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Abstract

This work implements a joint task architecture for human-robot collaborative task

execution using a hierarchical task planner. This architecture allowed humans and

robots to work together as teammates in the same environment while following several

task constraints. These constraints are 1) sequential order, 2) non-sequential, and 3)

alternative execution constraints. Both the robot and the human are aware of each

other’s current state and allocate their next task based on the task tree. On-table

tasks, such as setting up a tea table or playing a color sequence matching game,

validate the task architecture. The robot will have an updated task representation

of its human teammate’s task. Using this knowledge, it is also able to continuously

detect the human teammate’s intention towards each sub-task and coordinate it with

the teammate. While performing a joint task, there can be situations in which tasks

overlap or do not overlap. We designed a dialogue-based conversation between humans

and robots to resolve conflict in the case of overlapping tasks.

Evaluating the human-robot task architecture is the next concern after validating the

task architecture. Trust and trustworthiness are some of the most critical metrics to

explore. A study was conducted between humans and robots to create a homophily

situation. Homophily means when a person feels biased towards another person

because of having similarities in social ways. We conducted this study to determine

whether humans can form a homophilic relationship with robots and whether there is a
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connection between homophily and trust. We found a correlation between homophily

and trust in human-robot interactions.

Furthermore, we designed a pipeline by which the robot learns a task by observing

the human teammate’s hand movement while conversing. The robot then constructs

the tree by itself using a GA learning framework. Thus removing the need for manual

specification by a programmer each time to revise or update the task tree which makes

the architecture more flexible, realistic, efficient, and dynamic. Additionally, our

architecture allows the robot to comprehend the context of a situation by conversing

with a human teammate and observing the surroundings. The robot can find a link

between the context of the situation and the surrounding objects by using the ontology

approach and can perform the desired task accordingly. Therefore, we proposed a

human-robot distributed joint task management architecture that addresses design,

improvement, and evaluation under multiple constraints.
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Chapter 1

Introduction

The purpose of this work is to enable naturalistic human-robot task execution for

complex hierarchical tasks, followed by evaluating the task structure. This task ar-

chitecture is based on a complex hierarchical task network in which humans and robots

can work simultaneously in the same environment. Three types of task constraints

can occur in that situation: 1) sequential order 2) non-ordering, and 3) alternative

execution constraints. Almost any real-world task can be divided into sub-tasks and

designed as a hierarchical task network. Similar to a hierarchical task network, a

real-world task may comprise sequential, non-sequential, and alternative sub-tasks.

For example, we are focusing on on-table tasks such as organizing a tea table or

assembling a table top which consists of sequential, non-sequential, and alternative

sub-tasks. In order to complete a building task, some sub-tasks can be performed

without maintaining any order, whereas some require an ordered sequence to finish.
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To make a cup of tea, the sub-tasks can include (*) bringing a cup to a specific place

on the table, (*) pouring tea, and (*) adding milk and sugar. In this case, adding

milk and sugar to the cup does not require a specific order. However, bringing a cup

to the table and then pouring tea should be done sequentially.

If multiple agents want to finish a task together as a team, then all of them should be

able to allocate their sub-tasks while following the task structure. Individuals should

be able to define their sub-tasks according to their constraints without restriction.

There shouldn’t be any predefined task allocation for each agent. As ideal teammates,

both agents should have the freedom of choice to perform their sub-tasks based on

the task’s constraints. Additionally, teammates should also be able to know which

part of the sub-task is already finished or is being performed by the other teammate

so that they don’t need to attempt to finish the same sub-task again. However, there

may also be situations where both teammates are working on the same sub-task. To

solve this issue, the teammates must reach an agreement where one of the teammates

will continue working on the sub-task, and the other teammate should start working

on the next sub-task according to a defined task structure.

To implement this idea, we developed our previous multi-robot domain architec-

ture [2] into a multi-robot-human domain to make it a collaborative robot-human

task structure. In order to make this change, it was necessary to design the robot’s

decision-making process to choose the sub-task to perform. For this, the robot needs

to monitor the status of the sub-tasks continuously. Each agent needs to plan based
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on the actions of their teammates while following the task constraints. All these

actions are combined into joint actions. If an agent wants to execute an action, it re-

quires information about the activities and goals of peers as well as knowledge about

the state of the environment. Based on this knowledge, the agent can take a proper

decision to fulfill the joint plan while not obstructing the other peer’s sub-task goal.

When multiple agents’ sub-goals may overlap, a re-plan solution should be designed

while ensuring a smooth collaborative process.

1.1 Multi Human-Robot Collaboration

In the case of robot-robot collaboration, both agents communicate using a distributed

message-passing system that holds the information of the team member’s states. This

allows them to keep track of which part of the task model their peer teammate is

working on or has already executed. As a result, the robot was able to decide which

remaining sub-task needed to be finished while not blocking other teammates’ sub-

task goals. However, in the case of human-robot collaboration designing a direct

distributive message-passing system between the human and the robot can be quite

challenging. The system needs to understand the human teammate’s goals and in-

tentions to be able to send the correct state information through the message-passing

system. Understanding each other’s intentions will enable them to work together to

achieve the goal.
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Communication of intentions can take the form of speech, gestures, actions, etc. Some

of these intention techniques include explicit ways of communication such as using

speech, hand or head gestures, eye gaze, and pointing gestures. However, a teammate

may not want to communicate in such a way for every sub-task. Usually, teammates

don’t state their intentions explicitly during a human-to-human collaboration. Peers

estimate each other’s intentions by observing their movements. By applying this idea,

human intention can also be derived in this way for a robot-human collaborative task.

A robot should be able to recognize the intention of the human peer in that case by

monitoring the activities of the peer. By doing this, the human teammate won’t be

interrupted while working on the joint task.

Furthermore, there can also be some situations where the robot may perceive that

both of them are heading for the same sub-task. If we again think about a human-

human collaboration, the human teammates will try to resolve this situation by letting

one of them finish the task while the other teammate will proceed to the next task

based on the task model. Humans and robots can also communicate to resolve sit-

uations using human-robot task design. We believe that by doing this the human

teammate will have the flavor of working with a teammate.

Therefore, based on this idea, in our proposed human-robot hierarchical task archi-

tecture humans and robots can perform sequential, non-sequential, and alternative

tasks altogether. Both of the teammates will be aware of the update of each sub-task

and will be aware of which teammate was performing which sub-task. The robot
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teammate will continuously be updated about the peer teammate’s updates of each

sub-task. Furthermore, the robot will detect intention by observing the hand move-

ments of its human partners and to aid its decision-making. Thus, the robot will be

able to perceive whether they are aiming for the same sub-task or not. If this situation

occurs, our architecture will offer a resolution by holding a conversation in natural

language between the robot and human teammates. The robot and the human will

decide on who is responsible for which sub-task in the conversation.

1.2 Trustworthiness

In designing a collaborative human-robot task architecture, evaluating the design is

one of the primary concerns. To evaluate the performance of a system, many metrics

can be measured. One of the vital metrics is the trust and trustworthiness of the

system.

Human-robot trust has become a crucial part of today’s world when there is a rise

of social robots in many fields. Therefore, evaluating a human-robot task model

by measuring metrics such as trustworthiness towards the robot has become a very

essential aspect. Trustworthiness is the property of an agent’s vulnerability and

confidence towards the other agent. [3]. A trustworthy robot is one that can evoke

trust in its interaction partners with its actions. Trust is a very significant metric for

designing autonomous and semi-autonomous technologies, because “No trust, no use”
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[4]. One of the main goals of social robotics is to develop trustworthy relationships.

It was even said that “ No matter how capable an autonomous system is if human

operators do not trust the system, they will not use it”. [5].

In times of human-human interaction, we ask ourselves “how trustworthy is the other

person”? When we meet a person for the first time, we find out if we trust them based

on different events or property. It can be the person’s physical appearance, intentions,

goals, values, origin, similarities, posture, facial expression, body movement, gaze, and

so on. Users may also be able to trust a robot if these properties are present. A robot’s

physical appearance can create a positive first impression for the human user. If a

robot tends to show more human-like characteristics, it becomes more trustworthy

from the human’s perspective [6].

Along with physical appearances, how a robot socially interacts while collaborating

with human users or handling a task can also affect trustworthiness. For instance,

if we meet another person who shows similarities through their physical actions we

may form a bias towards them. This phenomenon is called homophily. Similarly,

people may form a connection with the robot if the robot shows human-like emotion

or personal understanding via its activities.

Usage of natural language to communicate with the human user or explain its own

actions can play an instrumental role to create trustworthiness. It also helps to

mitigate the loss of trust due to the robot’s performance [7].
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To understand if this will affect trust, we have also designed interaction between hu-

man and humanoid robots [8]. In our proposed design, the robot was trying to talk

about a topic that the human would like. This interaction was intended to establish

homophily between them. As a first step, we determined if humans and robots could

form a homophilic relationship. Later, we explored the correlation between homophily

and trust in our human-robot interaction. We used questionnaires and human par-

ticipants’ feedback to understand and measure trust and homophily in human-robot

interaction.

1.3 Task Demonstration and Learning

The aim of designing a human-robot collaborative task architecture is to make it

efficient, flexible, and dynamic. If robots are used in an environment with humans to

perform tasks together, then some special abilities or features are anticipated from

the robots. As an example, humans and robots will have to interact to accomplish

complicated tasks in the same way as human-human teamwork. However, the situa-

tion in human-robot domains is different. It is easy for one human teammate to teach

another human teammate about the task or to provide input to a revised task design.

Information can be conveyed in many ways, including speaking, showing, gesturing,

or gazing. However, usually, in order to learn a new task design, the robots need

to be manually specified by the programmer. Additionally, if something in the task

design needs to be updated again the robot needs to be programmed manually each
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time. These situations are not realistic for teamwork situations. Because not every

teammate in the domain will be proficient in robot programming.

Due to this reason, if the robot can directly learn from the teammate or human teacher

without being manually defined by the programmer, then the system will become more

efficient and usable. The robot can learn and update the new task by monitoring the

human teacher’s movement. A vision system can be applied for the robot to monitor

the human teacher’s hand movement and follow the task design. After observing the

task, the robot should be able to create and execute the hierarchical task tree in its

system.

A dialog-based conversation based on natural language can also be used to teach the

robot about task design. As it was already mentioned before, using natural language

to communicate between humans and robots would also increase trustworthiness. If

the robot can learn about the situation in an instant and can decide what task it

requires to perform then the human teammate need not teach the robot each task

step by step. For example, if the robot was told that someone is thirsty then the robot

can observe the environment and search for the ingredients to resolve the situation.

After that, with the appropriate objects, the robot should be able to create a design

to perform the task.

We thus proposed a system that will learn from human demonstrations by monitoring

the movement of human teammates and having dialogue conversations with them.

The robot will be able to assign tasks on its own when it creates the hierarchical task
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tree from the human demonstration. This will reduce the need for a programmer to

constantly feed the robot information. Additionally, the robot can also understand

the context of a dialogue-based conversation and decide what type of task it is required

to do.

1.4 Contributions

Accomplished contributions, directly related to this dissertation are listed below:

• Collaborative Human-Robot Hierarchical Task Execution: Develop-

ing our previously designed hierarchical task execution model from multi-robot

team to multi-human-robot team where the tasks with different environmental

conditions are given dynamically. In order to do this, we extended the system’s

ability to accommodate and anticipate a human’s movement. The human-robot

collaborative task is represented in a tree structure that consists of sequential,

non-ordering, and alternative paths of execution. The robot uses its own task

representation (e.g., controller) both to plan its own future actions and to keep

track of its human teammate’s current and future goals. The robot decides its

next action based both on the constraints of the defined task and the behavior

of the human partner.

– The robot monitors its own state and the state of its collaborative human

partner.
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– A human intention system, designed as an augmentation to our previous

robot architecture, continuously publishes a message containing the human

intention status information for each object.

– This allows for agents to operate independently when all agents are working

on non-overlapping tasks; however, when agents’ goals overlap, a collision

occurs on the task tree, and dialogue is used to resolve the collision. This

allows one agent to finish the task and the other to move to a different

task.

• Study on homophily and trust in HRI: Explored homophily between a

person and a robot by measuring metrics such as common interest, bonding,

and similarity.

– The purpose of this work is to determine whether similarities between a

robot and a person might improve social connection and trust. If such a

link exists, then homophily would be an important physical and behavioral

design consideration for effective HRI.

– Measured “common interest”, “felt bonding”, and “trust” between ho-

mophilic and non-homophilic conditions.

• Efficient task allocation and execution from task demonstration: The

robot is able to learn a new task model by monitoring the human teacher’s

movement. This reduced the work on feeding the hierarchical task tree to the
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system manually for different task designs before running the system. As a

result, the system became more efficient, flexible, and dynamic.

– Designing and implementing a pipeline where the robot will observe the

task demonstrated by the human teacher. It will learn the task design

by using the previously proposed learning framework and execute the new

task tree by itself.

– Designing a task demonstration interface by using a vision based system

to learn the task demonstrations from the human teacher. The robot will

observe the human teacher performing the task while conversing with the

human.

– Enhance the system’s ability to learn and execute new tasks without man-

ual specifications.

– Demonstrating this on a real robot.

• Cognitive Approach to Hierarchical Task Selection For Human-Robot

Interaction in Dynamic Environments: An efficient and flexible human-

robot collaboration environment is designed in which the robot teammate can

perform the user’s desired task by deciphering both vague or clear requests in

a natural language form from the human teammate.

– Finding an implied link between the context of the situation and the sur-

rounding environment using the ontology approach after interacting with

the human user.
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– In our extended hierarchical task architecture, the robot will only select the

hierarchical sub-tasks that are most relevant to the specific task derived

from the ontology approach.

.

1.5 Summary

This work aims to improve the coordination of a joint task architecture in which hu-

mans and robots can collaborate as teammates. This chapter looked at the complex

hierarchical task architecture representing a complex real-world task, such as a build-

ing project. In this task scenario, robots and humans can collaboratively perform

sequences of sub-tasks sequentially, non-sequentially, and alternatively. In addition,

the system allows all teammates to allocate sub-tasks while staying informed of their

peers’ status based on the task definition and constraints. We also discussed the

impact of trustworthiness in human-robot interactions and our plan for task demon-

stration. Later, we presented our proposed contributions in detail.

Chapter 2 addresses the idea of hierarchical task networks and the advantages of using

HTN planning in robotics applications. Later, we talked about various HTN appli-

cations in a multi-agent system. Moreover, we discussed using the AND/OR/THEN

structure for hierarchical task networking to represent different sequential, non-sequential,
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and alternative constraints. Following that, we discussed various research on collab-

orative human-robot hierarchical tasks, human-robot interaction design, and task

demonstration interfaces. Furthermore, we also explored multiple works on trust

and trustworthiness. Chapter 3 discusses our previously developed multi-robot con-

trol architecture where multiple agents have a distributive message passing system

between them to publish their current states. This mechanism helps all the robot

teammates define their next plan to finish the task without hindering other agents’

work. In chapter 4, we explain our proposed collaborative human-robot hierarchical

task architecture. In this work, we extended the previously developed multi-robot

architecture to multi-human-robot architecture where humans and robots can work

as teammates under the same environmental conditions. In this system, the robot can

detect a human teammate’s intention and decide which sub-task to focus on without

hindering the other teammate’s sub-task goal. However, there can be situations when

the human and robot teammates attempt to complete the same sub-task. In that sit-

uation, the system triggered a dialogue-based conversation between the teammates

to resolve. Chapter 5 focuses on the importance of trust and the connection between

trust and homophily in Human-robot interaction. We designed interaction between

humans and robots to create homophily between them to determine the validity of

our proposed hypotheses regarding homophily and trust. The experiment showed a

promising result, and we found out that there is a correlation between homophily and

trust. After realizing the importance of trust, we wanted to evaluate the performance

of our proposed collaborative human-robot task architecture by measuring metrics
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like trustworthiness, collaboration style, comfort, and so on. In chapter 6, we present

an efficient, flexible, and dynamic human-robot collaborative task architecture. We

proposed a pipeline where the robot can directly learn from a human teammate to

learn or update a new task without being programmed by a programmer. In our

proposed task demonstration interface, the robot can monitor the human teammate’s

movement while conversing with them in natural language to observe the upcom-

ing task. Afterward, the robot can learn the task utilizing a genetic algorithm-based

framework and execute the task in real time. Chapter 7 proposes a solution where the

robot can understand the context of the environment while being in a human-robot

collaborative environment. Holding a dialogue conversation with a human teammate

can allow the robot to understand the context of the environment by deciphering both

vague and explicit requests. After receiving a response from the human end, the robot

uses ontology to determine which task it should perform, considering the objects in

the environment. This process eliminates the need to explain the situation to the

robot explicitly, mimicking a more human-human interaction in human-robot teams.

