
University of Nevada, Reno

Using Decentralized Networks and
Distributed Ledger Technologies for Foreign

Aid Distribution and Reporting

A thesis submitted in partial fulfillment of the

requirements for the degree of Master of Science in

Computer Science and Engineering

by

Hunter Petersen

Dr. Sergiu M. Dascalu, Advisor

Dr. Engin Arslan, Co-Advisor

December 2022



Copyright © 2022 by Hunter A. Petersen 

All rights reserved.



 

THE GRADUATE SCHOOL 

We recommend that the thesis  

prepared under our supervision by  

entitled

be accepted in partial fulfillment of the 

requirements for the degree of 

Advisor  

Co-advisor

Committee Member 

Graduate School Representative 

Markus Kemmelmeier , Ph.D., Dean  
Graduate School 



i

Abstract

The U.S. federal government is responsible for the creation and disbursement of

roughly $95 billion worth of international spending packages annually. Of this amount,

nearly $45 billion is allocated for the advancement of economic and humanitarian

aid initiatives. However, these programs often face challenges when attempting to

distribute funds to individual recipients in regions lacking stable government or reli-

able financial infrastructure. In addition, existing inefficiencies within the allocation

process for these awards may introduce various inequalities through bias or other

procedural complexities. As a result, many aid initiatives are not administered in

a cost-effective manner and the subsequent lack of transparent reporting makes it

difficult for the public to audit these programs and assess outcomes.

To address these challenges, a new mobile-based (Android/iOS) application has

been developed in which foreign aid awards are distributed through the transaction of

digital currency and asset-backed stable-coins on the Stellar network. Following user

registration and onboarding, the application confirms that users meet the required

qualifications through the use of a novel crowdsourcing mechanism comprised of previ-

ous recipients. Network validators are incentivized through continued awards to verify

new recipient eligibility and further expand the verification network. Once confirmed,

the application allows users to transact their awards in USDC, network-native Stellar

lumens (XLM) or transfer their tokens to other marketplaces and asset representations

with minimal transaction cost. While other available software addresses each of these

issues separately, this application combines the end-to-end transfer and housing of aid

funds into a singular process for both administrators and recipients. Furthermore, the

awarding of these funds is recorded on a public ledger that allows for detailed analy-

sis of initiative outcomes in a verifiable and trust-less manner. Finally, a simulation

script was constructed for the purposed of modeling network growth and efficiency in

relation to incentivizing future participation in validating new applicants.



ii

Dedication

I dedicate this thesis to my incredible wife Katy, our son Reed and the rest of my

family whose love and support means everything.



iii

Acknowledgments

I would like to thank my committee members, Dr. Dascalu, Dr. Badsha, Dr. Ben-

Idris and Dr. Arslan for their continued advisement throughout the writing of this

thesis. In particular, I’d like to thank Dr. Dascalu for mentoring me and inspiring

me to continue the development of this project, as well as Dr. Badsha who helped set

me on the path of pursuing the topics of distributed systems and decentralized finance.

I would also like to thank my wife for her amazing patience and understanding,

particularly throughout the last four years of pursuing this degree while simultane-

ously helping run a software startup. Additionally, a huge thanks to my parents for

encouraging me to always prioritize education and the continuing pursuit of growth

and knowledge.

Lastly, none of this would have been possible without my amazing co-founders at

OpenGrants, Sedale Turbovsky and Cody Hanson, who continue to hold unwaver-

ing beliefs that the public funding system can and will be made better through our

collective efforts.



iv

Contents

1 Introduction 1

1.1 Military and Security Concerns . . . . . . . . . . . . . . . . . . . . . 2

1.2 Economic Development and Humanitarian Initiatives . . . . . . . . . 2

1.3 Program Administration Protocols . . . . . . . . . . . . . . . . . . . 3

1.4 Proposed Solutions & Methodology . . . . . . . . . . . . . . . . . . . 4

2 Motivation and Related Work 5

2.1 Challenges in Aid Distribution . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Language and Clarity . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Application Complexity and Award Allocation . . . . . . . . . 6

2.1.3 Currency Mobilization . . . . . . . . . . . . . . . . . . . . . . 6

2.1.4 End-User Disbursement . . . . . . . . . . . . . . . . . . . . . 7

2.1.5 Auditing and Accountability . . . . . . . . . . . . . . . . . . . 7

2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Corrupt Administration . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Mismanagement . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Lack of Measurable Outcomes . . . . . . . . . . . . . . . . . . 8

2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Blockchain Governance in International Aid . . . . . . . . . . 9

2.3.2 Decentralized Autonomous Organizations (DAOs) . . . . . . . 10

2.3.3 The DAO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.4 Blockchains LLC and Innovation Zones . . . . . . . . . . . . . 11

2.3.5 Wallets & Secrets Storage . . . . . . . . . . . . . . . . . . . . 13

2.3.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 14



v

3 Application and System Design 15

3.1 Stellar Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Mobile Wallet App . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 User Registration & Account Provisioning . . . . . . . . . . . 19

3.2.2 KYC/AML Verification . . . . . . . . . . . . . . . . . . . . . 21

3.2.3 Grant Application Process . . . . . . . . . . . . . . . . . . . . 23

3.2.4 Non-custodial Wallet . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.5 Key Pair Export/Account Recovery . . . . . . . . . . . . . . . 25

3.2.6 Voting/Validation Consensus . . . . . . . . . . . . . . . . . . 26

3.3 Anchoring and Asset Tokenization . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Distribution Wallets . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Other Governance Tools . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1 Establishing Program Objectives with DAOs . . . . . . . . . . 29

3.4.2 Analysis and Auditing . . . . . . . . . . . . . . . . . . . . . . 29

4 UI Considerations for Secrets Storage 30

4.1 Introduction to Asymmetric Cryptography . . . . . . . . . . . . . . . 30

4.1.1 Public-key Encryption in Digital Currencies . . . . . . . . . . 31

4.2 Methods for Secrets Management . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Custodial Key Storage . . . . . . . . . . . . . . . . . . . . . . 34

4.2.2 Special Considerations for Custodial Management . . . . . . . 36

4.2.3 Non-custodial Key Storage . . . . . . . . . . . . . . . . . . . . 38

4.2.4 Methods for Non-custodial Storage . . . . . . . . . . . . . . . 39

4.2.5 Considerations for Non-custodial Management . . . . . . . . . 41

4.3 Reducing Complexity in Non-custodial Platforms . . . . . . . . . . . 41

4.3.1 Mnemonic Seed Phrases . . . . . . . . . . . . . . . . . . . . . 42

4.3.2 Multi-Signature Account Recovery . . . . . . . . . . . . . . . 43

5 Network Validation through Crowdsourcing 46

5.1 Designing a Simulation of Network Efficiency . . . . . . . . . . . . . . 46

5.1.1 Model Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 47



vi

5.2 Network Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.1 Initial Network State . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.2 Composition of Validator Types . . . . . . . . . . . . . . . . . 49

5.2.3 Applicant Demographics . . . . . . . . . . . . . . . . . . . . . 50

5.2.4 Voting Block Behavior . . . . . . . . . . . . . . . . . . . . . . 50

5.2.5 Incentive Structures . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.6 Establishing Validator Comprehension . . . . . . . . . . . . . 52

5.3 Modeling the Network . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3.1 Block Composition and Reputation Requirements . . . . . . . 53

5.3.2 Impact of Reputation Increments . . . . . . . . . . . . . . . . 55

5.3.3 Impact of Program Complexity . . . . . . . . . . . . . . . . . 57

5.3.4 Size of Base Pool and Voting Blocks . . . . . . . . . . . . . . 59

5.3.5 Configurations for Simulating Participation Incentives . . . . . 59

6 Conclusions and Future Work 62

6.1 Summary of Work Done . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 Limitations of Current Work and Next Steps for Implementation . . . 63

6.3 Opportunities and Practical Considerations . . . . . . . . . . . . . . 64

6.4 Future Development . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A Network Validation and Simulation Modeling - Source Code 77



vii

List of Figures

1-1 U.S. aid obligations by country [4]. . . . . . . . . . . . . . . . . . . . 3

2-1 Proposed system design for the implementation of smart contracts as

a method for voting on proposals within the eGOV-DAO [16]. . . . . 10

2-2 Promoted assets for the purpose of digital identity management by

Blockchains LLC [25]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2-3 Diagram outlining popular wallet formats and available software-based

sub-types [29]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3-1 An overview of general system design for an end-to-end aid deployment

application [30]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3-2 Visualization of front-end/backend system architecture application de-

ployment in a cloud environment [27]. . . . . . . . . . . . . . . . . . . 19

3-3 A consolidated view of the mobile app registration and onboarding flow

[27]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3-4 Visualization of the identity onboarding flow for completing KYC/AML

requirements [30]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3-5 Overview of the invite-only application process using an award code

for redemption [30]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3-6 Overview of a users interaction in transaction flows [30]. . . . . . . . 25

3-7 Process for exporting the secret account key stored in the device’s HSM

[30]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3-8 Process for existing validators to evaluate and vote on new aid recipi-

ents [30]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



viii

4-1 Asymmetric encryption communication flow [41]. . . . . . . . . . . . 31

4-2 Transaction structure of the Bitcoin network [44]. . . . . . . . . . . . 33

4-3 Comparison of key management philosophies [46]. . . . . . . . . . . . 35

4-4 Example of the Coinbase exchange interface [48]. . . . . . . . . . . . 36

4-5 Example of the Coinbase hosted wallet interface [49]. . . . . . . . . . 37

4-6 Metamask browser extension wallet (LEFT) [58], Trezor hardware wal-

let (RIGHT) [59]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4-7 Example of a 24-word mnemonic seed phrase [69]. . . . . . . . . . . . 43

4-8 One signer is required to meet the threshold in the first instance (TOP),

whereas the second requires two-of-three (BOTTOM) [38]. . . . . . 44

4-9 Example of communal recovery account structure with 3/5 threshold

[65]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5-1 Effect of reputation requirements for voting blocks on the spread of

good_citizen validator utilization (total votes per validator). . . . . 54

5-2 Effect of decreased and increased reputation increments following vot-

ing rounds on the spread of good_citizen validator utilization (total

votes per validator). . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5-3 Comparison of program complexity impact within a model having high

reputation requirements, 2.00 requirement per block of 3 validators

(total votes per validator). . . . . . . . . . . . . . . . . . . . . . . . . 57

5-4 Comparison of program complexity impact within a model having low

reputation requirements, 1.00 requirement per block of 3 validators

(total votes per validator). . . . . . . . . . . . . . . . . . . . . . . . . 58

5-5 Comparison of smaller and larger base verification pools shown with a

ratio of 10 base participants out of 10,000. . . . . . . . . . . . . . . . 60

5-6 Comparison of smaller and larger voting blocks relative to voting ac-

curacy and validator utilization. . . . . . . . . . . . . . . . . . . . . . 61



1

Chapter 1

Introduction

Each year, the federal government is responsible for awarding approximately $720

billion in domestic grant initiatives to state and local governments. While this rep-

resents the bulk of federal grant distribution, $45 billion in foreign aid grants are

allocated to international entities annually [1][2][75]. Historically, these funds have

been distributed to assist poor or developing nations but have often aligned with U.S.

foreign policy objectives in the creation of new markets and trading partners.

In its current existence, U.S. foreign assistance strategy can be traced back to

Secretary of State George C. Marshall serving under President Truman following

the conclusion of World War II. In 1948, the Marshall Plan was constructed as a

new method for distributing $13.3 billion in funding packages to rebuild Europe’s

economy following the war [3]. Largely viewed as a success, the framework was

adopted as the foundation for future aid distribution by the United States in addition

to others abroad. Over the following decades, many in government utilized assistance

programs as a means to strengthen international ties and garner support from local

citizens, most notably in Eastern Europe during the Cold War [3].

Modern foreign assistance strategy continues to advance these aims and may be

separated into two distinct areas of purpose: military objectives and humanitarian

initiatives.



2

1.1 Military and Security Concerns

Nations in this category represent the majority of top federal funding recipients but

comprise a lower percentage of overall aid spending. The stated intent of these funds is

to support military allies and provide the necessary resources to promote geopolitical

stability. At this time, Israel represents the largest single recipient of U.S. aid with

approximately $3.3 billion in military assistance awarded annually. This amount is

closely followed by Jordan, Egypt and Iraq receiving $1.72 billion, $1.46 billion and

$960 million respectively. Afghanistan previously represented the top recipient spot

with nearly $5 billion in annual assistance prior to the Taliban takeover in August of

2021 [4].

1.2 Economic Development and Humanitarian Ini-

tiatives

Even though military aid packages are heavily represented among the nations receiv-

ing the highest per-capita amounts, economic and humanitarian assistance programs

account for close to 80% of total U.S. foreign spending [1]. Of this sector, African

nations are the most represented with a combined annual obligation equivalent to

32% of all U.S. aid spending (Figure 1-1) [4].

Since the deployment of these programs, a number of positive changes have been

measured by the Brookings Institute, which has documented the following outcomes

[5]:

• Extreme poverty has fallen dramatically over the past 30 years—from 1.9 billion

people (36 percent of the world’s population) in 1990 to 736 million (10 percent)

in 2015.

• Maternal, infant, and child mortality rates have been cut in half.

• Life expectancy globally rose from 65 years in 1990 to 72 in 2017.



3

Figure 1-1: U.S. aid obligations by country [4].

• Smallpox has been defeated; polio eliminated in all but two countries; deaths

from malaria cut in half from 2000 to 2017.

• The U.S. PEPFAR program has saved 17 million lives from HIV/AIDS and

enabled 2.4 million babies to be born HIV-free.

1.3 Program Administration Protocols

Within the public sector, the majority of these programs are administered by the US

Agency for International Development (USAID). This semi-autonomous entity was

established in 1961 under the Kennedy Administration with the purpose of promot-

ing social and economic development abroad. More recently, the agency’s proposed

budget has climbed to a proposed $41 billion for the 2021 fiscal year [6]. However, a



4

significant portion of these funds is lost in transit due to corruption, theft or general

inefficiencies in the distribution.

1.4 Proposed Solutions & Methodology

Due to its inherently transparent and verifiable properties, distributed ledger tech-

nologies (DLTs)[74] demonstrate great potential to address these inefficiencies while

delivering a higher percentage of assistance to recipients. In this thesis, we introduce

a novel system for measuring and increasing outcomes of foreign capital deployment

through the development of A) an end-user mobile wallet application for managing

assets and digital currencies, and B) permissioned blockchain networks for the pur-

pose of grant administration and reporting. First, specific problems with current

program methodology will be described. Next, the consequences of these issues are

examined in real-world environments. Finally, we present the foreign aid distribution

framework and associated networks.

The remainder is structured as follows: Chapter II discusses current frameworks

for aid distribution and their challenges, motivation for developing the proposed mech-

anism, related work and contributions. Chapter III discusses the system design and

supporting infrastructure required to implement the solution. Chapter IV takes a

deeper look at non-custodial storage design and implementation, Chapter VI explores

methods for modeling crowd-sourced applicant approval and network consensus, and

lastly, Chapter VI summarizes the findings of these experiments and lays out a road

map for future deployment and expansion.



5

Chapter 2

Motivation and Related Work

Distributed technologies and the use of digital assets show great promise for improv-

ing operational outcomes in both private and public aid administration [14]. The

prevalence of inefficiencies in existing programs—specifically in the areas of spending

transparency and ease of distribution—have led to a growing body of research seeking

to further understand these limitations and propose solutions that demonstrate the

potential to mitigate these impacts. The work presented in this thesis attempts to

bridge these gaps.

