as a tram inside an airport, would count as a train, to which they were informed

it did not. Specificity was originally included in the question, naming subway and

light rail, but there was a concern that participants would not know the “formal”

definition of light rail and would include or exclude previous train trips that were

outside the scope of the question. For question 6, any answers that mentioned a

travel-specific service, such as the Southwest Airlines website, were included in the

“Domain specific applications” response. Question 9 had pictures of the two methods,

62

which is shown in Figure 6.1. These pictures were only referred to as “Option A” and

“Option B” in the questionnaire, but USA Rail Planner’s map window is the left

picture, and Amtrak’s “Trip Details” dropdown for a train on the search page is on

the right.

Figure 6.1: Pre-Study Questionnaire Q9 Comparison Images

There were 9 males and 3 females with a mean age of 29.75 years and a median

age of 23 years. Two-thirds of them were between the ages of 18 and 24, however the

rest fell into the remaining age brackets, seen in Figure 6.2. Out of all participants,

eight had traveled by train in the United States in the past. All eight had done so for

personal or leisure travel purposes, but two of them also commuted by train. Of those

that had traveled by train, 75% reported that it was done rarely (1-3 times per year)

while the rest traveled often (1-4 times per month), shown in Figure 6.2. However,

despite the relatively large number of participants who had ridden a train, the mean

familiarity with Amtrak and its services was 3.667. Group chats (8) and domain-

specific websites (10) were the most preferred method to plan trips for participants.

Similarly, most determined where to go by having a few places in mind to visit

beforehand. When presented with the two station stop figures (Figure 6.1), the study

group was about neutral in their preference for one or the other. The Rail Planner’s

map etched out a slight lead over Amtrak’s trip details, with the mean ranking for

63

Table 6.1: Pre-Study Questionnaire

Question Response
1 What is your age? Number entry; decline
2 What is your gender? Male; Female; Other; Decline
3 How familiar are you with Am-

trak? Routes, where it travels,
commuter service, etc.

1-7 scale

4 Have you ridden a train (not sub-
way) in the United States in the
past?

Yes, personal; Yes, commuting; No

5 If you answered YES to question
4, how often do you travel by train
in a typical year?

Frequently (5+ times/month); Often
(1-4 times/month); Occasionally (4-6
times/year); Rarely (1-3 times/year)

6 Describe how you plan a trip (road
trip, ariplane travel, rail, etc).
What methods do you use to ac-
complish this? Mark all that ap-
ply.

Organizational websites (Notion, MS Plan-
ner, Evernote, etc); General purpose soft-
ware (Notepad/Notes, MS Excel, Google
Docs, etc); Group chats/messaging (iMes-
sage, WhatsApp, Snapchat, Facebook
Messenger, etc); Domain specific apps
(Kayak, Rome2Rio, Google Flights, Road-
trippers, etc); Other

7 How would you likely determine
where to go on multi-city trips?

I generally have a good idea of some desti-
nations I want to visit; I pick a route/high-
way or two and visit places along the way;
I only know where I’d start and end, the
rest is undecided

8 How confident are you that you
can plan a multi-city train trip?

1-7 scale

9 Please rate your preference for
these two methods to view a
train’s stops between its origin
and destination.

1-7 scale

64

the question being 3.833, an advantage of 0.167. This may indicate that users found

both types of information useful, such as how Amtrak’s details include station arrival

times and are in text form, but the map provides geospatial context.

Figure 6.2: Participant Demographic Information

6.2 Apparatus

Each participant received as nearly identical a testing environment as was possible.

The testing environment, shown in Figure 6.3, consisted of a few key items. A Mac-

book Pro laptop (13-inch Retina screen, Early 2015: Intel Core i5-5287U CPU, Intel

Iris Graphics 6100, 16 GB RAM) was used for all computer interaction. A Logitech

M705 wireless mouse was available for use, if the participant preferred a mouse over

65

a laptop trackpad. The laptop ran a Windows 10 21H2 virtual machine using Oracle

VirtualBox 6.1.38. For this virtual machine, 2 processors and 4 GB of memory were

allocated. Google Chrome browser and Microsoft Excel LTSC Professional Plus 2021

were used for the Amtrak + Excel task. Windscribe VPN [43] and Blackout [44] was

installed and in use for the USA Rail Planner task only. Mousotron [45] software was

used during each task to gather interaction metrics.

Figure 6.3: Testing Environment Setup

Studies were conducted in quiet, private spaces with ample desk space, such as

a university conference or study room. While it was not possible to use the same

room for each study, the rooms and layouts were similar enough to not introduce any

unnecessary bias to the study. For each task, participants were given two sheets of

paper. One had the steps to complete for the current task and the other was the

associated trivia questions to answer. A choice of two pens, one a traditional black

ballpoint pen and the other a blue gel pen, were provided to use.

66

6.3 Experimental Design and Procedure

A within-subjects design was chosen for this study to gather quantitative perfor-

mance information for two itinerary planning methods. Additionally, this also allows

for comparison questions in the post-study questionnaire for later analysis. This study

had one independent variable: itinerary planning method, which is either the USA

Rail Planner or the Amtrak website with an Excel spreadsheet for data recording

(Amtrak + Excel). Each participant had steps to complete for each method (task),

which required searching for trains and saving the trip data. The task would end if

they took longer than 100 minutes, however, no participants reached the time cap.

The study duration ranged from 80 to 120 minutes for most participants. Dependent

variables in the study were the time it took to complete the task (planning steps and

trivia questions) and accuracy, the latter being divided into task and trivia accuracy.

Counterbalancing was implemented in the study to reduce any learning effects. Par-

ticipants were assigned a group when they joined the study. The first group used

the Amtrak + Excel method first, then the USA Rail Planner. The second group

performed the inverse. No training or demos were given to the participants. The first

time they see the Rail Planner is when the task begins.

The experiment began with the participant being seated at the desk in front of

the testing laptop and the researcher on either side. A consent form was provided,

detailing the study goals and risks. After this form was signed, participants were given

the pre-study questionnaire to fill out. This questionnaire’s content is listed in Table

6.1. Then, a brief overview of the testing portion was conveyed to the participants.

They were informed that they would need to create an itinerary for an upcoming

hypothetical train trip. The trivia document was described, with particular emphasis

on the fact that it is meant to be completed simultaneously with the task and that it

would be a good idea to consult this document after completing each task step. They

were also told not to spend too much time on any one question and that they could

be skipped if they could not find the answer. Finally, the question policy was covered,

67

Table 6.2: User Study Task Steps

Step Action Task Rail Planner Amtrak/Excel
1 Save A trip from [A] to [B], departing

on April 7th, 2023. This trip must
be a direct journey (no transfers).

Charlotte, NC;
Raleigh, NC

Santa Barbara,
CA; Los Ange-
les, CA

2 Save A trip from [C] to [D] departing
on April 8th, 2023. [E]

Raleigh, NC;
Washington,
DC; This trip
must depart
Raleigh before
10:00 AM

Los Angeles,
CA; Fresno,
CA

3 Save A trip from [F] to [G] departing
on April [H], 2023. [I]

Washington,
DC; Chicago
Union, IL; 8th;
no conditions

Los Angeles,
CA; St. Louis,
MO; 9th;
arrive on a
Wednesday

4 Save A trip from [J] to [K] departing
on April [L], 2023. This trip must
depart [M] after [N].

Washington,
DC; New York,
NY; 14th;
Washington;
8:00 AM

St. Louis,
MO; Chicago,
IL; 12th; St.
Louis; 12:00
PM

5 Save A trip from [O] to [P] departing
on April 14th, 2023. This trip
must consist of [Q] segments and
have a total travel time of less
than [R] hours.

New York, NY;
Sacramento,
CA; 3; 88

Chicago, IL;
San Jose, CA;
4; 80

6 Remove The trip found in Step [S]. 3 2
7 Remove The trip found in Step 4.
7a Save Something came up in your travel

plans. The trip from Step 4 now
must arrive in [T] before [U]. Find
and save the appropriate trip from
those results.

New York;
10:00 AM

Chicago; 2:00
PM

8 Save A trip from [V] to [W] depart-
ing on April 18th, 2023. This trip
must utilize [X] as one of its seg-
ments.

Sacramento,
CA; Bakers-
field, CA;
Connecting
Bus 3712

San Jose, CA;
Los Angeles,
CA; Pacific
Surfliner 784

9 Finalize Ensure your itinerary is in chrono-
logical order. That is, all legs of
your trip should be arranged prop-
erly with respect to arrival and de-
parture dates/times. Then, [Y].

export your
itinerary to a
file, saved on
the Desktop.

save your
itinerary in
Excel with the
floppy disk
icon at the top
left.