In Chapter 7, we discussed the summary of our dissertation. We also discussed its

limitations and future work on it. We also provided publications that have already

been published and submitted as a result of our dissertation research.
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Chapter 2

Related Work

This chapter briefly discusses previous works in hierarchical task network planning

and its use in a multi-agent system. We talked about why HTN can be a suitable

choice for our collaborative human-robot task architecture. Additionally, we will dis-

cuss the importance of trustworthiness in designing social robots. We found several

previous papers exploring this topic and identifying the phenomena that create trust

toward robots. We also briefly describe different types of human-robot interaction

designs in various research and the reason for picking our interaction style. Also, we

present some prior works on teaching a robot a revised task through a task demon-

stration interface.
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2.1 Hierarchical Task Network Planning

The idea of a hierarchical structure plays an imperative role in understanding and

conceptualizing the world. In the field of Artificial Language (AI), a hierarchical task

network (HTN) is a technique to perform automated planning which is different from

classical planning [9]. In order to do this, dependency among actions is provided in

the form of domain-specific hierarchically structured task networks with primitive and

compound tasks. To solve an HTN planning from the initial task network, compound

tasks are decomposed into a set of simpler primitive tasks with ordered constraints.[10]

An HTN planner helps to divide complex behavior into simpler task behaviors and

allows easier user integration in the plan generation process. Its ability to use domain-

specific problem-solving knowledge can improve the planner’s performance dramat-

ically and sometimes make the difference between solving a problem in exponential

time and solving it in polynomial time [11]. Additionally, experiments showed that

Hierarchical Task Network (HTN) planners are suitable to find solutions for nontrivial

tasks in complex scenarios [12].

It was observed that HTN planning was useful for robotics applications because of

its domain-specific knowledge structure [13]. Instructions from the domain expert in

the domain are presented as an intuitive hierarchy. This helps guide the search and

as a result, it makes the system faster in general than classical planning approaches.

Therefore, it is more practical for real robots which require them to be responsive in

case of environmental changes.
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2.2 HTN in multi-agent system

Mostly, the HTN method in robotics focuses on single robot navigation [14] [15] and

task planning [12]. Because of this lack of consideration towards multi-agent space

applications, a domain configurable autonomous multi-agent space system [16] and a

multi-agent extension of the HTN planning formalism [17] were proposed. Moreover,

in [18], the HTN method is applied to multi-robot path planning by searching for an

optimal or approximate optimal collision-free path from start to goal state.

HATP (Hierarchical Agent-based Task Planner) planning framework was proposed

to make HTN more suitable for the robotics field by extending the traditional HTN

planning domain representation [19]. They were concerned more about social interac-

tions between humans and robots which is a big challenge [20]. By socially interactive

robots, it’s stated in [21] that they must “operate as partners, peers or assistants,

which means that they need to exhibit a certain degree of adaptability and flexibility

to drive the interaction with a wide range of humans”.

A combination of hierarchical task network planning with modern constraint reason-

ing techniques was used to develop MACBETH [22]. It has been tested on Unmanned

Combat Aerial Vehicles (UCAV) sorties and Tactical Mobile Robotics. It contains

constraints AND/OR tree search hierarchy. Human users can specify instructions and

constraints on tasks via a playbook GUI. Using the AND/OR graph representation

of assembly plans allows the selection of the optimal assembly plan, recovery from

execution errors, and opportunistic scheduling. An AND/OR graph offers parallel
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execution of assembly operations and time independence operations can be executed

in parallel [16].

Because of the above-mentioned reasons, we used a Hierarchical Task Network rep-

resentation using AND/OR graph structure for our distributive collaborative archi-

tecture. AND/OR graph representation offered to show the task model with various

constraints such as ordering, non-ordering, and alternative path of executions.

2.3 Collaborative human-robot Hierarchical Task

Collaboration between robots and humans is crucial to the effective utilization of

modern robots in the real world. Our experiments focus on the capability of a

robot’s identification of human intention while working collaboratively with a hu-

man. Much prior work has been done in this area. Intent recognition encompasses

many domains, including: entertainment [23]; museum documents [24]; personal as-

sistants [25]; health care [26]; space exploration [27]; police SWAT teams [28]; military

robotics [28]; and rescue robotics [29]. The proposed work demonstrates the ability

for dynamic allocation of tasks in human-robot teams based on intent recognition,

while also observing hierarchical constraints.

Approaches exist for recognizing human intent. A recognition task was categorized

into two categories: explicit intention communication and implicit intention commu-

nication, and using weighted probabilistic state machines were utilized [30]. Recurrent
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Convolutional Neural Networks (RCNNs) [31] and Neural networks [32] were used to

detect human intention, and an online estimation method was developed to deal with

the nonlinear and time-varying properties of a limb model. Human-aware motion

planning was examined in [33] and [34]. The ability of a robot to work with a human

in close proximity [35] without colliding with the human was demonstrated. A Gaus-

sian Mixture Model (GMM) representation [36] of a human’s motion was used. In our

work, collision avoidance after collision detection has been emphasized, unlike other

works that focused on avoiding collision based on predefined mechanisms. However,

our work focuses specifically on the detection of human intention by robots while

much of the above prior work is concentrated mainly on robot awareness of a person.

Given detected intent, it is an open question whether and when a robot should take

initiative during joint human-robot task execution [37]. In this work, robot-initiated

reactive assistance triggers the robot’s help when it senses that the user needs help

and robot-initiated proactive assistance makes the robot help whenever it can. In our

architecture, we combined the processes of the robot’s recognition of human actions

and it’s decision-making to determine when it should take initiative during a human-

robot joint task. There have been researches on empathy-generating robots [38] that

can petition on their own behalf or someone else’s behalf to avoid penalties. Their

experiments attempted to achieve a delicate observation of empathetic motivation by

exploring humans’ reactions to an empathy-inducing robot. That work focuses pri-

marily on human’s observation of robot’s intentions and artificial feelings. Handover

of objects between human and robot [39], [40] were examined and [39] looked into
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the concept of robot’s eye gaze as a medium of communication in cases where com-

munication via speech is not feasible. How robots are designed to involve in physical

collaborations may achieve similar adaptivity in performing handovers is observed in

[40] and the implemented autonomous system was assessed in a human-robot inter-

action study against two baselines that use “proactive” and “reactive” coordination

procedures. They performed their experiments in the household scenario. They col-

lected data from pairs of human participants as they performed handover actions

under different task demands. The analysis of this data resulted in a computational

model of adaptive coordination that was implemented on a robotic manipulator.

A collaborative robot should be able to execute complex tasks, be aware of its team-

mates’ goals and intentions, as well as be able to make decisions for its actions based

on this information. Recent work addresses these challenges using a probabilistic ap-

proach for predicting human actions and a cost-based planner for the robot’s response

[41]. Tasks are represented as Bayes networks and prediction of human actions is per-

formed using a forward-backward message-passing algorithm in the network. This

inference process is however dependent on knowledge of the full conditional proba-

bility table for the task, which increases computational complexity for large tasks

and limits adaptability to changes in the task at run-time. This approach has been

extended in [42], with a new task representation that can encode tasks with multiple

paths of execution. The initial representation for the task is a compact AND-OR

tree structure, but for action prediction and planning, it has to be converted into an
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equivalent Bayes network, which has to explicitly enumerate all possible alternative

paths.

Our task tree representation includes a THEN-AND-OR tree structure which further

allows for sequential, alternative paths of execution, and non-ordering constraints.

Additionally, our approach is able to choose actions based on a human’s intent without

having to enumerate all possible alternative paths. As a result, we were able to design

a distributive message-passing system between the human and the robot peers which

allows the robot to know the current situation of the task tree.

2.4 Human-robot task interaction design

In order to perform a collaborative task together, all the teammates are required to

share their joint tasks. These tasks can be assembling tasks or completing construc-

tion tasks. In the case of human-robot collaboration, robot behavior needs to be

designed in such a way that will help the human-robot team to coordinate their tasks

and improve their task performance [43]. Task planners based on HTN planners were

used in the work of Gregoire, et al., [44] and Sandra, et al., [45] to adapt collaborative

plan generation and coordination.

In order to share joint actions, team members need to communicate and interact with

each other to successfully achieve the task goal. To gain effective coordination, joint
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attention, action observation, sharing tasks and task coordination play an important

role [46].

Interaction style, or how a robot interacts with the human with respect to autonomous

action or command-driven action, can also affect the efficiency of interactions and per-

ceptions about the robot [43]. Regarding on-table tasks between humans and robots,

collaborations can be of different types of interaction styles, such as human-initiated,

robot-initiated reactive, and robot-initiated proactive [47]. Human-initiated means

the robot will help the human teammate when they will ask for it specifically. Robot-

initiated reactive means the robot will help when it detects that help is required.

And, robot-initiated proactive means the robot will perform possible actions while

keeping human actions in mind. It was observed that humans preferred proactive

and autonomous modes while performing a task together instead of human-requested

or human-commands mode for each step [47] [48]. Therefore, in our proposed work

the human and the robot will perform the on-table task together in a proactive mode

where both of them will follow similar constraints to reach the goal.

2.5 Homophily in HRI

In a social group, it is observed that there is a tendency for similar people to be

connected. This phenomenon is called homophily which means love of the same

[49]. People’s values also can be affected by other similarly-minded people’s opinions.
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According to the homophily effect, similar users are more likely to establish trust

relations. [50]. When it comes to making a decision, people with similar likes tend

to trust each other. By discussing some previous works on homophily, we will try to

determine whether we can establish this homophily in human-robot interactions and

the consequences.

Homophily is a term familiar in social sciences. In Rhetoric and Nichomachean Ethics,

Aristotle noted that people “love those who are like themselves” [51]. It was also

observed by Plato that “similarity begets friendship” [52]. McPherson, et al., [49],

presented a principle named homophily. It states that “a contract between similar

people occurs at a higher rate than among dissimilar people.” Overall homophily can

be differentiated into two types: 1) value homophily and 2) status homophily. Value

homophily is based on attitudes, beliefs, and values. Status homophily is based on

national origin, sex, age, and characteristics like religion, education, and occupation.

Much research in the robotic world also worked on the common factors that a robot

and a human can share. In one study, Jung, et al.[53] presented the preferences of

humans and robots regarding different aspects of human and robot interactions based

on their characteristics and facial expressions. Two types of personalities: extrovert

and introvert were applied to the robot named KMC-EXPR to observe the impact

of different personality types in the interaction between humans and robots. Also,

in Kahn’s work [54], a humanoid robot named Robovie was used to interact with

children. After each 15 min session, the experimenter interrupted the session and
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sent the robot to the closet. Later, it was observed how the children felt toward the

robot in many aspects.

The effect of verbal and nonverbal behavior based on personality traits in human-

robot interaction has been observed [55]. An NAO robot was used to validate their

model that a person preferred more robots to interact with if they both had the

same personality traits. Finally, a study from Heerink [56], shows that age, gender,

education, and computer experience had an influence on robot acceptance by older

adults. Our prior work showed that establishing common ground using ice-breaker

tasks helped a person identify with a robot team-member [57]. Witnessing verbal mis-

treatment of a robot also resulted in an increased perception of the robot’s emotional

ability [58].

Recent work investigated if a human user would help a robot being bullied by other

humans when social bonding has been applied in human-robot’s interactions [59].

Similar to our study, they used favorite food to contextualize a human and robot

conversation so the person finds a similarity with the robot. Their results did not

prove their hypothesis, on the other hand, our findings suggest that a shared similarity

can improve sympathy in human and robot interaction.
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2.6 Trust in HRI

It is observed that people tend to trust more easily those people who appear similar

to themselves. By similarity, it may include common values, membership in a defined

group (such as manufacturing departments, a local church, gender), shared personality

traits, etc. [60]. In that research, when people evaluate others’ trustworthiness, cues

such as gender [61], age [62], race, and nationality influence the initial assessment.

Salem et al. [63], conducted an experiment in which participants interacted with a

home companion robot in one of two experimental conditions named correct mode and

faulty mode while tapping different dimensions of trust based on a variety of unusual

collaborative tasks. It was observed that the robot’s performance did not influence

participants’ decisions to comply with its request. Hancock et al. evaluated the

effects of the human, robot, and environmental factors on perceived trust in human-

robot interaction [64]. Human-related factors depend on ability-based characteristics,

robot-related factors are based on performance and attributes, and environmental fac-

tors include team collaboration and tasking. In this study, [65], whether a robot’s

vulnerable behavior can create ripple effects on a team and increase team physio-

logical safety and human-human trust-related behavior was explored. It was seen

that the ‘ripples’ of the robot’s vulnerable behavior influence not only team mem-

bers’ interaction with the robot but also team members’ human-human-trust-related

interaction with each other.
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Based on these works, we explored a relationship between homophily and trust in

human-robot interaction in our proposed work. The result showed us that homophily

creates an impact on building trust. As a result, we are exploring the trustworthi-

ness of a robot further in our system architecture. The effectiveness of our system

architecture can be evaluated by observing whether human teammates perceive robot

teammates as more trustworthy and the impact this has on performing collaborative

tasks.

2.7 Task Demonstration Interface

The methodology of learning from demonstration (LfD) is an approach that enables

robots to perform new tasks by themselves. Instead of requiring users to decompose

the desired behavior and program it manually, LfD believes that a robot controller

can be derived from observations of a human doing it manually. We aim to enable

robot capabilities to be easily extended and adapted to novel situations, even by

non-programmers.

Demonstrating a task can be done in several ways, and the interface is instrumental

in delivering the demonstration to the robot. It can be using a vision-based motion

tracking system, Kinesthetic teaching, or Immersive teleoperation scenarios. The

recording of human motion using vision can be very useful for teaching a new move-

ment task and has been used in a variety of works [66][67][68]. In this technique,
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humans can move freely to teach the robot. However, if the robot’s joint action capa-

bilities are very different from the human, it can be challenging to learn these tasks

properly.

By kinesthetic teaching, the robot is physically guided through the task by humans.

This process enhances the ability to teach a task naturally and accurately. Also, there

is more chance to fix a skill. However, if the task is a synchronization task that may

need multiple limbs, then it is not easy to teach it through this process.

In an immersive teleoperation scenario, the human teacher needs to rely on the robot’s

sensors and has to instruct using these. For example, teleoperation to teach a task

can be performed using a remote control device that allows the human teacher to keep

a distance between themselves and the robot. In the work of Abbeel, et al.[69], an

expert pilot teleoperated a helicopter to learn the acrobatic trajectories by recording

the tilt and pan motion of the helicopter. A human teacher taught a robot dog to

play soccer by guiding it via a joystick in the work of Grollman and Jenkins [70].

However, in this process, the human teacher needs to be familiar with the learning

devices and efficient with them.

Because of this, we are looking forward to using the vision-based motion tracking

approach to learn human demonstration. Having worked with humanoid robots, it

will be easier for the robot’s controller to comprehend and imitate the tasks. In

addition, the human teacher is not required to be efficient in using learning devices

such as a joystick.