2.1 Challenges in Aid Distribution

Current methods for administering domestic and international assistance programs

present challenges across all phases of administration. The problems described here

are by no means all encompassing but are representative of the primary barriers

hindering successful program design and execution.

2.1.1 Language and Clarity

While many aid packages are constructed with clear objectives, especially those that

are militarily focused, others may include language in which the desired outcomes are

either purposefully or unintentionally vague. This can especially occur in situations



6

where committee members disagree on the measurement of success or do not possess

expertise in the program subject area. One such example can be observed in the con-

troversial administration of rural broadband initiatives, during which disagreements

between the Federal Communication Commission and existing broadband providers

about the definitions of “rural” and “broadband” have led to numerous consumer

complaints of waste and inadequate service [7].

2.1.2 Application Complexity and Award Allocation

The application process for many federal grant funding programs is complex and ex-

tensive, often necessitating the involvement of specialized grant writers to increase

the chance of a successful submission. In some cases, this process may take a year

or longer while costing an organization tens of thousands of dollars with little or no

guarantee of financial return. This problem is further compounded for international

applicants who may lack familiarity with the procedures of various U.S. agencies. Fur-

thermore, bias or a lack of program familiarity among officials can lead to inefficiencies

in candidate selections, introduce inequity and lessen overall program impact.

2.1.3 Currency Mobilization

Once a candidate has been selected as an awardee, the movement of funds to the

recipients’s account poses additional logistical hurdles. Sending these funds via wire

transfer may take several days and numerous hops through the SWIFT banking net-

work to complete. These transfers will generally be subject to fees mandated by each

party’s bank, further reducing the amount available for program facilitation. If dis-

tributing awards internationally, these administration costs can increase substantially

as the transfers are subjected to potentially unfavorable exchange rates, increased fees

and greater delays [8].



7

2.1.4 End-User Disbursement

Entities selected to oversee international assistance programs often face the daunting

task of disbursing smaller currency amounts to local members of the population as

stipulated by the terms in their award. However, adequate financial infrastructure

may not exist in many areas of the globe where these programs are intended to

operate. In some cases, the failure or closing of local banks has forced citizens to rely

on hard currencies imported by boat, plane or bus [8].

2.1.5 Auditing and Accountability

Program outcomes that are inherently difficult to measure can become impossible

to quantify if transactions relevant to operational goals are not correctly recorded.

Furthermore, if documentation of disbursement is not made available for audit, inef-

fective operations may be overlooked by officials or the public and allowed to continue

indefinitely.

2.2 Motivation

Current processes for the creation and administration of international assistance pro-

grams have demonstrated the potential for financial waste, general misuse of funds or

outright fraud. These inefficiencies have the potential to create harmful and lasting

impacts among the most vulnerable populations while simultaneously damaging U.S.

credibility and trust abroad.

2.2.1 Corrupt Administration

Combined with a lack of informed oversight, corruption among local officials can

have devastating impact on the success of aid disbursement. In 2010, two humani-

tarian workers in Liberia were convicted of conspiracy to defraud the United States

following an extensive audit of local aid distribution practices [9]. According to a De-

partment of Justice indictment, officials tasked with administering USAID funds for



8

local infrastructure projects sold and profited from food supplies intended for feeding

workers.

Bribes and threats of job loss were used to conceal the practice and by the time

of discovery, it was estimated that 91% of food never reached its intended recipients.

In addition to the theft, the defendants also “directed USAID-salaried employees to

perform work on their personal compounds and further concealed these activities” [9].

2.2.2 Mismanagement

While the above scenario can be categorized as a gross breach of conduct, it is far from

an uncommon occurrence. Former United Nations Secretary General Ban Ki-Moon

estimated that 30% of assistance spending never arrived at its final destination and

that “such corruption feeds criminality, . . . impairs economies, weakens democracy

and fuels public distrust” [10].

This sentiment was well documented during the fall of Afghanistan during the

Taliban takeover in August of 2021. Many analysts credit international aid as “an

enabler of “excessive corruption within all levels of Afghan government and . . . .created

a legitimacy crisis that contributed to the rapid downfall of Kabul” [11]. However,

the catastrophic effects of mismanaged aid have been documented in regions outside

of the Middle East as well. Author Dambisa Mayo argued in her book “Dead Aid”

that a significant influx of foreign aid could be traced as a root cause of development

affliction throughout the African continent. She further states that the resulting cycle

of corruption slows overall growth while increasing poverty [12].

2.2.3 Lack of Measurable Outcomes

Further contributing to these difficulties is the absence of quantifiable program out-

comes available for assessment. While measuring total goods or services delivered

might provide an upper bound for calculating total funds lost during distribution, it

cannot easily quantify the impacts of administrator incompetence or general bad luck

[13].



9

To combat corruption and better understand how to most effectively allocate aid

packages, new mechanisms must be deployed throughout the administrative process

to introduce greater transparency and traceability.

2.3 Related Work

At the time of this writing, a number of research papers have proposed various meth-

ods for utilizing distributed ledger technologies for the purpose of foreign aid gover-

nance. These bodies of work primarily focus on governance structures, enablement

of distributed technologies or a combination of both areas of study.

2.3.1 Blockchain Governance in International Aid

Bernhard Reinsberg’s 2019 publication in the Journal of Institutional Economics ex-

plored the potential effectiveness of blockchain and smart contracts as a means to

reach consensus regarding economic facts. The paper also makes the argument that

the proposed blockchain applications can be “most impactful where traditional mech-

anisms fail to efficiently reach consensus . . . and deploying blockchain technology in

semi-trusted environments at the international level avoids many of its well-known

disadvantages” [14].

However, the arguments and proposed solutions are derived from a broader, macroe-

conomic standpoint and do not necessarily consider the technological challenges in-

volved with last-mile capital deployment. Additionally, while some thought is given

to technological-based governance, the provided work does not address the frame-

works required to provide meaningful analysis of aid distribution or potential barriers

in their implementation. In contrast to Reinsberg’s generalized view of blockchain

governance, other researchers in the space have instead focused on much more specific

problems, such as staking mechanisms used in blockchains for tracking donations [15].



10

Figure 2-1: Proposed system design for the implementation of smart con-
tracts as a method for voting on proposals within the eGOV-DAO [16].

The logic is constructed to ensure that only bids meeting pre-defined cri-
teria are accepted and recorded on the blockchain, while the vote and
winningProposal functions are implemented to determine bid recipients.

2.3.2 Decentralized Autonomous Organizations (DAOs)

Other publications have proposed blockchain-based systems for various components of

foreign aid administration. While some of this research explores new methodology for

eGov-DAOs to administer government services (Figure 2-1) [16], other applications

have been put forward in the areas of refugee identity, enforcing aid commitments

and currency staking to establish program milestones [17][18]. Similar to Reinsberg’s

work, these publications tend to give greater weight to general economic theory and

do not discuss architecture for real-world deployments.

2.3.3 The DAO

One of the first (and possibly best known) attempts to implement this type of gov-

ernance tool was that of The DAO, created by the company slock.it in 2015. The



11

original intent of the organization was to raise capital for various Web 3.0-focused

projects and fund startups in the space. Specifically, the system design allowed the

Ethereum currency to be crowdsourced and held in escrow through the use of smart

contracts until such a time that the organization voted on its use and awarded the

tokens [19].

However, a known flaw in the contract code allowed hackers to continuously drain

funds from the escrow address without oversight. Governing rules allowed participants

in the DAO to withdraw their contribution at any time, but the hackers discovered

a reentrancy exploit that allowed them to continuously trigger the withdrawal before

the system could update the ledger to reflect the change in balance. This vulnerability

resulted in a theft of tokens worth $250 million USD at the time, completely emptying

the escrow pool [20][21].

Following the hack, the broader community voted to restore the stolen tokens to

the original owners through the adoption of a hard-fork in the Ethereum blockchain.

Users of the currency who refused to accept this fork continued transacting on the

original chain under the naming convention of "Ethereum Classic" [21]. While this

rollback resulted in the hackers losing their stolen Ethereum tokens, they were left

with the equivalent of $8.5 in Ethereum classic. The Ethereum hard-fork remains one

of the most significant forks in terms of reach and impact in a popular cryptocurrency

network [22].

2.3.4 Blockchains LLC and Innovation Zones

In addition to online-first communities, there have also been attempts to combine

DAO governance structure with physical infrastructure. In 2017, entrepreneur Jef-

frey Berns purchased 67,000 acres of land outside of Reno, Nevada with the inten-

tion of constructing a "Blockchain City" where records and services were adminis-

tered through decentralized technologies [23]. To aid in this development, Berns and

Blockchains LLC worked with lawmakers to begin establishing the legality of Innova-

tion Zones, which would allow the creation of "a semi-autonomous county that slowly

assumes powers of the county it’s based in and is supported by a cryptocurrency



12

known as ’stable-coin’" [24].

Figure 2-2: Promoted assets for the purpose of digital identity manage-
ment by Blockchains LLC [25].

These features are marketed as a "Web3 ID solution addressing the chal-
lenges and risks of owning your identity and having complete control over
your digital assets". The company is currently packaging digital ID and
asset management features into the development of its Web3 SDK.

However, the concept did not receive broad public support and was criticized as

an inappropriate allocation of government funds and lacking oversight [26]. After

spending more than $300 million, Berns declared that the project was on hold indefi-

nitely as of 2021, citing lack of support from citizens and local government [27]. After

acquiring the engineering team at slock.it, the company has chosen to instead focus

on the development of a Web 3.0 SDK (Figure 2-2) [28].



13

2.3.5 Wallets & Secrets Storage

The distribution of stable-coins and other digital assets typically relies heavily on

the implementation of various "wallet" applications held by the end user. Many

aspects of this technology have been researched extensively by technologists—the

underlying principals of symmetric and asymmetric cryptography have been studied

for decades—however, cryptocurrency is a relatively newer field and has only experi-

enced significant adoption over the past decade. These wallet applications can exist

in many forms and may be accessed through a singular or combination of entry points

including mobile devices, special hardware or even non-digital forms of data storage

(Figure 2-3). The structure of these applications and networks, including special con-

siderations for users that interact with them, is discussed in great detail in Chapter

IV.

Figure 2-3: Diagram outlining popular wallet formats and available
software-based sub-types [29].

While software and internet-connected "hot" wallets are more popular,
other device types such as hardware wallets (or even non-digital mediums)
also have strong appeal due to their inherent security features. In some
instances, these devices are shielded from the internet entirely and are
kept purely as "cold storage".



14

2.3.6 Contributions

While many systems for digital asset management and distributed governance have

been proposed and utilized in modern financial structures, the research presented

in this thesis seeks to combine both existing and novel use-case applications for the

purpose of deploying a comprehensive aid distribution mechanism. Specifically, the

proposed methods seek to accomplish the following:

• Establish consistent and verifiable technological pathways for aid deployment.

• Propose frameworks for meaningful spending analysis to increase program life-

cycles and efficacy.

• Explore novel crowdsourcing mechanisms to verify participant identity and pro-

gram eligibility.

• Demonstrate the potential for these mechanisms to function in real-world envi-

ronments as an effective system for large scale aid administration in challenging

environments.

In addition to this research, approximately 400 development hours were used to

test and implement a cross-platform mobile wallet application (Android/iOS) that

enables grant applicants to apply and receive awards in the form of digital USD

backed stable-coins [30]. This effort also led to the construction of internally-focused

infrastructure allowing program administrators to receive and approve applications

while simultaneously monitoring the disbursement of award funds. Lastly, a further

circa 50 hours were spent developing a fully-functioning script made available to

administrators for simulating the expected behavior and efficacy of crowdsourced

validation tools (Appendix B).



15

Chapter 3

Application and System Design

The proposed mechanism involves the coordination of multiple system architectures

to deploy a comprehensive aid distribution network. With the development of the

this infrastructure, we aim to design a seamless interface between administrators and

end-users through the use of smart contracts and asset-backed token issuance while

applying a novel consensus mechanism to validate new program participants.

Specifically, this end-to-end application and award system is comprised of three

distinct components, each fulfilling a critical role within the grant distribution process

(Figure 3-1):

Mobile Wallet App: Program applicants can use the Android/iOS mobile app

to apply for grants while successful recipients can utilize the non-custodial wallet

functionality to manage award assets on the Stellar network [30]. Furthermore, net-

work validators can approve applicants and grow the consensus pool through the use

of the shared voting feature.

Consensus Pool: To more effectively allocate funds and vet potential recipients,

previous awardees are incentivized to review new applicants and vote on their eligi-

bility. This process introduces trustless verification through network consensus while

reducing demands on program administrators and potentially eliminating the need

for dedicated application review personnel.

Anchoring & Distribution: Financial institutions are used to house traditional

dollars and issue the corresponding tokenized assets. Additionally, a central admin-



16

Figure 3-1: An overview of general system design for an end-to-end aid
deployment application [30].

This system flow chart depicts of a high level view of the entire distri-
bution process, starting with onboarding and completion of KYC/AML
requirements for end users, verification of applicant eligibility, collection
and distribution of funds and analysis of currency movement.

istrative wallet is configured for automated asset distribution and multiple wallet

providers or types may be utilized provided network compatibility is maintained.

3.1 Stellar Network

This framework has been developed on top of the Stellar network to enable the is-

suance and transacting of digital assets. Unlike popular blockchains such as Bitcoin

or Ethereum that rely on proof-based consensus mechanisms, Stellar functions as a

public-permissioned hybrid network in which ledger state is validated through feder-

ated Byzantine Agreement [31].



17

While practical Byzantine Fault Tolerance (pBFT) is widely used in private and

permissioned networks such as Hyperledger Fabric [32][33], FBA can reach network

consensus without knowledge of the complete network composition. This is achieved

through the concept of “quorum slicing”, in which validator nodes explicitly express

through federated voting rounds which other nodes they remain in agreement with

at any given moment [31].

As this method for network consensus does not require intensive computation or

staking, transaction costs are significantly lower in comparison to other cryptocur-

rencies. This feature has allowed Stellar to function as a minimal-cost alternative for

international currency transfers as it offers a number of advantages over traditional

wiring services [8][34]:

• Exchange rates may be resolved through Automated Market Makers (AMMs),

minimizing or eliminating loss through unfavorable rates.

• Transfers are resolved in as quickly as five seconds, as compared to hours or

days.

• Wiring fees are eliminated. Instead, minimal native token fees are assessed to

discourage illegitimate transactions.

• Assets of any type may be issued and transacted on the network. This allows

citizens to cheaply access and hold other currencies as a hedge against instability

among local governments or financial institutions.

3.2 Mobile Wallet App

Given the ubiquity of smart phones across the globe, mobile wallet applications are a

critical component for moving currency throughout regions with either fragile or failed

banking infrastructure. Available for numerous currency networks and computing

devices, the primary function for this type of software is to allow for the seamless,

peer-to-peer transfer of assets between users.



18

The mobile app developed in tandem with this thesis provides core send and re-

ceive functionality, yet this feature is one of many required to enable a comprehensive

platform for end-user grant distribution. As such, the following features have been

developed as part of the OpenGrants mobile wallet app:

• Account Registration/User Onboarding

• KYC/AML Verification

• Submit a Grant Application

• Send/Receive/Exchange Funds

• View Transaction History

• Export Public-Private Key Pair

• Recover Account

• Validate Applicant

• FAQ/Applicant Assistance

Additionally, the following technologies have been integrated into the general sys-

tem architecture (Figure 3-2):

ReactNative: To ensure broader adoption and enhance maintainability, the

OpenGrants wallet was built on top of this popular mobile development framework

to allow for ease of deployment to both Android and iOS platforms. The exception to

this cross-compatibility is the implementation of the key storage mechanism used to

access the device’s secure hardware module—this required a custom-written interface

for each OS as to avoid any third party vulnerabilities that could potentially expose

secret keys [35].

