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Abstract

In most civil concrete structures, the inspection of structural health is essential. A

periodical inspection process ensures that the infrastructure will meet the functional

requirements properly or not. To avoid hazardous situations in civil infrastructure,

proper maintenance of concrete structures is necessary. The manual visual examina-

tion process might provide erroneous results while exploring critical parts of concrete

surfaces. As a result, an accurate, safe, and dependable automated process is required

for detecting concrete distress. Spalling is a critical distress that can damage concrete

surfaces in civil infrastructure. Severe and harmful spalling needs to be taken care of

to avoid life-threatening incidents by identifying the location of the distress. Aside

from determining the location of the spalling, the severity level of the spalling must

also be determined. These severity levels help determine how adverse the situation

is and prioritize the process of fixing the spalling. Due to the impact of concrete

distress, detecting surface defects like spallings caught the attention of researchers.

In this thesis, we have presented approaches to detecting the location of spalling

according to its severity level. The proposed methods use deep learning-based ap-

proaches and multi-class semantic segmentation. Our approaches have explored two

major criteria to detect the spalling and categorize its severity level. Furthermore, we

have conducted qualitative and quantitative analyses to demonstrate the performance

achieved by the proposed methodologies.
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Chapter 1

Introduction

Distress in concrete surfaces happens when the surface is exposed to severe environ-

mental phenomena and a lack of preventive measures to deal with the deterioration of

structural health. Concrete distress can result in life-threatening incidents. Mainte-

nance of these distress zones is crucial to avoiding hazardous situations [6]. Spalling is

one kind of concrete abnormality that can destroy the structure’s health, disrupt the

appearance of the surface, and make it unhelpful. The heavy loads over the bridges

and surface erosion on the walls gradually create the spallings. Spalling can make the

pillars of bridges, the ceiling, and the walls of buildings prone to severe accidents. It is

required to conduct regular inspections to ensure structural integrity. The inspection

results are determined by the knowledge of the person in charge of the task [7]. There

are critical positions, like the corners of the pillars of bridges, where manual detection

of spalling can be very difficult. Therefore, an autonomous system to detect the exact

location and condition of the spalling is very helpful. A regular, automatic inspec-

tion is crucial for civil infrastructure to ensure public safety. Keeping this in mind,

several autonomous bridge inspection systems have been developed. [8–29]. Several

approaches for crack detection have been proposed to avoid the manual inspection
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process [30–34].

Because spalling is a type of concrete condition that can compromise the surface’s

structure, we need a careful and proper detection process to avoid problems with

manual inspection. Depending on the condition of the spalling, the after-inspection

process can be different. There are several conditions where we need precise informa-

tion: the area of the spalling should be properly detected; the spalling can be large

or deep enough that it needs to be fixed immediately; shallow or small spalling can

get priority after the large or deep spalling; and we need a correct prediction of the

priority to fix the spalling for a cost-effective solution. Therefore, detection of spalling

is not the only solution to conducting an after-inspection process. We need to know

the level of severity and condition of the spallings. The level of severity indicates how

adverse the condition of the spalling is. As a result, depending on how the spalling

is classified, the surface may have a large amount of spalling or deep spalling, where

concrete materials are ejected from the surface [35], a small amount of spalling or

shallow spalling, or no spalling at all. A deep spalling can be way more dangerous

since the concrete surface keeps losing materials and makes it prone to severe acci-

dents. Keeping that in mind, in this thesis we have presented the idea of detecting

spalling and categorizing the level of severity.

1.1 Background Studies

In this section we have discussed several concepts related to our proposed approach.

Several Deep Encoder-Decoder based architecture will be discussed. Along with these,

some backbone networks will be described briefly in this section, which will be helpful

to understand the motivation of proposed approaches.
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Figure 1.1: Distress in concrete: (a) Spalling (b) Cracking

1.1.1 Distress in Concrete

Distress in concrete occurs due to exposure to extreme environmental hazards and

a lack of preventive measures to protect the surface. This distress creates a surface

abnormality and destroys the surface look. Aside from its appearance, this surface
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abnormality can lead to dangerous situations. Distress in the concrete can make the

civil infrastructure unusable.

There are several types of concrete defects that can hamper the surface integrity

of concrete: cracking, spalling, scaling, crazing, blistering, dusting, curling, and efflo-

rescence. Cracking and spalling are more common and dangerous defects in buildings

and bridges. Different types of concrete distress are shown in Figure 1.1.

Researchers are paying increasing attention to detect these distresses due to their

impact on the surface. In this thesis, we present approaches to detect spalling and

its severity levels. Spalling refers to the areas of concrete that have cracked and

delaminated from the surface. The surface gets deteriorated, and flaking of concrete

occurs due to spalling. Spalling can be very large, small, deep, or shallow. The severity

of the spalling depends on its size and depth. Therefore, detecting and localizing

spalling and its severity level are crucial to preventing any critical situation.

1.1.2 Deep Encoder-Decoder architecture

In our proposed work, deep encoder-decoder architecture refers deep learning-based

pixel-wise segmentation model using encoder-decoder networks. These architectures

contain two basic parts: encoder and decoder. The encoder-decoder structures are

very popular in deep learning architecture for image segmentation [36]. These struc-

tures help to extract most useful features from images and make useful correlations

among inputs within the network [36]. An overview of deep encoder-decoder archi-

tecture is shown in Figure 1.2.
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Figure 1.2: Overview of a deep architecture based on encoder-decoder network.

In recent years, several encoder-decoder based deep learning architectures for im-

age segmentation have been proposed; SegNet [3], UNet [4], PSPNet [5], FCN [37],

DeepLab [38], DeepCrack [39]. The encoder block usually a backbone network namely,

ResNet-50 [40] [41], VGG-19 [42], Xception [43], and MobileNet [44]. The decoder

blocks are commonly bilinear interpolation, deconvolution, or dense up sampling con-

volution [45].

A pre-trained classification network is usually used as the encoder network, fol-

lowed by a decoder network. The encoder block consists of convolution, activation,

and pooling layers. Instead of pooling layers, the decoder block contains upsampling

layers. The encoder block creates low resolution discriminating features from the im-

age data. To obtain the segmentation, the decoder blocks semantically project the

discriminating features learned by the encoder on each pixel into high-resolution pixel

space using upsampling layers [46].
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1.1.3 Backbone Networks

The backbone network’s task is to take image as input and extract the feature map to

help the architecture with classification or segmentation. These network architectures

may effectively extract an image’s feature mapping, providing a strong base network

for semantic segmentation [45]. Several backbone networks have been used in recent

years in deep learning architectures as feature extractor: ResNet-50 [40] [41], VGG-

19 [42], Xception [43], VGG-16 [47] and MobileNet [44].

MobileNet, VGG-19, Xception have been used in the field of medical imaging, eye’s

region classification, namely apple leaf diseases identification, skin lesion classification,

and diagnosis of pneumonia from chest X-Ray images [48] [49] [50] [51]. For affect

detection in developing human computer interaction systems, ResNet-50 and VGG-

16 have been used [47]. In the area of image recognition or image classification ,

VGG-19, ResNet-50 and Xception are used to classify images and malware data, to

recognize facial expression, and to detect and localize rebar for bridge deck inspection

and evaluation [52] [53] [54] [55] [56].

1.2 Literature Review

In recent years, a number of spalling detection techniques have been proposed. The

proposed methods detects spalling in metro tunnels, subway networks, Bridges, and

railway surfaces. Methods for spalling localization, evaluation, and detection based

on machine vision, laser scanning, Deep learning, infrared thermography have enticed

the attraction of researchers. However, there aren’t many methods for identifying and

categorizing the severity of concrete spalling. An image processing based approach

has been proposed for detecting spalling in subway networks [57]. The color image

of spalling area has been processed to remove the noise and to find out the surface
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features of spalling area. A 3D visualization has been created from the extracted

features of spalling. To detect the severity and spalling depth the authors used pro-

jection of the spalling intensity curve and regression analysis. A concrete automatic

spalling detection technique has been suggested for metro tunnels [58]. A spalling

detection system for rail surface has been proposed based on real-time visual inspec-

tion system [59]. Two sub-systems have been used in this proposed method; one

image acquisition system and one image processing system. The image acquisition

sub-process captures data or images using a camera. The image processing sub-

process removes any abnormal condition on the images like bright or light shadow

on the rail track. The rail track images captured by the camera are segmented first

using a trail track extractor. Then the spalling on the rail surface are detected by

using the information based on histogram curves in the longitudinal direction of the

track image. This method uses a 3D cloud point that contains data on the inner

wall and outlier points to detect spalling damage on the tunnel surface. A machine

learning and vision-based approach for subways has been developed to detect and

quantify the spalling [60]. This approach combines two processes; process of extracts

important features about spalling from images by removing noise, and detects sur-

face distresses in subways. To detect spalling on the rail surface an algorithm has

been proposed [61]. This is an optical detection algorithm based on visual salience.

