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Abstract 

Atomic and molecular resolution can provide unique insights into the ambiguous 

mechanisms by which lanthanum increases the hydrothermal stability of faujasite in 

cracking catalysts, as well as in cation exchange in faujasite. The structures of the 

lanthanide aqua ions were resolved with density functional theory calculations and ab 

initio molecular dynamics (AIMD) simulations within ~0.05 Å of experimental results. 

Reaction energies were quantified by predicting the first hydrolysis constant of 

lanthanide aqua ions within ~1.1 pKa units using AIMD with rare event simulation 

techniques and electronic structure calculations. The capture of structural and reaction 

trends in the lanthanide aqua ion served as a benchmark for implementing similar 

methods in lanthanum-exchanged faujasite. In faujasite, AIMD simulation identified the 

preferred binding site of lanthanum. AIMD with a rare event simulation technique was 

used to quantity the free energy of faujasite aluminum tetrahedra deprotonation, with and 

without lanthanum exchanged in faujasite. The presence of lanthanum makes faujasite 

deprotonation energetically more favorable, thus making faujasite less hydrophilic. The 

local structure of water confined in faujasite was simulated with AIMD. The model 

faujasite structure was modified to produce a series of systems to study the influence of 

confinement, hydrophilicity, and cation exchanged on the local structure of water as 

quantified from radial distribution functions. Increases in hydrophilicity in hydrogen-

exchanged faujasite disrupts the confined water structure. While lanthanum ions 

compensate for a larger magnitude of charge, equivalent number of sodium ions have a 

higher probability of occupying sites interacting with the supercage and thus disrupt the 

local structure of water more significantly than lanthanum.   
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CHAPTER 1 

Introduction 

 

The lanthanide elements are essential in a myriad of technologies, such as catalysts,1–6 

medical contrast agents,7–9 luminescent materials,10–15 and single molecular magnets.16,17 

However, for most applications, lanthanides must be separated and purified.18–28 Their 

important uses resulted in selected lanthanides to be listed as critical materials,29,30 

meaning the supply of lanthanides has the potential to impact the economies of nations 

that relay on importing them while having a low rate of reclaiming said materials. The 

chemical similarity of elements in the lanthanide series results in challenges during 

separations, as lanthanide-lanthanide separation and lanthanide-actinide separation 

remains a critical area of research since lanthanides occur together in nature, alongside 

actinides such as uranium and thorium.31,32 

Lanthanide (Ln) ions have a common oxidization state of +3 and have large 

coordination spheres, with eight or nine coordination sites. The lighter lanthanide aqua 

ions are most commonly nine-coordinate, while the heavier are eight-coordinate. The 

middle lanthanides can have a coordination number between eight and nine. Lanthanide 

ions are reactive and they form ionic coordination bonds.33 Increased reactivity causes 

lanthanide ions to form hydroxide and oxide bridges in aqueous solution,34 which occurs 

when one of hydrogen atoms of the Ln aqua ion is removed, leading to a reaction with 

neighboring hydroxide. By exploiting the hydrolysis constant, a pKa in water, one can 

target lanthanides to precipitate out. These characteristics are shared between the 

lanthanides and the actinides after plutonium.35,36  
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Ion exchange is a separation technique in which a porous material adsorbs 

particular ions from solution. The adsorption of lanthanides is of special interest in the 

case of lanthanum-exchanged faujasite (FAU), which is a key component of petroleum 

cracking catalysts. 

Faujasite is a zeolite that has applications as a catalyst, molecular sieve, 

adsorbent, and ion exchanger. The applications of FAU as an ion exchanger range from 

the separation of radioactive elements from nuclear waste37 to the removal of 

conventional heavy metal contaminants38,39 and  separations of rare earth metals.40–44 

Lanthanum has been exchanged into faujasite for decades as a part of fluid cracking 

catalyst to improve its hydrothermal stability, as faujasite is the principal catalytic 

component.45,46 Cracking operates under harsh steam and heat conditions, which leads to 

the destabilization of the zeolite via the removal of structural aluminum by 

dealumination.47–49 The destabilization of fluid cracking catalysts limits the lifetime of 

the catalyst and is a significant contributor to the production of gasoline.50,51 The 

exchange of lanthanum into faujasite decreases dealumination in FAU,2,39,52,53 yet the 

exact mechanism remains ambiguous. A potential mechanism is that lanthanum increases 

activation energy of dealumination reaction in faujasite.3 Alternatively, other cations have 

been examined to hinder dealumination in similar zeolites.54 

 The effect of lanthanum in faujasite stability must be accounted for in terms of 

changes to the chemical properties of the zeolite, chiefly Brønsted acidity. The aluminum 

tetrahedra of hydrogen-exchanged faujasite provide Brønsted acid sites, which in turn 

provide the zeolite with catalytic acidity.55–60 Yet, dealumination reactions also begin at 

the Brønsted acid sites.61 As a result, to properly model lanthanum in faujasite, both the 
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structure and reactions must be quantified. An overview of the Methods used in this 

work: density functional theory (DFT) calculations, ab initio molecular dynamics 

(AIMD) simulations, electronic structure calculations, and X-ray absorption 

spectroscopy, is presented in Chapter 2. 