Microsoft SQL Database: Structured data storage is utilized to store both

basic user account information, such as the email address, KYC verification attributes

and public keys. Private keys are never stored or transferred over the network from

the user’s device.



19

Microsoft .NET Framework: These REST endpoints house the necessary busi-

ness logic to record user registration, handle application submissions and process

award distributions.

Amazon Web Services (AWS): All server-side infrastructure is cloud-based,

utilizing services such as API Gateway and Lambda to process application calls,

Relational Database Server to hose the MSSQL instance and Key Management Service

(KMS) to securely house administrative key pairs.

Stellar Javascript SDK: These native functions are responsible for processing

all Stellar network interactions such as querying account balances, initiating asset

transfers, linking KYC attributes to account-holders and configuring multi-account

recovery servers.

Figure 3-2: Visualization of front-end/backend system architecture appli-
cation deployment in a cloud environment [27].

This flow chart depicts the user data and digital asset transportation layer
between wallet applications, the Stellar transaction network and Open-
Grants cloud infrastructure hosted on AWS.

3.2.1 User Registration & Account Provisioning

When loading the mobile app for the first time, users are greeted with a welcome

screen and prompted to create an account (Figure 3-3). Users must provide an email

address to access the app as a means to record the individual’s association to their



20

Stellar account and a user-designated password or Face-ID can be associated for app

authentication.

Figure 3-3: A consolidated view of the mobile app registration and on-
boarding flow [27].

LEFT, MIDDLE The app initiates a traditional onboarding flow and
users are asked to register for a new account or login. If an existing key is
discovered on the device’s HSM, users are redirected to the login screen.

RIGHT A sidebar navigation menu is provided to allow quick traversal
between basic wallet functions.

At the time of account creation, the Stellar SDK is called to perform two key

functions:

1. Provision a new public-private key pair on the Stellar network (i.e. create a new

"account") and record the public key (the "account address) in the database

along with basic user details.



21

2. The secret key is sent directly to the Hardware Security Module (HSM) on the

user’s device for safekeeping. At no point is it stored in a database or transferred

from the user’s device over the internet unless done so manually by choice of

the user (more on this in the following sections).

3.2.2 KYC/AML Verification

The U.S. State Department requires every U.S. based entity operating internationally

to perform Know-Your-Customer and Anti-Money-Laundering verification on any

potential recipient of funds. This requirement is intended as a means of preventing

the funding of terrorism, tax evasion or other illegal activities [36][37].

Prior to completing an application, applicants must submit basic identifying in-

formation for review. As is the case with anchoring providers, several U.S. based

companies offer KYC/AML verification as a service. These businesses often pro-

vide APIs/SDKs for the most popular mobile development frameworks and allow for

simplified integration with existing user onboarding flows.

Mandatory fields for verification can vary across different KYC/AML providers,

but many utilize some form of the following to complete automated reference/sanc-

tions checks:

• First Name

• Last Name

• Street Address

• City/State/Province

Furthermore, some providers may also ask for a date-of-birth, contact phone number

or copy of a government-issued ID if the initial verification results were inconclusive.

The mobile app guides users through KYC inputs over several steps immediately

following their account registration (Figure 3-4). This process is built directly into

the onboarding flow to make the questionnaire less intrusive while also enforcing its

completion. Users do have the ability to skip the process and submit it at a later



22

Figure 3-4: Visualization of the identity onboarding flow for completing
KYC/AML requirements [30].

LEFT, MIDDLE Users are provided with information regarding the
requirement for completing identity verification along with an explanation
of the process. The app then prompts the user to fill out required fields
such as name, physical address, contact information and birth date.

RIGHT Users can verify that their information has been submit-
ted successfully. The message also explains the functionality and
limitations of the app prior to finishing the process.

time; however, all applicants are blocked from applying for an award until verification

has been completed.

One UI/UX obstacle when designing the KYC UI/UX is that verification results

are typically not available for 1-14 days following submission. This can be challenging

for both grantees and grantors as it introduces an unwelcome hold on the application

process. Additionally, the mobile app must be configured to either poll the provider or

receive a webhook when the process is complete. To mitigate potential churn during

registration, users are allowed to interact with other features during the waiting period

and can use the wallet to send and receive funds outside of grant distributions.



23

Figure 3-5: Overview of the invite-only application process using an award
code for redemption [30].

Users can submit their pre-provisioned award code in redemption for the
specified number of USD tokens (LEFT ). If the user attempts this step
before identity verification is complete, the process is blocked (RIGHT).

3.2.3 Grant Application Process

Applications submitted on the mobile app can be validated in one of two ways. At

the program’s start, administrators will select and manually verify a small pool of

initial participants to serve as the base validation network for the program going

forward. This group will be provided with previously generated application codes

that are redeemable for the program’s set award amount (Figure 3-5).

Once the grant program has moved to the general application phase, new partic-

ipants may be validated by previous awardees via the consensus protocol. The same

distribution functions may then be used to automatically generate new single-use

codes on the fly for redemption of assets and award disbursement.

On the backend, the redemption API is executing a number of checks each time a

new award code is submitted. First, the code is cross-referenced in the awards table

to ensure that A) the entry exists and B) has an associated status of "Unclaimed".



24

Once this check is completed successfully, the code’s status is updated to "Trustline"

and the Stellar API executes a callback to update the user’s network account to reflect

the specific token as a trusted asset type.

Once this process is complete, the second part of the function re-validates the code

in the awards table. If the status is correctly set as "Trustline" and the user’s Stellar

account has the correct permissions established, the award is distributed. Finally, the

status of the code is updated in the table to "Redeemed".

While the automated nature of this process introduces some inherent risks for

abuse, the logic flow of the award distribution makes attacks on this mechanism

difficult. First, all codes must be discoverable and unclaimed in the reference dataset.

Second, multiple status updates are required to happen in sequence and within a set-

timeout limit for award distribution to complete successfully.

Lastly, recipient wallet addresses are immutable in the application API calls—once

an award has been claimed, the device, user and associated account are all marked

as ineligible awards unless a new program or application process is established. Cir-

cumventing these checks would likely require falsifying both the device and the user’s

KYC process as well as requiring the cooperation of a majority of bad-actors within

the validation network, an expensive process for all involved.

3.2.4 Non-custodial Wallet

Once funds have been distributed to the mobile app, the embedded wallet function-

ality (Figure 3-6) provides recipients with the capabilities to transact assets in the

following ways:

• Pay for goods and services to any vendors possessing a wallet address on the

Stellar network.

• Instantly transfer tokens or assets to friends and relatives.

• Receive tokens or other asset representations as payment.

• Off-ramp tokens for local hard currency if desired via web-based exchange.



25

• View complete transaction history.

Figure 3-6: Overview of a users interaction in transaction flows [30].

LEFT The home screen provides users with a snapshot of their account
balance and trustlines while providing quick access to common functions.

MIDDLE, RIGHT Users can generate a QR code for receiving
funds as well as using their device’s camera to scan codes of recipients
when sending funds. When initiating a transaction, users are required to
verify the amount and destination—this forced verification is intended to
help prevent irreversible losses.

Additional functionality, such as the QR code generator/scanner feature, provide

more user-friendly mechanisms for sending and receiving currency.

3.2.5 Key Pair Export/Account Recovery

The use of mobile devices as cryptocurrency wallets allows us to take advantage of

inherent security features for key storage and account management. Unlike exchange

or web-based custodial wallets, the mobile app takes advantage of the device’s en-

crypted storage module to sign transactions and ensure that a user’s private keys



26

never leave their physical device. In this context, full wallet functionality can be

achieved without the user ever being aware of viewing their secret key. However, an

option is provided for the user to view and export this key if desired for secondary

backup purposes (Figure 3-7).

Figure 3-7: Process for exporting the secret account key stored in the
device’s HSM [30].

Users are first informed of the absolute significance of maintaining the
privacy of this key (LEFT). If the user decides to continue the export,
the key is retrieved from the HSM and displayed for the user (RIGHT).

If access to the account is somehow lost, it may be reestablished through a secure,

multi-signature based recovery process utilizing the device as one of the verifying

parties. This negates the need for users to record and provider entire keys or nemonic

phrases and encourages user-friendly design [38].

3.2.6 Voting/Validation Consensus

One key feature of the proposed award distribution mechanism is the ability of previ-

ous recipients to validate the eligibility of new applicants. This is especially significant



27

in programs or regions where administrators have limited resources to review appli-

cations—instead, this responsibility can be distributed across a broader network of

participants. In the context of the proposed system, past aid recipients are notified

of a new request to meet with potential applicants and and submit a vote on their

eligibility directly within the app (Figure 3-8).

Figure 3-8: Process for existing validators to evaluate and vote on new aid
recipients [30].

Applicants can generate a QR code that is linked to their wallet address
and user profile (LEFT). The validator can scan the QR code with their
device camera and choose to approve or deny the applicant based on the
provided program requirements. (RIGHT).

To encourage participation and honest evaluations, prior awardees can be incen-

tivized through ongoing disbursements. In many ways, this crowd-sourced consensus

mechanism utilizes the same fundamentals as many distributed networks and cryp-

tocurrencies. While there are drawbacks and vulnerabilities, the potential reduction

in administrative overhead may outweigh a small reduction in the accuracy in appli-

cant validation. This method is discussed at great length in Chapter V.



28

3.3 Anchoring and Asset Tokenization

Prior to any distribution, funds are centrally located in a traditional bank account

where they can be made available for anchoring and token conversion. A number of

third-party organizations exist in the United States for the purpose of issuing U.S.

Dollar Coins (USDC) or other asset-backed digital currencies.

Once these funds have been tokenized and sent to an organization’s primary wallet,

they can then be designated as issuable to award recipients. While the coins remain

in circulation, the anchor maintains financial positions consistent with the token’s

represented value. If the current holder chooses to redeem the token at any point,

the physical asset is released and the token is “burned” to prevent any further use

[39][40].

3.3.1 Distribution Wallets

One important consideration for program administrators is the design of their asset

distribution infrastructure, specifically how they manage the wallet(s) that will serve

as the primary hub for asset issuance. As the proposed system enables awards to be

distributed in an automated manner, securing access to this key pair is paramount as

an undiscovered attack has the potential to quickly drain the administrator’s account.

In addition to the mitigation measures outlined in the application infrastructure, the

following steps can be taken to safeguard program assets:

• Securely housing the secret key in accordance with best practices, such as using

AWS KMS or other secure storage mechanisms.

• Setting limits on the maximum funds that can be present in the distribution

accounts at any given time.

• Establishing set frequency of daily applications accepted or awards given.



29

3.4 Other Governance Tools

The majority of this section has focused on the development of an end-user mobile

application and the associated infrastructure required for administrators to manage

award funds. In addition to these tools, however, other systems may be implemented

to function on either side of this process and introduce further efficiency.

3.4.1 Establishing Program Objectives with DAOs

The previously mentioned eGov-DAO (covered in Chapter II) can compliment blockchain-

based assistance initiatives through the use of smart contracts and traceable voting

methods. In the context of aid allocation in particular, this system has the potential

to enforce greater transparency and reduce bias throughout the initial allocation pro-

cess by expanding the number of knowledgeable participants and enacting publicly

verifiable voting practices.

3.4.2 Analysis and Auditing

To measure program outcomes, web services may be configured by administrators

to record and analyze transaction flow on the public ledger following the awarding

of funds. Many off-the-shelf chain analysis tools are compatible with private/pub-

lic/permissioned blockchains and can be used to link addresses with fund recipients

and enable effective analysis of funding efficiency.



30

Chapter 4

UI Considerations for Secrets Storage

Paramount to the successful use of cryptocurrencies is the safeguarding and accessi-

bility of user secrets. With very few exceptions, these networks rely upon asymmetric

cryptography to secure user accounts while simultaneously proving the validity of

their transaction activity to the greater network. This key-pair acts as both the

foundation and gatekeeper of all user activity on the network.

4.1 Introduction to Asymmetric Cryptography

An asymmetric encryption mechanism is comprised of two parts:

1. A public key—This address may be freely shared with others on the same

network without security concerns.

2. A private key—This credential is used to sign transactions and prove own-

ership of the associated public key. Consequently, theft or loss of this key will

result in total compromise of the account.

Unlike symmetric encryption, which requires a shared secret key between both

parties to encrypt and decrypt messages, asymmetric encryption allows two entities

to securely communicate in a trustless manner. Any message encrypted with one

party’s public key may only be decrypted by the accompanying private key (Figure

4-1).



31

Figure 4-1: Asymmetric encryption communication flow [41].

Conversely, public-private key pairs may also be used to verify the source of a

message. If the sending party wishes to provide a digital signature for authenticity, a

private key may be used to encrypt the message. Any party then has the ability to

verify its legitimacy by using the sender’s public key as the decryption mechanism—if

decryption succeeds, authenticity is proven.

4.1.1 Public-key Encryption in Digital Currencies

Cryptocurrencies take asymmetric encryption one step further as a means to deter-

mine asset routing and ownership. In this context, the public key is used to identify

accounts on the network while providing an address system comparative to routing

and account numbers in traditional banking. The secret key serves a similar func-

tion as an account password or pin number, providing access to the account and its

associated assets.

The system design for a typical digital currency network can be described as the

following:

1. Key-pair generation. After producing a random number with a cryptographically-

secure, pseudo random number generator (CSPRNG), a public-private key pair

is generated by applying a sufficiently complex mathematical operation to this

number, such as elliptic curve multiplication or RSA [42]. In some networks, a



32

single private key may be used to generate multiple receiving addresses by ap-

plying a second level of calculation, while others only permit one-to-one pairing.

2. Account establishment. Currencies such as Bitcoin and Ethereum allow

new accounts to become immediately discoverable following their creation. In

contrast, Stellar requires that new accounts be funded with a base reserve in an

attempt to reduce inactive accounts on the network and minimize computation

costs [43].

3. Receiving assets. New users typically receive funds to their account through

the conversion of traditional currency from an exchange or by receiving funds

from other participants on the network.

4. Transaction creation. Following the network’s protocol structure, a sender

generates a transaction containing all required information including the recipi-

ent’s address, the asset type and quantity to transfer. Other relevant attributes

like the creation timestamp and sender’s address may be automatically added

by the network at this time. Once the transaction object has been generated,

the sender will digitally sign the request by encrypting the transaction text with

their secret key.

5. Validation. Once a transaction has been signed by the sender, it is submit-

ted to the network for review. While each currency may enforce its own set

of validation parameters, the primary task is to verify its authenticity. If the

transaction object can be successfully decrypted with the sender’s public key, it

is proven that the transaction originated from the signer’s account. Following

this, other transaction attributes may be validated, such as verifying that the

sender’s account has the required balance to cover the transaction and associ-

ated fees, or that the recipient address is a valid destination.

6. Block creation. Once validated, the textual information describing the trans-

action is fed through a one-way hashing algorithm and recorded on a decentral-

ized ledger. This information may stored in blocks via linked-list in a blockchain



33

(Figure 4-2), tables or a hybrid-type combination of the two methods.

7. Consensus. To mitigate the need for a trusted authority, the majority of

network participants must agree on a shared transaction history. This can be

achieved through a number of consensus mechanisms, with the most popular

being proof-of-work and proof-of-stake. Other variations such as Byzantine

Fault Tolerance (BFT) or Federated Byzantine Agreement (fBFT) may be used

as well [31].