There is a difference between the normal surface and the distressed surface. if the

unnecessary noises can be removed form the neighborhood area of spalling then the

difference between spalling and non spalling area become more discrete. Based on

this concept the authors detects the spalling area by using a threshold value. An

automated 3D spalling defects inspection system in railway tunnel linings has been

proposed [7]. The method used laser intensity and depth information for spalling

detection. A mobile laser scanning system has been used for preparing a database
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containing intensity images and depth images of the railway tunnel linings. These

information are used to detect the volume of spalling accurately. For extracting the

concrete spalling features automatically a spalling intensity depurator network is also

proposed. The proposed work also produces 3D inspection results containing a quan-

titative analysis of the spalling defected area. To detect two crucial structural failures,

cracks and spallings automatically in buildings and bridges deep learning approaches

are developed [62]. The work has proposed three different types of Mask R-CNNs.

The damaged area in the bridges and buildings are checked continuously by using

the segmentation process. The deep CNN architectures can be extended to detect

and evaluate surface damages. A detection technique based on Faster RCNN is pro-

posed for several damage types [63]. This work taking into account surface crack,

facade spalling and concrete spalling, and severely buckled rebars and spalling with

exposed rebars. In Faster RCNN, a total of nine anchor boxes were used with three

different scales and three different aspect ratios [64]. The authors of the proposed

work have used seven different scales and eight different aspect ratios, a total to 56

anchor boxes to improve detection accuracy. Since, Automatic and early detection of

concrete damages are very crucial, image texture and a piece-wise linear stochastic

gradient descent logistic regression are used to detect automatically detect spalling in

concrete [35]. Image textures are used to extract features from images namely, statis-

tical properties of color channels, gray-level co occurrence matrix, and gray-level run

lengths. These extracted features from image texture are used to categorize condi-

tion of concrete surface. The pattern recognition process is conducted by piece-wise

linear stochastic gradient descent logistic regression to detect two classes of spalling

as non-spall and spall using image textures. A terrestrial laser scanner has been used

to simultaneously localize and quantify spalling defects on concrete surfaces [65]. The

features which have complementary properties to each other are helpful for improved
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localization and quantification of spalling defects have been developed and combined

in the proposed method. To extract the information, for example, condition of the

damage portion of investigated surface region, accurate localization, and size a de-

fect classifier is developed. The concrete structure is scanned by the terrestrial laser

scanner and a region of interest is selected. The scanner captures the 3D coordinate

information of the scanned points inside the selected region. The proposed method

then start the process of defect detection one the raw scanned data is ready. Different

types and sizes of the specimen crucially effect spalling in concrete under hydrocar-

bon fire exposure are crucial [66]. This proposed work isolated the variables that

effect concrete spalling when exposed to a hydrocarbon fire. Four different types of

specimen size were analyzed to conduct the study consisting of cylinders, columns,

and panels. In concrete mixes to determine the effect of aggregate size on concrete

spalling three aggregate sizes were used. The investigation on aggregate type has

been done as well to determine the effect on concrete spalling. Concrete spalling can

be detected by Active infrared thermography [67]. The irradiation devices namely,

halogen lamps, xenon arc lamps and far-infrared irradiation devices are used to detect

concrete spalling by heating the surface of the concrete. Active Infrared thermography

uses artificial heat to produce a temperature gradient and the passive infrared method

uses the natural conditions caused by solar radiation. The proposed work used active

infrared method since it is capable of taking measurements unhampered by meteoro-

logical conditions. Technologies that generates point cloud such as photogrammetry,

laser scanning and Light Detection and Ranging (LiDAR) has been used for surface

damage detection (spalling) [68]. The proposed work used point cloud data to detect

the spalling and quantify its key properties in Reinforced concrete columns. In first

phase of the method the noise points are removed and the coordinate system of the

captured point cloud data are calibrated and sliced into thin layers for the damaged
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areas. The second phase includes detecting the point for distressed and non distressed

area. Finally, by using linear interpolation the spalling area and lost concrete volume

are calculated.

A computer application for automatically evaluating spalling and detecting spalling

severity in concrete bridges has been developed [69]. To detect spalling this proposed

approach developed a single-objective particle swarm optimization model based on

Tsallis entropy function. Then in the second phase the severity of spalling is evalu-

ated by generating a compendious analysis of the bridge deck image using Daubechies

discrete wavelet transform feature description algorithm. The second phase conducts

a hybrid artificial neural network-particle swarm optimization model as well for the

prediction of spalling area correctly. This hybrid model is used to overcome the draw-

backs of the gradient descent algorithm. It is crucial to detect spalling and severity

correctly and in a timely manner. The concept of computer vision includes extract

numeric information from depth images, digital images, videos, and 3D point clouds,

process the information, and take action [70]. A computer vision-based approach to

classify concrete spalling severity has been developed [71]. To detect the severity the

proposed method uses concrete images. The level of severity here be categorized as

deep spall or shallow spall. The features of concrete surface including statistical mea-

surement of color channels, gray-level run length, and center-symmetric local binary

pattern helps the support vector machine classifier optimized by the jellyfish search

metaheuristic to divide the data into shallow spalling and deep spalling using a de-

cision boundary. An entropy-based automated method has been developed including

three significant parts using computer vision technologies [72]. The spalling detection

phase proposed a segmentation model that adopts a multi-objective invasive weed op-

timization and information theory-based formalism of images to detect spall. In the

feature extraction phase, to get the efficient image information an integration of sin-
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gular value decomposition and discrete wavelet transform are integrated . The third

phase includes the process of developing a rating system of spalling severity based on

its area and depth. Computer vision approaches provide solution to detect spalling

severity in concrete [73]. The proposed work used Extreme Gradient Boosting Ma-

chine and Deep Convolutional Neural Network (DCNN) to classify image data into

shallow spall and deep spall. The features extracted from image of concrete surface

to get the properties of spalling. The feature extraction methods include, local binary

pattern, center symmetric local binary pattern, local ternary pattern, and attractive

repulsive center symmetric local binary pattern. The Aquila optimizer metaheuristic

enhanced the prediction performance of Extreme Gradient Boosting Machine.

1.3 Motivation and Contribution

The maintenance of the structural health of concrete is crucial. Therefore, several

automated systems have been developed for the inspection of concrete bridges. The

detection of spalling and severity level classification have a significant impact on en-

suring the wellness of civil infrastructure. The literature review section describes

several methods for spalling detection. The severity level of spalling is important as

well, since it helps to prioritize the process of spalling maintenance. For the detec-

tion of spalling severity classification, there are very few approaches. Our proposed

approaches detect the spalling and the level of severity of the spalling. Moreover, we

have analyzed the importance of including unaffected areas in the spalling severity

level. The severity of the spalling can be determined by how deep or shallow it is, as

well as how large or small it is. The most important part is the discrete segmenta-

tion of spalling classes based on severity level in order to categorize spalling severity

with proper visual pixel mapping. As a result of the benefits of image segmentation
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techniques in various fields, we considered this problem to be one of semantic seg-

mentation. As a consequence, we have proposed two approaches to detect spalling

and classify the severity level. We have designed our proposed method around the

use of deep architecture using different encoder-decoder networks. Our proposed ap-

proaches use pixel-by-pixel multiclass semantic segmentation to classify the severity

levels. To determine the best result and combination of the deep architecture with

encoder-decoder networks, we have conducted comparative analyses.

Our main contribution of this thesis are mentioned below:

• deep architecture based method with different encoder-decoder networks to de-

tect the spalling and the severity level.

• Multi-class segmentation using pixel-wise categorization to determine the sever-

ity level of spalling.

• Qualitative and quantitative analysis of the deep architectures to get the best

result and identify the best combination with encoder-decoder networks.

• Chapter 2 delineates the deep architecture based proposed approach to detect

spalling and severity level of spalling as Large spalling, small spalling, and no-

spalling.

• Chapter 3 presents an extended approach of the method described in Chapter

2. In this proposed approach the spalling severity level have been categorized

as deep spalling, shallow spalling, and no-spalling.

• Chapter 3 further proposes a pixel-wise severity ranking method to calculate

the ranking of severity for deep spalling areas.
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1.4 Thesis Organization

We have organized this thesis as follows: Chapter 1 discusses the background concepts

related to our proposed work and the literature review that presents the related works.