68

Table 6.3: User Study Trivia Questions

Q Type Trivia Rail Planner Amtrak/Excel
T1 Yes/No Does the trip from Step [A] make

a stop in [B]?
2; Freder-
icksburg, VA
(FBC)

8; Goleta, CA
(GTA)

T2 Yes/No Does the trip from Step 5 make a
stop in [C]?

Fort Madison,
IA (FMD)

Ontario, CA
(ONA)

T3 Write-in Name the [D] train segments from
the Step 5 trip.

three four

T3a Write-in What date and time does the [E]
segment depart?

second third

T4 Write-in Indicate the train number for the
trip found in Step 4 or Step 7a.
Name the amenities that are on
board this train.

New York, NY;
Sacramento,
CA; 3; 88

Chicago, IL;
San Jose, CA;
4; 80

T5 Yes/No Does the [F] station have train
service from the "[G]" train?

New York, NY;
Downeaster

San Jose, CA;
California
Zephyr

T5a Write-in List the local transportation op-
tions from this station.

T6 Write-in What is the address of the [A] sta-
tion?

Sacramento,
CA

St. Louis, MO

which stated that questions could not be answered but to ask anyways so their thought

process could be determined. In some circumstances, questions were answered, such

as clarification about a task step or where to save the itinerary file. Additionally,

participants were informed that assistance would be provided if they were seen to

be struggling with a task step. While not explicitly told to the participants, eight

minutes would need to pass during a step before assistance would be provided. No

such assistance was available for struggles with trivia questions.

The task and trivia documents are then provided to the participant. These are

respectively shown in Table 6.2 and Table 6.3. As the tasks differed between methods

to prevent any prior information from being used in the second task, some key details

were changed. However, the stations and dates were chosen such that the quantity

69

of results and types of trains are similar between tasks. Bolded markers in the tables

are placeholders for substitutions from the respective columns for the methods. The

reasoning behind including the task and trivia simultaneously is that it was meant

to simulate a typical planning process. While the primary part of planning a rail

trip is searching for trains, secondary information is useful to have, and would likely

be researched during planning. Such examples of this include local transportation

options from a station or amenities on-board (like WiFi). In this way, a more holistic

approach to evaluating the applications, representative of real usage scenarios, is in

place. A brief description of the upcoming task is told to the participant, including

the applications they are allowed to use. During the tasks, a timer is running, and

the researcher took notes on user interaction methods and correctness of the itinerary

and trivia.

Figure 6.4: Amtrak + Excel Task Setup in VM

Group 1 participants started with the Amtrak + Excel method, shown in Figure

6.4. The Excel itinerary file is displayed, and a window preview of the Google Chrome

browser with the Amtrak website already loaded is seen in the taskbar. Excel is also

an allowed application. Note that the Excel spreadsheet has labeled columns with a

70

short example just beneath them, so participants knew what information to gather.

The columns are identical to what the Rail Planner would report in its exported

itinerary, save for an extra Rail Planner column which saves granular details for each

train in a result. In this way, the Amtrak + Excel method was at a slight advantage,

especially considering the breadth of information in the Rail Planner’s train Detail

View. For this task, participants can use the web browser with no restrictions, so

they are not limited to Amtrak’s website.

Figure 6.5: USA Rail Planner Task Setup in VM

Group 2 participants started with the USA Rail Planner method, shown in Figure

6.5. The USA Rail Planner main window and map are displayed, with the Blackout

cover behind them. This obscures the web driver running in the background that

searches the Amtrak website. A small sliver of the “Back” and “Continue” buttons

can be seen at the bottom of the figure. The Windscribe VPN is also running in

this task to prevent Amtrak from blocking the web driver usage. The Rail Planner

is the only allowed application in this task, however, participants were informed that

a web browser may open for some functions in the application (such as timetables

or tourism information), and that this is considered part of the application. They

71

were not allowed to interact with the web browser, the page was for viewing only. If

a searching error occurred due to some problem with the web driver and/or Amtrak

site, participants were told to try the search again. If that did not work, the researcher

cleared the web driver cache and reset the Blackout cover.

At the end of a task, participants were allowed an intermission to get a drink or

use the restroom. During that time, Mousotron metrics were recorded, and any open

files were saved for later review. The second task would then be prepared, and the

process would repeat. After both tasks were completed, a post-study questionnaire

was provided to the participant, and they were told it was meant to gauge the effec-

tiveness of the applications they encountered during the study. This questionnaire’s

content is listed in Table 6.4. Finally, after this was completed, participants were

dismissed from the study.

6.4 Study Results

To analyze the Time to Complete Itinerary and Trivia (TTC) and Trivia Accuracy, a

one-way ANOVA was used. The Shapiro-Wilk test was used to ensure the data was

normal. For all other analysis, as the data was determined to not follow a normal

distribution, both the Wilcoxon Signed-Rank test and Kruskal-Wallis test were used

to establish statistical significance. Post-hoc analysis to review the effectiveness of

counterbalancing was done with a paired two-tail t-test and the Kruskal-Wallis test

for normal and non-normal data, respectively. For all statistical measures, α = 0.05

was used.

Scoring for the task and trivia accuracy followed a set of rules that were applied

evenly across the participant results. For trivia, empty answers were a zero, wrong

answers were 0.25, partially correct answers or ones answered correctly but with the

wrong methodology received 0.5. One example of the latter is responding that a train

did or did not stop at a certain station, and they were correct, but did not verify the

information empirically like checking the route map or timetable. Correct answers

received one point. Task accuracy followed a similar system, but entire legs could

72

Table 6.4: Post-Study Questionnaire

Question Response
1a/1b How confident are you that you can plan a multi-city train

trip now after using USA Rail Planner/Amtrak website and
spreadsheet?

1-7 scale

2a/2b To what extend did you feel frustrated while using USA Rail
Planner/Amtrak website and spreadsheet?

1-7 scale

3a/3b How much effort did it take to plan an itinerary using USA
Rail Planner/Amtrak website and spreadsheet?

1-7 scale

4a/4b How easy was it to learn and use USA Rail Planner/Amtrak
website and spreadsheet?

1-7 scale

5a/5b How confident are you that the answered trivia questions
and your itineraries are correct for USA Rail Planner/Am-
trak website and spreadsheet?

1-7 scale

6 How effective was the route map in the USA Rail Planner
for visualizing a train route?

1-7 scale

7 How effective was the "Save Segment" button in indicating
that the highlighted result would be saved to your itinerary?

1-7 scale

7a Optional - Suggest an alternate name? Write-in
8 Using what application, in your view, took you less time to

complete the tasks assigned to you?
USA Rail Planner;
Amtrak website and
spreadsheet; About
the same

9 After using both methods of itinerary planning, what is your
preference?

USA Rail Planner;
Amtrak website and
spreadsheet; About
the same

10 What improvements or changes, if any, would you make to
the USA Rail Planner?

Write-in

11 Do you have any other comments or suggestions? Write-in

73

Table 6.5: User Study Hypotheses

Hypothesis
H1 The USA Rail Planner will help users create itineraries faster compared to

the Amtrak + Excel method.
H2a Users will more accurately create itineraries using the USA Rail Planner than

Amtrak + Excel. [Task]
H2b Users will more accurately gather information using the USA Rail Planner

than Amtrak + Excel. [Trivia]
H3 Users will view the USA Rail Planner as more difficult to use than the Amtrak

+ Excel method.
H4 Users will prefer the USA Rail Planner over the Amtrak + Excel method.

be marked as zero if the wrong result was found, such as incorrect station selections

or not following the listed stipulation for the task step. An additional point can be

awarded for itineraries if they were in chronological order. It should be noted that

task partial credit was only available for the Amtrak + Excel method, as this requires

manual entry, and several individual attributes could be right or wrong. Compare this

to the Rail Planner, where the application saves all information (and its attributes)

automatically, so the correctness is solely dependent on the user saving the correct

result.

There are four hypotheses for the study. These are listed in Table 6.5. The first

theorizes that users will create itineraries faster using the USA Rail Planner, and for

this, the time to complete the trivia and task combined was used as the metric. The

second hypothesis originally predicted that accuracy would be improved, but this has

been split into two, more granular hypotheses. Hypothesis 3, that the Rail Planner

would be more difficult to use, is based on the potential unfamiliarity with the Rail

Planner, and Hypothesis 4 states that users will still prefer it, despite the predicted

difficulties.