Figure 4-2: Transaction structure of the Bitcoin network [44].

While various cryptocurrencies differ in network design, their choice of consensus

mechanism or their use of virtual machines to provide smart contract capabilities,

they all share the requirement that users correctly secure access to their secret key,

or at the very least, trust a third-party to perform this task for them. Failure to

safeguard this key can have disastrous consequences, as any malicious actor who may

have obtained it can achieve total control of the account. User may find their assets

transferred away from their control with little or no recourse to correct the theft.



34

4.2 Methods for Secrets Management

To provide increased security in cryptocurrency systems, the length of private keys

is usually set at 256 bits. While this complexity requirement is an effective defense

against brute force attacks, it generates random character combinations greater than

the average person can retain in memory [45]. This creates the need for a secure

storage mechanism in which the secret key can be quickly retrieved by the owner, yet

inaccessible to nefarious actors. There are two primary methods for achieving this:

(a) Custodial storage. Users rely on a third-party entity to secure their keys,

and access is usually obtained through traditional authentication methods.

This method is inherently less secure and vulnerable to hacking, but more

user-friendly.

(b) Non-custodial storage. Rather than trusting secure storage to other

parties, users are solely responsible for safeguarding their keys. Keys may

be stored in secure memory on a device such as a phone or laptop, or even

on a standalone hardware device. This method is inherently more secure

if done correctly, but is typically less user-friendly.

Each of these methods for managing user credentials comes with its own ad-

vantages and weaknesses, political implications and user-interface challenges (Figure

4-3).

4.2.1 Custodial Key Storage

The majority of first-time users interact with cryptocurrencies by means of a central-

ized exchange. These web-based services allow users to acquire digital currencies with

fiat currency (government issued tender that is not backed by physical assets like gold

or silver) [47]. The purchasing process is typically straight-forward and allows users

to quickly obtain funds through an exchange-operated wallet (Figure 4-4).

The custodial storage method provides a number of advantages in terms of pro-

moting usability and participation in cryptocurrency. First, there is no requirement



35

Figure 4-3: Comparison of key management philosophies [46].

for individual account holders to manage their account keys. Instead, the strings are

encrypted and stored in a database and later retrieved directly by the custodian to

sign transactions as needed. In some cases, there may be no keys unique to the user

at all, as their funds may be stored in a pooled wallet managed by the exchange.

In this instance, a single key pair is used to administer a shared account containing

the assets of multiple users operating on the same network. Since these users all share

a common key pair, a memo text field is required for inbound transactions to specify

the user that the funds are intended for. It is the responsibility of the exchange to

properly record transactions and allocate funds to the correct recipient in addition to

securely managing the shared account key.

Second, this storage type utilizes traditional authentication methods, often requir-

ing a username and password combined with multi-factor authentication. Should a

user lose their credentials, account access may be restored with traditional recovery

methods such as triggering a password reset via email or SMS. This is a stark contrast

to non-custodial methods, where failure to properly safeguard credentials can lead to

an irreversible loss of assets and while the mismanagement of secret keys by any type

of account holder can irreversibly revoke account access, an institutional entity with



36

Figure 4-4: Example of the Coinbase exchange interface [48].

well-designed data management structures is much less likely to misplace or destroy

them.

Third, while not a uniquely custodial benefit, exchange operated wallets are more

likely to support the management of different cryptocurrencies within a single inter-

face. These fully integrated trading platforms provide a medium for seamless con-

version between asset types while shielding users from the complexities of blockchain

interoperability. This offers an experience more typical of traditional online banking

than the futuristic feel of many decentralized payment platforms and helps drive their

popularity among new users looking to get involved with digital currencies for the

first time (Figure 4-5).

4.2.2 Special Considerations for Custodial Management

The convenience of custodial key management comes with a number of drawbacks,

many of which are in direct conflict with the founding principles of popular digi-

tal currency networks. “Not your keys, not your crypto” is a phrase often found on

internet forums and message boards. This popular mantra reflects an immovable,

underlying principle in cryptocurrency—any entity with access to an account’s se-



37

Figure 4-5: Example of the Coinbase hosted wallet interface [49].

cret key, including third-party custodians—has the ability to fully control any asset

associated with that account.

The implications of this principle are numerous. When one outsources the storage

of secret account keys to a custodian, total confidence in the organization’s secu-

rity protocols is implied. Unfortunately, many examples exist where this trust is

misplaced. On numerous occasions, hackers have exploited vulnerabilities within ex-

change platforms, resulting in enormous financial loss for their users. Authorities

estimate that the equivalent of $14B USD was stolen in 2021 alone [50]. Perhaps

the most famous example of these thefts is the 2014 hack of the Mt. Gox exchange,

which at the time handled 70% of Bitcoin transactions globally. After compromising

an auditor’s computer, hackers used stolen credentials to fraudulently transfer 25,000

BTC from 478 user accounts, worth $400,000 USD at the time [51][52].

In addition to general security concerns, users choosing to store assets in custo-

dial wallets are vulnerable to government intervention or shifting political landscapes.

During the 2021 fiscal year, the U.S. government seized nearly $1.2B worth of cryp-

tocurrency assets. This forfeiture was only made possible through the cooperation



38

of the exchange platforms—there would no vector for asset seizure had these users

instead chosen to maintain sole control of their private keys. As this trend continues,

a growing number of organizations may find themselves under legal pressure to com-

ply with demands from government authorities and surrender user credentials when

ordered [53].

While this process may be regulated by standard legal procedure in some na-

tions, the potential for oppressive governments to abuse this power and seize assets

owned by dissenting citizens remains a concern. Furthermore, exchange operators

may themselves be the target of government investigation or simply go out of busi-

ness, potentially leaving entire shared wallets in limbo. A particularly disturbing

example of this vulnerability can be observed in the failure of the Canadian exchange

QuadrigaCX.

Following the death of founder and CEO Gerald Cotton under suspicious circum-

stances, users suddenly lost access to over $250M in assets after it was determined

that no records of the account keys were accessible to the staff [54]. Given these

outcomes, one can conclude that many circumstances exist in which it is desirable for

the individual to retain sole ownership of their account as a means to protect their

funds and avoid undue seizure or theft.

4.2.3 Non-custodial Key Storage

As an alternative to the restrictions of custodial storage, a growing number of cryp-

tocurrency users are opting to take on total responsibility for the management of their

private keys. In 2021, the non-custodial BTC wallet offered by bitcoin.com reached

25 million downloads [55]. Metamask, a non-custodial browser extension wallet for

Etherium, reached 1800% annual growth and 10 million users the same year [56].

This preference for increased asset control reflects a growing trend in cryptocurrency

adoption and user sophistication.

To better appreciate this movement, it is helpful to understand that custodial

storage always requires one of two fundamentally insecure operations to manage ac-

counts:



39

(a) Shared Accounts. User accounts are not truly individual and belong to

a shared exchange account with a singular public-private key pair. Proof

of balance ownership is entirely dependent on correct allocation by the

exchange’s software systems.

(b) Host to Client Key Transfer. If client assets are not part of a shared

account, the secret key must still traverse the internet while being served

to the user by the custodian. End-to-end encryption greatly reduces these

risks, but avoiding any network exposure is preferable.

In comparison, non-custodial storage removes the requirement for trusting third-

party key management while mitigating the risks of transferring sensitive account

information. Instead, public-private key pairs are generated locally and secret keys

are stored directly on the user’s device or by another method of their own choosing.

4.2.4 Methods for Non-custodial Storage

Non-custodial platforms offer a variety of options for storing account credentials. In

most cases, these wallets are packaged as mobile applications, desktop executables, or

web browser extensions. Credentials may be housed on any type of electronic device

under direct control of the user, but each variation of this storage method requires

some form of secure access to local device memory [57].

Specifically, these wallets may provide “hot” or “cold” key storage services (Figure

4-6). For example, a non-custodial mobile wallet may store account keys in the

phone’s keychain use the hardware security module to sign transactions with help of

the network’s client-side SDK. This transaction flow may also be utilized by a desktop

wallet application that encrypts and stores keys on the local hard drive (typically

within a .dat file), or within a browser’s local storage feature.

Each of these service types is designated as hot storage—while the risk of theft is

greatly reduced given the localized scoped of the credentials—the fact that the wallet

itself is connected to the internet introduces some risk of device compromise. In

contrast “cold” storage devices, such as specialized USB wallets and some hardware



40

Figure 4-6: Metamask browser extension wallet (LEFT) [58], Trezor hard-
ware wallet (RIGHT) [59].

wallets, allow users to sign transactions without a network connection. Instead, a

separate connection is initiated at a separate time to submit the signed transaction.

However, this enhanced security comes with a substantial trade-off in usability, leading

to a decline in the popularity of user-managed cold storage [60].

It is worth mentioning that non-custodial storage can be utilized without access

to any form of electronic device following the provision of the original key pair. Most

commonly, this is performed by user’s creating hard backups of their key with pen

and paper. This form of management offers very little practical security, however,

as many users have inadvertently destroyed or misplaced these copies during routine

activities such as housecleaning or running the laundry.

To counter this, some companies offer specialized hard-copy retention services,

such as the ability to engrave keys or mnemonic recovery phrases on a piece of steel

for safe keeping [61]. While this reduces the chance of accidentally tossing one’s

credentials into the waste bin, any purely analog form of key retention will still be

vulnerable to loss or theft.



41

4.2.5 Considerations for Non-custodial Management

The concept of enabling complete control over a user’s financial assets introduces

difficult positions for governmental entities. Non-custodial accounts inherently shield

users assets from any outside influence, regardless of whether the funds were obtained

legitimately or illegally—in either case, authorities are theoretically powerless to seize

them. This constraint has led the European Union to consider an outright ban of

non-custodial wallets as means to combat the subversion of traditional Know-Your-

Customer (KYC) and Anti-Money-Laundering (AML) reporting requirements [62].

Finally, executing transactions through non-custodial platforms usually eliminates

any recourse for disputing inaccurate or fraudulent transactions. This permanence is

a feature baked into the core design of most cryptocurrency networks, as the ability

to undermine transaction finality would likely prove an easy target for exploit.

Nonetheless, many new account holders that have participated in traditional bank-

ing systems may be intimidated by this notion. While all transactions on cryptocur-

rency networks are irreversible by nature of the blockchain, custodial exchanges are

at liberty to modify their internal bookkeeping of a user’s recorded assets if they

believe that user has acted illegally or in bad faith, provided they follow local laws

and regulations.

4.3 Reducing Complexity in Non-custodial Platforms

As non-custodial wallets have grown in popularity, the occurrence of forgotten or

misplaced credentials has increased in kind. Inaccessible assets are a significant issue

within popular cryptocurrencies, with analytics firm ChainAnalysis estimating that

a fifth of all mined bitcoins ($111B - $151B USD) are lost forever as a result of

mismanaged keys [63]. This experience can prove devastating to users, many of whom

later realize they inadvertently threw away their only means of accessing millions in

digital assets. This has led to increasingly desperate recovery measures—notably, one

account owner raised $6M USD to finance a landfill excavation and locate a previously

discarded laptop containing the keys to 7500 BTC ($300M USD) [64].



42

Some industry experts suggest that the amount of lost cryptocurrency is sig-

nificantly underreported by network participants. In response to the challenges of

creating user-friendly environments for interacting with digital currencies, creator of

the Ethereum network, Vitalik Buterin states:

"It’s easy to see the social and psychological reasons why wallet security is

easy to underestimate: people naturally worry about appearing uncareful

or dumb in front of an always judgmental public, and so many keep their

experiences with their funds getting hacked to themselves. Loss of funds is

even worse, as there is a pervasive (though in my opinion very incorrect)

feeling that “there is no one to blame but yourself ” [65].

Many in the cryptocurrency community would agree that security concerns and

lack of quality UI/UX are the biggest hindrances to the usability and public adop-

tion. Many of the current recovery processes available to the average user are overly-

cumbersome or assume a significant level of technical expertise [65]. To address this,

system designers have proposed a number of novel, yet simpler methods for securing

and restoring access in the event of compromised credentials.

4.3.1 Mnemonic Seed Phrases

One of the earlier attempts to address secrets complexity in non-custodial storage

was the development of Bitcoin Improvement Protocol 0039, first proposed in 2013

by Bitcoin contributors. In combination with BIP-0032, this protocol utilizes common

language words to represent the 256-bit secret key as a 12 or 24 word seed phrase

(Figure 4-7) [66][67]. When this mnemonic sentence is submitted to a BIP-0039

compatible wallet, the algorithm is capable of deterministically regenerating the secret

key and account access may be restored [68].

BIP-0039’s developers believed that while the basic requirements for managing

account credentials were unchanged—the user is still responsible for copying down the

seed phrase and storing it securely, much like one would have to do with the actual

key—introducing human readability would simplify the process of managing account



43

credentials. Common word phrases are much less likely to be incorrectly spoken, heard

or written down in comparison to lengthy character strings. Furthermore, while it

may be optimistic to expect the average human to recall a 12 or 24 mnemonic phrase,

it stands to reason there would be a greater likelihood of this succeeding relative to

the odds of correctly inputting a 56 or 64 character key phrase from memory.

Figure 4-7: Example of a 24-word mnemonic seed phrase [69].

By introducing human readability as an alternative to complex character strings,

mnemonic sentences represent a step forward in storage UI/UX. However, the fun-

damental question of how to confidently store seed phrases still persists, with many

users resorting to insecure mediums such as pen and paper or local text files. Addi-

tionally, this protocol does not necessarily protect an account against theft—in fact,

the same capabilities that allow easier key recovery introduce new threat vectors for

hackers to exploit [70].

4.3.2 Multi-Signature Account Recovery

Most popular cryptocurrency networks support multi-signature capabilities. Specif-

ically, a multi-sig wallet functions as a joint account where multiple entities must

each approve a transaction prior to submission. Originally developed in 2013 on the

Bitcoin network, this technology enables the primary account holder to set a sign-

ing weight for each associated key as well as the minimum transaction threshold for



44

execution [38].

Figure 4-8: One signer is required to meet the threshold in the first instance
(TOP), whereas the second requires two-of-three (BOTTOM) [38].

In practice, an account configured with a threshold of 20 and a signing weight of

10 would require two keys to sign off on the transaction (Figure 4-8). Similarly, a

threshold of 1 and signing weight of 1 is the default for master accounts—no second

signer is needed. Other popular configurations are structured to require a simple

majority of signers, such as two-of-three or four-of-seven. These signing requirements

can also serve as a security feature—a hacker who obtains one of these keys will not

have sufficient authority to execute transactions on their own.

In addition to providing enhanced security capabilities, multi-sig functionality

has been proposed as a mechanism for password-less account recovery. Instead of

jointly approving and signing currency transactions, the additional accounts serve

as trustees for the primary holder. In the instance of key loss, a new address is

generated in preparation for recovery. The trustee accounts can then be called upon

to approve a special transaction in which all previously held assets are transferred to

the new account. This effectively returns all funds to the user, albeit at a different



45

Figure 4-9: Example of communal recovery account structure with 3/5
threshold [65].

address—the original address itself is still inaccessible [38]. Trustees may be comprised

of institutional servers, friend or family accounts, or simply other devices in the

possession of the primary account holder (Figure 4-9).