Chapter 2 presents the proposed method for detecting spalling and the severity level,

including the research methodology, results, and discussion. Chapter 3 covers another

proposed method for detecting and localizing spalling and severity level, along with

the methodology of the proposed work, results, and discussion. In chapter 4, we

provided concluding remarks that summarized our research work as well as some

potential future research directions.
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Chapter 2

Spalling Severity Detection System-1

2.1 Introduction

Structural health inspection is vital to civil infrastructure, and concrete is essential to

that [33]. Monitoring any structural distress periodically on roads, bridge decks, high-

ways, and buildings is crucial. Since proper inspection and maintenance in these areas

are necessary to avoid severe, life-threatening disasters, any spalling in the concrete

can lead to serious accidents [71]. Proper inspection and timely maintenance should

be done to avoid unwanted events [74]. Another crucial part is detecting the severity

of spalling and ensuring proper maintenance based on the detection result. Different

types of concrete spalling and their severity are shown in Figure 2.1. Traditional

methods have been employed to detect and inspect structural defects. Manually de-

tecting spalling is time-consuming and prone to human errors while detecting these

anomalies on the concrete, especially if they happen at a crucial point like under the

breeze or underwater beams [34]. We need an autonomous system with little or no

human intervention that can solve the issues with traditional methods.
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Figure 2.1: Different level of spalling: (a) Large Spalling (b) Small Spalling.

Deep learning methods are instrumental in detecting and inspecting concrete

spalling. Several image processing methods have emerged. However, these approaches

produce unnecessary image features. Even though these methods are simple and com-

putationally inexpensive [75], they need a filtration process to remove unwanted fea-

tures. Sometimes, the filtration process can remove useful features and keep the ones

that are not necessary. Approaches combining machine learning and image process-

ing are computationally expensive and require preprocessing of images. Convolutional

neural networks (CNNs) are experts in this case for classifying and detecting spalling

in concrete structures. They can extract spatial-visual features from images that are

very useful to increase performance to detect structural defects [34]. The challenges

that lie in detecting and classifying the severity level of spalling are extracting fea-

tures and implementing appropriate methods in real-life applications. Furthermore,

one of the major challenges is managing large amounts of data to extract the fea-

ture from the concrete environment. Our proposed work leads to overcoming these
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challenges. While previous works have focused on surface defects like cracks and

spallings, few have addressed spalling severity detection. Spalling severity can be

measured using depth (deep or shallow), size (large or small), or no spalling at all.

The most crucial part of determining the severity level is segmenting the spalling

area in a properly identifiable manner. Therefore, we have proposed the use of deep

architecture using different encoder-decoder networks with pixel-by-pixel multiclass

semantic segmentation to classify the severity levels of spalling as no-spalling, small

spalling, or large spalling. To get the optimal deep architecture, we tested several

encoder-decoder networks to compare and analyze the performance of the detection

processes. Moreover, we have provided a comparative analysis of the deep architec-

tures with different encoder-decoder networks to predict the best result among the

proposed architectures.

The main contributions of this proposed work include:

1. An encoder-decoder-based deep architecture to detect the spalling in concrete.

2. Detection of the level of spalling severity using multi-class pixel-wise segmenta-

tion.

3. Comparative analysis between deep architectures with different encoder-decoder

networks for spalling detection and severity level.

2.2 Research Methodology

Our proposed method for detecting and classifying spalling severity level is based on

Deep encoder-decoder networks. Several encoder-decoder based deep convolutional

networks have been proposed [76] [4] [5]. In this work, we have selected SegNet [76]

and UNet [4] for our proposed architecture. Moreover, in results and discussion sec-
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tion, we discuss the comparison between these two architectures for different encoder-

decoder networks based on spalling detection and severity level classification.

Figure 2.2: Architecture for UNet with Encoder and Decoder [1]

2.2.1 UNet

The UNet architecture consists of encoder and decoder blocks. The architecture for

UNet is shown in Figure 2.2. Each encoder block contains two 3 × 3 convolutions [4].

Each of the convolutions is followed by a ReLU activation function. The encoder part

of the UNet architecture works as a feature extractor and acquires the features of the

image. The encoder network has half the spatial dimensions and doubles the number

of feature channels of each encoder block. The encoder blocks and decoder blocks are

connected via a link. The resulted output of the ReLU activation function from the

encoder blocks makes a connection to the corresponding decoder blocks. The connec-

tion between the encoder-decoder block contains two 3 × 3 convolutions, and each of

the convolutions is followed by a ReLU activation function. This connection helps the

decoder to produce better semantic features by providing supplementary information.
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The decoder network has half the number of feature channels and doubles the spatial

dimensions. The starting phase of the decoder contains a 2 × 2 transpose convo-

lution. The feature maps are passed through the connection between the encoder

and decoder using a concatenation process of convolution and the connection. In

the decoder part, a segmentation mask is generated. The resulting output produced

from the last decoder is passed through a 1 × 1 convolution with sigmoid activation.

The segmentation mask is converted into pixel-wise classification using an activation

function.

2.2.2 SegNet

The SegNet architecture consists of encoder and decoder networks and is proposed

for pixel-wise semantic segmentation. Figure 2.3 shows the architecture for SegNet

with encoder-decoder block.

Figure 2.3: Architecture for SegNet with Encoder and Decoder [2]

The encoder network has 13 convolutional layers for feature maps, leading to

object classification. The encoder network performs dense convolutions, ReLU non-
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linearity, a non-overlapping max pooling [76]. The max pooling is done with a 2 ×

2 window. The final step of the encoder is down-sampling. The decoder network

performs up-sampling and convolutions [3]. In the end, there is a softmax classifier

for each pixel. The max pooling indices of the corresponding encoder layer are called

when the decoder conducts the up-sampling. In the end, there is a K-class softmax

classifier to identify the class for each pixel. Figure 2.3 shows the architecture for

SegNet with encoder-decoder block.

2.2.3 Preparation of Dataset

In Deep network architectures, we need large amounts of data [33] to train, validate,

and test the model. Therefore, collecting the dataset is a crucial part. For our

proposed architecture, we have used a data augmentation process that alleviates the

problem of managing the data. We have collected images of different bridges for our

proposed work. We also collected the image at different times of the day to maintain

the non-uniformity of the environment. The severity level of spalling is defined based

on the spalling area and the overall area of the input images. The spalling severity

level is large if the overall affected area is more than 50%. Small spalling areas are

defined as those with an overall affected area of 1 to 49%.

For each image in our dataset, we annotated the image as non-spalling or spalling

with the levels of severity. Therefore, pixel mapping is automatically created during

the training process by labeling the image. Since the label of images follows the RGB

range, the non-spalling area and the severity levels of spalling are annotated with

RGB combinations.

After labeling every image, we have used the data augmentation process to prepare

a dataset of sub-images for every original image. For each image, the augmentation

process selects a random image and a random pixel point for the labeled image.
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According to that point, a sub-image and pixel map of the corresponding original

image are created. From the pixel point, the augmentation method generates several

sub-images randomly by flipping or rotating the pixel map.

2.2.4 Proposed Deep Architecture

We have proposed the method using two different types of deep architectures with

different encoder-decoder networks as backbone for detecting the spalling and the

level of severity. Due to the advantage and performance of deep learning-based image

segmentation architecture in several fields [77] [78] [79], we have proposed the use

of deep architectures with encoder-decoder networks to detect spalling and severity

level. First, we detect spalling and the severity level using SegNet and UNet ar-

chitectures. Finally, we discuss the comparative analysis of their performances with

different encoder-decoder networks for detecting the spalling and the level of severity.

We have considered spalling detection and severity level classification as multi-class

semantic segmentation. We have implemented the proposed deep architecture with

UNet (Figure 2.2), and SegNet (Figure 2.3). For both of the architectures, we have

used three different encoders as the backbone network: a pre-trained CNNs model,

such as the ResNet pre-trained model, Xception, or the VGG pre-trained model.

The overview of proposed deep architecture is shown in Figure 2.4. The proposed

architecture has an encoder block and a decoder block, making it an encoder-decoder

network. For the encoder part, we have employed ResNet-50, VGG-19, and Xception.

The encoder block has convolution and pooling layers. A set of down-sampled feature

maps are produced by each part of the encoder using an input picture or feature map.

The pooling layers help encoder to form integrated feature points after the feature

extracted from the convolution layers.

The difference between the decoder block and encoder block is the up-sampling
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Figure 2.4: Proposed Encoder-Decoder Based Deep Architecture

layer instead of the pooling layers. The decoder block is essentially a mirrored image

of encoder. It gradually upsamples the encoder’s output and semantically projects

into high resolution pixel space from the low-resolution identifiable feature maps. For

our proposed method, we have used the default decoder network in the decoder block

as the UNet and SegNet architectures shown in Figure 2.2, and 2.3 respectively.