74

Table 6.6: Counterbalancing Effectiveness for Quantitative Results

Metric Test USA Rail Planner Amtrak + Excel
TTC t-Test (two-tail) p = 0.679 p = 0.339
Task
Accu-
racy

Kruskal-Wallis H = 0.026 < p = 3.841 H = 3.103 < p = 3.841

Trivia
Accu-
racy

t-Test (two-tail) p = 0.296 p = 0.348

Table 6.7: Quantitative Results Analysis

Metric Test Result
TTC ANOVA F = 46.402, p < 5e-6
Task Accuracy Kruskal-Wallis H = 3.853 > p = 3.841
Trivia Accuracy ANOVA F = 4.617, p < 0.05
Keystrokes Kruskal-Wallis H = 17.280 > p = 3.841
Mouse Interactions Kruskal-Wallis H = 14.301 > p = 3.841

6.4.1 Quantitative Results

A variety of compelling quantitative results were obtained from the user study. How-

ever, before discussing these, the validity of the data must first be examined. As

mentioned, the Shapiro-Wilk test was employed to determine if each metric’s data

followed a normal distribution, and only TTC and Trivia Accuracy fit this criterion.

However, the effect of counterbalancing needed to be consulted first. If the coun-

terbalancing did not work, and a learning effect was introduced, the validity of the

claims being made would be called into question. However, for the three quantitative

metrics that would be affected, counterbalancing was determined to be successful for

all of them, and the results of the tests are displayed in Table 6.6. That is, there was

no significant difference between the means of the two groups for each metric.

With the counterbalancing in place and the normality of the data determined,

appropriate analysis was conducted and revealed significant benefits of using the Rail

75

Planner. Table 6.7 shows the results for one-way ANOVA and Kruskal-Wallis tests

for each metric and application. TTC provides the clearest indication of statistical

significance. The Rail Planner took 47% less time to complete the itinerary and

trivia compared to the traditional method of using the Amtrak website with an Excel

spreadsheet, shown in Figure 6.6. Additionally, the Rail Planner TTC spread was

nearly half that of Amtrak + Excel as well. This may indicate that the Rail Planner

is easier to pick up and learn regardless of skill level, since the finish time fell within

less than 8 minutes on either side of the mean, compared to Amtrak + Excel’s over

13-minute spread. Similarly, task and trivia accuracy had statistical significance, if

only slightly, showcased on the left in Figure 6.7. Mean task accuracy for the Rail

Planner was nearly 7% higher than Amtrak + Excel, and trivia accuracy had an even

greater difference at just under 19% - a 32% increase.

Figure 6.6: Mean Time to Complete

Secondary analysis was performed for keyboard and mouse interaction, displayed

on the right in Figure 6.7. Both keyboard and mouse (left-click and right-click)

interactions while using the Rail Planner were significantly lower than the Amtrak +

Excel method, with keystrokes being reduced by 91%. One may conclude from this

that, in addition to the lower TTC, significantly less input is required from the user

to accomplish their goal of creating an itinerary.

76

Figure 6.7: Mean Task/Trivia Accuracy and Keyboard/Mouse Interactions

6.4.2 Qualitative Results

The pre- and post-study questionnaires provided valuable participant data, not only

for demographics, but also for application sentiments. Like the quantitative data,

user ratings were put through a Shapiro-Wilk test, and it was determined that none

of the samples were normally distributed. As such, all two-group rating results from

qualitative analysis used a Kruskal-Wallis test to verify significance. For the single

group ratings, it was found that, out of 12 participants, 10 thought that the Rail

Planner took less time than the Amtrak + Excel method, and 11 preferred using the

Rail Planner. This can be seen in Figure 6.8 on the right. Additionally, the found the

route map and “Save Segment” button in the Rail Planner to be effective, with mean

ratings of 5.9 and 5.2, respectively. However, this does not reflect user experiences

with those two elements, covered in the later discussion section.

The meat of the post-study questionnaire was the ratings when comparing the

two methods. Users were asked five questions about their experience with both the

USA Rail Planner and the Amtrak + Excel methods, each with their own ratings.

The results of these questions are shown on the left in Figure 6.8 and listed in Table

6.8. Each of the differences in ratings between the two methods were determined to

be statistically significant. Rail Planner scored higher than Amtrak + Excel for the

participants’ confidence in their ability to plan a train trip, its ease of use, and their

confidence in the correctness of their completed itinerary and trivia questions. Rail

77

Figure 6.8: Mean Post-Study Ratings and User Time Perception/Preferences

Table 6.8: Qualitative Results Analysis

Metric Test Result
Confidence in planning Kruskal-Wallis H = 14.083 > p = 3.841
Frustration Kruskal-Wallis H = 12.000 > p = 3.841
Effort level Kruskal-Wallis H = 9.363 > p = 3.841
Ease of use Kruskal-Wallis H = 9.363 > p = 3.841
Confidence in accuracy Kruskal-Wallis H = 9.901 > p = 3.841

Planner also scored lower when participants were asked how frustrated they were

while using it and the amount of effort required to complete the task. Clearly, in

addition to the empirical evidence that Rail Planner is faster and more accurate than

the Amtrak + Excel method, users viewed it more favorably.

Perhaps the most critical evaluation in the study was the participants’ assessment

of their confidence in planning a multi-city train trip. In the pre-study questionnaire,

they were asked to rate their confidence in this matter, not having seen either method

yet. Then, after the testing is concluded, the post-study questionnaire asks them

about their confidence level after having used both methods. As seen in Figure 6.9,

users were significantly more confident in their ability to plan a multi-city train trip

after using the USA Rail Planner. The Amtrak + Excel method, while slightly higher,

was not of any significance.

78

Figure 6.9: Confidence in Planning Before and After Study

Participant Suggestions

Finally, participants were given the opportunity to recommend improvements or

changes to the Rail Planner. Many responses related to station selection, the “Save

Segment” functionality, search duration, and interface clarity.

First, the autocomplete feature caused some issues for participants. One such

example was in Step 1, wherein they needed to find a train to Raleigh, NC. Users

often typed in exactly “Raleigh, NC” and no results were returned, as the actual

station name was “Raleigh Union, NC” for its Union Station status.

Second, the “Save Segment” button caused a great deal of confusion. While the

wording makes sense to a frequent Amtrak traveler, for those less familiar, it was

unclear. Naming it “Save to Itinerary” or similar would likely have made it much

clearer as to the functionality. Additionally, it did not reflect that anything had

happened when the user clicked it, such as greying itself out or showing a success

message. In most studies, participants would click the button twice (to be greeted

with the “already saved” error message), view the Itinerary to verify the trip was

79

added, or both.

Third, the duration of train searches was brought up frequently, however, they

were unaware that it used Amtrak’s website in the background to conduct the searches.

They are right in one aspect, in that the results cannot be displayed in the Rail Plan-

ner until the page has finished loading, whereas the Amtrak + Excel method allows

users to view results before the page completely loads.

Fourth, interface clarity was mentioned by about half of the 12 participants.

This mainly related to the station Detail View (accessible via the “i” icon next to

the dropdown menus or by clicking its name in the map window) and right-click

train menu. Admittedly, the info icon is quite small, and, as one participant noted,

blended in due to its black color. They remarked that had it been a different color,

such as blue, it would have indicated more clearly it was an interactable element.

The right-click menu was also hard to find for some in the study, despite the message

below the “Find Trains” button that right-clicking any result will bring up more

information (paraphrased). However, user experimentation was key in discovering

these elements. Often, users would mistakenly click a station name in the map window

but discover that it opened the station Detail View, containing potential answers to

trivia questions. And, despite the Itinerary having no such indication that a right-

click menu was available, participants still right-clicked on those results and were

pleased to find the menu also existed there.

6.5 Discussion

Users were not satisfied with the Amtrak + Excel method. This is in part due to

how the information is displayed (or not) on the search page and the laborious task

of transcribing information to the spreadsheet. Participants in Group 1 (Amtrak

+ Excel first) frequently commented that the Rail Planner was much easier after

realizing that results can be saved with the click of a button. Group 2 participants

(Rail Planner first) sometimes became disappointed when they discovered that they

would need to type in all the search results from the Amtrak website.

80

In terms of clarity, participants were at times confused by Amtrak’s search results

page, specifically what each element in a result represented. Issues were the train

number (and sometimes its name), number of segments (unsure what “Direct” meant

in that context), and the transfer stations. Compare this to the Rail Planner, which

utilizes a table view with clearly labeled columns. However, the Rail Planner did have

some column-related pain points. Despite the “Edit Display Columns” menu option,

none of the participants utilized any menu options or bothered to check what was

in them. This related to the task steps for deleting specific segments. Performing

the deletion was not the issue, as the “Delete” button was clearly displayed in the

Itinerary’s buttons row, it was figuring out which train to delete. The origin and

destination columns are not displayed by default, and the column settings affect both

the search results table and Itinerary. Due to this, participants would sometimes

delete the wrong train. Most, however, realized they could access the right-click

menu and access the train’s Detail View to verify the origin and destination. This

was an unintended side-effect of the Itinerary design, but it was interesting to see

how participants determined the appropriate train.