 The solution structures of the lanthanide aqua ions are well characterized62–68 and 

provide a reliable benchmark to develop a computational protocol, based on AIMD 

simulations, for predicting the coordination structures in solution of all Ln ions. Chapter 

3 describes the computational protocol, how experimental and predicted extended X-ray 

absorption fine structure (EXAFS) spectra were compared, as well as results that show 

agreement with experiment. Further, Chapter 4 demonstrates how the coordination 

structures of the lanthanide aqua ions vary with temperature, also using AIMD 

simulations and EXAFS measurements. 

Beyond solution structures, the modeling of lanthanides in porous materials 

required thermodynamic properties, such as reaction energies, to be accounted for to 

accurately predict the properties of the zeolite. Lanthanide aqua ions undergo hydrolysis 

reactions, which is coordinated water molecules forming the hydroxide. The first, second, 

and third acidity constants of the lanthanide aqua ions are well characterized,69–71 and 

provide a reliable benchmark to develop a computational protocol to calculate absolute 

and relative reaction energies. Chapter 5 describes the prediction of absolute values of the 

first Ln acidity constants using AIMD couples with a rare event simulation technique, 

and the quantification of the second and third Ln acidity constants from relative energies 

from electronic structure calculations. 
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With a computational approach with the ability to replicate Ln coordination 

structures and reaction energies, the binding of water and lanthanum ions in faujasite is 

determined to obtain insights on how lanthanum stabilizes faujasite. Chapter 6 describes 

how water molecules, which play a key role in dealumination, bind on hydrogen-

exchanged faujasite on aluminum tetrahedra, and how lanthanum-exchange affects the 

Brønsted acidity of faujasite. Results are discussed in the context of the hydrothermal 

stability of lanthanum-exchanged faujasite as a cracking catalyst, where steam is present. 

In the context of zeolites as ion exchangers, the structure of liquid water in 

faujasite is described in Chapter 7. The effect of the aluminum content in hydrogen-

exchanged faujasite on the structure of water, as well as that of which cation is exchanged 

(sodium and lanthanum) is quantified. Finally, overall conclusions are presented in 

Chapter 8. 
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CHAPTER 2 

Overview of Methods 

 

2.1 Synopsis 

The prediction of physical and chemical properties is the goal of computational models; 

molecular resolution provides a unique advantage in the investigation of chemical 

phenomena such as the structure of lanthanide ions in porous materials, in which 

experimental probes would be difficult to implement. The structures of the lanthanide 

aqua ions, and of water in cation-exchanged faujasite (FAU), were quantified using ab 

initio molecular dynamics (AIMD) simulations and density functional theory (DFT) 

calculations. The AIMD simulations relied on the system reaching equilibrium and 

sampling the equilibrated trajectory to obtain average properties. From the equilibrated 

frames, radial distribution functions (RDF) were used to calculate the simulation-

averaged distances between atoms, such as the average lanthanide - oxygen distance for 

the aqua ions and the average distance between the oxygen atoms of water molecules of 

the water confined in faujasite. 

Extended X-ray absorption fine structure (EXAFS) spectra were generated from 

equilibrated frames to sample the conformations of the lanthanide aqua ions in solution. 

The predicted spectra from AIMD simulations were compared directly to experimental 

EXAFS as a means of verifying simulation with experiment. Experimental EXAFS 

spectra are generated by using X-rays to excite a photoelectron from an atom, the 

photoelectron is then scattered, and the spectra is a measurement of the scattering due to 



 

   

12 

the local environment. The distances between atoms for a given frame of a simulation can 

be used to generated EXAFS spectra via the EXAFS equation. 

The quantification of chemical reaction energies required techniques beyond 

those implemented to quantify the structural aspects of lanthanides and faujasite. 

Bluemoon rare event sampling enabled the use of reaction coordinates to study specific 

reactions, such as the deprotonation of hydrogen-exchanged faujasite. The distance of the 

oxygen - hydrogen bond was constrained, and through a series of constrained AIMD 

simulations, an average force on that constraint was calculated, effectively modeling the 

deprotonation of either the lanthanide aqua ion or faujasite. The integration of the average 

force on the constraint produced a potential of mean force, from which the free energy is 

obtained. 

Electronic structure calculations with relativistic effects were done for single 

point energies for the lanthanide aqua ion species that occur during the first, second and 

third hydrolysis. All electron calculations have higher computational costs but have 

higher accuracy to quantify thermodynamic properties. 