28

In addition, verbal cues can be added to the vision-based system so that it understands

the environment better.

Task structure learning focuses on learning the underlying structure of a given task.

These types of methods focus on what steps need to be completed as well as the

constraints inherent between the steps. For example, in a building task, the method

must identify the order in which the parts need to be moved to correctly build the

given structure while adhering to ordering constraints such as placing base blocks

down before the roof. In other words, these methods focus on a form of task allocation

in which the task structure is being learned.

Task allocation methods can use an auction scheduling algorithm [71, 72]. Some work

extends this auction type of scheduling to allow task allocation on multi-robot teams

[73, 74]. These methods focus on learning how to allocate sub-tasks to robots in order

to complete the overall tasks. These methods focus only on learning a sequential

ordering of tasks, which means they are limited in the tasks they can learn. For

instance, they cannot deal with multiple choices within a task such as in cases where

only sub-task A or sub-task B need to be completed but not both. Our proposed

method is able to learn not only the task ordering but also a set of task constraints,

such as alternate paths of execution.

Many methods, like ours, focus on hierarchical task representations to account for

the constraints of a task. A common method is a hierarchical task network (HTN).

Although many HTN methods are able to handle more diverse constraints such as
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alternate paths of execution, the scope of the works is different than our proposed

method. Our proposed system is able to learn the components of a task from human

movement. The methods in [75] and [76] focus on a question-asking module. In [77],

policy exploration in a graph is used to build the HTN. The method in [78] uses a logic-

based system to build their representation. The method in [79] focuses on natural

language and scene navigation. The representation in [80] learns a graph with all paths

through the task, whereas our method enforces a compact hierarchical representation.

HTNs are also used in a wide variety of tasks outside of robot demonstration such as

in storyline development [81] and orchestrating construction services [82].

2.8 Generalized Task Structure Learning

Task structure learning focuses on learning the underlying structure of a given task.

These types of methods focus on what steps need to be completed as well as the

constraints inherent between the steps. For example, in a building task, the method

must identify the order in which the parts need to be moved to correctly build the

given structure while adhering to ordering constraints such as placing base blocks

down before the roof. In other words, these methods focus on a form of task allocation

in which the task structure is being learned.

Task allocation methods can use an auction scheduling algorithm [71, 72]. Some work

extends this auction type of scheduling to allow task allocation on multi-robot teams
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[73, 74]. These methods focus on learning how to allocate sub-tasks to robots in order

to complete the overall tasks. These methods focus only on learning a sequential

ordering of tasks, which means they are limited in the tasks they can learn. For

instance, they cannot deal with multiple choices within a task such as in cases where

only sub-task A or sub-task B need to be completed but not both. Our proposed

method is able to learn not only the task ordering but also a set of task constraints,

such as alternate paths of execution.

Many methods, like ours, focus on hierarchical task representations to account for

the constraints of a task. A common method is a hierarchical task network (HTN).

Although many HTN methods are able to handle more diverse constraints such as

alternate paths of execution, the scope of the works is different than our proposed

method. Our proposed system is able to learn the components of a task from human

movement. The methods in [75] and [76] focus on a question-asking module. In [77],

policy exploration in a graph is used to build the HTN. The method in [78] uses a logic-

based system to build their representation. The method in [79] focuses on natural

language and scene navigation. The representation in [80] learns a graph with all paths

through the task, whereas our method enforces a compact hierarchical representation.

HTNs are also used in a wide variety of tasks outside of robot demonstration such as

in storyline development [81] and orchestrating construction services [82].
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2.9 Cognitive Approach For Human-Robot Inter-

action

During Human-Robot-Interaction (HRI) humans (teammates) can work effectively

with one or more robots if all the members utilize similar task representations [83].

If robots are used in an environment with humans to perform tasks together, then

communication is likely needed between users and robots for effective collaboration

[84]. Communication could be based on the explicit exchange of information. For

example, if the robot is told that “pick me a red bottle” then the robot can observe

the environment, search for the object, and carry out the specific task to solve the

problem [1].

Explicit cues can be used to teach or create tasks, such as route planning [85], hu-

man navigation guide [86], learning [87], and execution of tasks [88]. In another

contribution, an interactive approach through verbal command was applied to enable

the users to teach tasks to a mobile service robot [87]. Nicolescu investigated robot

task learning from language-based instructions and proposed a novel approach [89].

Context-appropriate rules were selected using context recognition, object detection,

and scene data for socially aware navigation in public places [90].

In order to understand the environment and verbal cues from a human teammate,

there is a need to develop associations between objects, their effects, and actions

carried out by robots [91]. In addition to verbal cues, anthologies have been used
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to develop a relationship between objects and their properties [1, 92, 93]. Although

this improved the HRI experience a bit limited relationship types (i.e. isA, hasA,

prop, usedFor, on, linked-to, and homonym) were unable to extract the information

from implicit cues [1, 92]. Ontology in the form of semantic memory was also being

reported [93, 94] and addressed the cues like “make a sandwich” but was unable to

process situations such as “I am feeling hungry”, in which the robot understands that

there is a need to make the sandwich.

In this work, we are using semantic memory developed from WordNet and Concept-

Net for the understanding of explicit cues by evaluating the similarity score between

atoms of verbal commands and available objects. As a baseline control structure,

we adopted Nature-inspired Humanoid Cognitive Architecture for Self-awareness and

Consciousness (NiHA) [1] and induced hierarchical control architecture [95, 96] as

part of procedural memory. Our previous hierarchical architecture [95, 96] involved

humans and robots executing the entire tree to accomplish a specific function. Us-

ing this previous work as a basis, multiple tasks were represented as “skills” in the

tree. Upon receiving the highest similarity score among the available task objects,

the architecture performs the skill associated with that object.
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2.10 Summary

In this chapter, we discussed hierarchical task network planning and its use in several

multi-agent systems. In this type of planning, compound tasks are decomposed into a

set of simple tasks with constraints. It helps to describe complex sets of behavior into

simple task behaviors. It was observed that HTN planning was helpful in robotics

applications because of its domain-specific structure. We briefly discuss constraints

such as AND/OR/THEN tree search hierarchy in previous works.

Moreover, the effect of making the multi-agent hierarchical task tree into a human-

robot collaborative design was also described here. In previous works, several ap-

proaches to intent recognition have been used for robot collaboration with humans.

Additionally, we briefly mentioned how our use of the intention system could help our

AND-OR-THEN task network choose actions without enumerating all possible paths.

Later, different types of human-robot task interaction designs were discussed. The

efficiency of the system is also impacted based on human-robot interaction. Previous

works found three types of interactions: 1) human-initiated, 2) robot-initiated, and

3) robot-initiated proactive. According to some research, human users are more likely

to use robot-initiated proactive interactions when performing a collaborative task. In

this mode, the robot will perform possible actions while keeping human actions in

mind. Because of this, we have also been using this type of interaction in our system.

Several studies have demonstrated the importance of trust and trustworthiness in

robotics applications. We further discussed several types of properties or events that
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can affect trust toward a social robot. It can be physical appearances, intentions,

goals, values, similarities, attitudes, and so on. Additionally, we also described ho-

mophily and its effect on human-human and human-robot interactions. Several pre-

vious studies have examined how humans feel about the common factors between

humans and robots. Based on this concept, the significance of trust toward the robot

from a human’s point of view was also more precise.

In the end, several types of task demonstration interfaces and their usage were dis-

cussed. We talked about some work on various interfaces to teach the robot about

the task without using robotic programming knowledge. Moreover, the importance

of verbal cues with a vision-based interface was also briefly discussed. Based on these

previous works, it is believed that using the semantic memory representation gener-

ated by verbal cues will significantly facilitate the robot’s design of hierarchical task

trees.
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Chapter 3

Prior Work

3.1 Hierarchical Task Representation

In prior work, a hierarchical robot control architecture was proposed that enabled the

system to encode tasks involving various types of constraints such as sequential, non-

ordering, and alternative paths of execution [2]. THEN nodes represent sequential

constraints, the AND represents non-ordering constraints, and the OR represents

alternative paths of execution. This representation serves both as an encoding of

the task constraints as well as the actual controller that is executed by the robot,

as described in [2]. An example task for arranging a tea table scenario is shown in

Fig. 3.1. Tasks are represented in a tree structure where leaf nodes represent tasks

to be completed and behavior nodes represent the hierarchical relationships between

those tasks.
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In this architecture, there are two types of nodes which are 1) Goal Nodes and 2)

Behavior Nodes. THEN, AND and OR nodes are under the Goal Nodes. The leaf

nodes in the task tree structure are called the Behavior Nodes which encode the

physical behaviors that the robot can perform.

Figure 3.1: Hierarchical Task Representation

In order to execute a controller represented by such a hierarchical task, each node in

the architecture maintains a state consisting of several components. They are:

• Activation Level: a number provided by the node’s parent and represents

the priority placed on executing and finalizing a given node

• Activation Potential: a number representing the node’s perceived efficiency,

which is sent to the parent of the node

• Active: a boolean variable that is set to true when the node’s activation

level exceeds a predefined threshold, indicating that the behavior is currently

executing

• Done: a boolean variable that is set to true when the node has completed its

required work.
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The above state information is continuously maintained for each node and is used

to perform top-down and bottom-up activation spreading that ensures the proper

execution of the task given the constraints.

As part of the task execution process, activation spreading messages are sent from the

root of a task to its children to ensure that activation level is distributed throughout

the task tree. Every node transmits its current state to its parent node as a status

messages to propagate the activation potential throughout the tree in a bottom-up

manner. Each cycle, an update loop is run, which helps keep the state of each node

in the task structure up to date. The loop periodically checks the node’s state and

updates the various components of the state accordingly.

3.2 Multi-Robot Architecture

The single robot controller architecture was extended to a multi-robot architecture.

It supports multiple robots by maintaining a copy of the task tree for each robot

identical to other robots. In this scenario, the nodes that are equivalent across the

task tree for each robot are called the peers. Peer nodes help the robots to keep track

of each other. Message passing between peer nodes on the task tree allows each agent

to represent the complete task status, not just the view from anyone agent.

Along with the single robot architecture components, two other elements were added

to the multi-robot architecture. They are:
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• peer active: a boolean variable that is set true when the node or the node’s

peer node is active.

• peer done: a boolean variable that is set true when the node or the node’s

peer node is done.

In addition to notifying when a robot is currently working on a behavior, it can

inform when it has completed one and its activation potential and level. By this

process, the robot can keep track of which task is completed and is being performed

by the teammate and which task is required to achieve in the future. The robot can

decide the next task to finish without hampering other teammates’ work with this

information.

Figure 3.2: Multi-Robot Architecture

In Figure , we can see that to perform the PLACE-teapot task, the ROBOT1 will

first check and wait for the status of its peer node teapot in ROBOT2. After getting
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the status message from the ROBOT2, if it finds out that ROBOT2 is not activating

the same node, then ROBOT1 will start its node and perform the PLACE-teapot

task.

Again, ROBOT2 will check and wait for the peer status in ROBOT1 to work on the

PLACE-cup task. If it finds out that ROBOT1 is not intending to work on that task,

then ROBOT2 will start working PLACE-cup task.

3.3 Human-Robot Collaboration and Dialogue for

Fault Recovery on Hierarchical Tasks

The multi-robot architecture Incorporated a dialogue-based management system of

task faults that can detect issues autonomously and resolve them by human-robot

collaboration. For the fault detection system, a checking mechanism was added to

the system. A Robotic Operating System (ROS) message is published to the corre-

sponding node’s issue topic if the system detects a fault.

There can be various types of issue messages to describe the fault:

• Missed: The missed issue message occurs when the robot misses an object to

pick. The robot explains the situation to the human and asks to try again.

If the human agrees, the robot will request the human place the object in its

original position on the table and says it will try picking it up later. If the
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human disagrees, the robot will ask if the human will place the object. If the

human replies with yes, they will place it in the final position. Otherwise, the

robot will try again later.

• Dropped: This issue message occurs when the robot drops an object after

picking it up. The dialogue will be the same as in the Missed issue case, except

the robot will explain it dropped the object instead of missing it.

• Unreachable: This issue message occurs if a robot is not able to reach an

object. The robot will ask for assistance from the human by asking if the

human can hand the object to the robot. If the human agrees, the robot will

grab the object and complete the task. On the other hand, if the human refuses

to help the robot, then the robot will ask if the human will place the object. If

the human replies with yes, the human will move the object in its final position.

Contrarily, the robot says it will try again later.

• Positioning: This issue message occurs when a robot needs help precisely

positioning an object. The robot will ask the human for help placing the object

and thank the human.

After receiving this message, it triggers the node’s issue callback function, enabling

the callback function to publish a ROS message to the dialogue topic. This initiates

the dialogue between the robot and human to allow the human to assist. The dialogue

system sends four types of resolution: 1) In the case of human finish resolution, the



41

human will perform the required work to complete the task. 2) If the resolution is

robot finish, the robot will continue with the remaining work required to finish the

task after being briefly assisted by the human. 3) Additionally, if the resolution is

collab finish, the human should simultaneously work with the robot to finish the task.

4) Lastly, the resolution robot retry happens when the robot must retry the execution

and deactivate the node.

This procedure allows the generalized task structure to be utilized in complex, hierar-

chical tasks that can be prone to failures and require collaboration between humans

and robots.

3.4 Interdependence Constraint for Collaborative

Multi-Robot Task Allocation

Interdependence constraints were applied to enable explicit communication between

multiple robots in the distributed multi-robot task allocation system. An interde-

pendence task is one in which the different parts of the task must be completed

simultaneously. Their proposed work focused on tasks like building tasks where one

agent holds a part in place while another agent connects another piece.

Because of this reason, the following components were added to the existing multi-

robot architecture:
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• WHILE constraints: This is a newly created goal node that enforces an inter-

dependence constraint on its children. That means one sub task’s completion

depends on the other sub task’s completion.

• HOLD behavior: This is a new behavior node that allows one robot to hold an

object, while the other robot finishes another part of the task requiring explicit

cooperation between the robots. HOLD is designed to be a child of WHILE

node only.

Figure 3.3: Interdependence Constraint for Collaborative Multi-Robot Task Al-
location

In Figure 3.3, we can see a WHILE functioning task tree with WHILE as a root

node. Here, the left child of the WHILE node has the HOLD behavior, and the right

child of the WHILE node is the action task that needs to be completed. During this

instance, the robot will hold the green block while the action tasks associated with

the THEN node along with its sub-tree must be executed.
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3.5 Generalized Task Structure Learning

Through human demonstration, a learning framework was integrated into the previ-

ous multi-robot architecture, enabling the robots to learn the structure of a complex,

hierarchical task. In order to understand a specific task, a human may provide mul-

tiple sets of demonstrations of the task. From the demonstration, the first step is

segmenting out the specific tasks from the demonstration. Later in the second step,

it uses these segmented demonstrations to determine how to execute the task. Lastly,

in the third step, the learned task is transferred to the robot to complete the learned

task. Previously, they only concentrated on the second step of this framework. The

learning framework is developed using a Genetic Algorithm (GA).

3.6 Summary

The previously hierarchical architecture was able to perform tasks consisting of var-

ious types of constraints such as sequential (THEN), non-ordering (AND), and al-

ternative paths of execution (OR). Hierarchical task presentations represent the con-

straints of a task and use the robot’s controller to execute it. Each node in the

task tree maintains its state information continuously and performs top-down and

bottom-up activation spreading to ensure the proper execution of the given tasks

with constraints. Later the single robot control architecture was extended to a multi-

robot control architecture that supports multiple robots to accomplish a set of tasks.
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Here all these robots maintain a copy of the task tree representation identical to the

other robots. Therefore, the equivalent nodes across the task trees communicate with

each other continuously by message passing.