Multi-sig recovery addresses many of the inherent challenges to using non-custodial

wallets, as the distribution of trustees makes a successful attack unlikely in compro-

mising enough accounts to exceed the signing threshold. Furthermore, unlike most

hardware wallets, this recovery method does not introduce a single point of failure

into the storage and retrieval process. Finally, if the recovery system is properly de-

signed, it allows users to have secure and complete control over their account keys

with minimal forethought or technical expertise [65].



46

Chapter 5

Network Validation through

Crowdsourcing

In the design and deployment of the proposed grant distribution system, special

consideration is required to address fundamental challenges faced by program admin-

istrators in their ability to identify and interact with eligible aid recipients. This task

of establishing individual need can be prohibitive and lead to excessive administration

costs, improper allocation of funds and an overall reduction in program impact.

To mitigate this problem, a novel method of reputation-based crowdsourcing for

new applicant validation is introduced as a tool for determining eligibility. This mech-

anism allows previous aid recipients to alleviate certain responsibilities of regional

administrators and submit their own pass/fail recommendations to the network while

earning rewards for participation. Consequently, this feature also enables aid net-

works to function and grow in regions where direct involvement by program officials

may not be possible.

5.1 Designing a Simulation of Network Efficiency

When building a network of local validators to screen future program applicants,

it is desirable for administrators to first construct a model of estimated participant

behavior based on various environmental factors and constraints. This design serves



47

as the foundation for estimating total network efficiency and will help guide decision-

makers through the process of implementing real-world validation networks.

As the simulation is being designed, there are two primary factors that must be

quantified to create a reliable model of overall network efficiency and accuracy:

1. Validator intent: This floating point ratio represents the likelihood of a given

participant casting an honest vote for each new applicant.

2. Validator comprehension: Another floating point ratio that represents the

likelihood of a given participant having complete and total understanding of

eligibility requirements.

It is important to consider that the quantity of available inputs can greatly increase

network complexity as the validation model is constructed. However, the impact

of each of these variables can be modeled if designers allow for the use of a key

assumptions and introduce input consistency by controlling for specific variations.

5.1.1 Model Variables

The simulation model is designed to implement the following variables as program

constants:

Initial Validation Pool (integer): the number of pre-vetted participants to serve

as the foundation of the validator network.

Total Participants (integer): the expected number of all new applicants over the

life of the program.

Eligibility Ratio (float): the expected probability of each new applicant success-

fully establishing eligibility.

Validator Type (string): Designates each validator as having honest or malicious

intentions when voting (or some combination thereof).

Validator Reputation (float): value between 0 and 1 that is representative of a

validator’s voting history and success in aligning their vote with block outcomes.



48

Reputation Adjustment (float): value between 0 and 1 that determines how much

reputation is gained or lost by a validator for each agreeing or disagreeing vote.

Block Size (integer): the number of validators required to form a valid voting

block.

Block Reputation (float): the combined reputation required (total sum of all

members) to form a valid voting block.

Program Complexity (float): the difficulty in correctly interpreting or establishing

applicant eligibility for the given program requirements.

Incentive Structure (string): a designation for the type of incentive structure

used to reward voting blocks.

5.2 Network Design

Fundamentally, we can infer that the likelihood of receiving a “correct” pass/fail sub-

mission (S) can be surmised as the product of validator intent (I) and the probability

of correct program interpretation (C):

𝑆 = 𝐼 * 𝐶

While simplistic in nature, this formula can help guide complex interactions between

simulation variables and aid in designating network priorities.

5.2.1 Initial Network State

Prior to running each simulation, a number of assumptions must be established based

on the beliefs and understanding of program administrators regarding the target re-

cipient group. First, the size of the base network must be determined as to set the

INITIAL_VALIDATOR_POOL variable. In practice, this constant represents

the maximum number of initial recipients program administrators can verify them-

selves and interact with directly at the outset of the program.

To establish this validation pool, a base group of participants will be carefully



49

selected by the administering organization. Once officials have deemed them com-

pletely trustworthy and fully educated on program requirements, they are assigned a

starting reputation and clarity scores of 1.00. As the network is implemented, they

will be responsible for the formation of voting blocks until enough new validators have

gained the required reputation to participate.

Establishing the base validation pool requires sound judgement in the selection of

trustworthy participants as building the network from a foundation of predominantly

dishonest validators will have catastrophic consequences for the success of the entire

system.

5.2.2 Composition of Validator Types

Distributed systems have a fundamental requirement that the majority of its partici-

pants are honest to function. In non-permissioned networks, failure to maintain this

number is dubbed as the 51% attack where a majority of validators are actively work-

ing to compromise the network [71][72]. If operating in a permissioned network where

the size of the voting block is known, practical Byzantine Fault Tolerance (pBFT) can

be utilized so long as the number of functioning nodes is greater than 3n+1, where

n represents the total number of tolerable faulty nodes. This consensus mechanism

is typically more economical than fully trustless validation methods [32][33].

When simulating outcomes for the proposed crowdsourced validation network, it

is assumed that greater than 50% of future applicants will attempt to participate

honestly. This assumption is based on the same basic principle as other networks

that rely on it—if the majority of participants act against the best interest of the

network, the entire system is likely to fail and there will be minimal or no gain for

malicious actors.

However, the proposed network can theoretically function even if a majority of

new validators participate as malicious nodes because of the designated total honesty

of the original validator set. In this case, voting accuracy is unaffected, rather the

base participant block is called upon with greater frequency due to the lesser quantity

of reputable nodes joining the network as voting rounds progress.



50

5.2.3 Applicant Demographics

For each simulation, two assumptions must be established regarding the composition

of the applicant population. First, the percentage of valid applications as a subset

of all submissions should be estimated to the best of the administrator’s abilities.

The ELIGIBILITY_RATIO constant serves as a benchmark for measuring total

voting accuracy as well as impacting the likely increase or decrease in individual voter

reputation scores.

Second, the composition of voter intent must be estimated to determine the ap-

propriate labelling for new validators. In simplistic terms, each validator’s valida-

tor_type represents their voting intent as completely honest (good_citizen) or

entirely malicious (terrorist). However, tertiary designations such as the greedy

type may also be applicable due to the configuration of voting incentives and desire

for voters to pursue rewards over accuracy [73]. A probability spectrum can be used

to programmatically assign these designations at random when new validators are

admitted to the pool.

5.2.4 Voting Block Behavior

To process new applications, voting blocks meeting the minimum BLOCK_SIZE

requirement are formed from the current pool of validators. This process is ran-

domized to select any combination of participants to form this block provided that

the sum of their validator_reputation scores is equivalent or greater than the

BLOCK_REPUTATION requirement. If the selection fails to meet this criteria,

the group is dissolved and the process is repeated until a valid block is generated.

Once a block is formed, each validator submits their vote based on their own

intention and understanding of program guidelines:

• A good_citizen validator will always vote in accordance with their genuine

belief of the applicant’s eligibility.

• A terrorist validator will always attempt to sabotage the vote by casting a

ballot that is opposite of their genuine belief of the applicant’s eligibility.



51

• A greedy validator will always cast a vote for the decision they believe is most

likely to earn a reward regardless of whether they believe their vote is correct.

A decision is reached when a simple majority is achieved. Given this, it is manda-

tory that a given BLOCK_SIZE be at least the size of 2n+1 to ensure a majority

is achievable without the possibility of a split vote. If the result is a "yes" vote, then

the recipient is added to the validation network and a validator_type is randomly

assigned based on the designated type probability spectrum.

Lastly, each recorded vote is compared to the block consensus. If the validator

voted in accordance with the group, their reputation is increased by the REPUTA-

TION_ADJUSTMENT amount up to a maximum possible score of 1.00. If the

validator has voted against the group, their reputation is reduced until reaching a

minimum possible score of 0.

5.2.5 Incentive Structures

Allocating financial rewards in network consensus processes is a commonly utilized

method for encouraging voter participation, especially within popular cryptocurrency

networks. When administering aid programs, officials can choose to reward validators

for taking part in each round of voting to incentivize continued participation while

promoting network accuracy and availability.

The use of these reward structures relies upon certain assumptions and configu-

rations when simulating its use within the consensus network:

• Award amounts are inconsequential. Rather, the purpose of this variable

in the simulation is to account for a third validator type of greedy in which

an individual casts a vote for whatever decision believed to achieve the reward.

In reality, the specific voting award amount may have a significant impact in

driving honest participation, but can be normalized here for the sake of consis-

tency.

• Awards can have different distribution configurations. For example,

awarding votes that only align with group agreement may have a different im-



52

pact than rewarding any vote. Similarly, awarding votes regardless of the block’s

decision to admit the applicant may have different impacts than only awarding

affirmative (or even negative) voting outcomes.

5.2.6 Establishing Validator Comprehension

Due to the potentially complex eligibility requirements of different aid programs, it

can often be the case that honest validators submit incorrect votes due to misun-

derstanding applicant guidelines. In this case, the PROGRAM_COMPLEXITY

constant can be established to model the likelihood of this occurrence and it’s impact

on overall voting accuracy.

5.3 Modeling the Network

Using these architectural concepts as a guide, a series of simulations were executed

to determine possible outcomes and measure the impact of network variables in a

controlled setting. Python scripting was chosen for implementation due to the high

availability of data manipulation and visualization libraries.

For each specific subject area, the following ranges were chosen as the basis for

the simulation in an attempt to resemble real-world aid programs:

• Original Participants: 50-500 (between 0.005%-10% of the estimated total

participant group size depending on the iteration).

• Total Participants: 1,000-1,000,000.

• Validator Block Size: 3-7.

• Ratio of Validator Types: At least 51% or greater good citizen validators,

varying scale of terrorist/greedy types for the remainder.

• Program Complexity: Greater than 51% odds that participants correctly

understand eligibility requirements.



53

• Reputation Range: 0 ≤ 𝑅 ≤ 1.00 (negative reputation is not possible).

• Series Benchmarks: 100 simulations for each control set, total votes across

the set are then tallied and averaged.

A single multi-core laptop with 32GB of memory contains sufficient computing

power to execute modeling tasks based on the outlined constraints. If administra-

tors were to greatly expand the simulation’s participant pool or increase the total

quantity of voting rounds, the same scripting could be executed on inexpensive cloud

computing resources and scaled horizontally as needed.

5.3.1 Block Composition and Reputation Requirements

Two important benchmarks that should be measured by program administrators are

the size of the initial validator pool in relation to the overall participant pool as well as

the frequency in which each validator is utilized while maintaining an accurate voting

record. Theoretically, when implementing a completely trustworthy base block, com-

plete accuracy for all future votes may be achieved if the network is never expanded,

as this same group can be called upon repeatedly to form voting blocks. However,

this is likely impractical in real life, as it would create a bottleneck in new applicant

throughput and place tremendous strain on a limited set of resources.

Given this need, it is of great significance to understand how quickly new partic-

ipants can be utilized to acquire a share of voting responsibilities. Furthermore, the

impact of this network growth on overall voting accuracy must be measured against

the desire to alleviate voting frequency requirements among the original participant

group. While this growth pattern is likely to be influenced by the constraints of each

particular program, its relationship to network accuracy can be determined by the

configuration of specific model inputs.

By modifying the combined reputation score required for a valid voting block to

form, simulation designers can choose to prioritize an optimal spread of validator

utilization while placing less emphasis on voting accuracy. For instance, a majority

reputation requirement can maintain a high or even perfect accuracy score but also



54

leads to a substantial increase in original participant utilization.

Conversely, a minority reputation requirement provides a lower threshold to form-

ing new voting blocks. While this can reduce voting accuracy, it also enables a faster

introduction of new validators to the network while increasing the speed at which

voting responsibility is offloaded from the original participant pool (Figure 5-1).

Figure 5-1: Effect of reputation requirements for voting blocks on the
spread of good_citizen validator utilization (total votes per validator).

Spread of new validator utilization over 10k voting rounds using a base
pool of 500 original participants with 0.10 reputation increments (new
participant ratio of 60% good citizen, 20% terrorist, 20% greedy).

LEFT A required reputation of 2.00 for a voting block of 3 valida-
tors leads to near total voting accuracy (99.9%) but a much higher
utilization of the original validator pool (40.2 rounds on average) and a
lower utilization of new voters (2.99 rounds on average).

RIGHT A required reputation of 1.00 for a voting block of 3 val-
idators leads to a slight loss in voting accuracy (97.0%) but yields a
32(%) reduction in original validator utilization (27.33 rounds on average)
while increasing new voter participation by 21% (3.63 rounds per voter
on average).

Using a simple example, the progression of the network in both of these scenarios

is made clear. A voting block requiring perfect majority reputation (i.e. 2.00 per

group of 3 validators) ensures that early rounds of voting will have outcomes in



55

line with good_citizen type validators due to the mathematical impossibility of

selecting a group where the majority doesn’t have a perfect voting record. The

2.00/3 reputation requirement does allow room for new participants, but their vote

will always be overridden by the perfect majority. However, this process does allow

new participants to gain reputation if their vote aligns with the majority, and once

one of them has reached a perfect reputation score of 1.00, it becomes possible to

form blocks where original validators no longer comprise the majority.

In contrast, a minority reputation block requirement only requires one voter from

the base participant pool to be present in early voting rounds. This scenario po-

tentially allows new validators to quickly override the base participant, however the

chances of this happening then become dependent on other probabilistic factors such

as voter intent or interpretation of eligibility requirements. If both of these factors

are configured to have positive outcomes (> 50%), the overall loss in voting accuracy

is minimal.

5.3.2 Impact of Reputation Increments

Similar to voting block reputation requirements, the speed at which new validators

can increase or decrease their reputation score can greatly impact voting accuracy and

the rate of network growth. In the reputation block requirement of 2.00/3 scenario

outlined in the previous section, new validators gaining reputation at the rate of

+0.10 points per successful voting round will need a minimum of ten rounds before

it is possible for a majority new-validator block to form. However, if new validators

were to gain perfect reputation (+1.00) after a single successful vote, a similar effect

of rapid new-participant utilization may be achieved at the cost of voting accuracy.

Unsurprisingly, the outcome of pairing increased reputation increments with a

higher block reputation requirement is effectively similar to the combination of lower

block reputation requirements and smaller reputation increments. However, adjust-

ing these variables will have an effect on the order in which new validators become

influential voters. If a voting block of three validators requires a reputation score of

2.00 to form, the first voting round will still necessitate that two of the three partici-



56

pants are base pool. One successful round must be cleared prior to the possibility of

forming a block with only one of three with a possible reputation increment of +1.00.

If these variables are instead configured to a block_reputation of 1.00 and a

lower reputation_increment of +0.10, this scenario introduces the possibility of

a majority new-participant voting block without these validators participating in a

successful voting round whatsoever. However, when controlling for other variables

across the simulation series, the measured voting accuracy will be statistically similar

(Figure 5-2).

Figure 5-2: Effect of decreased and increased reputation increments fol-
lowing voting rounds on the spread of good_citizen validator utilization
(total votes per validator).

LEFT A reputation increment of +0.10 within a 2.00 reputation require-
ment voting block of 3 validators leads to near total voting accuracy
(99.9%) but a much higher utilization of the original validator pool (39.6
rounds on average).

RIGHT A reputation increment of +1.00 for a voting block of 3
validators leads to a slight loss in voting accuracy (93.4%) but yields a
63(%) reduction in original validator utilization (14.92 rounds on average)
.



57

5.3.3 Impact of Program Complexity

While quantifying validator intent is important for modeling expected behavior of

crowdsourced consensus networks, each existing participant’s understanding of eligi-

bility requirements for admitting new validators is also significant. In practice, these

rules can range from straightforward (i.e. applicant must reside in a certain region)

to complex or subjective (i.e. applicant must reside in a certain region and contribute

to the "greater welfare" of the community).