The advantage of employing deep learning-based image segmentation architecture

is, the segmentation model differentiate each pixel at the pixel level as well as projects

the features with different category at various stages into the pixel space learned by

the encoder to fully segment the target region [80]. Moreover, using the concatenation

process the decoder connects to the corresponding encoder and help to reduce the

loss happened during down-sampling process. We have considered the spalling and

severity detection process as multi-class image segmentation. Therefore, as the output

or semantic segmentation of the given data from the encoder-decoder network, we get

the segmented area of spalling as no-spalling, large spalling, or small spalling.
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2.3 Result and Discussion

This section describes the comparative analysis of the proposed architecture with

different encoder-decoder networks. Moreover, we will discuss the data processing

and system configuration used for training and testing the models.

2.3.1 Experimental setup

In this study, we have collected images of different types of spalling from bridges to

train the model for classifying the severity level. These images contain various noises

like faded colors, stones, and oil spills. As a result, the training data contains noises

similar to those found in the real world. It is difficult to detect any abnormality

in the crucial corners of bridges, for example, the intersection of pillars, due to the

difference in light. The images were taken at different times of the day to avoid any

impact of light and shadow on the result of spalling detection. For the multi-class

classification problem, we used categorical cross-entropy. The Adam optimizer was

used to optimize the architecture with a learning rate of 0.001. The training and

testing ran on a system with a GTX 1080 GPU.

The GIMP software was used for the dataset to generate a pixel map. We have

augmented the images and prepared a dataset of 10000 images for training and 2000

images for validation with a resolution height × width of 1024 × 1024. For each test,

100 images were used. For each encoder-decoder network, we have used a sub-sample

size of each image with height × width: 416 × 608.

To evaluate the performance, we have used several metrics, which will be described

in the next. Since we have used an encoder-decoder-based architecture to detect the

spalling and multi-class segmentation to classify the severity level, we have com-

pared the performances of two deep encoder-decoder-based architectures for different
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encoder-decoder networks.

2.3.2 Quantitative Analysis

This section has prepared a performance-based quantitative analysis for two deep

architectures with different encoder-decoder networks. Table 2.1 shows the overall

performance for spalling detection with severity level classification. We have used Dice

loss, Precision, Recall, and Accuracy metrics for the performance analysis. The dice

loss referred to the loss level for the combination architecture with different encoder-

decoder networks. we have used Equation 2.1, 2.2, and 2.3 for Accuracy, Precision,

and Recall respectively. Here, true positive (TP) means the number of spalling pixels

correctly predicted, and true negative (TN) means the number of spaling detected

as non-spalling, which are non-spalling areas by pixel mapping. False positive (FP)

means the number of pixels detected as spalling incorrectly, and false negative (FN)

means the number of pixels detected as non-spalling erroneously.

Accuracy =
TP + TN

TP + FP + TN + FN
(2.1)

Precision =
TP

TP + FP
(2.2)

Recall =
TP

TP + FN
(2.3)

With two deep architectures UNet [4] and SegNet [76], we used VGG19, Xception

and ResNet50 as encoder-decoder networks. The results from table 2.1 show that

when we used the UNet framework with the ResNet-50 combination performed better

than any combination. Therefore, we can say that the complexity of the number of

layers does not negatively impact the performance of the UNet framework.

While using ResNet-50 with SegNet architecture provided a different set of perfor-
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Table 2.1: Quantitative performance comparison between two Deep architectures with
different encoder-decoder networks.

Method Dice Loss(%) Precision(%) Recall(%) Accuracy(%)

UNet (VGG19) 8.5 85.4 91.3 98.3

UNet (Xception) 8.6 85.5 90.3 98.2

UNet (ResNet-50) 7.9 92.3 91.9 98.5

SegNet (VGG19) 8.5 85.6 91.2 98.3

SegNet (Xception) 8.8 85.2 90.0 98.0

SegNet (ResNet-50) 8.7 85.4 90.2 98.1

mances ( Dice Loss: 8.7%, precision: 85.4%, Recall: 90.2%, and Accuracy: 98.1% ).

With SegNet architecture, the most promising results are given by the SegNet-VGG19

combination. The performances, including Dice Loss, Precision, Recall, and Accu-

racy for all the other architecture-encoder combinations, can be seen in Table 2.1. We

do not have any comparative study with previous works. We have used multi-class

segmentation for classifying the severity level as no-spalling, small, and large spalling.

Previous studies classifies severity level as shallow or deep spalling [73] [71] and pre-

dicted severity rating according to area and depth [72]. In our proposed approach,

the comparative analysis provides the best result between the deep architectures with

different encoder-decoder networks for detecting the spalling severity.

In the experimental setup section, we mentioned the validation dataset. The

validation and training loss for three deep encoder-decoder combinations are shown in

Figure 2.5, 2.6, and 2.7 (UNet with ResNet-50, UNet with VGG19, and SegNet with

VGG19, respectively). We have calculated the loss using categorical cross-entropy

(for multi-class classification). For UNet with ResNet-50 (Figure 2.5), around epoch

80, the validation loss stopped improving enough. After 85 epochs, approximately,

the training loss started converging to the validation loss.
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The UNet with VGG19 in Figure 2.6, shows that, the validation loss stopped

improving enough around epochs 80. The training loss started converging to the

validation loss around 90 epochs.

For SegNet with VGG19 (Figure 2.7), the validation loss stopped improving

enough around epochs 80. The training loss started converging to the validation

loss around 90 epochs.

For all three deep encoder-decoder combinations shown in Figure 2.5, 2.6, and 2.7

(UNet with ResNet-50, UNet with VGG19, and SegNet with VGG19, respectively),

the models fit nicely around 100 epochs. More training may result in overfitting to

the models. Therefore, we selected 100 epochs to train the models.

Figure 2.5: Training and validation loss for UNet with backbone network ResNet-50.
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Figure 2.6: Training and validation loss for UNet with backbone network VGG19.

Figure 2.7: Training and validation loss for SegNet with backbone network VGG19.
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2.3.3 Qualitative Analysis

This section shows the non-statistical evaluation of our proposed architecture for

spalling detection and the severity level. Figure 2.8 presented the qualitative perfor-

mance for the deep UNet architecture for different encoder-decoder networks. Figure

2.9 shows the performance analysis for SegNet architecture with the encoder-decoder

networks.

Table 2.1 already shows that the UNet architecture with ResNet-50 shows better

results than all the architectures. In Figure 2.8, from the left, the images are from

our dataset, then the pixel map for the images (shown as ground truth), then the

multi-class classification for each image. For a better view, we have provided separate

images for the spalling severity classification as Large spalling and Small spalling. The

area labeled with the color black has been considered as an area with no spalling. The

qualitative and quantitative analysis shows that the accuracy for detecting spalling

and severity classification is better than others. For that reason, the UNet architecture

with ResNet-50 shows results similar to ground truth.

Figure 2.8: Results shown for UNet framework with different encoder-decoder net-
works
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Figure 2.9: Results shown for SegNet framework with different encoder-decoder net-
works

In Figure 2.9, we have compared the results of SegNet architecture with encoder-

decoder networks and the image’s pixel map (ground truth). For SegNet architecture,

the VGG19 encoder shows better results than others. We have separated the pixel

map for spalling severity classification as Large spalling and Small Spalling in Figure

2.9. The no-spalling area has been labeled as color black.

We can infer from our quantitative and qualitative analysis that the UNet archi-

tecture shows comparatively better results with ResNet-50, VGG19, and Xception

encoders. The SegNet architecture with Xception encoder-decoder network shows

that the result was not very accurate compared to the ground truth.
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Chapter 3

Spalling Severity Detection System-2

3.1 Introduction

The maintenance of the structural health of concrete is crucial. It is required to con-

duct regular inspections to ensure structural integrity [81]. Therefore, the detection

of spalling and severity level classification have a significant impact on ensuring the

wellness of civil infrastructure. From the above discussion in the literature review, we

can infer that there are several methods for spalling detection. For the detection of

spalling severity levels, there are very few approaches. The severity level of spalling

is important as well, since it helps to prioritize the process of spalling maintenance.

There are certain shortcomings in the previous proposed approaches for detecting

spalling severity levels. "No-spalling" areas were not categorized as a level of severity.

To properly identify distressed surfaces and non-affected areas, these "no-spalling"

areas should be included in the severity level. Moreover, another important part is

the discrete segmentation of spalling classes with proper visual pixel mapping based

on severity level. As a result, we present two major criteria in this thesis to de-
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tect the severity level of spalling. Chapter 2 categorizes the severity level as large

spalling, small spalling, or shallow spalling. In Chapter 3, we have classified the level

of severity as how deep or shallow the spalling is, or whether there is no spalling at

all. As a result of the benefits of image segmentation techniques in various fields, we

considered this problem to be one of semantic segmentation. As a consequence, we

have proposed a method to detect spalling and classify the severity level. We have

designed our proposed method around the use of deep architecture using different

encoder-decoder networks. Our proposed approach used pixel-by-pixel multiclass se-

mantic segmentation to classify the severity levels of spalling as no-spalling, shallow

spalling, or deep spalling. Figure 3.1 shows the level of severity according to depth

of the spalling.