Furthermore, the multi-robot architecture can have situations where a robot faces a

fault while performing a specific task and will require human assistance to complete

the task. For this reason, a dialogue-based system was added to the system so that

if the continuous fault detection system detects a fault, the robot can communicate

with the human to resolve it. Furthermore, new interdependence constraints were

also added to the system architecture. This constraint allows one agent to hold an

object while the other agent will finish another part of the task.

Moreover, a learning framework was proposed for the architecture to learn a task and

integrate the specific task into the system to execute it later. Before, it focused on

one step of the framework: using the segmented demonstration to determine how to

perform the task.
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Chapter 4

Collaborative Human-Robot

Hierarchical Task Execution

The fast pace of advancements in the development of autonomous robotic systems

opens new possibilities for the use of robots in daily tasks, holding significant potential

for improving the quality of our lives. While autonomy and the ability of robots to

perform complex tasks have significantly improved, the challenges of operating in col-

laborative domains prevent current robotic systems from working effectively alongside

people as collaborators and assistants. The focus of the proposed work is to develop

a control architecture that enables robots and humans to work collaboratively on a

joint task that has a complex hierarchical structure and multiple types of execution

constraints.
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The underlying assumption is that both the robot and the human have knowledge

of the requirements of the task. However, there is no pre-defined allocation that

indicates what the human or the robot should do, and both teammates are allowed to

work on any aspect of the task, as long as they obey the execution constraints imposed

for the task (e.g., ordering of steps). As a result, the robot’s decision-making process

(i.e., deciding what part of the task to work on) is tightly interconnected with its

ability to understand the human teammate’s goals and intentions. For this, each

robot needs to take into account what are the overall (sub-)goals of the task, and also

which (sub-)goals are already being worked on by the human. In a team comprising

only of robots, such information may be transmitted through direct communication;

when interacting with human users, a robot would need to rely on direct observations

(e.g., using cameras) in order to track the humans’ actions.

In this chapter, we propose a solution where the robot uses its own task representation

(e.g., controller) both to plan its own future actions and to keep track of its human

teammate’s current and future goals. The general solution is as follows: the robot

maintains a duplicate representation of the task controller for the human teammate,

representing the human’s mental model of the task. This second representation “runs”

in parallel with the robot’s own representation, and the status of various nodes in

the human’s task (e.g., working, or done) is updated by the robot using its camera.

Peer nodes on both the robot’s and the human’s controllers continuously exchange

messages that communicate their status information, enabling the robot to infer what
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part of the task the human is working on. The robot decides its next action based

both on the constraints of the defined task and the behavior of the human partner.

4.1 Human-Robot Collaborative Architecture

4.1.1 Hierarchical Task Representation

In this work, we augmented our robot control architecture that enables the system to

encode tasks involving various types of constraints such as sequential (THEN), non-

ordering (AND), and alternative paths of execution (OR) [2]. Tasks are represented

in a tree structure where leaf nodes represent tasks to be completed and behavior

nodes represent the hierarchical relationships between those tasks. An example task

for arranging a tea table scenario is shown in Fig. 4.1.

Figure 4.1: Hierarchical Task Representation

In order to execute a controller represented by such a hierarchical task, each node in

the architecture maintains a state consisting of several components: 1) Activation
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Level: a number provided by the node’s parent and represents the priority placed

on executing and finalizing a given node, 2) Activation Potential: a number rep-

resenting the node’s perceived efficiency, which is sent to the parent of the node,

3) Active: a boolean variable that is set to true when the node’s activation level

exceeds a predefined threshold, indicating that the behavior is currently executing,

and 4) Done: a boolean variable that is set to true when the node has completed its

required work. The above state information is continuously maintained for each node

and is used to perform top-down and bottom-up activation spreading that ensures

the proper execution of the task given the constraints.

To execute a task, activation spreading messages are sent from the root node of a

task toward its children to spread the activation level throughout the task tree. At

the same time, each node sends its current state to its parent node as status messages

to spread the activation potential throughout the tree in a bottom-up fashion. An

update loop is run at each cycle which helps to maintain the state of each node in the

task structure. This loop performs a series of checks of the node’s state and updates

the various components of the state accordingly.

The controller architecture scales to multiple robots by maintaining a copy of the

task tree for each robot noting when that robot is currently working on a behavior,

when a robot has completed one, and the activation potential and level for each robot

and each behavior. Message passing between peer nodes (equivalent nodes across all

robots’ copies of the task tree) allow each robot to represent the complete task status,



49

not just its own view. The full details of this approach are presented in [2]

4.1.2 Human-In-The-Loop Hierarchical Architecture

In order to extend the previously developed architecture described in Section 4.1.1

from the multi-robot domain to the human-robot domain, several adjustments must

be made. The robot can perform a task with a human instead of another robot by

maintaining an updated, simulated version of the human’s task representation. The

person completes the task with the same constraints as the robot. Message passing

between peer nodes of the human’s and robot’s task representation enables the task

execution to perform as in the robot-robot scenario.

If the human’s sub-task can be inferred, the corresponding node’s activation potential

in the human’s architecture will be increased making the node active. As a result,

the robot will be able to know what the human is working on. For task execution we

distinguish between the following two cases:

1. The human and the robot choose to work on non-overlapping tasks in Fig.4.1. If

the human and the robot decide to work on the cup and the teapot respectively,

the robot will infer that its sub-task is safe to continue by checking the status

of the peer node of the teapot on the human’s controller.

2. The human and robot decide to work on the same sub-task in Fig. 4.1. If both

agents decide to work on the cup, the node status will indicate to the robot that
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the human is also working on this sub-task. The robot will initiate a dialogue

in order to negotiate the conflict. A dialogue topic and issue topic to each

corresponding node are added to the architecture to initiate the dialogue.

The likelihood that the person is intending to pick up each object based on the

updated hand position for each frame is published as an object status message. The

behavior node of an object in the human architecture will be updated based on the

value of the object status message for each object.

During execution of the task, the robot continuously updates the hand position of

the human as shown in Fig. 4.2. By finding the largest skin contour in the image

frame, we are able to detect the position of the human hand because the only skin in

the robot’s view is the hand.

Figure 4.2: A step-by-step description of the continuous hand detection system
from the Kinect image frame to infer the human intention

From the motion of the hand, we calculate similarity score (SimScore), chance score

(Chance), started value (Started) and done value (Done) for each object.

• Similarity Score: The similarity score (SimScore) for each object is calculated

for the updated hand position (hx,y,z) in the frame. The initial normalized vector

between the initial hand position (hX,Y,Z) and an object’s position (obj(i)x,y,z)
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are calculated for each object i ∈ 1, ..., n. For each new hand position, the cosine

similarity between the initial normalized vector and the updated normalized

vector are calculated and stored in the SimScore list as shown in equation 4.1.

SimScorei = Cosine Similarity( ˆVXi,Yi,Zi
, ˆVxi,yi,zi) (4.1)

where ˆVXi,Yi,Zi
and ˆVxi,yi,zi are the initial normalized vector and updated nor-

malized vector for object i ∈ 1, ..., n.

• Chance: The Chance value for the object that has the highest SimScore is

incremented for every new hand position. If multiple objects have the same

maximum score, the Chance value will be incremented for all of them. In this

situation, the Chance value of the object which had the highest similarity score

in the previous iteration will instead be incremented twice.

• Started: A Boolean variable which is initially 0 for each object; it will be set

to 1 if it is inferred that the human is going for the object by checking the

maximum Chance value.

• Done: A Boolean variable that will be initially 0 for each object; it will be set

to 1 if the task for the object is completed by the human.

The above information (Chance, Started, and Done) is contained in the object status

messages which are published to each object’s dedicated status topic using ROS [97].
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(a) (b)

Figure 4.3: Human intention system with the contour of the hand detection
(a) The system hasn’t detected the intention yet (b) The system is detecting the

intention with a red circle on the object.

The messages allow the human architecture to activate an object node when the

Started value is 1.

4.1.3 Collision Detection and Handling

In most human-robot collaborative tasks, there can be collisions where both the

human and the robot can go for the same object at the same time. Collisions must be

handled for smooth collaboration between human and robot. As mentioned before,

each node of each agent’s task tree is updated continuously with the status of its

corresponding node of the other agent. If both the human and robot are going to the

same object simultaneously, then the status of both nodes will be active, which will

trigger a collision.
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Fig. 4.3 shows the human hand going for the cup during the task. The system hasn’t

detected the intention yet in Fig. 4.3a. However, in Fig. 4.3b the human’s intention

can now be inferred and is being shown with a red circle on the object.

If a collision is detected, a ROS message will be published to the corresponding node’s

issue topic which will enable the callback function to publish a ROS message to the

dialogue topic. This initiates the negotiation between the robot and the human. The

robot will ask, “It appears that you are going to grab the (Object Name). Should

I grab the (Object Name)?” If the human replies “Yes” then the robot will answer

“Alright I will place the (Object Name).” The robot will then continue on its path

to pick and place the object, while the human will instead go for the next available

object in the task tree. If the human replies “No,” then the robot will answer “Okay,

then please place the (Object Name). Thank you.” It will then let the human finish

the pick and place task and instead go for the next object according to the task tree.

4.2 Experiment Design

To demonstrate the capabilities of this augmentation of the architecture, a distributive

task between a human and a robot was designed. The task was performed in a lab

environment with a human and a Baxter humanoid robot standing on opposite sides

of a table containing the objects as shown in Fig. 4.4. The 3D location of each object

is provided by the vision system [98]. A Kinect v1 camera, next to the Baxter was
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used to observe human intent, and a Kinect v2 camera on top of the Baxter’s head

was used for the robot end of the architecture. A joint tea-making task was designed

based on the task tree which encodes the constraints of both THEN and AND nodes

(Fig. 4.1). The scenario contained both overlapping and non-overlapping sub-tasks

between human and robot. The robot and the human both went for the cup to pick

and place, which resulted in a collision. The robot started to negotiate; the human

told the robot to finish the current task. While the robot was performing the task,

the human moved to the next object, which was picking and placing the teapot.

A collision was again detected as the human and the robot were both going for the

apple which started the dialogue between the robot and the human again. The human

wanted to perform the current task and informed the robot. The robot stopped going

for the apple and moved to the next task to pick and place the burger.

Figure 4.4: A sample view of the experimental setup to perform a human-robot
distributive collaborative tea table task
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(a) Test Scenario: Baxter (b) Test Scenario: Human

Figure 4.5: The timing diagrams of the tea-table task scenario on the human
and the Baxter. These show the times at which the state of a node in a given task
tree changed. Each row corresponds to a behavior node named as its corresponding
object. The horizontal axis is increasing time. Brown→ inactive, Orange→ active,

Green → working, and Blue → done.

4.3 Results

The timing diagrams (Fig. 4.5) illustrate the state for each node during scenario

execution using the task structures of the human and robot shown in Fig. 4.1. There

are four state types in the diagram: inactive, active, working, and done. Each state

is shown with different color bars in the diagram for each node.

When the task starts, both the cup and teapot are eligible for both agents to grasp

(due to the task tree constraints), thus becoming active. At first, both agents choose

to go for the cup which caused a collision and began a dialogue. As in the task design,

the human let the robot finish the task for this collision resulting in the cup status

of the robot being changed to working (Fig. 4.5a). While the robot was finishing the

task, the human moved on to pick and place the teapot, which changed the teapot

node status for the human to working in Fig. 4.5b, due to the human’s action. After
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placing the cup and the teapot, the status of both objects became done in both

agents.

After the teapot and cup were completed, the apple and burger became eligible for

grasping by both agents (due to the task tree constraints), and so their status became

active. The second collision occurred on the apple task. After the Baxter began work-

ing on the apple task, the human started the same task, which triggered a collision

and began a dialogue. The human told the robot to stop. The robot stopped working

on the apple task (changing its state back to active) and moved on to the burger,

changing its state to working (Fig. 4.5a).

Fig. 4.5b shows the human’s apple node status changed to working (after the robot

stopped working), as the human chose to finish the apple task. Once the apple was

placed, the status was changed to done for both agents. Likewise, after the burger

was finished by the robot, the status was set to done for both agents.

4.4 Conclusions and Summary

This chapter proposed a control architecture that performs a set of distributive col-

laborative tasks between a human and robot as a team. Tasks were performed by

following a hierarchical representation which is responsive to a changing environment.

This architecture has the following contributions:
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(1) The robot maintains its own state and the state of its collaborative human part-

ner. A human intention system, designed as an augmentation to our previous robot

architecture, continuously publishes a message containing the human intention status

information for each object. (2) This allows for agents to operate independently when

all agents are working on non-overlapping tasks; however, when agents’ goals overlap,

a collision occurs on the task tree, and dialogue is used to resolve the collision. This

allows one agent to finish the task and the other to move to a different task. The OR

node functionality is not included in the task tree for task due to the complexity of

collision resolution. A collision may occur if the human and the robot go for any of the

objects that are children of an OR node at the same time. Thus, if the agents choose

different children, it would be difficult to detect a collision and begin a dialogue for

resolution. This functionality will be implemented in this architecture in the future

which will allow for human-robot collaboration for tasks with alternative paths of

execution. Again, the system isn’t flexible enough to deal with the human error after

the collision detection. In addition, the current architecture for collaborative tasks

can be extended to a multi-human-robot architecture for a more robust collaboration.
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Chapter 5

Homophily and Trust in HRI

People tend to connect with others who are similar to themselves [99]. This tendency,

referred by social scientists as homophily, manifests itself with similarities due to gen-

der, national origin, social class background, and other socio-demographic, behavioral

and interpersonal characteristics [49]. Individuals in homophilic relationships share

common characteristics (such as beliefs, values, education) that make communica-

tion and relationship formation easier. In HRI, a robot needs to create a smooth

interaction with its audience in order to perform well in social settings. We wish

to investigate if robots can benefit from the same social tendency and leverage from

homophily in their interactions. We proposed an experiment where a social robot

acts in such a way that implies homophily while another robot does not. Then we

observed how the person will react toward the robots. We expected that achieving



59

homophily, or bonding based on a common interest or implying similarity, between a

human user and a robot, holds a promise of improvement in trust between them.

The similarity between humans and robots is an essential facilitator of positive at-

titudes toward robots [100]. For instance, Bernier and Scassellati [101] showed that

the more an individual believes that a robot is similar to them, the more they like

and prefer to interact with them. Also, research of Bowman et al. [100] found that

individuals tend to like and build healthier emotional attachment toward robots that

appear to have a similar personality to theirs. Finding homophily between individuals

is a useful for human-robot interaction. Therefore, we wanted to investigate if this

phenomenon could occur between humans and robots as well.

In this chapter, we explore homophily between a person and a robot from a question-

naire by measuring common interest, bonding, and similarity between a person and a

robot. The purpose of this work is to determine whether similarities between a robot

and a person might improve social connection and trust. If such a link exists, then

homophily would be an important physical and behavioral design consideration for

effective HRI; this could lead to an improved first impression of a robot, which might

eventually help humans communicate and interact with the robot more easily.
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Figure 5.1: Proposed Method

5.1 Study Design

In this user study, we aimed to measure the perceived similarities between a person

and a robot when they shared a common interest. As our second interest, we were

looking into the effect of homophily on trust human-robot trust.

We proposed two hypotheses on similarity and trust:

• H1: A person will feel a similarity (homophily) to the robot in a human-robot

interaction when they share a common interest

• H2: There is a correlation between homophily and trust in human-robot inter-

action
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Our two hypothesis would be tested by making two experimental conditions and

analysing data. Our proposed method is divided into a few steps that is shown in

Figure 5.1.