Figure 5-3: Comparison of program complexity impact within a model
having high reputation requirements, 2.00 requirement per block of 3
validators (total votes per validator).

LEFT A program complexity score of 1.00 (perfect understanding) leads
to near total voting accuracy (99.9%) and a relatively high utilization of
base participants (40.2).

RIGHT A program complexity score of 0.50 (random probability
of understanding) leads to no measurable loss in voting accuracy, but also
carries a high utilization of base participants (39.9).

When modeling this likelihood in a simulation series, a probability spectrum is

used to specify a true/false designation for each new validator based on the program

complexity score. A score of zero implicates that a program’s application rules are

so vague that nobody can reasonably interpret or apply and results in a "best guess"

scenario in which each validator submits their vote based on a random choice of yes



58

Figure 5-4: Comparison of program complexity impact within a model
having low reputation requirements, 1.00 requirement per block of 3 val-
idators (total votes per validator).

LEFT A program complexity score of 1.00 (perfect understanding) leads
to a voting accuracy rate of 93.5%. This accuracy level, as well as a base
validator utilization of 20.2 votes on average, can be attributed to the
relaxed block reputation requirements.

RIGHT A program complexity score of 0.50 (random probability
of understanding) leads to a voting accuracy rate of 81.5%, a significant
loss relative higher reputation blocks. Original validator utilization
remains similar with 21.7 votes cast on average.

or no. It is important to note that a complexity score of zero does not represent a

total sum of incorrect votes—exact misunderstanding actually implies perfect com-

prehension in this case—rather it represents the range of probabilities between 50%

and 100% accuracy. On the other end of the spectrum, a complexity score of 1.00 will

assign each new validator as having perfect understanding of the rules and will vote

correctly or incorrectly purely based on their honest/dishonest intent or motivation

to pursue rewards and incentives.

The impact of program complexity on overall voting accuracy is determined in

some part by validator intent. Interestingly, there is potential for these two variables

to mitigate each other to some degree. In a scenario where eligibility requirements

are as likely to be understood correctly as not, the number of bad actors theoretically



59

becomes irrelevant (dependent on the ratio of eligible to ineligible applicants)—the

impact of an honest validator’s random guess is equal to that of a dishonest one.

In a simulation where the new participant pool is majority-honest, the impact of

this score will have a varying degree of effect dependant on the reputation structure

of the voting block and subsequent reputation increments. In configurations with

stricter voting requirements, the impact of complex eligibility rules are subdued as

the base participant block leads a larger proportion of voting rounds and accuracy

is maintained similarly to if complexity scores are not implemented (Figure 5-3).

However, if reputation requirements are relaxed to encourage more rapid network

growth, the impact of program complexity is amplified and accuracy suffers to a

greater degree (Figure 5-4).

5.3.4 Size of Base Pool and Voting Blocks

When using the proposed mechanism, it is logical to design a verification network with

the maximum available number of base participants within program constraints. The

higher this number is, the less each validator will be called upon through subsequent

voting rounds as the responsibility is spread over a larger range of voters. However,

this increase does not fundamentally change the accuracy of these rounds, as the same

principals of reputation gain and block reputation requirements apply (Figure 5-5).

Similarly, increasing the size of each voting block with the same relative reputation

requirements does not lead to a measurable impact on voting accuracy (Figure 5-6).

However, it does necessitate an increase in the required participation of each validator

to function.

5.3.5 Configurations for Simulating Participation Incentives

As previously discussed in the simulation architecture design, follow-on awards can be

used to incentivize past recipients to participate in the voting and validation process

for new applicants. Specifically, when designing the simulation series, this reward

may be modeled in a number of ways dependent on available program funds and



60

Figure 5-5: Comparison of smaller and larger base verification pools shown
with a ratio of 10 base participants out of 10,000.

LEFT Using a smaller base pool of 50 participants can achieve the
same theoretical accuracy (99.9%) as a pool of 500 base participants but
requires much higher utilization of the base validator pool (254.5 rounds
on average).

RIGHT A larger pool of base participants results in quicker distri-
bution of voting responsibility (39.7 rounds on average) given the same
relative accuracy (99.9%).

relative tolerance for voting accuracy among administrators.

These reward configurations may include one or any combination of the following:

• If a voting block approves a new participant.

• If a voting block votes on a new applicant, regardless of yes/no vote outcome.

• If a validator aligns with the group outcome, regardless of yes/no group vote.

Given the potential impact of these incentives, the third validator type of greedy

may be established to represent voters that attempt to maximize financial gain over

accurate voting [73]. However, the existence of this validator type may only have a

small or negligible impact on overall accuracy as voting incentives align with accurate

outcomes and inaccurate decisions lead to the loss of opportunities to earn further

rewards.



61

Figure 5-6: Comparison of smaller and larger voting blocks relative to
voting accuracy and validator utilization.

LEFT A block formation requirement of 30 validators and 20.00 repu-
tation achieves high accuracy (99.9%) and requires greater participation
from both base participants (139.8 rounds on average) as well as new
participants (23.5 rounds on average).

RIGHT A block formation requirement of 3 validators and 2.00
reputation also achieves high accuracy (99.9%) but requires less partici-
pation from both base participants (39.9 rounds on average) as well as
new participants (1.1 rounds on average).



62

Chapter 6

Conclusions and Future Work

The current state of capital management in foreign aid is subject to significant loss

through poor program design and malicious intent. This can be the result of direct

theft and corruption by officials, vague intentions by lawmakers or simply due to

poor interpretation of program goals and guidelines by administrators. No matter the

cause, the quantity of lost capital represented by these inefficiencies is substantial and

carries devastating impacts for intended aid recipients. Fortunately, new technologies

offer an opportunity to greatly improve upon existing systems.

6.1 Summary of Work Done

The research undertaken with this thesis attempts to address many of the shortcom-

ings inherent to modern aid programs. First, by taking advantage of the fundamental

immutability of DLTs, a decentralized funding mechanism was designed to allow ad-

ministrators to award assets and monitor aid with lower overhead. This structure

incorporates numerous security measures while providing better visibility of program

outcomes for both officials and the general public.

Second, the stated research of human-computer-interaction and secret storage

led to the development and distribution of a mobile wallet app for end-users. This

application implements the Stellar protocol as a payment pathway to move currency

across borders to recipients with greater speed and economy than traditional wires.



63

This transformation of anchored digital assets allows grantees a significant amount of

flexibility in how they use their awards and can easily be converted between different

asset representations, transacted with peers or converted to traditional currency. This

freedom adds more than just convenience—it’s often a necessity to enable monetary

flow in regions with failed or non-existent financial infrastructure.

Finally, with the creation and implementation of the network validation simulation

model, administrators are provided with the ability to estimate cost and effectiveness

of utilizing past recipients to verify new applicants throughout the life-cycle of the

aid program. This method of validation enables the distribution of funds into areas

that may otherwise be inaccessible to program officials or NGOs. Given the high

correlation between extreme need for aid and geopolitical instability, the transfer of

this responsibility to the local populace can prove crucial to program success.

6.2 Limitations of Current Work and Next Steps for

Implementation

While this thesis covered the primary challenges and features of using distributed

ledger technologies as mechanisms for aid distribution, there is significant room for

further exploration within the described system as well as its auxiliary features.

First, while Android/iOS devices were chosen as the platform for the end-user

wallet applications, many potential applicants targeted by programs in developing

regions may not have access to these devices or use other hardware entirely for com-

munications, necessitating the use of an alternative payment pathway. Second, the

infrastructure designed for currency distribution in this project was simplistic in na-

ture and provides numerous opportunities for future feature design and enhanced

usability for program administrators.

Lastly, the scope of the simulations for modeling network validation growth is

constrained to ensure the discovery of likely outcomes based on the most predominant

factors influencing the success of network growth and accuracy. However, many of the



64

secondary considerations, such as validator sensitivity to incentives, types of incentive

structures or how the process of in-person voting might be affected by real-world

psychology have not been covered. These factors carry the potential to significantly

impact program outcomes if not accounted for when designing future simulations.

6.3 Opportunities and Practical Considerations

Recent advancements in blockchain technology and mobile wallet applications have

enabled trustless, cross-border transactions to occur outside of the traditional bank-

ing system. As smartphone availability and adoption continues to increase through-

out the developing world, these devices display great potential towards serving as a

low-cost method for reaching unbanked citizens, increasing financial inclusivity and

establishing pathways for deploying monetary aid to vulnerable populations.

For end users and aid recipients, these advancements do not come without concern.

As the adoption of cryptocurrencies continues to grow among the general public,

users are faced with difficult choices regarding how to safely manage their digital

assets from bad actors and ill-meaning governments. The complexity of this task

leads many to put absolute trust in third parties and custodial storage platforms,

potentially exposing funds to theft, seizure or other outside forces.

To better protect one’s assets, non-custodial storage methods are preferred to

ensure that total control of account credentials is maintained. However, failure to

secure account keys can lead to total loss if strict backup procedures are not adhered

to. Thankfully, new methods are being proposed to reduce this burden and simplify

wallet interfaces. As these recovery protocols continue to be improved, future users of

digital currencies will enjoy reduced barriers to entry and safer transaction practices.

Furthermore, recent advances in digital asset infrastructure provide great oppor-

tunity for aid administrators to quickly distribute capital to those who are most in

need. As these mechanisms are tested, deployed and improved upon, the operation

of these programs will become increasingly transparent and better understood by

governments and the public alike. Such a transition will inevitably help mitigate



65

corruption while re-establishing trust in local governance and lead to more equitable

distribution of funds as a whole.

6.4 Future Development

This thesis presents a comprehensive design for a decentralized aid distribution sys-

tem. In addition, several key subsystems are designed and deployed as fully-functional

software applications. However, to effectively implement the proposed concept and

achieve usability in real-world programs, research and development should continue

to ensure the satisfaction of the following requirements:

1. Smart contracts for aid allocation and distribution. Chapter II discusses

research topics related to this thesis, including the proposal of eGov-DAOs as

a method for distributed governance. While fully trustless allocation/distribu-

tion processes were not included as features in this release, such functionality

will likely be considered a minimum requirement for program administrators

in the future. Failure to meet this standard will leave funding programs vul-

nerable to bias and inefficient allocation regardless of the transparent processes

implemented further along the monetary pathway.

2. Creation of robust funding administration portals. Chapter III demon-

strates a lightweight application built for the purposes of consolidating donation-

s/funding pools, monitoring inbound aid applications and tracking outbound

award disbursements. However, this web app represents the minimum viable

product (MVP) for accomplishing these goals in a small-scale environment. In

practicality, program administrators will need access to a feature-rich, enterprise

grade application to meet compliance requirements, manage complex program

requirements and allow for system scalability.

3. Expansion of end-user capabilities and features. Chapters III and V

discuss the development of the end-user mobile wallet and new applicant verifi-

cation system in great detail, as this software comprises the bulk of the proposed



66

research. While these systems are comparatively feature-rich and beyond the

MVP development cycle, further UI/UX and QA testing will be required to

refine the interface and new user capabilities may be required or introduced.

4. Continued development of chain analysis visualization tools. Lastly,

this research relies upon existing, publicly available chain analysis software as

a method to trace award disbursements. While recording aid transactions on

the public ledger is a step forward in achieving spending transparency, these

tools provide minimal or no functionality to analyze the available data in a

meaningful fashion. As such, more development is required to create the ETL

processes and visualization interfaces capable of providing a clearer picture of

spending behavior to auditors and the public.



67

Bibliography

1. “US Foreign Aid by Country — Who is Getting the Most, and How Much?”,

https://www.concernusa.org/story/foreign-aid-by-country/, accessed November

24, 2021.

2. Dr. de Rugy, Mercatus Center, George Mason University, https://www.mercatus.

org/system/files/Federal-grant-aid-state-and-local-chart-analysis-pdf.pdf, accessed

November 16, 2021.

3. D. F. Runde, “U.S. Foreign Assistance in the Age of Strategic Competition”,

Center for Strategic and International Studies, May 14, 2020, https://www.csis.

org/analysis/us-foreign-assistance-age-strategic-competition, accessed Novem-

ber 22, 2021.

4. U.S. Foreign Aid by Country, https://worldpopulationreview.com/country-rankings/

us-foreign-aid-by-country, accessed November 24, 2021.

5. G. Ingram, “What Every American Should Know about Foreign Aid”, Brookings

Institute, October 02, 2019, https://www.brookings.edu/opinions/what-every-

american-should-know-about-u-s-foreign-aid/, accessed December 3, 2021.

6. “Who We Are - Our History”, United States Agency for International Devel-

opment, https://www.usaid.gov/who-we-are/usaid-history, accessed November

16, 2021

7. N. Mott, “FCC Moves to ‘Clean Up’ Rural Broadband Fund Following Com-

plaints of Waste”, PC MAG, July 28, 2021, https://www.pcmag.com/news/fcc-



68

moves-to-clean-up-rural-broadband-fund-following-complaints-of-waste, accessed

December 3, 2021.

8. M. Lockhava, G. Losa, D. Mazières, G. Hoare, N. Barry, E. Gafni, J. Jove,

R. Malinowsky, J. McCaleb, “Fast and Secure Global Payments with Stel-

lar”, Stellar Development Foundation, October, 2019, https://www.scs.stanford.

edu/~dm/home/papers/lokhava:stellar-core.pdf, accessed October 10, 2021.

9. “Former Humanitarian Workers Convicted for International Fraud Scheme”,

United States Dept. of Justice, Tuesday, November 16, 2010. https://www.

justice.gov/opa/pr/former-humanitarian-workers-convicted-international-fraud-

scheme, accessed December 6, 2021.

10. Secretary-General’s closing remarks at High-Level Panel on Accountability, Trans-

parency and Sustainable Development, July 09, 2012, https://www.un.org/sg/

en/content/sg/statement/2012-07-09/secretary-generals-closing-remarks-high-level-

panel-accountability, accessed December 1, 2021.

11. W. Azizi, “How Corruption Played a Role in the Demise of the Afghan Govern-

ment”, The Diplomat, October 13th, 2021, https://www.un.org/sg/en/content/

sg/statement/2012-07-09/secretary-generals-closing-remarks-high-level-panel-accountability,

accessed September 23, 2021.

12. Dr. Quibria, ”Foreign Aid and Corruption: Anti-corruption Strategies Need

Greater Alignment with the Objective of Aid Effectiveness”, Georgetown Jour-

nal of International Affairs, Summer/Fall 2017.

13. C, Kenny, “How Much Aid is Really Lost to Corruption?”, Center for Global

Development, January 23, 2017, https://www.cgdev.org/blog/how-much-aid-

really-lost-corruption, accessed November 29, 2021.

14. B. Reinsberg, “Blockchain Technology and the Governance of Foreign Aid”,

Journal of Institutional Economics, November 26, 2018.



69

15. W. Liu., Y. Li., X. Wang, Y. Peng, W. She, Z. Tian, "A donation tracing

blockchain model using improved DPoS consensus algorithm", Peer-to-Peer

Netw. Appl. 14, 2789–2800, 2021.

16. N. Diallo, W. Shi, L. Xu, Z. Gao, L. Chen, Y. Lu, N. Shah, L. Carranco, T.

Le, A.B. Surez, G. Turner, "eGov-DAO: A Better Government using Blockchain

based Decentralized Autonomous Organization", 2018 International Conference

on eDemocracy eGovernment (ICEDEG). IEEE, 2018.