The trivia questions were often a pain point for participants. Usually, they would

disregard the document or forget it was there until completing all the task steps. Only

then would they realize that they needed to complete it simultaneously and would

go back and re-search for the trains involved in the questions. With the second task,

they corrected this error and would consult the trivia more often. Thanks to the

counterbalancing, these errors did not appear to have any influence on the overall

accuracy. The Rail Planner was meant to alleviate this task by including easily

accessible route maps and train details from the Itinerary and search results, and this

was used for the most part. Of note was Step 7a for both tasks. The wording was

chosen (“those results”) to inspire users to use the search navigation features in the

Rail Planner, however, only a few participants realized this was an option, the rest

opted to perform another search.

Interestingly, despite never having used the Rail Planner before, most partici-

81

pants almost immediately discovered and used the autocomplete feature in the sta-

tion dropdown lists. Some expected the results to auto-populate as they typed, but

realized they needed to hit the Enter key or click the dropdown again. In some cases,

the station name was typed in but not selected from the list. It was hoped users would

realize their error as the city image and map markers did not update, but some still

performed a search. The search heading also listed the previously (properly) selected

stations but eventually the participants realized their mistake. One very interesting

thing some of the participants did related to Rail Planner’s Step 4, where they must

find a train to New York, NY. A station name was not specified, and there are two

entries in the list for “New York”: New York Penn, NY (NYP), which is the correct

station, and New York State Fair, NY (NYF). One participant did start a search

to the latter location but realized their error when no train results were returned

(no service was available between the WAS and NYF). More commonly, they would

select one result or the other and consult the map window to see where the marker

was placed. They could see New York (the city) on the map, and since New York

State Fair was in upstate New York state, they switched their destination to New

York Penn, which placed a marker squarely in downtown New York City.

6.5.1 Hypotheses

There were four hypotheses presented in Section 6.4 in Table 6.5. First, it was

theorized that the Rail Planner would take less time to create an itinerary than the

Amtrak + Excel method. Based on the significant time savings presented in the

quantitative results, the null hypothesis (they take the same amount of time) can

be safely rejected and H1 can be accepted. Second, accuracy in task and trivia was

predicted to be better with the USA Rail Planner than Amtrak + Excel. Once again,

based on the results, H2a and H2b are accepted. Third, the Rail Planner was thought

to be more difficult to use for the participants. This was a surprising result, as based

on qualitative evidence, participants found the Rail Planner easier to learn and use

than the Amtrak + Excel method. Thus, the null hypothesis, that users will not

82

find the Rail Planner more difficult to use than Amtrak + Excel, cannot be rejected.

Consequently, the third hypothesis H3 cannot be accepted. However, this is a positive

outcome. Fourth, and finally, it was predicted that users would prefer using the USA

Rail Planner to plan itineraries over the Amtrak + Excel method. Over 91% of

participants (11 out of 12) did prefer it. Based on this, H4 can be accepted.

83

Chapter 7

Conclusions and Future Work

In this final chapter, the application’s contributions and impact are discussed in

Section 7.1. This section covers key points from the thesis. Finally, Section 7.2

rounds off the thesis and covers possible future work. There are multiple avenues of

expansion presented, with varying ranges of complexity and use.

7.1 Conclusions

The application described in this thesis, the Rail Planner, has provided an efficient

way to plan a multi-city train trip and explore multiple potential routes. Due to

issues with existing solutions, particularly with saving search results, the application

presents itself as a breakthrough for rail trip planning in the United States. With

a web scraping solution underneath, the user is never taken out of the app while

the hard work of searching is done in the background. The application is built in

Python, using Selenium for scraping and Tkinter for the user interface, allowing for

cross-platform compatibility.

The research provides numerous contributions in the field of itinerary and trip

planning. Integrating the web driver to perform searches keeps users in one place for

finding information. Results are parsed and able to be saved to a user’s itinerary,

which can be exported to a file, thus eliminating the need for manual transcription

of any information discovered. Saved (past) search results allow for an easy review of

travel options without the need to perform a search again, a significant time-saving

84

improvement over existing methods. Route maps with intermediate stops provide

helpful context as to the train’s journey and can provide ideas for destinations along

the way, something not nearly as prevalent as with a list. Train details provide a

wealth of information, from broad to granular, about a selected search result, in-

cluding information users could not normally view otherwise, such as available seats.

Station details provide users with valuable information about connecting routes and

local transit options. Minor contributions are also present in the application in a

variety of areas. Timetables, something traditionally difficult to find since Amtrak

stopped producing digital versions, are included in the View menu or from individ-

ual results. Picture displays of selected locations provide additional context for the

user, while also adding some flair and color to the main window. Finally, saving and

loading progress allows users to work at their own pace without losing any of their

past research. While the application is an Amtrak website searcher underneath, its

additional features bring it from an interface for the website to a novel, feature-packed

assistant for train travel planning.

7.2 Future Work

The USA Rail Planner has interesting avenues for expansion. Highly requested fea-

tures from survey respondents relate to station and train information. For example,

station information could include details about the surrounding area, such as distance

to the city center, available lodging or parking, places to eat, or amenities at the sta-

tion. In this way, the application could expand beyond a rail planning service and

turn into a trip planning service, with the distinction coming from the inclusion of

city information and lodging. However, more complex features can be added.

7.2.1 Improved Search Functionality

Perhaps the most critical improvement that could be made to the application is the

removal of the web scraping requirement for searches. It is the weakest link in the

application, and, as discussed, could fail if the Amtrak website undergoes significant

85

changes. As such, methods to remove or mitigate this necessary functionality could

be iteratively implemented. First, the application would need to store route data in

a database of some kind, which would be packaged with the application. Route data,

in this context, refers to specific train/bus trips. Each trip is provided a number by

Amtrak, and it corresponds to specific trains or buses with specific routes and depar-

ture/arrival times. Of course, this can succumb to data becoming out-of-date, so this

could be implemented in conjunction with a web service to pull updated data. Routes

and their stops are included in the application, but schedules are not. GTFS data is

perfect for this kind of implementation, although the amount of information provided

would need to be examined closer. However, if GTFS could be used with the appli-

cation, it could provide route map data, timetables, and other critical information.

Second, a routing algorithm would be necessary to provide accurate results. While

it can’t be guaranteed that it will exactly match what Amtrak would provide for the

same search, it is reasonable to assume they would use a “shortest-path/time” algo-

rithm when providing search results. Finally, with routes pre-loaded and a routing

algorithm in place, the true potential of the application could be realized: automatic

trip generation. Given a date range and a list of destinations (ordered or unordered),

it would generate the itinerary for the user without any other input. Specifying how

many days to spend in a certain location could be specified as well, to allow for breaks

in travel. The ease of creating an entire itinerary in seconds would be greater than

that of searching the Amtrak site or using the application as-is.

Alternatively, the search speed could be increased by using Amtrak’s Travel Plan-

ning Map search form. In preliminary tests, the results were found much quicker using

this method compared to searching from the main Amtrak site and would serve as a

useful speed increase in the interim period before implementing the aforementioned

route database and search algorithm.

86

7.2.2 Interface Additions

There are three primary potential additions to the application that would further

enhance the user experience, at the cost of some increased complexity. First, thruway

bus destinations (ex. Las Vegas – has not had passenger train service since 1997

[46, 47], replaced with bus bridges) could be included in the stations list. However,

with the numerous bus stops, it may introduce unnecessary clutter in the list, and a

distinction would need to be made between types of stops. An option to show or hide

these stops may be a good compromise. Second, a list of direct connections from any

given station could be added, possibly in the station detail view. While connecting

trains are provided, destinations are not. A user may see that the Coast Starlight is

a connecting route from the Sacramento Valley Station but would not know where

it went. Providing a list of connecting stations from the station would provide users

ideas for non-stop trips. This is technically possible with the current application as

stations are linked to specific route files, so matching connecting routes to connecting

stations would not be difficult. However, this may make the station details list very

long. A simpler solution would be adding a label in the station selection area when two

selected stations are direct connections, or by a toggle to show non-stop destinations

from the origin only. Third, station information, such as amenities, parking, and

nearby stations, could be included in the station Detail View. This information can

be retrieved from Amtrak’s Travel Planning Map and would provide useful context

for travelers.