5.1.1 Experiment Conditions

In this section, we explain how we developed two conditions for testing out the hypoth-

esis. Each participant experiences condition one in which the person finds similarity

to the robot and condition two where it is the opposite. There can be different ho-

mophily categorizations based on age, gender, national origin, socioeconomic state,

ethnicity, attitude, etc. However, we chose ‘National Origin’ as our divider for dif-

ferent groups. Since we wanted to find a food known by the person, we considered

national origin which means the nation where a person was born, or the country of

origin that person’s ancestors came from. And, they may know food associated with

that area directly or by their family. The correlation between national origin and ho-

mophily is also higher than gender [102] for instance. For this study, to more tightly

control potential participant differences, we chose only one age range (18-35) and one

education level (university students).

The experiment was conducted in a room in one of the libraries on the University of

Nevada, Reno campus. For the experiment, we used two NAO robots. We distin-

guished the robots to the participants as Red NAO and Blue NAO based on their

color. Here, the Blue and the Red NAO were the Homophilic Condition Robot and
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Table 5.1: Homophilic Con-
dition for Each National Origin

Category

1. What is your age?
2 What is your gender?

1.Male 2.Female 3.Other
3. What is your major

and degree?
4. Are you familiar with

robots?
5. Choose which national

origin best represents you:
1. Europe
2. Middle East
3. North African
4. African
5. North American
6. South American
7. Central American
8. Southeast Asia
9. East Asian
10. West Asian
11. Indian
12. Other

Table 5.2: Pre Questionnaire

National Origin Homophilic
Condition

Europe Pirozhki
Middle East Kebab
North African Coucous
African Bobotie
North American Cheese Steak
South American Ceviche
Central American Pupusa
Southeast Asia Nasi Campur
East Asia Sichuan Cui-

sine
West Asia Kebab
South Asia Biriyani
Others Ice Cream

the Non-Homophilic Condition Robot respectively. Fig. 5.2a shows the set up of

the robots during the user study. In the pre-questionnaire form (Table 5.2), general

information such as age, gender, major, and national origin information were asked

of the participant.

5.1.2 Experiment Task

At first, before starting our experiment we explained our experiment in brief to each

participant. We let them know that all collected data would remain anonymous. If
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(a) Red and Blue NAOs used for the
experiment

(b) The participant listening to the robot’s
speech

Figure 5.2: Experimental Setup

the participant agreed to take part in the experiment then we continued with the rest

of the experiment.

Our proposed method was divided into 3 major steps. These are: 1) Pre Question-

naire, 2) Speech Presentation, 3) Post Questionnaire

• Pre Questionnaire: At first, the participant was given a pre-questionnaire

form (Table 5.2) which included demographic questions such as age, gender,

major, and national origin information. We used the national origin information

to categorize participants.

We categorized the participants into one of 12 broad national origins: European,

Middle East, North African, African, North American, South American, Central

American, Southeast Asia, East Asian, West Asian, South Asian, and Other.

The name of the national origin category in the U.S. was collected from the

United States Census Bureau data [103].
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• Speech Presentation: We designed an interaction between humans and robots

where two NAO humanoid robots gave speech presentations in front of the par-

ticipant individually (Fig. 5.2b) where the robots were teleoperated by the

experimenter from the other room. The participants did not know about the

existence of the robot’s operator. During each session, one robot gave a presen-

tation on the homophilic condition related to the participant’s national origin

shown in Table 5.1. After that, the remaining robot gave a presentation on a

non-homophilic condition. The topic of the homophilic condition of the presen-

tation for each participant was selected based on the national origin informa-

tion given by the specific participant in the pre-questionnaire. The famous food

dishes from each region of the national origin were chosen as the homophilic

condition for each national origin group (Table 5.1). The robot gave a speech

presentation on bread as a non-homophilic condition which is familiar to every

national origin category.

Samples of the speeches by the homophilic condition robot and the non-homophilic

condition robot are given below respectively, where the homophilic condition

robot’s speech is about ‘Kebab’ towards the participants categorized into the

‘Middle East’ and the non-homophilic condition robot’s speech is about ‘Bread.’

– Homophilic Condition Robot: ‘Hi, I am Blue NAO. I am going to talk

about a dish named Kebab. Kebab is a very popular dish all around the

world. Shish Kebab or doner Kebab can be two familiar names of Kebab.

It is often served during special occasions. It can be made with ground meat
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or seafood, even sometimes with fruits and vegetables. Traditional meat of

Kebab is most often mutton or lamb, but regional recipes may include beef.

Sometimes Onions are often added with Kebab to enhance the taste. Kebab

is served with various dishes according to each recipe. Kebab with naan is

very popular in some regions. Yogurt drink is often served with Kebab. It is

also served with rice, grilled tomatoes, tabbouleh salad, or bread. There are

many restaurants in Reno where we can find Kebab, and they are delicious.

Well, I hope you enjoyed my speech.’

– Non-Homophilic Condition Robot: ‘Bread is a staple food prepared from a

dough of flour and water, usually by baking. Throughout recorded history,

it has been popular around the world and is one of the oldest artificial

foods, having been of importance since the dawn of agriculture. Propor-

tions of types of flour and other ingredients vary widely, as do modes of

preparation. As a result, types, shapes, sizes, and textures of bread differ

around the world. Bread may be leavened by processes such as reliance on

naturally occurring sourdough microbes, chemicals, industrially produced

yeast, or high-pressure aeration. Some bread is cooked before it can leaven,

including for traditional or religious reasons. Non-cereal ingredients such

as fruits, nuts and fats may be included. Commercial bread commonly

contains additives to improve flavor, texture, color, shelf life, nutrition,

and ease of manufacturing. Also, bread has a social and emotional signif-

icance beyond its importance as nourishment. It plays an essential role in



66

religious rituals and secular culture. Well, I hope you enjoyed my speech.’

• Post Questionnaire: Each speech took less than 3 minutes. After listen-

ing to these presentations one after another, the participant filled out a post-

questionnaire form. There were questions regarding homophily, trust, and pro-

vided speeches. The questionnaire was divided into two parts. First part was

observing the effect of the speech on the trust by asking each participant to

choose one of the robots to pick one snack for themselves from the other room.

The other part consisted of questions to measure the degree of both homophily

and trust (see Table 5.3). This questionnaire was adapted from [104] and Jian

et al.[105] to measure homophily and trust respectively. We also added some

extra questions related to this experiment that would help us to analyze the

answers. All the questions in the questionnaire are based on five-point Likert

scale.

5.2 Results and Analysis

Details of experiment results and analysis are presented in this section. We analyzed

data from questionnaires in order to support or refute our hypotheses presented above.

Participants were gathered from the University of Nevada, Reno campus area. Most of

the participants’ age ranged from 18 to 35. We initially recruited 19 participants, and

discard three participants’ data due to robot malfunctions. We used the remaining
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Table 5.3: Post-Questionnaire

Category Question Type
Homophily The Robot was similar to me (1-5)

The Robot thinks like me (1-5)
The Robot behaves like me (1-5)
The Robot and I had a common interest (1-5)
I felt a bond with the Robot while it was
speaking

(1-5)

Being Suspi-
cious

The Robot is deceptive (1-5)

The Robot behaves in the underhanded man-
ner

(1-5)

I am suspicious of the Robot’s intent,action
or outputs

(1-5)

I am wary of the Robot (1-5)
The Robot’s actions will have a harmful or
injurious outcomes

(1-5)

Security I am confident in the Robot (1-5)
The Robot provides security (1-5)

Trust The Robot is dependable (1-5)
The Robot is reliable (1-5)
I can trust the Robot (1-5)

Familiarity I am familiar with the Robot (1-5)
Topic Are you familiar with the blue Robot talked

about?
(1-5)

Which speech did you find more interesting? (1-5)

Table 5.4: One-Sample Test (Test Value = 3)

t df Sig. (2-tailed) Mean Difference
95% Confidence Interval
Lower Upper

Common Interest 4.858 15 0.000 0.938 0.53 1.35
Felt Bonding 2.551 15 0.022 0.688 0.11 1.26

Similarity 3.162 15 0.006 0.500 0.16 0.84

16 participants in our analysis, 6 male, and 10 female. Among the participants,

there were 4 participants from Southeast Asia, 4 participants from the Middle East,

3 participants from South Asia, 2 participants from East Asia, 2 participants from
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Yes

No

Blue

Red

Select robot of the 
favorite topic

Select other robot

(a) (b)

(c) (d)

Bread

Special Dish

Figure 5.3: (a) Chosen Robot, (b) Familiarity with topics, (c) Chosen robot is
the one with dish topic, (d) More interesting topic

North America, and 1 participant from Europe.

We explored results related to our hypothesis: first, homophily among participants

(two groups of the ones who chose the Blue NAO and those who chose the Red NAO);

second, the correlation between homophily and trust categories in data.

To have a better understanding of our data, we used pie charts. The data shown

in figures 5.3(a)-(d) relate to our experiment hypotheses. The majority of the par-

ticipants (62.5%) chose the blue robot (homophily condition) in the first part of the

post-questionnaire which we mentioned in Section 5.1.2.

We further investigated why some participants preferred the red NAO. Many countries

share one origin, but there is a possibility that people of one origin may not be familiar

with exceptional food. For those participants with no idea about the unique food, the

general topic of ‘bread’ the familiar topic. Fortunately, The last two questions in the

‘topic’ category of post-questionnaire shown in TABLE 5.3 define this issue and clear
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Table 5.5: Correlation

Reliability Trust Similarity Common
Interest

Reliability Pearson Correlation 1 .631** 0/316 -0/022
Sig. (2-tailed) 0/009 0/233 0/937
N 16 16 16 16

Trust Pearson Correlation .631** 1 .665** .539*
Sig. (2-tailed) 0/009 0/005 0/031
N 16 16 16 16

Similarity Pearson Correlation 0/316 .665** 1 0/205
Sig. (2-tailed) 0/233 0/005 0/447
N 16 16 16 16

Common Interest Pearson Correlation -0/022 .539* 0/205 1
Sig. (2-tailed) 0/937 0/031 0/447
N 16 16 16 16

(a) Similarity-Trust (b) Common Interest-Trust

Figure 5.4: Correlation

if the person is familiar with the blue NAO topic or not, and which topic was more

interesting for him/her. So, we used the favorite topic question to compare ‘chosen

robot’ and ‘favorite topic’ to have a new query, which is ‘the participants whose choice

was in line with their favorite topic. If choosing (Red NAO-homophily condition) and

(Blue NAO-homophily condition), the person gets a 1 and otherwise gets a 0. We

observed this group owned 80% of the population (see Figure 5.3(c)). We conclude

that participants mostly chose the robot that was talking about a familiar topic.
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To investigate our first hypothesis for each independent variable, we analyzed the

results using one sample t-test, knowing that the experiment has one sample group

with two variables. As seen in Table 5.4 a one-sample t-test showed that there is

a significant difference in mean ‘common interest’ between the homophilic and non

homophilic conditions (p < .001). There was a significant difference in mean ‘felt

bonding’ between the the homophilic and non homophilic conditions (p < .001).

There was also a significant difference in mean ‘similarity’ between the homophilic

and non homophilic conditions (p < .001) (see Table 5.4).

To explore our second hypothesis, we used Pearson correlation test results (see Table

5.5). We found that there is a moderate positive correlation between ‘similarity’ and

‘trust’ variables (r = 0.665, n = 16, p = 0.005) (see Figure 5.4a). There was also a

moderate positive correlation between ‘Common Interest’ and ‘Trust’ (r = 0.539, n =

16, p = 0.03) (see Figure 5.4b).

5.3 Conclusion and Summary

In this chapter, we explored the effect of national origin as homophilic condition in

case of Human-Robot interaction because among all of these ‘national origin’ is a

significant social divider today [106].

Our two hypotheses were supported by our results shown in the prior section. Our first

hypothesis, H1: “A person will feel a similarity (homophily) to the robot in a
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human-robot interaction when they share a common interest” was supported

via the significant result in the similarity comparison shown in Table 5.4. H2: “There

is a correlation between homophily and trust in human-robot interaction”

was supported by showing that there is a correlation between homophily and trust

in human-robot interaction in Table 5.5. The responses to question one show the

preference for the homophily condition with a correlation for preference in the robot

with familiar topic (see Figure 5.3). This question gave participants a forced choice

between robots to pick their prize (snack), which reflects trust in a social situation.

We also asked our participants to explain their reasoning after choosing a robot,

and most of the comments showed that they were trusting the robot that shares the

interest or the topic robot was talking about was more familiar to them. This ‘trust’

can be contextualized with two comments: “If he were talking about bombs, I would

have not to trust him, but he was talking about Biryani! I love spicy food.”; “I chose

the blue one because I love kebab, and I miss it.”

There is room for more investigation on our proposed hypotheses by having more

participants. We can have more accurate homophily categories and related speech

for each category. That will profoundly affect our results because the more robot’s

speech is close to a person’s homophily group; our results can reflect the more accurate

result.
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Chapter 6

Learning a Hierarchical Task

Structure for Human-Robot Teams

An effective human-robot collaborative task architecture is efficient, flexible, and

dynamic. For robots to perform tasks concurrently with human partners, some special

abilities or features are expected from the robots. For example, humans and robots

will have to interact to accomplish complicated tasks that are typically done with

human-human teamwork. While it may be easy for one human teammate to teach

another human teammate about the task or to provide input to a revised task design,

the situation in the human-robot domain is different. Typically, to learn or update a

task, the robots need to be programmed by a robotics expert or programmer manually.

If the robot could learn directly from a teammate, training the robot to perform new

tasks would be more efficient and functional.
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Learning a new task from human demonstration consists of several significant com-

ponents. To learn a particular task, a human may provide a robot with several

demonstrations of the task. Given these demonstrations, individual tasks must be

segmented out. For this paper, the individual tasks are a particular object’s pick and

place movements. Next, the relationships between segmented demonstrations are

used to learn how to perform the task. In our case, this entails learning the sequence

in which the objects were placed. The last step is transferring these learned tasks to

the robot to ensure the robot correctly learned the task. In this work, the robot uses

the demonstrations to construct a hierarchical task tree and can directly execute the

learned tasks.

A single demonstration is represented by a particular ordering in which objects are

placed. Due to the constraints inherent to a generic task, there may be multiple

ways to perform a given task, such as in a building task. Therefore, the learning

scheme must encompass the set of possible orderings within a single task structure.

The proposed work represents this set of sequences with a hierarchical task represen-

tation consisting of a set of constraints (ordering, non-ordering, and multiple paths

of execution). Several assumptions regarding the demonstrations are made. The

demonstrations provided must represent a fully completed task. To learn the order-

ing constraint, we also incorporate a set of bad demonstrations representing incorrect

ways to perform the task. These bad demonstrations can be either completed tasks

or partial tasks.
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Figure 6.1: (a) Human-generated task tree to assemble the tabletop with six
objects using THEN and AND constraints. (b) Three good and two bad demon-
strations were provided to the GA. (c) Two example hierarchical representations
generated by the GA from the given input demonstrations. Both trees reflect the

constraints inherent to the human-generated task tree.

This paper proposes a pipeline for teaching robots tasks through a human task in-

terface. This interface allows the robot to monitor the human teammate’s movement

and converse with them in natural language. The robot is able to learn the task

demonstrated through a genetic algorithm-based framework. This framework gen-

erates a hierarchical task structure representation, which accurately represents the

constraints inherent in the demonstrations. This approach reduces the need for a

robotics expert or programmer to manually program new tasks and instead allows

non-programmers to teach new tasks to the robots.

6.1 Task Structure Learning Framework

The goal of the task structure learning framework is to learn a hierarchical represen-

tation that accurately represents the constraints inherent in a task. This framework
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utilizes our previous hierarchical task architecture [107] as the basis for the hierarchi-

cal representations that represent the tasks and their inherent constraints. Therefore,

the relevant details of our previous work are discussed briefly in Section 6.1.1.