17. J. McIsaac, J. Brulle, J. Burg, G. Tarnacki, C. Sullivan, R. Wassel, “Blockchain

Technology for Disaster and Refugee Relief Operations”, Prehospital and Dis-

aster Medicine, vol. 34, no. s1, pp. s106–s106, 2019,

18. W. Lee, “Blockchain and Foreign Aid Governance”, July 20, 2018, https://

medium.com/hashreader/blockchain-and-foreign-aid-governance-d081fb09efd9,

accessed November 5, 2021.

19. E. Frontrera, "A History of ’The DAO’ Attack", CoinMarketCap, Novem-

ber 2021, https://coinmarketcap.com/alexandria/article/a-history-of-the-dao-

hack, accessed October 12, 2022.

20. X. Zhao, Z. Chen, X. Chen, Y. Wang and C. Tang, "The DAO attack para-

doxes in propositional logic," 2017 4th International Conference on Systems and

Informatics (ICSAI), 2017, pp. 1743-1746, doi: 10.1109/ICSAI.2017.8248566.

21. S. Tikhomirov, E.Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E.Marchenko,

and Y. Alexandrov. "SmartCheck: static analysis of ethereum smart con-

tracts.", In Proceedings of the 1st International Workshop on Emerging Trends

in Software Engineering for Blockchain (WETSEB ’18), 2018, Association for

Computing Machinery, New York, NY, USA, 9–16

22. "What was ’The DAO’?", Cryptopedia Staff, Cryptopedia/Gemini, March 16,

2022, https://www.gemini.com/cryptopedia/the-dao-hack-makerdao, accessed

November 20, 2022.



70

23. J. Henry, "A Cryptocurrency Millionaire Wants to Build a Utopia in Nevada",

The New York Times, November 1, 2018, https://www.nytimes.com/2018/

11/01/technology/nevada-bitcoin-blockchain-society.html, accessed February 2,

2020.

24. R. Snyder & M. Rindels, "’Innovation Zones’ promoted by Sisolak would create

semi-autonomous county at behest of Blockchains LLC", The Nevada Indepen-

dent, February 3, 2021, https://thenevadaindependent.com/article/innovation-

zones-promoted-by-sisolak-would-create-semi-autonomous-city-at-behest-of-blockchains-

llc, accessed November 12, 2022.

25. "Digital Assets", Blockchains LLC, https://www.blockchains.com/products/

asset-management/, accessed November 14, 2022.

26. J. Smith, "Innovation Zone proposal and ’Blockchains City’ plan has skeptics.

Will they be heard?", The Nevada Independent, February 28, 2021, https://

thenevadaindependent.com/article/innovation-zone-proposal-and-blockchains-city-

plan-has-skeptics-will-they-be-heard, accessed October 22, 2022.

27. D. Rothberg, "Blockchains Inc withdraws ’Innovation Zone’ plan for Storey

County", Northern Nevada Business Weekly, October 12, 2021, https://www.

nnbw.com/news/2021/oct/12/blockchains-inc-withdraws-innovation-zone-plan-

sto/, accessed October 22, 2022.

28. C. Jentzsch, "Blockchains acquires slock.it", slock.it Blog, June 3, 2019, https:

//blog.slock.it/blockchains-acquires-slock-it-4b3a0276893d, accessed August 4,

2021.

29. "What is a Blockchain Wallet and How Does It Work?", Simplilearn, August 9,

2022, https://www.simplilearn.com/tutorials/blockchain-tutorial/blockchain-wallet,

accessed October November 1, 2022.

30. H. Petersen, OpenGrants Wallet, ©Egeria Corporation, 2022, https://apps.

apple.com/us/app/opengrants-wallet/id1617934237.



71

31. D. Mazieres, “The Stellar Consensus Protocol: A Federated Model for Internet-

level Consensus”, Stellar Development Foundation, 2015, https://www.stellar.

org/papers/stellar-consensus-protocol?locale=en, accessed August 30, 2021.

32. H. Sukhwani, J. M. Martínez, X. Chang, K. S. Trivedi and A. Rindos, "Per-

formance Modeling of PBFT Consensus Process for Permissioned Blockchain

Network (Hyperledger Fabric)," 2017 IEEE 36th Symposium on Reliable Dis-

tributed Systems (SRDS), 2017, pp. 253-255, doi: 10.1109/SRDS.2017.36.

33. T. Mitani and A. Otsuka, "Traceability in Permissioned Blockchain," in IEEE

Access, vol. 8, pp. 21573-21588, 2020, doi: 10.1109/ACCESS.2020.2969454.

34. M. Shayegan Fard K. Shamsi, "A Fair Method for Distributing Collective Assets

in the Stellar Blockchain Financial Network", June 30, 2021, https://doi.org/

10.48550/arxiv.2107.00059

35. A. Voitova & J. Potapenko, "Security of React Native libraries: the bad, the

worse and the ugly", Cossack Labs, February 15, 2022, https://www.cossacklabs.

com/blog/react-native-libraries-security/, accessed April 30, 2022.

36. L. Xu, L. Chen, Z. Gao, L. Carranco, X. Fan, N. Shah, N. Diallo, W. Shi,

, "Supporting Blockchain-Based Cryptocurrency Mobile Payment With Smart

Devices," in IEEE Consumer Electronics Magazine, vol. 9, no. 2, pp. 26-33, 1

March 2020, doi: 10.1109/MCE.2019.2953734.

37. Rysin, V., Rysin, M. "The money laundering risk and regulatory challenges for

cryptocurrency markets.", 2020, Restructuring Management Models-Changes-

Development, ed. M. Dziura, A. Jaki, T. Rojek, 187-201.

38. L. McCulloch, “SEP-30 and User-Friendly Key Management”, Stellar Develop-

ment Foundation, August 27, 2020, https://www.stellar.org/blog/sep-30-recoverysigner-

user-friendly-key-management., accessed May 2, 2022.

39. Lipton, A., Sardon, A., Schär, F., Schüpbach, C. (2020). 11. Stablecoins,



72

Digital Currency, and the Future of Money. In Building the New Economy (0

ed.), https://doi.org/10.21428/ba67f642.0499afe0, accessed October 11, 2022.

40. U. Chohan, “Are Stable Coins Stable?” Notes on the 21st Century (CBRi),

March 29, 2020, http://dx.doi.org/10.2139/ssrn.3326823, accessed November

24, 2022.

41. K. Robinson, "What is Public Key Cryptography?", Twilio Blog, Sep. 21,

2018, https://www.twilio.com/blog/what-is-public-key-cryptography, accessed

March 5, 2022.

42. N. Sullivan, "A (Relatively Easy to Understand) Primer on Elliptic Curve Cryp-

tography", The Cloudflare Blog, Oct. 23, 2013, https://blog.cloudflare.com/a-

relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/, accessed

March 17, 2022.

43. "Minimum Balances", Stellar Development Foundation, Stellar API Reference,

https://developers.stellar.org/docs/glossary/minimum-balance/, accessed Septem-

ber 15, 2021.

44. S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System", bitcoin.org,

Oct. 28, 2008, https://bitcoin.org/bitcoin.pdf, accessed September 5, 2020.

45. A. Antonopoulos, "Mastering Bitcoin, 2nd Edition", O’Reilly Media, Inc., Jun

2017, accessed April 20, 2022.

46. "Custodial vs. Non-Custodial Wallets: What’s the Difference?", Binance Academy,

Mar. 23, 2022, https://academy.binance.com/en/articles/custodial-vs-non-custodial-

wallets-what-s-the-difference, accessed May 10, 2022.

47. Britannica, T. Editors of Encyclopaedia, "Fiat Money", August 12, 2019, Ency-

clopedia Britannica. https://www.britannica.com/topic/fiat-money, accessed

May 2, 2022.



73

48. B. Basra, "Coinbase Review [2022]", blockt, Feb. 02, 2022, https://blokt.com/

guides/coinbase-review, accessed April 25, 2022.

49. "Coinbase Wallet Review, Oliver Rest", PCMag, Sep. 18, 2018, https://www.

pcmag.com/reviews/coinbase-wallet, accessed April 25, 2022.

50. D. Kuhn, "Bitcoin’s Lost Coins are Worth the Price", Coin Desk, December

08, 2021, https://www.coindesk.com/tech/2021/12/08/bitcoins-lost-coins-are-

worth-the-price/, accessed April 20, 2022.

51. K. Chalkias, P. Chatzigiannis and Y. Ji, “Broken Proofs of Solvency in Blockchain

Custodial Wallets and Exchanges”, Cryptology ePrint Archive, Paper 2022/043.

52. P. Vigna, "5 Things About Mt. Gox’s Crisis", The Wall Street Journal, Feb.

25, 2014, https://www.wsj.com/articles/BL-263B-352, accessed April 4, 2022.

53. M. Sigalos, "The IRS has seized $1.2 billion worth of cryptocurrency this fis-

cal year – here’s what happens to it", CNBC, Aug. 04, 2021, https://www.cnbc.

com/2021/08/04/irs-has-seized-1point2-billion-worth-of-cryptocurrency-this-year-

.html, accessed April 4, 2022.

54. E. Udda & J. Webber, "A Death in Cryptoland", Canadian Broadcasting Corpo-

ration, May 25, 2021, https://newsinteractives.cbc.ca/longform/bitcoin-gerald-

cotten-quadriga-cx-death, accessed April 7, 2022.

55. S. Jansen, "Noncustodial wallet hits 25 million milestone amid a trend in crypto

wallet adoption", CoinTelegraph, Dec. 14, 2021, https://cointelegraph.com/

news/noncustodial-wallet-hits-25-million-milestone-amid-a-trend-in-crypto-wallet-

adoption, accessed April 11, 2022.

56. "MetaMask Surpasses 10 Million MAUs, Making It The World’s Leading Non-

Custodial Crypto Wallet", ConsenSys, Aug. 31, 2021, https://consensys.net/

blog/press-release/metamask-surpasses-10-million-maus-making-it-the-worlds-

leading-non-custodial-crypto-wallet/, accessed April 11, 2022.



74

57. A. Voskobojnikov, O. Wiese, M. M. Koushki, V. Roth, and K. Beznosov. "The

U in Crypto Stands for Usable: An Empirical Study of User Experience with

Mobile Cryptocurrency Wallets.", In Proceedings of the 2021 CHI Conference

on Human Factors in Computing Systems (CHI ’21). Association for Computing

Machinery, New York, NY, USA, Article 642, 1–14.

58. S. Wu, "6 Ways a Site Can Attack your MetaMask", Bloom, Feb. 22, 2018,

https://bloom.co/blog/6-ways-a-site-can-attack-your-metamask/, accessed May

4, 2022.

59. "Trezor Model T", Trezor Company s.r.o., https://shop.trezor.io/product/trezor-

model-t, accessed May 4, 2022.

60. "Hot Wallets vs. Cold Wallets", Cryptopedia Staff/Gemini, March 10, 2022,

https://www.gemini.com/cryptopedia/crypto-wallets-hot-cold, accessed May 5,

2022.

61. M. Dalton, "Top Doomsday Wallets for Bitcoin HODLers", CryptoBriefing,

Dec. 14, 2019, https://cryptobriefing.com/top-doomsday-wallets-for-bitcoin-

hodlers/, accessed May 4, 2022.

62. S. Chipolina, "European Union Proposes Crackdown on Non-Custodial Crypto

Wallets", Decrypt, Mar. 28, 2022, https://decrypt.co/96188/european-union-

proposes-crackdown-non-custodial-crypto-wallets, accessed April 28, 2022.

63. N. Albrecht, "Tens of billions worth of Bitcoin have been locked by people who

forgot their key.", The New York Times, Jan. 13, 2021, https://www.nytimes.

com/2021/01/13/business/tens-of-billions-worth-of-bitcoin-have-been-locked-by-

people-who-forgot-their-key.html, accessed April 28, 2022.

64. "Man seeks to excavate landfill that allegedly has half a billion dollars worth

of bitcoin", CBS News, Dec. 18, 2021, https://www.cbsnews.com/news/hard-

drive-lost-bitcoin-landfill/, accessed April 27, 2022.



75

65. V. Buterin, "Why we need wide adoption of social recovery wallets", Jan.

11, 2021, https://vitalik.ca/general/2021/01/11/recovery.html, accessed Jan-

uary 20, 2022.

66. P. Wuille, "Bitcoin Improvement Protocol: 32 - Hierarchical Deterministic

Wallets", Feb. 11, 2012, https://github.com/bitcoin/bips/blob/master/bip-

0032.mediawiki, accessed January 20, 2022.

67. Gutoski, G., Stebila, D. (2015). Hierarchical Deterministic Bitcoin Wallets that

Tolerate Key Leakage. In: Böhme, R., Okamoto, T. (eds) Financial Cryptog-

raphy and Data Security. FC 2015. Lecture Notes in Computer Science(), vol

8975. Springer, Berlin, Heidelberg.

68. "Bitcoin Improvement Protocol: 39 - Mnemonic code for generating determinis-

tic keys", Satoshi Labs, Sep. 10, 2013, https://github.com/bitcoin/bips/blob/

master/bip-0039.mediawiki, accessed January 20, 2022.

69. J. Tuwiner, "Bitcoin & Crypto Steel Seed Backup Tools", Buy Bitcoin World-

wide, Apr. 09, 2022, https://www.buybitcoinworldwide.com/wallets/steel/, ac-

cessed May 3, 2022.

70. V. Buterin, "Multisig: A Revolution Incomplete", Bitcoin Magazine, Jul. 28,

2014, https://bitcoinmagazine.com/technical/multisig-revolution-incomplete-1406578252,

accessed May 3, 2022.

71. G. Mcshane, "What is a 51% attack?", CoinDesk, October 12, 2021, https:

//www.coindesk.com/learn/what-is-a-51-attack/, accessed November 24, 2022.

72. C. Ye, G. Li, H. Cai, Y. Gu and A. Fukuda, "Analysis of Security in Blockchain:

Case Study in 51%-Attack Detecting", 2018 5th International Conference on

Dependable Systems and Their Applications (DSA), 2018, pp. 15-24, doi:

10.1109/DSA.2018.00015.

73. D. Zhoa, "The Blockchain Game: Synthesis of Byzantine Systems and Nash



76

Equilibria", December 20, 2019, University of Nevada, Reno, https://arxiv.

org/pdf/1912.09644.pdf

74. N. El Ioini, C. Pahl, "A review of distributed ledger technologies.", OTM

Confederated International Conferences, On the Move to Meaningful Internet

Systems, October, 2018, (pp. 277-288), Springer, Cham.

75. "Budget Function, International Affairs", Government Spending Explorer, Bu-

reau of the Fiscal Service, U.S. Department of the Treasury https://www.

usaspending.gov/explorer/budget_function, accessed December 1, 22.



77

Appendix A

Network Validation and Simulation

Modeling - Source Code

"""

simulate_consensus.py

A simulation structure for modelling the utilization of follow-on network

validators based on the original pool size, level of trust and rate of

reputation change.