There are four secondary possible additions to the application that are not nec-

essarily increasing the complexity but would still provide a better user experience.

First, cleaning up the exported itinerary would be useful for later viewing. It is saved

as a CSV file currently, which does not contain information about column widths.

This means the user would have to manually adjust column widths in their spread-

sheet viewer of choice to view all the content in a given column. Saving as an Excel

(XLSX) file could mitigate this issue. Additionally, legs of the journey with multiple

87

segments should be listed as such. A leg with three segments should be represented as

three rows, not one condensed row. This would increase clarity for what trains/buses

comprise a leg of the journey. Second, the itinerary allows for reordering of segments,

but does not consider departure and arrival times. Effectively, a train earlier in the

journey may have a departure date after one of the later legs. Highlighting “problem”

entries in the table would be a safeguard against out-of-order itineraries. Third, the

date increment buttons (-/+) are fairly small, and the text size could be increased

substantially so they are more prominent. Fourth, and finally, is the inclusion of sort-

ing in the results table. Users may want to choose a train with the shortest duration

or the latest departure time, and, in a table of 20 or more results, they may spend too

long identifying the correct train. By including a "sort” method, users could more

quickly identify and save the trains they want. Alongside this could be the inclusion

of filtering, wherein users could remove results from the table that do not meet certain

criteria, such as mode of travel, WiFi access, or ADA boarding. This would also save

time that would otherwise be spent checking the Detail View for results.

7.2.3 Time-to-Travel Map

One of the more complex ideas is including an interactive map that would show

travel time to any point from a starting location. It could be color-coded based on

the number of hours, such as green/blue for 1-3 hours and into orange and red as

time increases. For the application, this would require the improvements relating to

improved searches and the data that comes with it. Creating a map UI for it would

be another challenge, but not impossible. A similar project in this domain is the

Chronotrains map [48], mapping how far one can travel in five hours from a given

station in Europe.

88

Bibliography

[1] Select your trip. url: https://www.amtrak.com/tickets/departure.html
(Retrieved 04/30/2022).

[2] Multi-Ride & Rail passes. url: https://www.amtrak.com/tickets/departure-
rail-pass.html (Retrieved 04/30/2022).

[3] Freight Rail Facts & Figures. 2022. url: https://www.aar.org/facts-
figures (Retrieved 10/01/2022).

[4] Amtrak tickets, schedules and train routes. url: https://www.amtrak.com/
home (Retrieved 04/30/2022).

[5] Multi-city tickets. url: https://tickets.amtrak.com/itd/amtrak/complexrail
(Retrieved 09/27/2022).

[6] Amtrak Travel Planning Map. url: https://www.amtrak.com/plan-your-
trip.html (Retrieved 11/25/2022).

[7] Plan your rail trip in Europe. url: https://www.eurail.com/en/plan-
your-trip (Retrieved 09/27/2022).

[8] Discover how to get anywhere. url: https://www.rome2rio.com/ (Retrieved
09/27/2022).

[9] Search & Compare Cheap Bus and train tickets. url: https://www.wanderu.
com/en-us/ (Retrieved 09/27/2022).

[10] Piero Maddaleni. How I created an NPM package to access Amtrak’s semi-
private API. 2021. url: https : / / blog . replit . com / amtrak (Retrieved
09/28/2022).

[11] Michael K. Svangren, Mikael B. Skov, and Jesper Kjeldskov. “Passenger trip
planning using ride-sharing services”. In: Proceedings of the 2018 CHI Confer-
ence on Human Factors in Computing Systems (2018). doi: 10.1145/3173574.
3174054.

[12] Chang-Shing Lee, Young-Chung Chang, and Mei-Hui Wang. “Ontological rec-
ommendation multi-agent for Tainan City Travel”. In: Expert Systems with Ap-
plications 36.3 (2009), 6740–6753. doi: 10.1016/j.eswa.2008.08.016.

[13] Lanyun Zhang and Xu Sun. “Designing a trip planner application for groups”. In:
Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors
in Computing Systems (2016). doi: 10.1145/2851581.2892301.

https://www.amtrak.com/tickets/departure.html
https://www.amtrak.com/tickets/departure-rail-pass.html
https://www.amtrak.com/tickets/departure-rail-pass.html
https://www.aar.org/facts-figures
https://www.aar.org/facts-figures
https://www.amtrak.com/home
https://www.amtrak.com/home
https://tickets.amtrak.com/itd/amtrak/complexrail
https://www.amtrak.com/plan-your-trip.html
https://www.amtrak.com/plan-your-trip.html
https://www.eurail.com/en/plan-your-trip
https://www.eurail.com/en/plan-your-trip
https://www.rome2rio.com/
https://www.wanderu.com/en-us/
https://www.wanderu.com/en-us/
https://blog.replit.com/amtrak
https://doi.org/10.1145/3173574.3174054
https://doi.org/10.1145/3173574.3174054
https://doi.org/10.1016/j.eswa.2008.08.016
https://doi.org/10.1145/2851581.2892301

89

[14] Zhong-Ren Peng and Ruihong Huang. “Design and development of interactive
trip planning for web-based Transit Information Systems”. In: Transportation
Research Part C: Emerging Technologies 8.1-6 (2000), 409–425. doi: 10.1016/
s0968-090x(00)00016-4.

[15] Avichal Garg. Public transit via google. 2005. url: https://googleblog.
blogspot.com/2005/12/public-transit-via-google.html (Retrieved
09/27/2022).

[16] Christopher Cherry, Mark Hickman, and Anirudh Garg. “Design of a map-
based transit itinerary planner”. In: Journal of Public Transportation 9.2 (2006),
45–68. doi: 10.5038/2375-0901.9.2.3.

[17] Chris Harrelson. Happy trails with google transit. 2006. url: https://googleblog.
blogspot.com/2006/09/happy-trails-with-google-transit.html (Re-
trieved 09/27/2022).

[18] Mobility database. url: https://database.mobilitydata.org/.

[19] Welcome to roadtrippers. 2022. url: https://roadtrippers.com/ (Retrieved
09/27/2022).

[20] Furkot: Free road trip planner: Map your route. url: https://trips.furkot.
com/ui (Retrieved 09/27/2022).

[21] Thomas Adler. “Intercity Transit Trip Planning Web Application”. In: Trans-
portation Research Board (2014). url: https : / / trid . trb . org / view /
1352933 (Retrieved 09/28/2022).

[22] Lisa Jo Elliott et al. “Guidelines and best practices for open source transit trip
planning interfaces”. In: Advances in Intelligent Systems and Computing (2016),
163–172. doi: 10.1007/978-3-319-41685-4_15.

[23] Konstantinos Zografos, Vassilis Spitadakis, and Konstantinos Androutsopoulos.
“Integrated Passenger Information System for multimodal trip planning”. In:
Transportation Research Record: Journal of the Transportation Research Board
2072.1 (2008), 20–29. doi: 10.3141/2072-03.

[24] Samaneh Navabpour et al. “An Intelligent Traveling Service Based on SOA”. In:
2008 IEEE Congress on Services - Part I. 2008, pp. 191–198. doi: 10.1109/
SERVICES-1.2008.44.

[25] Senjuti Basu Roy et al. “Interactive itinerary planning”. In: 2011 IEEE 27th
International Conference on Data Engineering. 2011, pp. 15–26. doi: 10.1109/
ICDE.2011.5767920.

[26] Sascha Witt. “Trip-based public transit routing”. In: Algorithms - ESA 2015
(2015), 1025–1036. doi: 10.1007/978-3-662-48350-3_85.

[27] Mihai Gheorghe, Florin-Cristian Mihai, and Marian Dârdală. “Modern tech-
niques of web scraping for data scientists”. In: International Journal of User-
System Interaction 11.1 (2018), pp. 63–75.

https://doi.org/10.1016/s0968-090x(00)00016-4
https://doi.org/10.1016/s0968-090x(00)00016-4
https://googleblog.blogspot.com/2005/12/public-transit-via-google.html
https://googleblog.blogspot.com/2005/12/public-transit-via-google.html
https://doi.org/10.5038/2375-0901.9.2.3
https://googleblog.blogspot.com/2006/09/happy-trails-with-google-transit.html
https://googleblog.blogspot.com/2006/09/happy-trails-with-google-transit.html
https://database.mobilitydata.org/
https://roadtrippers.com/
https://trips.furkot.com/ui
https://trips.furkot.com/ui
https://trid.trb.org/view/1352933
https://trid.trb.org/view/1352933
https://doi.org/10.1007/978-3-319-41685-4_15
https://doi.org/10.3141/2072-03
https://doi.org/10.1109/SERVICES-1.2008.44
https://doi.org/10.1109/SERVICES-1.2008.44
https://doi.org/10.1109/ICDE.2011.5767920
https://doi.org/10.1109/ICDE.2011.5767920
https://doi.org/10.1007/978-3-662-48350-3_85

90

[28] A. Hernandez-Suarez et al. A Web Scraping Methodology for Bypassing Twitter
API Restrictions. 2018. doi: 10.48550/ARXIV.1803.09875. url: https:
//arxiv.org/abs/1803.09875.