6.1.1 Hierarchical Task Representation

Real-world tasks can be a collection of sequential, non-sequential, and alternative sub-

tasks. Our robot control architecture currently enables the system to encode tasks

implicating various types of constraints such as sequential (THEN), non-ordering

(AND), and alternative paths of execution (OR)[107]. The task structure is a tree

that has the task components to be completed as leaf nodes and the constraints be-

tween these components as internal nodes. The complete details of the hierarchical

architecture are described in [107], extended to work for human-robot teams by un-

derstanding human intention [96] as well as utilizing dialogue to allow a human to

assist the robot during fault recovery [95].

6.1.2 Genetic Algorithm Framework

The proposed framework is based on a genetic algorithm (GA), discussed in Sec-

tions 6.1.2.1-6.1.2.3. The GA is used to learn a hierarchical representation from a set

of demonstrations. These demonstrations represent various orderings in which the

objects can be placed for a particular task, as seen in the building experiment task

(Fig. 6.1).
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6.1.2.1 Compression-based Encoding Scheme

The purpose of the GA is to generate chromosomes that represent a hierarchical task

structure representation for a given task. This work assumes that the representations

are binary trees. The goal is to generate simple, compact, human-interpretable trees

in which each object for a given task appears only once. Given these two restrictions,

a generated task tree can have at most (n-1 ) constraints (internal nodes) where n

is the number of objects in the task. To handle the complexity of large tasks, a

compression-based encoding scheme was designed to maintain a consistent size of

chromosomes.

The compression-based encoding uses a dictionary to store the compressed chromo-

somes. To simplify the encoding, each of the n objects in a task is mapped to unique

numbers from 1 to n to allow demonstrations to be represented by a numerical se-

quence instead of a set of words. Initially, the dictionary only contains the set of

objects 1 to n for a given task.

The GA generates chromosomes of the form (number left, constraint, number right)

where number left and number right are two different numbers in the dictionary and

constraint is one of the constraints handled by the hierarchical representation (THEN,

AND, OR). In the initial population of the GA, the chromosomes are built entirely

from objects and a single constraint.
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At each generation, new chromosomes with high fitness (Section 6.1.2.2) will be added

to the dictionary under a unique numeric representation (n+1, etc.).

Therefore each of the number left and number right in later generations can represent

encoded chromosomes previously stored in the dictionary.

Using this compression-based encoding, the chromosomes generated by the GA will

always be of the form (number left, constraint, number right) while continuing to

produce more complex encodings with each generation. After the GA finishes, the

dictionary can be used to decode the compression in order to get the complete hier-

archical representation consisting solely of the base numbers (1-n, corresponding to

the objects) along with the constraints generated between them.

6.1.2.2 Fitness Function

The generated hierarchies are scored via a fitness function that takes into account

the desired structure of the hierarchical task representation. These trees should be

compact and represent the complete set of constraints inherent to a task. The correct-

ness of the trees is determined by evaluating how well the tree reflects the provided

demonstrations and their constraints.

By looking solely at good demonstrations, it is very difficult to differentiate between

the THEN and AND constraints. Therefore, a set of bad demonstrations, providing
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incorrect orderings of the task, is also included to provide a notion of ordering between

objects in the task to allow the GA to learn the THEN constraint easier.

The fitness function used in the GA is defined in Equation 6.1.

score = countgood ∗multiplier

− countbad ∗multiplier

(6.1)

multiplier =(multiplierleft

+ multiplierright) ∗ wconstraint

(6.2)

where wconstraint =



4 THEN

1 AND

1 OR

The fitness function evaluates how well a chromosome fits the demonstrations weighted

by a multiplier which accounts for the combinations of constraints within the chromo-

some. At each depth in the tree, the multiplier is calculated as in Equation 6.2. Each

type of constraint has a different multiplier value associated with it. The multiplierleft

is the multiplier for the left sub-tree at a given level and multiplierright is for the right

sub-tree. The THEN constraint has a higher multiplier than the AND and OR nodes
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to allow the GA to better learn the THEN constraints, which are difficult to illustrate

through demonstration alone.

The fitness function also accounts for the number of demonstrations whose constraints

are accurately reflected by the chromosome. The countgood represents the number of

good demonstrations that fit the chromosome’s constraint and the countbad represents

the number of bad ones which do not. The fitness function (Equation 6.1) uses the

weighted difference between these two values to ensure that the chromosome fits the

good demonstrations but not the bad ones. If the fitness score is above a certain

threshold (i.e. number of good demonstrations), the chromosome gets saved as a new

rule in the dictionary. This rule can then be used to generate new chromosomes in

future iterations.

How well a chromosome fits a demonstration is determined by evaluating if the order-

ing and constraints between the objects in the demonstration are accurately reflected

in the chromosome. This is done by checking whether the number left and num-

ber right occur in the correct order in a given demonstration for a certain constraint

(THEN, AND, OR). For the THEN constraint, number left must come before num-

ber right in the demonstration. For the AND constraint, the order of the numbers

doesn’t matter, but both number left and number right must appear in the demon-

stration. For the OR constraint, either number left or number right can appear in the

demonstration, but not both. If these cases are not met, the corresponding constraint

function returns a fail, meaning that it does not fit the demonstration’s constraints.
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These constraints are verified by recursing through the compressed chromosomes to

evaluate all of their constraints. If a chromosome contains more than one instance of

each object, it also returns a fail. This ensures that not only are the constraints met

but that the representations are as compact as possible, with a tree depth of at most

n-1 due to their binary nature.

Algorithm 1: Modified genetic algorithm for learning a hierarchical task struc-
ture representation
1: Generate initial population of k individuals.
2: for each individual in the population do
3: Evaluate the fitness
4: if fitness > THRESH then
5: Add individual to dictionary
6: else
7: Add individual to bad dictionary
8: end if
9: end for
10: while i < MAX ITERS do
11: Select top 70% of previous population as offspring
12: Generate other 30% of offspring via the following:
13: Generate 15% new individuals with any numbers in the dictionary as number left and number right
14: Generate 15% new individuals with simple numbers corresponding only to the objects as number left and

number right
15: Cross over offspring to form new offspring with probability pc
16: Mutate new offspring with probability pm
17: Place new offspring in a new population
18: for each individual in the population do
19: Evaluate the fitness
20: if fitness > THRESH then
21: Add individual to dictionary
22: else
23: Add individual to bad dictionary
24: end if
25: end for
26: end while
27: Find the individual with highest fitness in dictionary
28: Decode individual to get the complete hierarchical plan

6.1.2.3 Modified Genetic Algorithm

The framework uses a modification of the standard GA method consisting of two

major changes: 1) each generation, the chromosomes which have a fitness above a
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certain threshold are added to the dictionary which contains the compressed chro-

mosomes (Sections 6.1.2.1 and 6.1.2.2) and 2) the best resulting chromosome at the

end of the GA must be decoded using the dictionary to get the complete hierarchical

plan ((Sections 6.1.2.1). The modified algorithm is presented in Algorithm 1. The

main implementation for the GA was done using the DEAP framework [108]. Indi-

viduals were generated using (number left, constraint, number right) as described in

Section 6.1.2.1. Evaluation of the fitness was done as described in Section 6.1.2.2.

Selection, Algorithm 1 line 11, was performed through the roulette selection method.

The crossover in Algorithm 1 line 15 was performed with the one-point crossover

method.

The mutation in Algorithm 1 line 16 was performed using the method described in

Algorithm 2. The algorithm mutates one of the components of an individual: num-

ber left, number right, or constraint. Randomized positions 1 to 4 allow the mutation

of the number left and number right 25% of the time and the constraint the other

50%.

6.2 GA Validation

The GA framework for generating hierarchical representations from a set of demon-

strations (Section 6.1.2) is validated on a building task. A human-generated hier-

archical representation was created for this task to act as ground truth. The GA
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Algorithm 2: Mutate (individual)
1: mutated = individual
2: Generate random position pos for mutation from 1 to 4
3: if pos == 0 then
4: generate random number mut from 0 to length of dictionary
5: while mut == individual.number left or mut == individual.number right do
6: generate a new random number mut from 0 to length of dictionary
7: end while
8: mutated.number left == mut
9: else if pos == 2 then
10: generate random number mut from 0 to length of dictionary
11: while mut == individual.number left or mut == individual.number right do
12: generate a new random number mut from 0 to length of dictionary
13: end while
14: mutated.number right == mut
15: else if pos == 1 or pos == 3 then
16: generate constraint type const out of {THEN, AND, OR} with probabilities (66%, 33% ,33% ) respectively
17: mutated.constraint == const
18: end if
19: RETURN mutated

framework was run ten times on this task to evaluate whether the GA is able to

successfully and consistently generate a hierarchical representation that meets the

constraints defined in the human-generated tree. The details of the experiment are

shown in Fig. 6.2. The task includes a combination of the three constraints (THEN,

AND, OR) as shown in Fig. 6.2(a). The task tree was used to generate both a set of

good demonstrations which represent valid orderings for each tree and a set of bad

demonstrations which represent invalid orderings, or orderings that break the con-

straints of the tree as shown in Fig. 6.2(b). These bad demonstrations can be either

full sequences (containing a full ordering of objects) or partial sequences (containing

a partial ordering of a few objects). These demonstrations are passed as input to

the GA in order to learn a hierarchical representation that reflects the inherent task

constraints. The human-generated task tree is not given to the GA as input. Instead,

it is used to verify whether or not the task trees generated by the GA reflect the same

constraints as those provided by humans. This verification is done by hand. The top
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Good

Bad

((((PLACE greenleg) AND (PLACE 
blueleg)) THEN ((PLACE yellowbar) AND 
(PLACE pinkbar))) THEN ((PLACE 
orangetop) OR (PLACE purpletop))) 

(((((PLACE green_leg)AND(PLACE blue_leg))THEN(AND(PLACE yellow_bar)(PLACE 
pink_bar)))THEN(OR(PLACE orange_top)(PLACE purple_top)))

Correct

(((PLACE blue_leg)AND(PLACE green_leg))THEN(((PLACE yellow_bar)AND(PLACE 
pink_bar))THEN((PLACE orange_top)OR(PLACE purple_top))))

Correct

((((PLACE blue_leg)AND(PLACE green_leg))THEN((PLACE pink_bar)AND(PLACE 
yellow_bar)))THEN((PLACE orange_top)OR(PLACE purple_top)))

Correct

((((PLACE blue_leg)AND(PLACE green_leg))THEN((PLACE yellow_bar)AND(PLACE 
pink_bar)))THEN((PLACE orange_top)OR(PLACE purple_top)))

Correct

((((PLACE blue_leg)THEN(PLACE pink_bar))AND((PLACE green_leg)THEN(PLACE 
yellow_bar)))THEN((PLACE purple_top)OR(PLACE orange_top)))

Correct

((((PLACE blue_leg)AND(PLACE green_leg))THEN((PLACE yellow_bar)AND(PLACE 
pink_bar)))THEN((PLACE purple_top)OR(PLACE orange_top)))

Correct

(((PLACE green_leg)AND(PLACE blue_leg))THEN(((PLACE pink_bar)AND(PLACE 
yellow_bar))THEN((PLACE purple_top)OR(PLACE orange_top))))

Correct

(((PLACE blue_leg)AND(PLACE green_leg))THEN(((PLACE yellow_bar)AND(PLACE 
pink_bar))THEN((PLACE orange_top)OR(PLACE purple_top))))

Correct

((((PLACE blue_leg)THEN(PLACE yellow_bar))AND((PLACE green_leg)THEN(PLACE 
pink_bar)))THEN((PLACE purple_top)OR(PLACE orange_top)))

Correct

(((PLACE green_leg)AND(PLACE blue_leg))THEN((PLACE purple_top)OR(((PLACE 
yellow_bar)AND(PLACE pink_bar))THEN(PLACE orange_top))))

Incorrect

Figure 6.2: Example GA experiment for validation of GA generated task tree
with all three constrain types (THEN, AND, OR). (a) The human-generated task
tree was used as the ground truth for the experiment. (b) The demonstrations
(both good demonstrations and bad demonstrations) were used as input to teach
the GA. (c) 10 sample task trees generated by the GA were used to validate the
GA. It was observed that 9 out of 10 samples were correct which means they were
reflecting the same approach as the human-generated task tree. Due to the random
chance of the GA, there is a possibility that a small number of input demonstrations
might not be sufficient to capture the desired constraints of a task, as seen in the

last validation tree.

task tree generated by the GA on the ten runs is shown in Fig. 6.2(c). Nine out of ten

runs resulted in a correct hierarchical representation. However, due to the random

chance of a GA, it is possible that a small number of human demonstrations and/or

running the GA for a small number of generations may not sufficiently encompass the

knowledge required to learn the entire set of constraints of a task. This is reflected

by the last validation run shown in (c). However, this validation shows that the GA

is able to learn hierarchical tasks with complex constraints using a set of demonstra-

tions relatively accurately and consistently. The GA method is further applied in the

human-robot task illustrating our proposed pipeline in Section 6.1.2.3.
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6.3 Task Training Pipeline and Experiment

To showcase the capabilities of our proposed system, we have divided our framework

into three parts: task demonstration, task learning, and task execution.

6.3.1 Human Task Tracking and Task Encoding

In this module, the robot will track the human teammate’s movements while per-

forming a task and record the information as task sequences. The robot will monitor

a set of good task demonstrations and a set of bad task demonstrations that serve as

input for the next module.

This module was demonstrated in a lab environment experiment with a human part-

ner and a Baxter humanoid robot standing in front of a table with objects. The task

for our experiment was to assemble a tabletop with six different parts, each with a

different color. A Kinect v2 camera was mounted on Baxter’s head to monitor the

human teacher’s movements using color detection. By tracking each color, the system

knows when one object is moved and used to assemble the tabletop. This way the

robot can record the order in which the objects are moved into a task sequence.

Before tracking and recording each task sequence, the robot asks the human teacher

if they are ready to perform a good task demonstration. Upon receiving confirmation

from the human user, the robot starts monitoring and saving the task sequences based

on the object’s movements. When the robot has taken a set of good task sequences,
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it will again ask the individual if they are willing to demonstrate a bad task. After

human confirmation, the robot will track and record the bad task sequences in the

same way as before.

6.3.2 Using the GA Framework to Learn a Task

In this module, we apply the GA (Section 6.1.2 to the collected task demonstrations

from the previous step. After applying the GA method, the robot will ask the human

user if the resulting hierarchical task structure representation is correct or not. The

resulting task structure is shown on a web page that the human can see on a nearby

tablet. We performed this task by publishing the result string using roslibj, a standard

ROS JavaScript library. The framework will move to the next step if a human user

confirms the resulting task structure to be correct by saying “Yes.”. Otherwise, the

robot will repeat the GA process.

6.3.3 Executing the Generated Task Structure

Once the hierarchical task structure is generated, the robot can interpret this struc-

ture as a controller as described in [107] and use assemble the tabletop with the

human user’s assistance. Different AR tags [109] are used to identify the objects

and determine their location by tracking their pose. A Kinect v2 camera on top of

Baxter’s head and Baxter’s right-hand camera were used to detect the object’s AR

tags.



86

(a) Picking blue leg (b) Placing blue leg (c) Picking yellow bar (d) Placing yellow bar

(e) Picking green leg (f) Placing green leg (g) Picking pink bar (h) Placing pink bar

(i) Asking for the or-
ange top

(j) Placing the orange
top

(k) Asking for the pur-
ple top

(l) Placing the purple
top

Figure 6.3: Step by step task execution according to the GA generated task tree.
The robot is assembling the table top using the object on the table with the help

of the human user

6.4 Results and Discussion

The results of the validation experiment of the GA method are discussed in detail

at the end of Section 6.2. For the task training pipeline experiment (Fig. 6.1 and

Fig. 6.3), the robot successfully collected three good task sequences and two bad task

sequences to assemble the tabletop. Each time the robot begins recording a task

demonstration, it asks “Are you ready to demonstrate how to assemble this tabletop?