Figure 3.1: Different level of spalling: (a) Deep Spalling (b) Shallow Spalling (c)
No-Spalling.

To determine the best result and combination of the deep architecture with encoder-

decoder networks, we have conducted a comparative analysis. According to the sever-

ity level, deep spallings are more crucial since they affect the concrete surfaces more

alarmingly. Therefore, it is essential to analyze the affected deep spalling area more.

The affected area of a deep spalling may vary according to different sizes. Hence,

we have proposed an approach to calculate the pixel-wise ratio of the deeply affected
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spalling area with respect to the overall image area.

Our main contributions in the proposed approach are:

• A deep architecture based method with different backbone networks to detect

the spalling and the severity level.

• Multi-class segmentation using pixel-by-pixel categorization to determine the

severity level of spalling as no-spalling, shallow spalling, or deep spalling.

• A pixel-wise severity ranking method to calculate the ranking of severity for

deep spalling area.

• Qualitative and quantitative analysis to get the best result and identify the best

deep architecture combined with a backbone network.

3.2 Research Methodology

In this section, we have presented a comprehensive analysis of the different aspects of

our proposed method for detecting spalling and severity level. The approach for de-

tecting spalling and spalling severity level is based on Deep encoder-decoder networks.

In recent years, several encoder-decoder based deep convolutional networks have been

proposed; SegNet [3], UNet [4], PSPNet [5], FCN [37], DeepLab [38], DeepCrack [39].

We have selected SegNet, PSPNet, and UNet for our proposed architecture. Our

proposed approach delineated the use of SegNet, PSPNet, and UNet along with vari-

ations in the backbone networks to predict the best deep architecture-backbone net-

work pair. A comparative analysis of the performance achieved from the three deep

architectures in terms of different performance metrics has been discussed in the re-

sults and discussion section. We have employed different encoder modules leveraged
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within the context of the different deep architectures include ResNet-50 [40] [41],

VGG-19 [42], Xception [43], and MobileNet [44].

We have discussed several concepts related to our proposed approach. First, we

will go over the deep encoder-decoder architectures that we used for our proposed

architecture. The preparation of datasets and the data augmentation process will

be included in this section. Along with these discussions, our proposed methodology

for detecting spalling and severity levels using deep encoder-decoder networks will be

outlined.

3.2.1 Deep Encoder-Decoder Architecture

SegNet: The SegNet is an encoder-decoder network based architecture [3]. SegNet

architecture based image segmentation process has been used to extract abnormal skin

lesion from dermoscopy image [82], for gland segmentation from colon cancer histology

images [83], to detect dark spots in oil spill areas [84], for automated brain tumor

segmentation on multi-modal MR image [85], to detect pixel level crack detection [86],

and for the inspection and evaluation of bridge decks [87].

Figure 3.2: Overview of SegNet Architecture [3].

This architecture was proposed for pixel-wise semantic segmentation. The archi-

tecture for SegNet with encoder-decoder block is shown in Figure 3.2. The encoder
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block of SegNet architecture contains 13 convolutional layers for feature maps which

leads to object classification. The dense convolutions, ReLU non-linearity, and a non-

overlapping max pooling are performed by encoder block [76]. The max pooling is

performed with a (2×2) window. The SegNet architecture avoid the fully connected

layers to gain higher resolution feature maps at the deepest encoder output. The

down-sampling is the final step of the encoder. In the decoder block up-sampling and

convolutions are performed [3]. The decoder conducts the up-sampling and call the

max pooling indices of the corresponding encoder layer. There is a K-class softmax

classifier at the end to predict the class for each pixel.

UNet: Several works used the UNet architecture for image segmentation; brain

tumor image segmentation using UNet [88] and UNet-VGG16 [89], COVID-19 lung

CT image segmentation [90], crack detection model [91], and dental panoramic image

segmentation [92].

Figure 3.3: Overview of UNet Architecture [4] [1].

UNet is an encoder-decoder based architecture consists of encoder and decoder

blocks. Figure 3.3 shows the overview of UNet architecture. The encoder block

contains two 3 × 3 convolutions [4]. A ReLU activation function comes after each

convolution. The encoder component of the UNet architecture functions as an image

feature extractor and gathers the image’s features. Each encoder block’s number of

feature channels is doubled and its spatial dimensions are cut in half by the encoder
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network. A link connects the encoder blocks and decoder blocks together. The result-

ing output of the encoder blocks’ ReLU activation function connects to the matching

decoder blocks. Two (3×3) convolutions are used in the connection between the en-

coder and decoder blocks, and each convolution is followed by a ReLU activation

function. By providing supplementary information, this connection enables the de-

coder to build stronger semantic features. The decoder network has half the number of

feature channels and doubles the spatial dimensions. A (2×2) transpose convolution

is present in the decoder’s initial stage. Using a concatenation process of convolution

and the connection, the feature maps are transferred through the connection between

the encoder and decoder. A segmentation mask is created in the decoder section. A

(1×1) convolution with sigmoid activation is applied to the output generated by the

final decoder. Using an activation function, the segmentation mask is transformed

into pixel-wise categorization.

PSPNet: The architectural overview of PSPNet is shown in Figure 3.4. PSP-

Net is one of the most well-recognized image segmentation models. PSPNet based

semantic segmentation process used in image semantic segmentation [93], pavement

distress detection [94] and crack detection [95] [96], arms and hands segmentation

for egocentric perspective using image segmentation [97], and image segmentation for

coronary angiography [98].

This architecture has two blocks like most semantic segmentation models: PSPNet

encoder and PSPNet decoder. The PSPNet encoder consists of the CNN backbone

with dilated convolutions [99] and the pyramid pooling module. Dilated convolution

layers are used in place of the typical convolutional layers in the backbone’s last layers,

which helps to increase the receptive field. The last two blocks of the backbone contain

these dilated convolution layers. As a result, the feature that is added at the end of

the backbone has more features. During convolution, the value of dilation indicates
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the sparsity.

Figure 3.4: Overview of PSPNet Architecture [5].

In comparison to standard convolution, dilated convolution has a broader receptive

field. The size of the used context information found from the size of the receptive

field. The pyramid pooling module is the primary component of this model since

it enables the model to recognize the global context in the image and classify the

pixels according to that context. The backbone’s feature map is pooled at different

sizes, passed through a convolution layer, and then upsampled to bring the pooled

features up to the size of the original feature map. The original feature map and

the upsampled maps are finally concatenated before being sent to the decoder. This

method aggregates the overall context by fusing the information at different scales.

The decoder will then take those features and turn them into predictions by feeding

them into it’s layers once the encoder has extracted the image’s features. The decoder

is another network that processes inputted characteristics to provide predictions.
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3.2.2 Backbone Network

Several CNN’s backbone networks have made significant advancements with highest

quality performances over the past few years. These network architectures may effec-

tively extract an image’s feature mapping, providing a strong base network for seman-

tic segmentation [45]. We have used ResNet-50, VGG-19, MobileNet, and Xception

as feature extractor in our deep architectures.

ResNet-50, VGG-19, and Xception are CNN with 50 layers, 19 layers and 71 layers

deep, respectively [41] [42] [43]. MobileNet is one kind of CNN designed for mobile

and embedded vision applications [44].

3.2.3 Preparation of Dataset

Large volumes of data are required to train, validate, and test the models in deep

network architectures [33]. As a result, managing a well-balanced dataset is a crucial

step. For our proposed method, we have collected images of different buildings and

bridges. We also collected the image at different times of the day to maintain the non-

uniformity of the environment. We have employed a data augmentation procedure

for our proposed architecture to help with the data management issue. We assigned

the labels of no-spalling, deep spalling, and shallow spalling, along with the labels of

severity, to each image in our collection. As a result, during the training process, pixel

mapping is automatically generated from the labeling of the image. The no-spalling

area and the severity levels of spalling are annotated with RGB combinations because

the labeling of images follows the RGB range. The process of annotating images is

an arduous and time-consuming task [34]. We have annotated each images according

to the spalling area; Deep spalling area, shallow spalling area, and no-spalling area.

The example of the annotation process of an image is shown in Figure 3.5.
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Figure 3.5: Data Annotation (a) Image of shallow spalling (b) Annotation of shallow
spalling

Figure 3.6: Data Augmentation Process.
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We have prepared a collection of images for each original image and respective

annotated image using the data augmentation procedure. The augmentation proce-

dure chooses a random picture for each image as well as a random pixel point for

the tagged image. A selected image and pixel map of the relevant original image

are made in accordance with that. The augmentation method generates a number of

sub-images at random from the pixel locations by flipping or rotating the pixel map.