[29] Arif Himawan, Adri Priadana, and Aris Murdiyanto. “Implementation of Web
Scraping to Build a Web-Based Instagram Account Data Downloader Appli-
cation”. In: IJID (International Journal on Informatics for Development) 9.2
(2020), 59–65. doi: 10.14421/ijid.2020.09201. url: http://ejournal.
uin-suka.ac.id/saintek/ijid/article/view/09201.

[30] Daniel Delling, Thomas Pajor, and Renato F. Werneck. “Round-based public
transit routing”. In: Transportation Science 49.3 (2015), 591–604. doi: 10 .
1287/trsc.2014.0534.

[31] Peter Hart, Nils Nilsson, and Bertram Raphael. “A formal basis for the heuristic
determination of minimum cost paths”. In: IEEE Transactions on Systems Sci-
ence and Cybernetics 4.2 (1968), 100–107. doi: 10.1109/tssc.1968.300136.

[32] List of Amtrak stations. 2022. url: https://en.wikipedia.org/wiki/List_
of_Amtrak_stations (Retrieved 10/07/2022).

[33] John Sharp. Amtrak official: Gulf Coast Service starting in 2022. 2021. url:
https://www.al.com/news/2021/02/amtrak-official-gulf-coast-
service-starting-in-2022.html (Retrieved 10/09/2022).

[34] Amtrak • Operator details. url: https://www.transit.land/operators/o-
9-amtrak#routes (Retrieved 11/01/2022).

[35] Python Software Foundation. Python. url: https://www.python.org/ (Re-
trieved 11/03/2022).

[36] Tkinter - Python interface to TCL/TK. url: https://docs.python.org/3.
9/library/tkinter.html (Retrieved 11/03/2022).

[37] Tkcalendar. url: https : / / pypi . org / project / tkcalendar/ (Retrieved
11/03/2022).

[38] TomSchimansky. Tomschimansky/TkinterMapView: A python tkinter widget to
display tile based maps like OpenStreetMap or Google satellite images. url:
https://github.com/TomSchimansky/TkinterMapView (Retrieved 11/03/2022).

[39] Selenium. url: https://www.selenium.dev (Retrieved 11/03/2022).

[40] SergeyPirogov. Sergeypirogov/webdriver_manager. url: https : / / github .
com/SergeyPirogov/webdriver_manager (Retrieved 11/03/2022).

[41] Ultrafunkamsterdam. Ultrafunkamsterdam/undetected-chromedriver: Custom se-
lenium chromedriver: Zero-config: Passes all bot mitigation systems (like distil
/ Imperva/ Datadadome / Cloudflare IUAM). url: https://github.com/
ultrafunkamsterdam/undetected-chromedriver (Retrieved 11/03/2022).

[42] Beautifulsoup4. url: https://pypi.org/project/beautifulsoup4/ (Re-
trieved 11/03/2022).

https://doi.org/10.48550/ARXIV.1803.09875
https://arxiv.org/abs/1803.09875
https://arxiv.org/abs/1803.09875
https://doi.org/10.14421/ijid.2020.09201
http://ejournal.uin-suka.ac.id/saintek/ijid/article/view/09201
http://ejournal.uin-suka.ac.id/saintek/ijid/article/view/09201
https://doi.org/10.1287/trsc.2014.0534
https://doi.org/10.1287/trsc.2014.0534
https://doi.org/10.1109/tssc.1968.300136
https://en.wikipedia.org/wiki/List_of_Amtrak_stations
https://en.wikipedia.org/wiki/List_of_Amtrak_stations
https://www.al.com/news/2021/02/amtrak-official-gulf-coast-service-starting-in-2022.html
https://www.al.com/news/2021/02/amtrak-official-gulf-coast-service-starting-in-2022.html
https://www.transit.land/operators/o-9-amtrak#routes
https://www.transit.land/operators/o-9-amtrak#routes
https://www.python.org/
https://docs.python.org/3.9/library/tkinter.html
https://docs.python.org/3.9/library/tkinter.html
https://pypi.org/project/tkcalendar/
https://github.com/TomSchimansky/TkinterMapView
https://www.selenium.dev
https://github.com/SergeyPirogov/webdriver_manager
https://github.com/SergeyPirogov/webdriver_manager
https://github.com/ultrafunkamsterdam/undetected-chromedriver
https://github.com/ultrafunkamsterdam/undetected-chromedriver
https://pypi.org/project/beautifulsoup4/

91

[43] url: https://windscribe.com (Retrieved 11/29/2022).

[44] Ana Marculescu. Download blackout 2.0. 2013. url: https://www.softpedia.
com/get/Multimedia/Graphic/Graphic- Capture/AB- Blackout.shtml
(Retrieved 11/29/2022).

[45] Mousotron : Mouse and keyboard activity monitor. url: https://www.blacksunsoftware.
com/mousotron.html (Retrieved 11/29/2022).

[46] Richard Simon. “Gone With the Wind: Demise of Desert Train Ends L.A.’s
Amtrak Link to Las Vegas”. In: Los Angeles Times (1997), VYA3–VYA33.
(Retrieved 11/13/2022).

[47] Robert Johnston. FRA launches passenger long-distance study site. 2022. url:
https://www.trains.com/trn/news-reviews/news-wire/fra-launches-
passenger-long-distance-study-site/ (Retrieved 11/24/2022).

[48] Benhamin Td. url: https://www.chronotrains.com/ (Retrieved 07/29/2022).

https://windscribe.com
https://www.softpedia.com/get/Multimedia/Graphic/Graphic-Capture/AB-Blackout.shtml
https://www.softpedia.com/get/Multimedia/Graphic/Graphic-Capture/AB-Blackout.shtml
https://www.blacksunsoftware.com/mousotron.html
https://www.blacksunsoftware.com/mousotron.html
https://www.trains.com/trn/news-reviews/news-wire/fra-launches-passenger-long-distance-study-site/
https://www.trains.com/trn/news-reviews/news-wire/fra-launches-passenger-long-distance-study-site/
https://www.chronotrains.com/

92

Appendix A

Map Utilities

Listing A.1: Map Utilities Source Code
import requests
from bs4 import BeautifulSoup
from lxml import etree
from tkintermapview import convert_address_to_coordinates

def amtrakAddressRequest(stationCode: str) -> list[str]:
"""
Given a station code, returns address of the station from a web

↪→ request to Amtrak.

Parameters

stationCode : str
Amtrak station code (three letter string)

Returns

list[str]
[Street number and name, City/State/Zip] or None if nothing was

↪→ found.
"""
Find station page
Parse for address
try:
webinfo = requests.get(f"https://www.amtrak.com/stations/{

↪→ stationCode.lower()}")
soup = BeautifulSoup(webinfo.content, "html.parser")
dom = etree.HTML(str(soup))
try:

93

addr1 = dom.xpath("//*[@class=’hero-banner-and-info__card_block
↪→ -address’]")[-2].text

_addr2 = dom.xpath("//*[@class=’hero-banner-and-
↪→ info__card_block-address’]")[-1].text

except IndexError:
_addr2 = dom.xpath("//*[@class=’hero-banner-and-

↪→ info__card_block-address’]")[1].text
addr2 = _addr2.replace(’␣␣’,’’).replace(’\r\n’, ’␣’)
return [addr1, addr2]
except:
return None

def getCoords(code: str) -> list[float]:
"""
Finds coordinates of an Amtrak station.

Parameters

code : str
Amtrak station code, three letter string.

Returns

list[float]
[Latitude, Longitude] or None.