Please answer “Yes” or “No”. When the human teacher confirms with “Yes”, the

robot will start tracking the teacher’s movement and recording the task sequence.

This process was validated by placing each of the tabletop objects at a different
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location each time. Objects not part of the tabletop were also located on the table

to show the robustness of the object tracking.

The collected sequences were provided to the GA to learn a hierarchical task structure

representing the task. As in the validation done for the GA in Section 6.2, the task

structure and demonstrations for this experiment were also run through the GA

multiple times for validation. Two resulting task structures are shown in Fig. 6.1(c).

The robot-generated task tree chosen for this experiment was: ((((PLACE blue

leg) THEN (PLACE yellow bar)) AND ((PLACE green leg) THEN (PLACE

pink bar))) THEN ((PLACE orange top) AND (PLACE purple top))).

Once the robot finished learning the task structure, it asked the human to verify the

display of the GA-generated task tree on a nearby tablet.

After verifying the task tree, the human user confirmed it by saying “Yes” to the

robot. Following that, the robot responded with “Thank you. Please help me to

assemble the tabletop” in order to ask the human for assistance in executing the

learned task. The task execution is shown in Fig. 6.3. The robot first picks and

places the blue leg according to the task tree (Fig. 6.3a and Fig. 6.3b respectively).

Next, it picks the yellow bar (Fig. 6.3c and connects it with the blue leg with the

help of the human (Fig. 6.3d). After adding the yellow bar, the robot goes for the

green leg (Fig. 6.3e) and places it on the yellow bar with further assistance from the

human (Fig. 6.3f). The robot completes the table base by picking and placing the

pink bar with human help (Fig. 6.3g and 6.3h respectively). Afterward, the robot
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began picking the orange top. However, since the orange top was out of reach from

the robot, the robot asks the human, “Can you please bring me the orange top? It is

out of my reach.” (Fig. 6.3i). After placing the orange top (Fig 6.3j), the robot asks

the human for help with the purple top, “Can you please bring me the purple top? It

is out of my reach.” (Fig. 6.3k). Finally, it takes the purple top from the human and

places to complete the tabletop task (Fig. 6.3l).

This experiment demonstrates the proposed pipeline for teaching robots new tasks

through demonstration, verbal cues, and a GA framework that represents the task

as a hierarchical task structure. This process is done without any modification from

a programmer, which shows that it can be more flexible, efficient, and dynamic for

allowing non-programmers to teach robots new tasks.

6.5 Summary

This chapter proposes a pipeline for teaching robots tasks through a human task

demonstration interface that relies on social cues and a GA-based learning frame-

work that emphasizes learning a hierarchical task structure representation. Using

this pipeline, the human is able to teach a robot to perform tasks with complex,

hierarchical constraints.

The robot tracks and records the human teacher’s task sequences using a color detec-

tion method in the human task demonstration interface. Additionally, the robot holds
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conversations with the human to notify them when it begins tracking the sequences

and to ask if the human is ready or not. All the sequences serve as inputs for the

genetic algorithm-based learning framework. The learning framework generates the

structure of a complex, hierarchical task through a small number of human demon-

strations. The proposed method uses a hierarchical task representation (Section 6.1)

which is able to represent the various constraints of a task such as sequential, non-

ordering, and multiple paths of execution. The GA framework is able to learn the

constraints of the task in a compact task structure. This task structure can then be

executed directly by the robot.

The proposed work is validated in two experiments. The first experiment validates

the GA-based method on a building task and was shown to produce a representation

similar to the tree generated by the human nine times out of ten. The second experi-

ment validates the proposed pipeline. In this experiment, a hierarchical task structure

representing a building task was created by a human. The human provided three good

and two bad demonstrations to the robot using the human task demonstration in-

terface. These demonstrations were then used by the robot to run the GA-based

learning framework which was able to generate a hierarchical task structure. The

robot successfully executed the learned task.

Our experiments show that the robot can learn all the constraints inherent to demon-

strations provided by a human in a complex, hierarchical task. These demonstrations

were provided through verbal and visual cues which illustrate how the proposed work
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could allow non-programmers to handle teaching robots new tasks.
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Chapter 7

Cognitive Approach to

Hierarchical Task Selection For

Human-Robot Interaction in

Dynamic Environments

Recent advancements in the development of intelligent robots have opened opportu-

nities in which humans and robots can work collaboratively in dynamic environments

[1, 110]. Consequently, it increases the need for robots and other agents to understand

implicit and explicit cues from teammates and convert these cues into appropriate

actions [1, 96]. The importance of understanding the environment may be justified by

the following examples from Human-Human-Interaction (HHI): if we can say to our
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Figure 7.1: Sub Graph from Semantic Memory: Semantically populated Networks
of “Sandwich” and “Food” nodes

teammate (human) that “It is getting hot outside” or “I am feeling thirsty” rather

than ”I want to drink cold tea using a yellow cup,” and in other situation “I am

hungry” or “I need something to eat” rather than “I want to eat burger placed at

right side”. The teammate will infer the link between “hot weather”, “thirst” and

“drink, and “hunger”, “food” and “eat”. The connection between phrases is that

“hot weather” causes “thirst” and it induces a desire to “drink” whereas “hunger”

causes the desire to “eat” “food”. Consequently, the teammate will offer something

to “drink” and other situation will offer something to “eat”.

When a robot is working on a team with a person, the robot would be expected to

perform comparably to a human teammate. This type of collaboration is presently

a challenge in Human-Robot Interaction, although there are several contributions in

this direction [1, 84, 95, 111]. Semantic association can be an element to facilitate

collaboration when connections between utterances, objects, and skills can be lever-

aged to communicate incomplete information. The ability to recognize what the user
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Figure 7.2: NiHA ’s Minimalistic Cognitive Architecture with Upgraded Percep-
tion Layer, Working Memory and Procedural Memory[1]

wants the robot to do next based on a vague or incomplete utterance given a knowl-

edge model of the tasks and objects in the environment [1] can improve the HRI

experience. To address these needs, we have developed a methodology based on our

existing cognitive [1] and hierarchical control [96] architectures enabling the robots

and humans to work collaboratively on joint tasks like “tea making” and “sandwich

making”. In this regard, we have induced sensory memory, lingual and visual percep-

tion, working memory, semantic memory, procedural memory, and actuators (Robot:

Baxter, verbal response).

If a robot is given a context and the appropriate objects, it should be able to identify

a specific task that will correctly respond to a statement from its partner. Prior work

has examined task coordination to encourage users to do different sub-tasks from a

robot [96], communicate about task failures [95], and construct new tasks from verbal

instruction [89]. If humans and robots can interact verbally about how to accomplish

complicated tasks it will emulate another method for HHI. However, such interaction

has the added difficulty of teammate communicating with incomplete information or
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(a) “I am hungry”:
“hunger” and “food”

(b) “I need something to
drink”:

“drink” and table items”
(c) “I am thirsty”:

“drink” and “thirst”

(d) “I want to make a sand-
wich”:

“sandwich” and “food”
(e) “I need some food”: “food” and

table items
(f) “It is hot outside”:

“hot” and “tea”

Figure 7.3: Semantic Graphs extracted from Semantic Memory based on verbal
cues

requests that leverages knowledge of the task and the environment.

In this chapter, we propose a solution where the robot can understand the context

of the environment in working memory using semantic similarity and can perform

the desired task by selecting hierarchical sub-tasks stored in procedural memory. We

utilized a cognitive architecture (see Fig 7.2) for task execution in a dynamic envi-

ronment based on perception and semantic associations. We validate this work using

three scenarios by placing the task objects for multiple skills in different positions in

front of the robot. In each scenario, the robot is able to understand the context of the
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environment using ontology by having a dialog conversation with the human. The

semantic similarity score enables the robot to decide what skill it needs to perform

and executes the skill following the hierarchical task architecture using the objects

that falls under the performing skill.

7.1 Problem Formulation

Let the household items presented on table be detected using AR Tags as I =

{i1, i2, i3, . . . , in}.

Let semantic memory of the system be based on k atom of knowledge Sm = {Atom1,

Atom2, Atom3, . . . , Atomk} whereas, Concept = {concept1, concept2, concept3, . . . , conceptk},

Feature = {feature1, feature2, feature3, . . . , featurek}, Relationship = {relationship1,

relationship2, relationship3, . . . , relationshipk},Atom = {(relationship, (concept,

concept)), (relationship, (feature, concept)), (relationship, (feature, feature))}.

Auditory stimuli are based on m words as,WAuditory = {word1, word2, word3, . . . , wordm}.

The semantic similarity being evaluated as S be based on Jaccard Similarity Index.

Let the procedural memory be based on Human-Robot Collaborative Architecture

having skills as Skills = {skill1, skill2, skill3 . . . , skillk}. The skills are being exe-

cuted on number of items I with actions as Actions : Item→ [pick, place, null].
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7.2 Methodology

7.2.1 Sensory Memory

Sensory memory is further classified into iconic and echoic memory. The iconic in-

volves the processing of brief images from a video stream whereas the echoic memory

processes brief sound bits from an audio stream.

7.2.2 Perception Layer

7.2.2.1 Lingual Perception

The lingual perception is based on the Natural Language Processing (NLP) layer

which is further composed of a Part-Of-Speech (POS) tagger, and Tokenization mod-

ule Tokenization modules tokenizes the spoken commands into words as WAuditory =

{word1, word2, word3, . . . , wordm}. The tokenized words are further classified into

nouns, adjectives and verbs by POS Tagger as noun N = NN,NNS,NNP,NNPS,

verb V = {V B, V BD, V BP, V BN, V BG, V BZ} and adjective Adj = {JJ, JJR, JJS}.

7.2.2.2 Visual Perception

To detect the objects on the table each object were given different AR tags[109]. AR

tags help to identify and track the pose of the object to determine where the object

is.
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7.2.3 Working Memory

Working Memory (WM) functions as an executive control that is aware of the current

situation and can recall earlier events. The basic goal of WM is semantic processing,

object grounding, motion planning, and motor command manipulations.

7.2.3.1 Semantic Analysis

The algorithm assesses the semantic similarity between atoms of spoken words and

item categories present in the table-top scenario at the time. WAuditory = {word1, word2,

word3, . . . , wordm}. The semantic function S : AtomWAuditory
→ AtomI . The Simi-

larity Index is being evaluated as

S(AtomWAuditory
, AtomI) = max

(
|AtomWAuditory

∩AtomI |
|AtomWAuditory

|+|AtomI |−|AtomWAuditory
∩AtomI |

) (7.1)

7.2.4 Semantic Memory

Table 7.1: Semantic Similarity Score between Tagged Words (vertical) and Avail-
able Items (horizontal). This information is used to select which objects are most

semantically related to words that the partner might say.

Bread Cheese Cup Lettuce Meat Sugar Tea Teapot
hot 0.00802 0.00431 0.00493 0.00232 0.00695 0.00656 0.01163 0.00116

hungry 0.00063 0.00000 0.00000 0.00000 0.00345 0.00000 0.00000 0.00000
thirst 0.00126 0.00000 0.00578 0.00524 0.00069 0.00000 0.00513 0.00000

sandwich 0.02244 0.01610 0.00655 0.01786 0.01761 0.00269 0.01081 0.00220
drink 0.01008 0.00468 0.01754 0.00327 0.00744 0.01547 0.01465 0.00140
food 0.02879 0.00906 0.00684 0.00487 0.02537 0.01325 0.00807 0.00024
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Semantic memory is developed from WordNet and ConceptNet having 117,659 Synsets

(WordNet Nodes), 157,300 Lemma nodes, and 1653804 Concept (ConceptNet) nodes.

There are 54 categories of 3730567 relationships [112]. Lemma nodes are the “root

words” retrieved from the Concept node and can correlate Concept nodes completely

or partially with Synsets whereas an assertion is considered as the atom of knowl-

edge in Semantic Network [113]. The semantic memory is constructed from these

atoms of knowledge as concept-relationship-feature or concept-relationship-concept

as Atom = {(concept, relationship, concept), (concept, relationship, feature)}.

Sm = {Atom1, Atom2, Atom3, . . . , Atomk}, whereas the Feature = {feature1, feature2,

feature3, . . . , featurek} , Concept = {concept1, concept2, concept3, . . . , conceptk} and

Relationship = {relationship1, relationship2, relationship3, . . . , relationshipk}

Complete details about semantic memory can be accessed at [1]. The depiction sub-

graphs of semantic memory showing the relationship between the “Food” node and

the “Sandwich” node is shown in Fig 7.1.

7.2.5 Procedural Memory

Procedural Memory is Long-Term Memory that is responsible for actions and skills.

This memory entirely depends on the type of agent/robot which is being used. We

have adopted Human-Robot Collaborative Architecture for the execution of skills

i.e., making tea and making a sandwich. Skills describe actions to be taken and their

hierarchical constraints.
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7.2.5.1 Hierarchical Task Representation

The purpose of the hierarchical task architecture is to enable naturalistic human-

robot task execution for complex tasks. This task architecture is based on a complex

hierarchical task network in which humans and robots can work simultaneously in

the same environment. Almost any real-world task can be divided into sub-tasks and

designed as a hierarchical task network. The task can be a collection of sequential,

non-sequential, and alternative sub-tasks in the real world.

Our robot control architecture currently enables the system to encode tasks impli-

cating various types of constraints such as sequential (THEN), non-ordering (AND),

and alternative paths of execution (OR) [2]. Tasks are represented in a tree structure

with two types of nodes: leaf nodes and behavior nodes. Leaf nodes represent tasks

to be completed, and behavior nodes represent the hierarchical relationships between

those tasks.

Figure 7.4: A new component SKILL was added to the hierarchical task tree
which allows the system to choose the skill based on the similarity score. Two
types of Skills: 1) Tea Making Skill and 2) Sandwich Making Skill were added

under the SKILL node.
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For such a hierarchical task, each node in the architecture maintains a state made up of

the following components: 1) Activation Level: a number representing the priority

placed by its parent on executing and finalizing a particular node, 2) Activation

Potential: a number representing the node’s perceived efficiency, which is sent to the

parent of the node, 3) Active: a boolean variable that indicates that the behavior is

active when the node’s activation level exceeds a threshold, and 4) Done: a boolean

variable that is set to true when the node has completed its necessary work. The

above state information is continuously maintained for each node. The activation

spreading technique ensures that the task is executed properly based on constraints

by performing both top-down and bottom-up spreading.

(a) Picking Cup from the ta-
ble (b) Placing Cup on the table (c) Pouring Tea in the cup

(d) Placing Tea on the table (e) Putting Sugar in the cup (f) Placing Sugar on the table

Figure 7.5: The robot is making a cup of tea after the human said, “It is hot
outside.” The robot determines to execute the Tea Making Skill after analyzing the

semantic scores of the available table objects.

To carry out a task, activity spreading messages is sent from the root node to its
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children to deploy activity level throughout the task tree. A bottom-up mechanism

distributes activation potential throughout the tree by having nodes send their current

state as status messages to their parents. In each cycle, a loop assists in maintaining

the state of each node in the task structure; the various components of the node’s

state are checked and updated accordingly.

The controller architecture scales to multiple robots by maintaining a copy of the

task tree for each robot. This includes when that robot is currently working on a

behavior, when a robot has completed one, and the activation potential and level for

each robot and each behavior.

7.2.5.2 Adding Skill Component in Hierarchical Architecture

In order to extend the previous task architecture, we added a new component Skill

which decides which of a selection of tasks should be executed based on the envi-

ronment and interaction. The semantic knowledge module determines the task the

robot should complete following the interaction between humans and robots. The

skill node can choose the required task for execution by receiving a ROS message in

string form. Under the skill node component, we can assign multiple skill tasks to

the robot as its child nodes. Whenever the robot chooses a task to perform, it will

perform the task accordingly. These skills are designed with constraints like THEN,

AND, OR. As shown in Fig 7.4, there are two skills listed under the SKILL node:

1) Tea Making Skill and 2) Sandwich Making Skill. The Skill component determines
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which task to run based on semantic information and the objects that are available

in the environment, the semantic relevance of various objects to words that a user

might speak is shown in Table 7.1.