"""

import random

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

"""

Simulation constants defined here

"""

# base pool size in relation to overall group

NUM_NEW_PARTICIPANTS = 10000

NUM_ORIGINAL_PARTICIPANTS = 500



78

NUM_VALIDATORS_REQUIRED = 3

# validator type scaled as pools from 0.00 - 1.00

GOOD_CITIZEN_BENCHMARK = 0.60

TERRORIST_BENCHMARK = 0.80

GREEDY_BENCHMARK = 1.00

REQUIRED_REPUTATION = 2.00

# expected applicant eligibility ratio and voter reputation movement

VALID_RECIPIENT_RATIO = 0.60

NETWORK_IS_VALID = True

POSITIVE_REPUTATION_CHANGE = 0.10

NEGATIVE_REPUTATION_CHANGE = 0.10

# overall simulation runs and program environment

NUM_SIMULATIONS = 100

MAX_REPUTATION = 1.00

MIN_REPUTATION = 0

PROGRAM_COMPLEXITY_RATIO = 0.80

ORIGINAL_PARTICIPANT_KNOWLEDGE = 1.00

ORIGINAL_PARTICIPANT_REPUTATION = 1.00

"""

Types of network validators:

good_citizen will always try to make the right call regardless of incentive

terrorist will always try to do the opposite of the correct judgement,

regardless of incentive

greedy will always try to get incentive, no matter what

"""

class Participant:

def __init__(self, is_original, is_recipient, validator_type,

reputation, is_knowledgeable):



79

self.is_original = is_original

self.is_recipient = is_recipient

self.is_knowledgeable = is_knowledgeable

self.validator_type = validator_type

self.reputation = reputation

self.num_votes = 0

"""

Return random yes/no based on probability defined in VALID_RECIPIENT_RATIO

"""

def isRecipient(percent=(VALID_RECIPIENT_RATIO * 100)):

return random.randrange(100) < percent

"""

Return random yes/no based on probability defined in VALID_RECIPIENT_RATIO

"""

def isKnowledgeable(percent=(PROGRAM_COMPLEXITY_RATIO * 100)):

val = random.randrange(100) < percent

if val is True:

# print("Validator understands program eligibility.")

return 1.00

else:

# print("Validator DOES NOT understand program eligibility.")

return 0.00

"""

Return random validator type based on the defined probability ranges of

good_citizen/terrorist/greedy

"""

def getType():

score = random.randrange(100) / 100

if score <= GOOD_CITIZEN_BENCHMARK:



80

return "good_citizen"

elif score > GOOD_CITIZEN_BENCHMARK and score <= TERRORIST_BENCHMARK:

return "terrorist"

else:

return "greedy"

"""

Determine vote type for new applicant based on validator type and applicant

eligibility. Factor this vote with program complexity score to determine

vote outcome for each validator.

"""

def vote(applicant, validator):

# vote for applicant based on validator type

if applicant.is_recipient is True:

if validator.validator_type == "good_citizen":

# vote in line with true beliefs and program understanding

return 1.00 * validator.is_knowledgeable

elif validator.validator_type == "terrorist":

# vote against true beliefs and program understanding

return 0.00 * validator.is_knowledgeable

else:

# vote in line with incentive/reward

return 1.00 * validator.is_knowledgeable

# vote against applicant based on validator type

else:

if validator.validator_type == "good_citizen":

return 0.00 * validator.is_knowledgeable

elif validator.validator_type == "terrorist":

return 1.00 * validator.is_knowledgeable

else:

return 1.00 * validator.is_knowledgeable



81

"""

1. Validator group determines if applicant is eligible and submits their

vote

2. Validator reputation is adjusted based on consensus with group vote

result

"""

def validateNewParticipant(applicant, validators):

votes = []

applicant_valid = False

reputation_change = 0.00

# vote each validator

for i in range(len(validators)):

validators[i].num_votes += 1

votes.append(vote(applicant, validators[i]))

# tally final vote count

applicant_valid = sum(votes) > len(votes) / 2.00

# compare vote with actual applicant validity and record accuracy

if applicant_valid == applicant.is_recipient:

vote_correct = True

else:

vote_correct = False

# calculate reputation change for each validator by comparing vote with

group consensus

for j in range(len(validators)):

if votes[j] == 0 and applicant_valid == False or votes[j] == 1 and

applicant_valid == True:

# vote was correct, increase rep



82

if validators[j].reputation < MAX_REPUTATION:

validators[j].reputation += POSITIVE_REPUTATION_CHANGE

reputation_change += POSITIVE_REPUTATION_CHANGE

if votes[j] == 1 and applicant_valid == False or votes[j] == 0 and

applicant_valid == True:

# vote was incorrect, decrease rep

if validators[j].reputation > MIN_REPUTATION:

validators[j].reputation -= NEGATIVE_REPUTATION_CHANGE

reputation_change -= NEGATIVE_REPUTATION_CHANGE

return [applicant_valid, vote_correct, reputation_change]

"""

Global tracking values are established here to house the outcome variables

for each round of simulation.

"""

global_validators = 0

global_correct_votes = 0

global_incorrect_votes = 0

global_num_voters = 0

global_original_votes = 0

global_new_votes = 0

global_good_citizen = 0

global_total_good_citizen_votes = 0

global_good_citizen_voting_percentage = 0

global_good_citizen_reputation_average = 0

global_good_citizen_votes_array = []

global_terrorist = 0

global_total_terrorist_votes = 0



83

global_terrorist_voting_percentage = 0

global_terrorist_reputation_average = 0

global_terrorist_votes_array = []

global_greedy = 0

global_total_greedy_votes = 0

global_greedy_voting_percentage = 0

global_greedy_reputation_average = 0

global_greedy_votes_array = []

"""

Primary simulation driver

Repeat for defined number of total simulations

Calculate global averages recorded from each initiation

"""

for i in range(0, NUM_SIMULATIONS):

# our validator group

validators = []

# track vote accuracy

correct_votes = 0

incorrect_votes = 0

original_votes = 0

new_votes = 0

# keep track of absolute rep score to prevent logic bomb

total_reputation = 0.00

#initial validator count is equal to number in original super group

num_validators = NUM_ORIGINAL_PARTICIPANTS



84

# begin by adding power users that we know are valid recipients and

honest judges

for i in range(NUM_ORIGINAL_PARTICIPANTS):

validators.append(Participant(True, True, "good_citizen",

ORIGINAL_PARTICIPANT_REPUTATION, ORIGINAL_PARTICIPANT_KNOWLEDGE))

total_reputation += 1.00

"""

Parse each new participant

0. Check if total validator reputation has fallen below acceptable

threshold, in which case break cycle

1. Determine if a valid/invalid recipient based on using the validity

ratio as random selector

2. Select NUM_VALIDATORS_REQUIRED random validators from pool and check

combined reputation >= REQUIRED REPUTATION

(if reputation sum < REQUIRED_REPUTATION, perform new selection)

3.

"""

for i in range(NUM_NEW_PARTICIPANTS):

# determine if validator network has failed

if total_reputation < REQUIRED_REPUTATION:

NETWORK_IS_VALID = False

print("BAD NETWORK")

break

# create new participant, determine applicant validity and type

randomly, initial reputation is zero

applicant = Participant(False, isRecipient(), getType(), 0.00,

isKnowledgeable())

# get three random validators until required rep is found

combined_reputation = 0.00



85

validator_group = []

while combined_reputation < REQUIRED_REPUTATION:

temp_reputation = 0.00

validator_group = random.sample(validators,

NUM_VALIDATORS_REQUIRED)

# loop selected validator group and sum reputation

for j in range(len(validator_group)):

temp_reputation += validator_group[j].reputation

combined_reputation = temp_reputation

# add original vote totals

original_vote_group = len([val for val in validator_group if

val.is_original == True])

original_votes += original_vote_group

new_votes += (NUM_VALIDATORS_REQUIRED - original_vote_group)

# we now have our validator group, begin approval proccess

application_result = validateNewParticipant(applicant,

validator_group)

applicant_valid = application_result[0]

# tally vote accuracy

if application_result[1]:

correct_votes += 1

else:

incorrect_votes += 1

if applicant_valid:

# add the applicant to our validator network

validators.append(applicant)

# total quantity of voters



86

num_voters = len([val for val in validators if val.num_votes > 0])

# global updates

global_num_voters += num_voters

global_validators += len(validators)

global_correct_votes += correct_votes

global_incorrect_votes += incorrect_votes

global_original_votes += original_votes

global_new_votes += new_votes

# good citizen stats

good_citizen = [val for val in validators if val.validator_type ==

"good_citizen"]

total_good_citizen_votes = sum([g.num_votes for g in good_citizen])

good_citizen_voting_percentage = total_good_citizen_votes /

len(good_citizen)

good_citizen_reputation_average = sum([g.reputation for g in

good_citizen]) / len(good_citizen)

# global updates

global_good_citizen += len(good_citizen)

global_total_good_citizen_votes += total_good_citizen_votes

global_good_citizen_voting_percentage += good_citizen_voting_percentage

global_good_citizen_reputation_average += good_citizen_reputation_average

for val in good_citizen:

global_good_citizen_votes_array.append(val.num_votes)

# terrorist stats

terrorist = [val for val in validators if val.validator_type ==

"terrorist"]

total_terrorist_votes = sum([g.num_votes for g in terrorist])

if len(terrorist) > 0:



87

terrorist_voting_percentage = total_terrorist_votes / len(terrorist)

terrorist_reputation_average = sum([g.reputation for g in

terrorist]) / len(terrorist)

else:

terrorist_voting_percentage = 0

terrorist_reputation_average = 0

# global updates

global_terrorist += len(terrorist)

global_total_terrorist_votes += total_terrorist_votes

global_terrorist_voting_percentage += terrorist_voting_percentage

global_terrorist_reputation_average += terrorist_reputation_average

for val in terrorist:

global_terrorist_votes_array.append(val.num_votes)

# greedy stats

greedy = [val for val in validators if val.validator_type == "greedy"]

total_greedy_votes = sum([g.num_votes for g in greedy])

if len(greedy) > 0:

greedy_voting_percentage = total_greedy_votes / len(greedy)

greedy_reputation_average = sum([g.reputation for g in greedy]) /

len(greedy)

else:

greedy_voting_percentage = 0

greedy_reputation_average = 0

# global updates

global_greedy += len(greedy)

global_total_greedy_votes += total_greedy_votes

global_greedy_voting_percentage += greedy_voting_percentage

global_greedy_reputation_average += greedy_reputation_average

for val in greedy:

global_greedy_votes_array.append(val.num_votes)



88

# print local outputs for each simulation round

print("\n----------------------------------")

print("TOTAL VALIDATORS: ", len(validators))

print("CORRECT VOTES: ", correct_votes)

print("INCORRECT VOTES: ", incorrect_votes)

print("NUMBER OF TOTAL VOTERS: ", num_voters)

print("NUMBER OF ORIGINAL VOTES CAST: ", original_votes)

print("NUMBER OF ORIGINAL VOTER AVERAGE: ", original_votes /

NUM_ORIGINAL_PARTICIPANTS)

print("NUMBER OF NEW VOTES CAST: ", new_votes)

print("NUMBER OF NEW VOTER AVERAGE: ", new_votes / NUM_NEW_PARTICIPANTS)

print("----------------------------------")

print("GOOD CITIZEN VALIDATORS: ", len(good_citizen))

print("TOTAL GOOD CITIZEN VOTES: ", total_good_citizen_votes)

print("GOOD CITIZEN VOTING AVERAGE: ", good_citizen_voting_percentage)

print("GOOD CITIZEN REPUTATION AVERAGE: ",

good_citizen_reputation_average)

print("----------------------------------")

print("TERRORIST VALIDATORS: ", len(terrorist))

print("TOTAL TERRORIST VOTES: ", total_terrorist_votes)

print("TERRORIST VOTING AVERAGE: ", terrorist_voting_percentage)

print("TERRORIST REPUTATION AVERAGE: ", terrorist_reputation_average)

print("----------------------------------")

print("GREEDY VALIDATORS: ", len(greedy))

print("TOTAL GREEDY VOTES: ", total_greedy_votes)

print("GREEDY VOTING AVERAGE: ", greedy_voting_percentage)

print("GREEDY REPUTATION AVERAGE: ", greedy_reputation_average)

print("----------------------------------\n")

# print global output averages and generate charts

print("\n----------------------------------")



89

print("GLOBAL TOTAL VALIDATORS: ", global_validators / NUM_SIMULATIONS)

print("GLOBAL CORRECT VOTES: ", global_correct_votes / NUM_SIMULATIONS)

print("GLOBAL INCORRECT VOTES: ", global_incorrect_votes / NUM_SIMULATIONS)

print("GLOBAL NUMBER OF TOTAL VOTERS: ", global_num_voters /

NUM_SIMULATIONS)

print("GLOBAL NUMBER OF ORIGINAL VOTES: ", global_original_votes /

NUM_SIMULATIONS)

print("GLOBAL NUMBER ORIGINAL VOTER AVERAGE: ", (global_original_votes /

NUM_SIMULATIONS) / NUM_ORIGINAL_PARTICIPANTS)

print("GLOBAL NUMBER OF NEW VOTES: ", global_new_votes / NUM_SIMULATIONS)

print("GLOBAL NUMBER NEW VOTER AVERAGE: ", (global_new_votes /

NUM_SIMULATIONS) / NUM_NEW_PARTICIPANTS)

print("----------------------------------")

print("GLOBAL GOOD CITIZEN VALIDATORS: ", global_good_citizen /

NUM_SIMULATIONS)

print("GLOBAL TOTAL GOOD CITIZEN VOTES: ", global_total_good_citizen_votes

/ NUM_SIMULATIONS)

print("GLOBAL GOOD CITIZEN VOTING AVERAGE: ",

global_good_citizen_voting_percentage / NUM_SIMULATIONS)

print("GLOBAL GOOD CITIZEN REPUTATION AVERAGE: ",

global_good_citizen_reputation_average / NUM_SIMULATIONS)

print("----------------------------------")

print("GLOBAL TERRORIST VALIDATORS: ", global_terrorist / NUM_SIMULATIONS)

print("GLOBAL TOTAL TERRORIST VOTES: ", global_total_terrorist_votes /

NUM_SIMULATIONS)

print("GLOBAL TERRORIST VOTING AVERAGE: ",

global_terrorist_voting_percentage / NUM_SIMULATIONS)

print("GLOBAL TERRORIST REPUTATION AVERAGE: ",

global_terrorist_reputation_average / NUM_SIMULATIONS)

print("----------------------------------")

print("GLOBAL GREEDY VALIDATORS: ", global_greedy / NUM_SIMULATIONS)



90

print("GLOBAL TOTAL GREEDY VOTES: ", global_total_greedy_votes /

NUM_SIMULATIONS)

print("GLOBAL GREEDY VOTING AVERAGE: ", global_greedy_voting_percentage /

NUM_SIMULATIONS)

print("GLOBAL GREEDY REPUTATION AVERAGE: ",

global_greedy_reputation_average / NUM_SIMULATIONS)

print("----------------------------------\n")

"""

Here we display our primary research objective. The rate of voting spread

across good_citizen_validators as they join the network is compiled.

"""

global_good_citizen_votes_array.sort(reverse=True)

plt.plot(global_good_citizen_votes_array)

plt.show()


	Binder1.pdf
	ms-committee-approval-4-member-co-advisor

	Using_Decentralized_Networks_and_Distributed_Ledger_Technologies_for_Foreign_Aid_Distribution_and_Reporting (3).pdf

	Student Name - Please enter full name in ALL CAPITAL LETTERS: Hunter A. Petersen
	Thesis Title - Please enter as both CAPITAL and lower-case letters: Using Decentralized Networks and
Distributed Ledger Technologies for Foreign
Aid Distribution and Reporting
	Degree name - Enter name of degree (i: 
	e: 
	, MASTER OF SCIENCE) in ALL CAPITAL LETTERS: Master of Science


	Advisor:  Dr. Sergiu M. Dascalu 
	Co-Advisor: Dr. Engin Arslan
	Committee Member 2: Dr. Shahriar Badsha
	Grad School Representitive: Dr. Mohammed Ben-Idris
	Date (Type May, August OR December AND four-digit year): December, 2022