"""
address = amtrakAddressRequest(code)
try: coords = convert_address_to_coordinates(f"{address[0].strip()

↪→ },␣{address[1].strip()}")
except (TypeError, IndexError):
coords = None
print(f"Could␣not␣find␣coordinates␣for␣station␣{code}:␣{address}"

↪→)
if coords == None:
try:
_isCA = None
canadianStates = [’ON’, ’QC’, ’NS’, ’NB’, ’MB’, ’BC’, ’PE’, ’SK

↪→ ’, ’AB’, ’NL’]
for state in canadianStates:
if state in address[1]:
_isCA = state
break

94

if _isCA != None:
address[1] = address[1].split(_isCA)[0]+_isCA
coords = convert_address_to_coordinates(f"{address[0]},␣{

↪→ address[1]},␣Canada")
else:
coords = convert_address_to_coordinates(f"{address[1]},␣

↪→ United␣States")
except (IndexError, TypeError):
coords = None
print(f"Could␣not␣find␣coordinates␣for␣station␣{code}:␣{address

↪→ }")
return coords

95

Appendix B

Web Scraping Code Example

Listing B.1: Searching and Parsing Code Snippet
import time
import json

from random import randint

from selenium.webdriver.support import expected_conditions as EC
from selenium.common.exceptions import NoSuchElementException
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.common.by import By

from .driver import Driver
from traintracks.train import Train
from views import config as cfg

USE_TRAIN_CLASSES = True

def __checkEveryPage(self, area, pages: int, isScrape: bool=True) ->
↪→ None:
"""
Checks every page of search results. If there is one, it does not

↪→ loop.

Parameters

area : WebElement
Search area at the bottom of the page where the page links are

↪→ located.
pages : int
Number of pages of results.

isScrape: bool, Optional

96

Whether to use the old webscraping method (True) or the new
↪→ JSON method (False), by default False

"""

def scrapingMethod():
for page in range(1,pages+1): # Starts at 1 (page 1) and goes up

↪→ to pages
self.__updateStatusMessage(f"Searching␣-␣checking␣page␣{page}",

↪→ 29./pages)
self.driver.execute_script("window.scrollTo(0,␣document.body.

↪→ scrollHeight)") # Puts page links in view

Loads next page and waits until elements load
area.find_element(By.XPATH, f".//*[text()=’{page}’]").click()
WebDriverWait(self.driver, 5).until(EC.

↪→ presence_of_element_located((By.XPATH, f".//a[text()=’{
↪→ page}’]//ancestor::li[@class=’pagination-page␣page-item␣
↪→ active␣ng-star-inserted’]")))

time.sleep(1)

searchResultsTable = self.driver.find_element(By.XPATH, "//div[
↪→ contains(@class,␣’trigger-searchList’)]") # Search area

trainList = searchResultsTable.find_elements(By.XPATH, ".//div[
↪→ contains(@class,␣’trigger-searchItems’)]") # List of
↪→ train results

self.__findTrainInfo(trainList)

if isScrape:
scrapingMethod() # We don’t need this.
else:
if self.__processTrainJson() != True:
scrapingMethod()

def __processTrainJson(self, file: dict=None) -> bool:
"""
New method to get train search results from session storage JSON.

Parameters

file : dict, optional
For testing onlt, specify a results dictionary to use, by

↪→ default None

97

Returns

bool
True, if the data was able to be parsed.

"""

try:
if file == None:
j = json.loads(self._getSessionStorage("searchresults", True))
else:
j = file
self.__updateStatusMessage(’Test’, 22)

_journeySolutionOption = j["journeySolutionOption"]
_journeyLegs = _journeySolutionOption["journeyLegs"][0]
_journeyLegOptionsMultiple = _journeyLegs["journeyLegOptions"] #

↪→ All segments

for index, opt in enumerate(_journeyLegOptionsMultiple):
self.__updateStatusMessage(f"Processing␣results", 28./len(

↪→ _journeyLegOptionsMultiple))
try:
if len(opt["reservableAccommodations"]) > 0: # Not sold out

Basic Data Gathering // Compare to __findTrainInfo()
segmentType = len(opt["travelLegs"])
if opt["isMultiSegment"] == True: #Multi-segment
number = "N/A"
name = "Multiple␣Trains"
hasTrain = False
hasBus = False
for leg in opt["travelLegs"]:
if leg["travelService"]["type"].upper() == "TRAIN":
hasTrain = True
elif leg["travelService"]["type"].upper() == "BUS":
hasBus = True

if hasTrain and hasBus: name = "Mixed␣Service"
elif hasBus and not hasTrain: name = "Multiple␣Buses"

elif opt["isMultiSegment"] == False: #Single segment
number = opt["travelLegs"][0]["travelService"]["number"]
name = opt["travelLegs"][0]["travelService"]["name"]

98

origin = opt["origin"]["code"]
destination = opt["destination"]["code"]

departure = opt["origin"]["schedule"]["departureDateTime"]
arrival = opt["destination"]["schedule"]["arrivalDateTime"]
travelTime = opt["duration"]

coachPrice = opt["coach"]["lowestPrice"]
businessPrice = opt["business"]["lowestPrice"]
sleeperPrice = opt["rooms"]["lowestPrice"]

Initial data update
outputDict = {
"Number":number,
"Name":name,
"Origin":origin,
"Departure":departure,
"Travel␣Time":travelTime,
"Destination":destination,
"Arrival":arrival,
"Coach␣Price":coachPrice,
"Business␣Price":businessPrice,
"Sleeper␣Price":sleeperPrice,
"Segments":segmentType,
"Raw":opt

}

Advanced Data Gathering
try:
extra = {}
for index, seg in enumerate(opt["segments"]):
_thisAmenities = []
for amenity in seg["travelLeg"]["travelService"]["

↪→ amenities"]:
_thisAmenities.append(amenity["name"])

_thisNum = seg["travelLeg"]["travelService"]["number"]
_thisName = seg["travelLeg"]["travelService"]["name"]
_thisType = seg["travelLeg"]["travelService"]["type"]

_thisDest = seg["travelLeg"]["destination"]["code"]
_thisArrive = seg["travelLeg"]["destination"]["schedule"

↪→]["arrivalDateTime"]

99

_thisOrigin = seg["travelLeg"]["origin"]["code"]
_thisDepart = seg["travelLeg"]["origin"]["schedule"]["

↪→ departureDateTime"]

_thisDuration = seg["travelLeg"]["elapsedTime"].replace(
↪→ ’P’,’’).replace(’T’,’␣’).replace(’H’, ’H␣’)

_thisSeatsAvailable = opt["seatCapacityInfo"]["
↪→ seatCapacityTravelClasses"][index]["
↪→ availableInventory"]

extra[seg["travelLegIndex"]] = {
"Name": _thisName,
"Number":_thisNum,
"Type":_thisType,
"Origin":_thisOrigin,
"Destination":_thisDest,
"Departure":_thisDepart,
"Arrival":_thisArrive,
"Duration":_thisDuration,
"Available␣Seats":_thisSeatsAvailable,
"Amenities":_thisAmenities

}

citySegments = opt["citySegments"]

outputDict.update({
"City␣Segments":citySegments,
"Segment␣Info":extra})

except (KeyError, IndexError) as e:
print(e)

if USE_TRAIN_CLASSES:
self.thisSearchResultsAsTrain.update({self.

↪→ numberTrainsFound : (Train(outputDict))})
else:
self.thisSearchResultsAsDict[self.numberTrainsFound] =

↪→ outputDict
self.numberTrainsFound += 1
self.__updateNumberTrainsLabel()

except Exception as e:
print(e)

100

except (KeyError, TypeError) as e:
print(e)
return False
if self.numberTrainsFound > 0: # Interim
return True
else: return False

def __enterStationInfo(self, area) -> None:
"""
Fills in origin and destination fields.

Parameters

area : WebElement
Area that contains input fields.

"""
Entering departure station info
fromStationSearchArea = self.driver.find_element(By.XPATH, "//div[

↪→ @class=’from-station␣flex-grow-1’]")
fromStationSearchArea.find_element(By.XPATH, "//station-search[@amt

↪→ -auto-test-id=’fare-finder-from-station-field-page’]").click
↪→ ()

inputField1 = fromStationSearchArea.find_element(By.XPATH, "//input
↪→ [@id=’mat-input-0’]")

inputField1.clear()
inputField1.send_keys(self.origin)
WebDriverWait(self.driver, 5).until(EC.presence_of_element_located

↪→ ((By.XPATH, "//button[contains(@aria-label,’From’)]"))) #
↪→ Station name autofilled

time.sleep(randint(5,100)/100.)

Entering destination station info
toStationSearchArea = self.driver.find_element(By.XPATH, "//div[

↪→ @class=’to-station␣flex-grow-1’]")
toStationSearchArea.find_element(By.XPATH, "//station-search[@amt-

↪→ auto-test-id=’fare-finder-to-station-field-page’]").click()
inputField2 = toStationSearchArea.find_element(By.XPATH, "//input[

↪→ @id=’mat-input-1’]")
inputField2.clear()
inputField2.send_keys(self.destination)
WebDriverWait(self.driver, 5).until(EC.presence_of_element_located

↪→ ((By.XPATH, "//button[contains(@aria-label,’To’)]"))) #
↪→ Station name autofilled

101

time.sleep(randint(5,100)/100.)

def __enterDepartDate(self, area) -> None:
"""
Fills in departure date.