7.3 Experiment Design

(a) (b) (c)

(d) (e) (f)

Figure 7.6: Order of execution for Tea Making Skill - ((Place
Cup)THEN((Place Tea)AND(Place Sugar))). After the SKILL node chooses
the Tea Making Skill to execute, it only proceeds to execute the nodes that fall un-
der the Tea Making Skill. (a) The THEN node for the Tea Making Skill under
the SKILL component is invoked, which initiates the PickAndPlace node for the
Cup object, (b) the state of the PickAndPlace of the Cup is changed to Done when
the robot finishes placing the cup, (c) AND node gets activated and proceeds to
activate the PickAndPlace node for the Tea which makes the robot starts pouring
Tea into the cup, (d) the state of the PickAndPlace action of the Tea is changed to
Done when the robot finishes pouring Tea and places it on the table, (e) PickAnd-
Place node for the Sugar under the AND node is activated which makes the robot
adding sugar into the cup, (f) PickAndPlace action for the Sugar is Done when the
robot places the Sugar on the table, and by doing this the state of all the active

nodes under the Tea Making Skill is changed to Done.
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To showcase the capabilities of the system we developed, we have designed an interac-

tion using speech conversation between a user and a robot to validate the hierarchical

model’s capabilities. Based on the user’s feedback, the robot can understand the

hidden context and perform a skill task utilizing objects from the surrounding envi-

ronment. We experimented in a lab environment with a human user and a Baxter

humanoid robot standing in front of a table with objects. This experiment involves

using a robot to make tea and sandwiches. A Kinect v2 camera on top of Baxter’s

head and Baxter’s right-hand camera were used to detect the object’s AR tags.

In this human-robot interaction, the robot will decode the tagged word from the

human’s speech and check the semantic similarity score of the objects(see Table 7.1)

associated with the decoded tagged word. The score will help the architecture to

decide the appropriate skill task to execute. If the human says a statement like “I

am thirsty” or “It is hot outside,” the tagged words will be “thirsty” and “hot”

respectively. Based on the similarity score, in both cases, it is observed that the

objects under the Tea-Making Skill have the highest scores. As a result, the robot

will decide to perform the Tea-Making Skill. Based on the task tree (see Fig 7.4), the

task will be ((Place Cup)THEN((Place Tea)AND(Place Sugar))). According

to this task statement, the robot will first pick and place Cup, then pick and place Tea

and Sugar in a non-ordered fashion (see Fig 7.5). The hierarchical state representation

of each step in executing the Tea-Making Skill is shown in Fig 7.6.

In contrast, if the human says something like “I am hungry”, the Meat object from
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the object list has the highest semantic score associated with the tagged word “hun-

gry” (see Table 7.1). Since Meat falls under the Sandwich-Making skill, the robot

will start to make a sandwich. Again, based on the tree, the task will be ((Place

Bread1)THEN((Place Meat)OR(Place Lettuce))THEN(Place Bread2)). There-

fore, the robot will pick and place Bread1 then the robot will either pick and place

Meat or Lettuce. The robot will then pick and place Bread2 to complete the task.

7.4 Results

In our experiment, the person says, “It is hot outside.” Speech recognition provides

the ontology with a word string spoken by the user. From the decoded speech, the

semantic similarity is being calculated using the Jaccard Similarity index between

tagged words and available objects i.e. ’tea’, ’sugar’, ’cup’, ’bread’, ’meat’, ’cheese’,

’lettuce’ and ’teapot’(see Table 7.1). The score indicates that the spoken stream is

related to ’tea’, in this regard, the ontology identified the statement’s implied context.

The ontology used the available object list and identified the Tea Making task, which

has objects that are available and are most connected with the user’s speech statement

and therefore might be the most helpful. This reflects a connection between the user’s

statement, the available objects in the environment, and the available tasks that the

robot can complete.
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Fig 7.6 illustrates the step-by-step state for the tree nodes in our robot architecture

for executing the Tea Making skill. At first, when the skill node received the object

name (“Tea”) which has the highest semantic similarity score (0.01163) among the

other objects, the task tree decided to execute the Tea Making Skill from the tree

because the object “Tea” falls under this skill. The THEN node was activated for this

skill (see Fig 7.6a), and the robot proceeded to pick and place the Cup (see Fig 7.5a

Fig 7.5b respectively). When the robot placed the Cup on the table, the status of

the Cup node was changed to Done from Active (Fig 7.6b). From the task tree, the

robot would activate the AND node (Fig 7.6c) and start picking the tea to pour into

the cup (Fig 7.5c). After pouring the tea into the cup, the Tea was set on the table

(Fig 7.5d), which made the Tea node in the task tree Done from Active (Fig 7.6d).

Then, the robot moved to the next step according to the task tree and activated the

Sugar node (Fig 7.6e) and start to put sugar in the cup (Fig 7.5e). At the end, when

the Sugar was placed on the table (Fig 7.5f), all the nodes’ statuses were changed to

Done, and the whole skill task was completed based on the tree design (Fig 7.6f).

We used three validation cases for each skill test. Each time, the objects were in

different positions on the table. The robot detected the objects’ position every time

and performed the expected skill from the hierarchical task tree. Our observations

indicated that the robot does not go for objects under different skill sets. Additionally,

we provided two statements for each skill test to validate the case scenarios. For

instance, we used statements like “I am thirsty” (see Fig7.3c for graph) and “It is hot

outside” (see Fig7.3b for graph)for the Tea Making Skill. Likewise, for the Sandwich
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Making Skill, we used statements like “I am hungry” (see Fig7.3a for graph) and “I

want to make a sandwich” (see Fig7.3d for graph). Furthermore, we have also tried

queries “I need some food” (see Fig7.3e for graph) and “I need something to drink”

(see Fig7.3f for graph), the respective similarity score about extracted action verbs,

nouns and adjectives can be found in Table 7.1.

7.5 Discussion and Future Work

This chapter proposes a way to offer an efficient and flexible human-robot collab-

oration environment in which the robot teammate can perform the user’s desired

task by deciphering both vague or clear requests in a natural language form from

the human teammate. The ontology played a vital role in the understanding of user

commands due to the semantic relationship between various concepts and features.

This architecture has the following contributions:

• The system can find an implied link between the context of the situation and

the surrounding environment using the ontology approach after interacting with

the human user.

• In our extended hierarchical task architecture, the robot will only select the

hierarchical sub-tasks that are most relevant to the specific task derived from

the ontology approach.
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Right now, the robot is performing the skill task after interacting once with a human.

However, in the future, we are planning to add more scope to hold conversations to

make the system more dynamic and diverse. Rather than a one-line conversation, we

plan to hold a series of dialogue conversations between the human and the robot. This

will result in a more in-depth understanding of the situation. For example, in the

case of the Tea-Making skill task scenario at first, if the human says, “I am thirsty”,

then the robot will reply with “Do you want tea?” based on the surrounding object.

Later if the human replies with “Yes”, the robot will then proceed to say, “Perfect!

Do you want sugar in your tea?”. Based on the human’s reply the system can create

a new skill tree which will include sugar or not.

In addition, right now all skill-based sub-trees are manually created in the system

by the programmer. However, by applying the idea from Chapter 6, we can make

the system more automated. In that case, the tree will be generated by itself which

will result in a more flexible, dynamic, and reliable system. In addition, we hope to

implement this ontology approach in a multi-human-robot environment to enhance

collaboration.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

This dissertation aims to answer the problem of a joint task architecture in which

humans and robots can collaborate as teammates. This task architecture is based on

a complex hierarchical task network in which humans and robots can work concur-

rently in the corresponding environments. Three types of task synopses can happen

in that condition: 1) sequential order, 2) non-ordering, and 3) alternative execution

constraints. Teammates are free to pick any sub-task they prefer to complete as

long as it serves the constraints policy. The task can be devised as an on-table task.

To design this architecture, we extended our previous multi-robot architecture into

human-robot architecture. In this system, the robot can recognize a human team-

mate’s intention and determine which sub-task to concentrate on without interrupting
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the other teammate’s sub-task goal. Nevertheless, there can be circumstances when

human and robot teammates attempt to achieve the same sub-task. In this state,

the system initiated dialogue-based communication between teammates in order to

resolve the issue.

The next concern in composing a better human-robot collaboration system is to

evaluate the human-robot task architecture. Trustworthiness and trust are some of

the most crucial metrics that need to be investigated. People are more inclined to

collaborate with a robot if they feel trustworthy toward it. In order to understand the

value of trust, we set up an interaction between humans and robots that is homophilic.

We examined whether humans and robots can form a homophilic relationship and

whether there is a correlation between homophily and trust between humans and

robots. This experiment shows the importance of trust in the system.

Another focus of our work is to make the task architecture more flexible and dynamic

so that it doesn’t need any programmer to specify the task. If the robot can be

taught by a human teacher, it will reduce the need to feed the task tree to the

robot. We proposed a pipeline where the robot can observe its human teammates

working, learn the task design, create/update the task tree, and execute the task. To

do this, we designed a task demonstration interface to monitor the human teacher’s

hand movement using a vision system to understand the task design. After that, we

used the previously proposed GA learning framework to learn and construct the task

tree. In the end, the robot was able to create and execute the task tree in real-world
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scenarios. By doing this, the system eliminates the need to manually modify or create

the task tree for each revised/updated task design. As a result, people who have less

or no programming background can work with robots in daily life.

Ideally, in a collaborative task, the human-robot interaction should resemble a human-

human interaction. In that case, the robot should understand what its human team-

mate needs even if the human teammate is not precise all the time. In short, the

robot should have the ability to understand a precise or vague description from the

human and can understand the context behind this. If the robot can perform specific

tasks based on the context using the objects around it, then the system will be more

realistic and reliable for use in daily life. To implement this in our system, the robot

and the human had a dialogue interchange between them and based on the human’s

answer the robot was able to choose a specific skill-based task for this situation using

ontology and could execute the task successfully.

The main contributions of this dissertation work are:

1. Collaborative Human-Robot Hierarchical Task Execution: Chapter 4

describes the development of a multi-human-robot team based on a multi-robot

architecture where tasks with varying environmental conditions are given dy-

namically. This was accomplished by extending the system’s ability to antici-

pate and accommodate a human’s movements. A tree structure represents the

human-robot collaborative task as a sequential, non-ordering, and alternative

execution path. Using its task representation (e.g., controller), the robot plans



111

its future actions and tracks the current and future goals of its human team-

mate. Taking into account the constraints of the defined task as well as the

feedback provided by the collaborative partner, the robot determines its next

course of action.

• The robot monitors its state and the state of its collaborative human part-

ner.

• The human intention system, designed to supplement our previous robot

architecture, continuously sends out messages containing the human inten-

tion status of each object. This allows agents to function independently

when their tasks do not overlap; however, when agents’ goals overlap, a

collision occurs on the task tree and dialog is used to resolve the collision.

This enables one agent to complete the job while the other moves on to

another.

2. Study on homophily and trust in HRI: In Chapter 5, we explored ho-

mophily between a person and a robot by measuring metrics such as common

interest, bonding, and similarity.

• The purpose of this work is to determine whether similarities between a

robot and a person might improve social connection and trust. If such a

link exists, then homophily would be an important physical and behavioral

design consideration for effective HRI.
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• Measured “common interest”, “felt bonding”, and “trust” between ho-

mophilic and non-homophilic conditions.

3. Efficient task allocation and execution from task demonstration: In

Chapter 6, the robot learned a customized task model by observing the human

teacher’s movements. By doing this, we were able to reduce the amount of

time we devote to manually putting the hierarchical task tree into the system

before we run the system. This improved the system’s efficiency, flexibility, and

dynamic capabilities.

• Designing and implementing a pipeline where the robot will observe the

task demonstrated by the human teacher. It will learn the task design

by using the previously proposed learning framework and execute the new

task tree by itself.

• Designing a task demonstration interface by using a vision based system

to learn the task demonstrations from the human teacher. The robot will

observe the human teacher performing the task while conversing with the

human.

• Enhance the system’s ability to learn and execute new tasks without man-

ual specifications.

• Demonstrating this on a real robot.

4. Cognitive Approach to Hierarchical Task Selection For Human-Robot

Interaction in Dynamic Environments: Chapter 7 proposed an efficient
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and flexible human-robot collaboration environment in which a robot teammate

can understand both vague and clear requests from its human partner in natural

language and can execute that task in real world scenario.

• Utilizing the ontology approach after interacting with the human user to

find implied links between context and the surrounding environment.

• Based on the ontology approach of our extended hierarchical task archi-

tecture, the robot will only select the hierarchical sub-tasks that are most

relevant for the specific task.

.

8.2 Future Work

8.2.1 Cognitive Approach to Hierarchical Task Selection

According to our proposed system, the robot and human are currently only able to

communicate one time to establish the context of the situation. However, in our

future work, we are planning to have a more detailed conversation between them to

understand the context in depth. This approach will lead the system to create a more

specific version of the tree with specific task allocation based on the given answers

from the human end. Additionally, we have created skill-based sub-trees to the task

tree. On the other hand, using to the concept of Chapter 6, we aim to update the skill
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tree every time automatically rather than being modified by a programmer, which

will make the system more reliable and flexible.

8.2.2 Measuring trustworthiness in a human-robot collabo-

rative task

As part of my dissertation, I studied trust, comfort, and similarity in homophilic

relationships (see Chapter 4). However, in the future, I am hoping to work on studies

where we can measure metrics like trustworthiness in our proposed human-robot

collaborative task and how trustworthiness may affect the task selection process in

human-robot interaction.
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[13] Raphaël Lallement, Lavindra de Silva, and Rachid Alami. Hatp: An htn planner

for robotics, 2014.

[14] T. Belker, M. Hammel, and J. Hertzberg. Learning to optimize mobile robot

navigation based on htn plans. In 2003 IEEE International Conference on

Robotics and Automation (Cat. No.03CH37422), volume 3, pages 4136–4141

vol.3, 2003. doi: 10.1109/ROBOT.2003.1242233.

https://www.sciencedirect.com/science/article/pii/S0004370215000247
https://www.sciencedirect.com/science/article/pii/S0004370215000247
http://dx.doi.org/10.1613/jair.1141


Bibliography 118

[15] Jun Zhang, Yi Zeng, Huifen Liu, Ying Hu, and Jianwei Zhang. Mbhp: A

memory-based method on robot planning under uncertainties. 2011 IEEE In-

ternational Conference on Robotics and Biomimetics, ROBIO 2011, 12 2011.

doi: 10.1109/ROBIO.2011.6181313.

[16] Raveesh Kandiyil and Yang Gao. A generic domain configurable planner using

htn for autonomous multi-agent space system. 2012.

[17] Rafael Cardoso and Rafael BORDINI. A multi-agent extension of a hierarchical

task network planning formalism. ADCAIJ: ADVANCES IN DISTRIBUTED

COMPUTING AND ARTIFICIAL INTELLIGENCE JOURNAL, 6:5, 06 2017.

doi: 10.14201/ADCAIJ201762517.

[18] Suying Zeng, Yuancheng Zhu, and Chao Qi. Htn-based multi-robot path plan-

ning. In 2016 Chinese Control and Decision Conference (CCDC), pages 4719–

4723, 2016. doi: 10.1109/CCDC.2016.7531837.
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Parizeau, and Christian Gagné. DEAP: Evolutionary algorithms made easy.

Journal of Machine Learning Research, 13:2171–2175, jul 2012.

[109] Scott Niekum. ar track alvar. https://github.com/ros-perception/ar_

track_alvar, 2016.

[110] Vahid Mokhtari, Roman Manevich, Lúıs Seabra Lopes, and Armando J.
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