The augmentation process of a sample image is shown in Figure 3.6.

3.2.4 Proposed Architecture

We have proposed the method using three different types of deep architectures with

different backbone networks for detecting the spalling and level of severity. The

Encoder-Decoders model used in deep learning-based image segmentation technology

is trained from start to end [80]. A pre-trained CNNs model, such as the ResNet

pre-trained model, MobileNet pre-trained model, or VGG pre-trained model, is the

encoder. We have implemented this deep architecture with SegNet (Figure 3.2), UNet

(Figure 3.3), and PSPNet (Figure 3.4).

Figure 3.7: The Proposed Network Architecture Overview.

For the encoder part, we have employed ResNet-50, VGG-19, Xception, and Mo-
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bileNet. The encoder block has convolution and pooling layers. A set of down-sampled

feature maps are produced by each part of the encoder using an input picture or

feature map. The pooling layers help encoder to form integrated feature points af-

ter the feature extracted from the convolution layers. The Decoder is essentially a

mirrored encoder. The difference between the decoder block and encoder block is

the up-sampling layer instead of the pooling layers. It gradually upsamples the en-

coder’s output and semantically projects into high resolution pixel space from the

low-resolution identifiable feature maps.

The advantage of employing deep learning-based image segmentation architecture

is, the segmentation model differentiate each pixel at the pixel level as well as projects

the features with different category at various stages into the pixel space learned by

the encoder to fully segment the target region [80]. Moreover, using the concatenation

process the decoder connects to the corresponding encoder and help to reduce the

loss happened during down-sampling process. Therefore, due to the advantage and

performance of deep learning-based image segmentation architecture in several fields

[77] [78] [79], we have proposed the use of deep architectures with encoder-decoder

networks to detect spalling and severity level. We have considered the spalling and

severity detection process as multi-class image segmentation. Therefore, as the output

or semantic segmentation of the given data from the encoder-decoder network, we

get the segmented area of spalling; no-spalling, deep spalling, or shallow spalling.

Figure 3.7 shows the overview of proposed methodology to detect spalling severity.

For the deep architecture-based proposed method, we have annotated the images

of deep spalling based on the exposed reinforcing steel bars. The annotated images

are used to detect the spalling severity level. These deep spalling areas based on the

reinforcing steel bars can be large, very large, or small. Along with the depth, the

ratio of the affected deep spall areas helps provide more insight about the severity.
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For that reason, we have proposed a method to calculate the ranking of severity for

the deep spalling area. This proposed method determines the affected deep spalling

area using pixel-wise calculation. Afterwords, the ranking of deep spalling areas is

determined according to the ratio of the affected area (number of affected pixels)

with respect to the overall area (number of total pixels). We have determined the

ratio using Equation 3.1, where D_pixel provides the number of total pixel of deep

spalling area, and T_pixel counts the total number of pixel for the entire image. The

ranking of deep spalling areas is categorized as "very severe," "medium severe," and

"less severe" based on the value of the ratio using a predefined threshold.

Ratio =
D_pixel

T_pixel
(3.1)

Hence, we first detected spalling and its severity. Moreover, we discussed the

comparative analysis of the performances achieved by the deep architectures. Using

pixel-wise calculation, we determined the severity ranking for deep spalling areas.

We have provided a comparison analysis of severity ranking for three selected image

categories in the Result and Discussion section.

3.3 Result and Discussion

In this section, we are going to present the performance analysis of proposed deep

architecture with different encoder-decoder networks. Our results and experimen-

tal analysis part includes dataset preparations, experimental setup, qualitative and

quantitative analysis of proposed architectures.
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3.3.1 Experimental Setup

Our dataset contains images of spalling in buildings and bridges. These images have

different types of noises, namely, oil spills, faded colors, and stones. It is difficult to

detect any abnormality in the crucial corners of bridges, for example, the intersection

of pillars, due to the difference in light. The images were taken at different times of

the day to avoid any impact of light and shadow on the result of spalling detection.

Our proposed work trained and tested on a system with a GTX 1080 GPU. The

size of the image was (256 × 256). We have used GIMP(GNU Image Manipulation

Program) to annotate our images in pixel-by-pixel map. GIMP is one of the most

popular illustration and image editing programs available [100]. We have annotated

each image according to the spall class. The reason behind the image size (256 ×

256) is to focus on the specific spall class with any noises or light differences. Our

dataset contains different category of images: only deep spalling, deep spalling with

no-spalling area, only shallow spalling, shallow spalling with no-spalling area, and

no-spalling. The spalling area are categorized as deep spalling when the reinforcing

steel bars are exposed. The shallow spalling areas are the ones whose condition lies

between deep spalling and no-spalling. Moreover, the spalling without exposed steel

bars was considered shallow spalling for our proposed approach.

We have used an augmentation process (described in Figure 3.6) during the train-

ing and validation phases. The use of the augmentation process during the training

and validation phases has the advantage of avoiding overfitting problem [34]. The

dataset contains 10000 images for training and another 2000 images for validation.

For the multi-class classification problem, we used categorical cross-entropy. The

Adam optimizer was used to optimize the architecture with a learning rate of 0.001.

We have calculated training and validation loss like we mentioned in our first pro-

posed methodology. However, we have shown the graphs for training and validation
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loss only for our first methodology in Chapter 2. We conducted the training for 100

epochs. The testing phase was conducted on 300 images. First, we tested the pro-

posed approach with 100 images to determine the difference in performance achieved

based on the number of test images. The difference in performance for these two

datasets is negligible (approximately 0.01% for all metrics), which justifies a consis-

tent performance. We present the performance-based statistical analysis for both of

the datasets, with 100 (Table 3.3) and 300 (Table 3.2) images in the quantitative anal-

ysis section. However, we have described the performance analysis in the quantitative

analysis section, only for the dataset with 300 images, since the difference between the

two datasets is negligible. The non-statistical comparison in the qualitative analysis

section is shown only for the dataset with 300 images (Figure 3.8, 3.9, 3.10), since the

difference in performance for the two datasets is approximately 0.01% for all metrics.

The proposed approach trained for 100 epochs. Therefore, on each epoch, it was

trained on a different dataset because of the augmentation process.

Because our proposed work detects spalling and the severity level of spalling, we

have presented non-statistical qualitative analysis as well as quantitative analysis with

statistical measurements. In the quantitative analysis subsection, we have evaluated

the performance of three deep architectures with different encoder-decoder networks

using different metrics. The qualitative analysis subsection describes the performance

comparison based on the results of spalling detection and severity level.

3.3.2 Quantitative Analysis

This section presents a performance-based statistical analysis and deep learning-based

image segmentation architectures with different encoder-decoder networks. The over-

all performance for spalling detection with severity level is shown in Table 3.2. We

have used Dice loss, mIoU, Precision, Recall, and Accuracy metrics for the perfor-
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mance analysis. The dice loss referred to the loss level for the combination archi-

tecture with different encoder-decoder networks. We have performed the calculation

on Equation 3.2, 3.3, and 3.4 to find out the Accuracy, Precision, and Recall respec-

tively. From Equation 3.5, we get the calculation for IoU for each class which helps

to calculate the mean value of IoU for all classes. Table 3.1 describes the quanti-

tative measures used for evaluating the performance of deep network architectures.

The lower Dice Loss values are more appropriate since they reflect the degree of

loss incurred by the different combinations of network frameworks employed in the

proposed system for spalling and severity detection. The higher values for all other

performance measures reflect the proposed spalling and severity detection system’s

improved performance. The suggested system performs well for spalling and severity

detection as the mIoU, precision, recall, and accuracy values increase.

Table 3.1: Quantitative measures used for evaluating the performance of deep network
architectures. Spalling pixels belong to the positive class and no-spalling pixels belong
to the negative class.

Measure Definition Description

TP True Positive Number of accurately identified spalling pixels

FP False Positive Number of pixels erroneously labeled as spalling pixels

TN True Negative Number of accurately identified no-spalling pixels

FN False Negative the number of pixels detected as non-spalling erroneously

Accuracy =
TP + TN

TP + FP + TN + FN
(3.2)

Precision =
TP

TP + FP
(3.3)

Recall =
TP

TP + FN
(3.4)

IoU =
TP

TP + FN + FP
(3.5)
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The statistical performance for PSPNet is shown in Table 3.2; the result for PSP-

Net architecture with encoders namely, Xception, ResNet-50, MobileNet, and VGG-

19, respectively. According to the metrics discussed above, PSPNet architecture with

Xception gives the best result among all the combinations (e.g., Dice Loss: 5.94%,

mIoU: 88.78%, Precision: 94.67%, Recall: 98.43%, Accuracy: 96.06%).