Parameters

area : WebElement
Area that contains the departure date input field.

"""
departsArea = area.find_element(By.XPATH, "//div[@class=’departs-

↪→ container␣w-100’]")
departsArea.click()
inputField3 = departsArea.find_element(by=By.XPATH, value="//input[

↪→ @id=’mat-input-2’]")
inputField3.clear()
inputField3.send_keys(f"{self.departDate}\t") #Depart Date
#searchArea.find_element(by=By.XPATH, value="//input[@id=’mat-input

↪→ -4’]").send_keys("03/27/2022") #Return Date
time.sleep(randint(5,100)/100.)

def _getSessionStorage(self, key: str, beCareful: bool=False) ->
↪→ dict:
"""
Retrieves an item from session storage.

Parameters

key : str
Item to retrieve.

beCareful : bool, optional
If True, do NOT refresh the page to get the results, by default

↪→ False

Returns

dict
Session storage item.

"""
time.sleep(1)
_tc = self.driver.execute_script("return␣window.sessionStorage.

↪→ getItem(arguments[0]);", key)

102

if _tc == None and beCareful == False:
self.driver.refresh()
time.sleep(2)
_tc = self.driver.execute_script("return␣window.sessionStorage.

↪→ getItem(arguments[0]);", key)
return _tc

def oneWaySearch(self, isScrape: bool=False) -> dict:
"""
Performs a search for Amtrak trains on a one-way journey.

Parameters

isScrape : bool
If True, use the old scraping method, otherwise use the JSON

↪→ method.

Returns

dict or str
If the search is successful, returns a dict of trains,

↪→ otherwise a string of the error message.

Raises

Exception
Catch-all for any failed searches, returns the error message.

"""

Resets/clears elements to begin new search
self.numberTrainsFound = 0
self.thisSearchResultsAsTrain.clear()
self.thisSearchResultsAsDict.clear()

try: # Loading the page
self.__updateStatusMessage("Searching␣-␣loading␣page", 1)
if (self.driver.current_url != cfg.SEARCH_URL) or self.

↪→ returnedError: # If not at the page or an error occurred
↪→ last time, reload

self.driver.get(cfg.SEARCH_URL)
self.returnedError = False
self.driver.execute_script("window.scrollTo(document.body.

↪→ scrollHeight,␣0)") # Reset after previous search

103

Make sure the page loads and the New Search button is available
↪→ to us

WebDriverWait(self.driver, 5).until(EC.
↪→ presence_of_element_located((By.XPATH, "//button[starts-
↪→ with(@class,␣’am-btn␣btn--secondary’)]")))

try: # Clicking the new search button
self.__updateStatusMessage("Searching␣-␣opening␣input␣fields",

↪→ 4)
newSearchButton = self.driver.find_element(By.XPATH, "//button[

↪→ starts-with(@class,␣’am-btn␣btn--secondary’)]")
newSearchButton.click()
time.sleep(1)

try: # Entering to/from stations
self.__updateStatusMessage("Searching␣-␣entering␣stations",

↪→ 2)
searchArea = self.driver.find_element(By.XPATH, "//div[@id=’

↪→ refineSearch’]")
searchArea = searchArea.find_element(By.XPATH, "//div[starts-

↪→ with(@class,␣’row␣align-items-center’)]")
self.__enterStationInfo(searchArea)

try: # Entering departure date
self.__updateStatusMessage("Searching␣-␣entering␣travel␣

↪→ dates", 1)
self.__enterDepartDate(searchArea)

Wait until "Find Trains" button is enabled, then click it
self.__updateStatusMessage("Searching␣-␣starting␣search",

↪→ 2)
WebDriverWait(self.driver, 5).until(EC.

↪→ presence_of_element_located((By.XPATH, "//button[
↪→ @aria-label=’FIND␣TRAINS’␣and␣@aria-disabled=’false’]
↪→ ")))

searchArea.find_element(By.XPATH, "//div[starts-with(@class
↪→ ,␣’amtrak-ff-body’)]").click() # Get calendar popup
↪→ out of the way

time.sleep(randint(5,100)/100.)
searchArea.find_element(by=By.XPATH, value="//button[@aria-

↪→ label=’FIND␣TRAINS’␣and␣@aria-disabled=’false’]").
↪→ click() # Click search button

104

Search has been completed, but there is no service
try:
self.__updateStatusMessage("Searching␣-␣starting␣search",

↪→ 2)
time.sleep(2)
self.__updateStatusMessage("Searching␣-␣loading␣results",

↪→ 3)
potentialError = self.driver.find_element(By.XPATH, "//div

↪→ [starts-with(@class,␣’alert-yellow-text’)]").text
print(potentialError)
self.returnedError = True
self.__updateStatusMessage("Error")
return potentialError

Search has been completed, but we didn’t find any trains
↪→ on that day

except NoSuchElementException:
try:
potentialError = self.driver.find_element(By.XPATH, "//

↪→ div[@amt-auto-test-id=’am-dialog’]")
newDate = potentialError.find_element(By.XPATH, ".//div[

↪→ starts-with(@class,␣’pb-0␣mb-5␣ng-star-inserted’)]
↪→ ").text

newDateError = ’\n’.join(newDate.split("\n")[0:2])
print(newDateError)
self.returnedError = True
self.__updateStatusMessage("Error")
return newDateError

Search has been completed, and we found a train(s)
except NoSuchElementException:
try:
self.__updateStatusMessage("Searching␣-␣parsing␣

↪→ results␣page", 5)
WebDriverWait(self.driver, 3).until(EC.

↪→ presence_of_element_located((By.XPATH, "//div[
↪→ contains(@class,␣’trigger-searchList’)]")))

searchResultsTable = self.driver.find_element(By.XPATH
↪→ , "//div[contains(@class,␣’trigger-searchList’)]
↪→ ") # Table of results

nextPage = searchResultsTable.find_element(By.XPATH, "
↪→ .//ul[starts-with(@class,␣’pagination␣

105

↪→ paginator__pagination’)]") # Page links area
numberSearchPages = int((len(nextPage.find_elements(By

↪→ .XPATH, ".//*"))-4)/2) # Find out how many pages
↪→ exist

self.__checkEveryPage(nextPage, numberSearchPages,
↪→ isScrape)

self.__updateStatusMessage("Done", 50)

#print(json.dumps(self.thisSearchResults, indent=4))
return self.thisSearchResultsAsTrain

except Exception as e: # Search parsing
print("There␣was␣an␣error␣retrieving␣the␣search␣data."

↪→)
print(e)
self.returnedError = True
return e

except Exception as e: # Entering departure date
print("There␣was␣an␣error␣entering␣the␣departure␣date.")
self.returnedError = True
return e

except Exception as e: # Entering to/from stations
print("There␣was␣an␣error␣entering␣in␣station␣info.")
self.returnedError = True
return e

except Exception as e: # Clicking the new search button
print("There␣was␣an␣error␣clicking␣the␣search␣button.")
self.returnedError = True
return e

except Exception as e: # Loading the page
print("There␣was␣an␣issue␣with␣loading␣the␣search␣page.")
self.returnedError = True
return e

	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	List of Algorithms
	List of Listings
	Introduction
	Problem Statement
	Motivation
	Solution

	Background
	Rail Travel in the United States
	Trip Planning Issues
	Similar Planning Solutions
	Web Scraping

	Related Work
	Trip Planning Overview
	Current Work
	Web Scraping in Action

	Software Specification and Design
	Requirements
	Functional Requirements
	Non-Functional Requirements

	Use Case Modeling
	Architecture
	High-Level Overview
	Application Behavior
	Searching for Trains

	Technologies
	Python Programming Language
	Tkinter
	Rail Map View
	Selenium
	Beautiful Soup

	Prototype in Action
	Interface Design
	Main Window
	Itinerary
	Journey View (Map)
	Additional Elements

	Common Usage Scenarios
	Cross-Country/Rail Pass Trips
	Route Variations

	Limitations
	User Interface
	Searching and Web Drivers

	Validation
	Subjects
	Apparatus
	Experimental Design and Procedure
	Study Results
	Quantitative Results
	Qualitative Results

	Discussion
	Hypotheses

	Conclusions and Future Work
	Conclusions
	Future Work
	Improved Search Functionality
	Interface Additions
	Time-to-Travel Map

	Bibliography
	Map Utilities
	Web Scraping Code Example