The result for ResNet-50 is pretty close to Xception. PSPNet with default encoder-

decoder network gives comparatively poor results than with the other encoder-decoder

networks (e.g., Dice Loss: 8.33%, mIoU: 84.62%, Precision: 92.53%, Recall:

90.82%, Accuracy: 92.40%). The performance of VGG-19 with the PSPNet ar-

chitecture shows that it closely follows the performance of PSPNet with the default

encoder-decoder network (e.g., Dice Loss: 7.82%, mIoU: 85.49%, Precision:

94.44%, Recall: 92.95%, Accuracy: 92.97%). For PSPNet, the decreasing CNN

layers (during employing Xception, ResNet-50, MobileNet, VGG-19) have a negative

impact on the performance for spalling and severity level detection.

In Table 3.2 the results are shown for UNet framework with different encoder-

decoder networks with metrics Dice loss, mIoU, Precision, Recall, and Accuracy. The

results are provided for UNet architecture with encoders namely, Xception, ResNet-

50, MobileNet, and VGG-19. Similarly to the performance of PSPNet, UNet archi-

tecture provides the best result with Xception among all UNet architecture combi-

nations (e.g., Dice Loss: 7.28%, mIoU: 86.43%, Precision: 92.75%, Recall:

97.23%, Accuracy: 93.79%). The comparative analysis shows that MobileNet fol-

lows the performance of Xception quite closely. Unlike PSPNet, ResNet-50 provides

pretty low performance than Xception and MobileNet. The performance of VGG-

19 encoder is comparatively poor than the other encoder-decoder networks for UNet

architecture (e.g., Dice Loss: 18.16%, mIoU: 69.26%, Precision: 89.49%,

Recall: 86.53%, Accuracy: 88.59%).
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Table 3.2: Performance comparison among Deep architectures with different backbone
networks (Dataset with 300 images).

Base Model Encoder Dice Loss(%) mIoU(%) Precision(%) Recall(%) Accuracy(%)

SegNet - 9.58 82.49 93.99 95.37 92.40

" Xception 6.80 87.97 90.86 98.43 95.19

" ResNet-50 6.96 86.97 93.77 96.39 94.57

" MobileNet 8.49 84.35 95.36 95.79 94.23

" VGG-19 16.30 71.96 93.83 92.34 92.0

UNet - 11.78 78.90 92.73 91.42 89.65

" Xception 7.28 86.43 92.75 97.23 93.79

" ResNet-50 11.58 79.24 90.68 92.89 92.04

" MobileNet 7.36 86.29 93.91 96.13 93.52

" VGG-19 18.16 69.26 89.49 86.53 88.59

PSPNet - 8.33 84.62 92.53 90.82 92.40

" Xception 5.94 88.78 94.67 98.43 96.06

" ResNet-50 6.90 87.16 92.08 97.20 95.58

" MobileNet 7.44 86.13 91.19 93.46 93.58

" VGG-19 7.82 85.49 94.44 92.95 92.97

The comparative analysis of statistical performance of SegNet architecture with

default encoder-decoder and Xception, ResNet-50, MobileNet, and VGG-19 are shown

in Table 3.2. The SegNet architecture with VGG-19 encoder performs similarly to

the UNet architecture with VGG-19 encoder; comparatively poor results than the

other encoder-decoder networks (SegNet with VGG-19: Dice Loss: 16.30%, mIoU:

71.96%, Precision: 93.83%, Recall: 92.34%, Accuracy: 92.0%). The com-

parative analysis shows that the SegNet architecture with Xception provides the best

result among all the combinations (e.g., Dice Loss: 6.80%, mIoU: 87.97%, Pre-

cision: 90.86%, Recall: 98.43%, Accuracy: 95.19%). For SegNet architec-
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Table 3.3: Performance comparison among Deep architectures with different encoder-
decoder networks (Dataset with 100 images).

Base Model Encoder Dice Loss(%) mIoU(%) Precision(%) Recall(%) Accuracy(%)

SegNet - 9.59 82.49 93.99 95.36 92.39

" Xception 6.80 87.97 90.86 98.43 95.19

" ResNet-50 6.97 86.97 93.78 96.39 94.56

" MobileNet 8.49 84.35 95.36 95.79 94.23

" VGG-19 16.30 71.96 93.83 92.34 92.0

UNet - 11.79 78.90 92.73 91.41 89.65

" Xception 7.28 86.43 92.75 97.23 93.79

" ResNet-50 11.58 79.23 90.68 92.89 92.03

" MobileNet 7.36 86.29 93.91 96.13 93.52

" VGG-19 18.16 69.26 89.47 86.53 88.57

PSPNet - 8.33 84.62 92.53 90.82 92.40

" Xception 5.94 88.78 94.67 98.43 96.06

" ResNet-50 6.90 87.16 92.08 97.20 95.58

" MobileNet 7.45 86.13 91.19 93.45 93.58

" VGG-19 7.82 85.49 94.44 92.95 92.97

ture, the performance achieved with ResNet-50 matches the performance of Xception

pretty closely. When using Xception, ResNet-50, MobileNet, and VGG-19 with Seg-

Net architecture, the performance of spalling and severity level detection suffers as

the number of CNN layers decreases.

The above discussion and performance evaluation shown in Table 3.2 infer that

PSPNet gives comparatively good performance for detecting spalling and severity level

among the three deep architectures. For all three deep architectures, Xception gives

the best result. The VGG-19 provides comparatively poor performance compared to

other encoder-decoder networks for detecting spalling and severity level with SegNet
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and UNet architectures. For PSPNet architecture, the VGG-19 encoder and PSPNet

with the default encoder-decoder network both provide poorer performance than other

encoder-decoder networks.

Table 3.4: Results for severity ranking of deep spalling for three different image
categories.

Input Image Model Name Input
Size(No.
of Pixels)

Spalling
Size(No.
of Pixels)

Ratio(%) Severity Ranking

Category 1 Ground Truth 65536 65536 100 Very Severe

" PSPNet " 65003 99.19 Very Severe

" PSPNet(Xception) " 65536 100 Very Severe

" PSPNet(ResNet-50) " 65401 99.79 Very Severe

" PSPNet(MobileNet) " 60221 91.89 Very Severe

" PSPNet(VGG-19) " 60006 91.56 Very Severe

Category 2 Ground Truth " 20481 31.25 Less Severe

" SegNet " 20222 30.86 Less Severe

" SegNet(Xception) " 20500 31.28 Less Severe

" SegNet(ResNet-50) " 20377 31.09 Less Severe

" SegNet(MobileNet) " 20147 30.74 Less Severe

" SegNet(VGG-19) " 20110 30.69 Less Severe

Category 3 Ground Truth " 29721 45.35 Medium Severe

" UNet " 35314 53.88 Medium Severe

" UNet(Xception) " 31027 47.34 Medium Severe

" UNet(ResNet-50) " 25889 39.50 Less Severe

" UNet(MobileNet) " 32276 49.25 Medium Severe

" UNet(VGG-19) " 35080 53.52 Medium Severe

Table 3.4 shows the results for the severity ranking of deep spalling for three

image categories. We have defined the ranking as very severe, medium severe, and
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less severe.

The predefined thresholds for the severity ranking are defined as: less severe when

Ratio ≤ 0.39, medium severe when, 0.4 ≤ Ratio ≤ 0.69, and very severe when Ratio

≥ 0.7. Table 3.4 displays the ratio, which is expressed in terms of 100%. We have

300 images for testing the deep architectures for spalling severity detection. Among

the 300 images, there are around 100 images of deep spalling. We have selected three

different categories of images from the 100 deep spalling images. In Table 3.4, we

presented the results of the severity ranking for each deep architecture with different

backbone networks based on each selected image category. The Input Size displays

the total number of pixel of the image, which is same for all the images, Spalling

Size refers the number of pixels affected by deep spalling, Ratio is calculated using

Equation 3.1 and shown in 100%, and Severity Ranking determines the ranking

of severity based on the ratio and the predefined threshold value. We compared the

severity ranking to ground truth for each image category. For most of the models,

the severity ranking follows the ranking of ground truth very closely.

3.3.3 Qualitative Analysis

This section presents the qualitative analysis of the proposed approach to show the

non-statistical performance of the deep architectures with different encoder-decoder

networks. The performance evaluation of different deep architectures for detecting

spalling and severity level segmentation has been shown in Figure 3.8, Figure 3.9, and

Figure 3.10. The results are highlighting overall performance spalling and severity

detection based on deep spalling, shallow spalling, and no-spalling images.
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Figure 3.8: Results shown for PSPNet framework with different encoder-decoder
networks.
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Figure 3.9: Results shown for UNet framework with different encoder-decoder net-
works.
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Figure 3.10: Results shown for SegNet framework with different encoder-decoder
networks.
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In Figure 3.8, the results are shown for the PSPNet framework with different

encoder-decoder networks. We have mentioned earlier that the images in our dataset

are categorized as only deep spalling, deep spalling with no-spalling area, only shallow

spalling, shallow spalling with no-spalling area, and no-spalling. For the PSPNet

framework, only deep spalling, shallow spalling with no-spalling, and no-spalling areas

were chosen as input to present the performance evaluation.

In Figure 3.8, we have original image, ground truth which is pixel-by-pixel map-

ping of original image for each spalling class, result for PSPNet architecture, result

for PSPNet architecture with encoders namely, Xception, ResNet-50, MobileNet, and

VGG-19, respectively. The comparative analysis in Figure 3.8 shows that, PSPNet

architecture with Xception gives the best result among all the combinations. ResNet-

50 provides pretty similar performance to Xception. In comparison to ground truth,

MobileNet gives some inaccurate predictions for deep spalling, shallow spalling, and

no-spalling images. The PSPNet architecture with the default encoder and VGG-19

network gives comparatively poor results compared to the other encoder-decoder net-

works. Among the three severity classes of spalling, no-spalling areas are predicted

to be more accurate for all the architecture combinations.

The results are shown for the UNet framework with different encoder-decoder

networks in Figure 3.9. For the UNet framework, we have chosen here deep spalling

with no-spalling area, shallow spalling with no-spalling area, and no-spalling area as

input for performance evaluation. A sticker serves as noise in the shallow spalling

image. We have the original image, ground truth, which is a pixel-by-pixel mapping

of the original image for each spalling class, the result for UNet architecture, and the

result for UNet architecture with encoders namely, Xception, ResNet-50, MobileNet,

and VGG-19, as shown in Figure 3.9, respectively. Figure 3.9 for Xception shows

that the UNet architecture gives the best result among all the combinations. The
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comparative analysis shows that MobileNet follows the results of Xception. ResNet-

50 provides pretty low performance compared to Xception and MobileNet, unlike

PSPNet. In comparison to ground truth, the results provided by Unet architecture,

UNet architecture with ResNet-50, and VGG-19 MobileNet have some inaccurate

predictions for deep spalling, shallow spalling, and no-spalling images.

Figure 3.9 shows that the VGG-19 encoder performs poorly in comparison to the

other encoder-decoder networks.

The comparative analysis of SegNet architecture with the default encoder-decoder

and with Xception, ResNet-50, MobileNet, and VGG-19 is shown in Figure 3.10. The

categorization of images for performance evaluation of the SegNet framework was cho-

sen here as deep spalling with no-spalling area, shallow spalling with no-spalling, and

no-spalling. In Figure 3.10, we have original image of deep spalling, shallow spalling

and no-spalling area, ground truth which is pixel-by-pixel mapping of original image

for each spalling class, result for SegNet architecture, result for SegNet architecture

with encoders namely, Xception, ResNet-50, MobileNet, and VGG-19 , respectively.

The SegNet architecture with the VGG-19 encoder gives comparatively poor results

compared to other encoder-decoder networks like the UNet architecture. VGG-19

shows poor performance, especially for no-spalling and shallow spalling classes. The

no-spalling is predicted pretty accurately by most of the architecture combinations,

except for the SegNet architecture with VGG-19. In Figure 3.10, the comparative

analysis presents that the SegNet architecture with Xception gives the best result

among all the combinations for all the spalling severity classes. The results for ResNet-

50 show that it matches the result for Xception pretty closely. SegNet architecture

with the default encoder-decoder network gives poor results compared to ground

truth, especially for shallow spalling. MobileNet gives some incorrect predictions for

deep and shallow spalling areas.
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Based on the discussion above and the performance shown in Figure 3.8, 3.9, and

3.10, it can be concluded that most deep architectures with encoder-decoder networks

provide comparatively good results for no-spalling areas.

The performance evaluation for predicting deep spalling and shallow spalling

closely follows the performance evaluation for predicting no-spalling areas. The per-

formance evaluation shows that, among the three deep architectures, PSPNet shows

the best performance for detecting spalling and severity classification. The Xception

gives the best results for detecting deep spalling, shallow spalling, and no-spalling

with SegNet, UNet, and PSPNet deep architectures. Comparatively, VGG-19 shows

poor performance for detecting spalling and severity level with UNet and SegNet

architectures. For PSPNet, the VGG-19 encoder closely follows the performance of

PSPNet with the default encoder-decoder network.
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Chapter 4

Conclusion and Future Works

In this thesis, we have discussed a concrete distress type, spalling. This distress in

concrete occurs due to exposure to extreme environmental hazards and a lack of pre-

ventive measures, which creates a surface abnormality and destroys the surface look.

Aside from its appearance, this surface abnormality can lead to dangerous situations

and make the civil infrastructure unusable. Therefore, proper inspection and mainte-

nance in these areas are required to avoid any unwanted situations. Keeping this in

mind, this thesis presents deep learning and encoder-decoder-based architectures for

detecting spalling and its severity levels.

The proposed methodologies show that deep learning-based semantic segmenta-

tion technology can be employed to detect spalling and severity levels. According to

the studies presented in the literature, there are very few methods for detecting the

severity of spalling. Due to the good performance of deep learning based architectures

with encoder-decoder networks in biology image segmentation, agricultural image seg-

mentation, and medical image segmentation, we have employed this technology in civil

infrastructure to detect spalling and severity levels. The exact position of spalling

and the level of severity are crucial information for civil infrastructure. The proposed
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works introduce multi-class semantic segmentation-based approaches incorporating

different encoder-decoder networks to detect the severity level of spalling. The after-

inspection process can be different depending on the condition of the spalling. We

need precise information to detect the area of the spalling. The spalling can be large

or deep enough that it needs to be fixed immediately, or shallow or small spalling can

get priority after the large or deep spalling. Therefore, a correct prediction of the

priority of fixing the spalling is required for a cost-effective solution.

We have proposed two deep architecture-based methods to detect spalling and its

severity level. In the first method, we have detected spalling and severity levels accord-

ing to spalling size. The categorization for this spalling severity level is large spalling,

shallow spalling, and no-spalling. Two deep convolutional architectures, SegNet and

UNet, have been used for the proposed approach with three different encoder-decoder

network combinations. From the quantitative and qualitative analyses, it is shown

that the UNet architecture shows comparatively better results. We have incorporated

three different deep architectures in the second proposed methodology: SegNet, UNet,

and PSPNet. This proposed approach detects spalling and determines the severity

level based on the depth of the spalling. The spalling severity is categorized as deep

spalling, shallow spalling, and no-spalling. We have used four different backbone net-

works with three different deep architectures to get the best performance and the

best combination of deep architecture with the backbone network. For the second

approach, we get the best results from PSPNet. The proposed methodologies’ per-

formance has been demonstrated using statistical and non-statistical analysis. Both

of the proposed methodologies achieved high precision and recall rates. In the sec-

ond proposed method, we have added further analysis for the deep spalling areas.

Along with the depth, the ratio of the affected deep spall areas helps provide more

insight about the severity. For that reason, we have proposed a method to calculate
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the ranking of severity for the deep spalling area. This proposed method determines

the affected deep spalling area using pixel-wise calculation. Afterwards, the ranking

of deep spalling areas is determined according to the ratio of the affected area with

respect to the overall area. From the comparative analysis, we infer that the results

of the severity ranking follow the ground truth ranking very closely.

4.1 Published Research Article

Our proposed approach titled "Deep Architecture Based Spalling Severity Detection

System Using Encoder-Decoder Networks" described in Chapter 2 has been accepted

in the 17th International Symposium on Visual Computing (ISVC’22).

4.2 Future Work

The knowledge gained from earlier approaches served as the foundation for these

proposed works, so new ideas should also be drawn from it. We came up with the

proposal included in this thesis out of the need for an autonomous system to detect

the exact location and condition of the spalling. Our proposed approaches provide

good results for critical positions in civil infrastructure. As a result, the proposed

work can be used in autonomous systems such as climbing robots and drones for the

automatic detection of spalling in critical places of civil infrastructure.

In the future, we want to further improve our proposed deep architectures to

reduce power consumption and memory requirements while achieving better perfor-

mance in detecting spalling and severity levels. Another potential future direction for

this paper is to explore various concrete distresses using a deep architecture-based

combined detection process. Cracking and spalling are major concrete defects in civil
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infrastructure. These two types of distress are very different in nature. As the fu-

ture direction, we want to propose a deep architecture-based multi-class segmentation

approach to detect the two major defects of concrete.
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