 

2.2 Approach for structures in solution and porous materials: DFT and AIMD 

Ab initio molecular dynamics simulations is an approach that can accurately model 

reactions of lanthanides in the condensed phase. It was used to study the hydrolysis 

reactions of lanthanide complexes, relevant as the formation of hydroxyl groups 

ultimately lead to lanthanides to precipitate out of solution.1 The stability of lanthanide 

complexes are sensitive to changes in protonation,2 which must be taken in account for 

medical contrast agents,3,4 enzymatic reactions5–8 and catalysts such as faujasite.  
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For lanthanide-containing systems, the results of AIMD simulations and DFT 

calculations depended on the accuracy of the lanthanide pseudopotentials and basis sets 

(LnPP1), which are Goedecker-Tetter-Hutter-type pseudopotentials optimized in a mixed 

Gaussian and plane wave scheme.9 The LnPP1 pseudopotentials and basis sets that were 

utilized in the upcoming Chapters were benchmarked with redox reactions, the most 

stringent metric for transferability of basis sets.10 The valence f electrons were 

uncontracted in the basis set. The LnPP1 pseudopotentials and basis sets were optimized 

using the PBE functional, which has acceptable accuracy for resolving solution structures 

of lanthanide containing systems with a reduced computational cost.11 Electronic 

structure calculations with lanthanides are more accurate;12 however, they lack 

periodicity and the required length scale and cannot be used to model solutions with 

explicit solvent molecules or extended material structures. Periodic conditions were 

required to study faujasite, as it enabled bulk properties, such as the effect of acidity on a 

zeolite.  

 The LnPP1 pseudopotential and basis sets were used to predict the structure of 

lanthanide aqua ions. DFT calculation and AIMD simulations were done using CP2K.13 

The PBE functional was utilized, core electrons were modeled with the GTH-

pseudopotentials, valence electrons were modeled with a polarizable double zeta basis 

sets, LnPP1 was used for lanthanides, and van der Waals interactions were accounted for 

using Grimme’s D3 correction. The AIMD simulation box was a cubic, periodic system 

containing a lanthanide ion in the +III oxidation state, three chloride anions, and explicit 

water molecules at different temperatures. Following a simulated annealing protocol, 

AIMD simulations were performed and analyzed to obtain RDFs, angle distribution 
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functions (ADF), root mean square deviations (RMSD) compared to ideal geometries, 

and EXAFS spectra. 

The first peak of a lanthanide-oxygen RDF from lanthanide aqua ion simulations 

denoted the average distance between the lanthanide ion and the oxygen atoms of the 

water molecules, which was compared to experimental results produced from 

experimental X-ray diffraction measurements and experimental EXAFS spectra. The 

RMSD plots displayed a dynamic coordination structure, while EXAFS generated from 

the simulation and compared to experimental results displayed a significant degree of 

similarity in the scattering of photoelectrons. 

The extended material structure of lanthanum-exchanged faujasite was simulated 

in gas-phase or liquid-phase water molecules. A model structure of faujasite was 

constructed for the DFT calculations and AIMD simulations, with the same level of 

theory as described above for the lanthanide aqua ions. The periodic cell dimensions were 

optimized when the Si/Al ratio of faujasite was modified. AIMD simulations were used 

to sample conformational space to determine the position of exchanged cations and the 

conformation of the water molecules. The amount of water molecules in the liquid phase 

was determined through a series of NVT simulations to calculate the box pressure, and 

selecting the number of water molecules that produced the lowest non-negative pressure.  

 

2.3 Extended X-ray absorption fine structure 

The EXAFS spectra of select lanthanide aqua ions was measured by collaborators and 

compared to spectra predicted from AIMD simulations. EXAFS spectroscopy relies on 
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the excitation of a photoelectron from the core of an atom (a lanthanide in this study), the 

photoelectron is then scattered by the surrounding atoms (the oxygen atoms of the water 

molecules are largest contributors). Thus, the EXAFS spectra is a measurement of the 

scattering of the photoelectron due to local environment as described by  the EXAFS 

equation,14 see equation 2.1.  

𝜒(𝑘) = ∑ '()((*)+,-.
-/-+,-0( 1⁄

*3(
-4 sin	[2𝑘𝑅4 + 𝛿4(𝑘)]                                        (2.1) 

The variables that are a function of k are the scattering properties of the atoms 

neighboring the excited atom and are used to predict R, N, and σ2, which are structural 

parameters for the distance to neighboring atom, number of neighboring atoms, and 

disorder in the distance from the neighbor respectively. 

The EXAFS spectra were predicted from AIMD simulations from a sample of two 

hundred equally spaced frames using FEFF.15 FEFF solves equation 2.1 for a given set 

of atomic coordinates obtained from simulation. The χ(k) spectra were directly compared 

to the experimental EXAFS spectra. The AIMD spectra were generated from the 

lanthanide and oxygen coordinates, effectively modeling a photoelectron single-

scattering process, where a photon would be excited out of the trivalent lanthanide and be 

scattered by surrounding oxygens atoms. Similarities in the AIMD-predicted and 

experimentally-measured spectra suggests a similar local environment.  

 

2.4 Bluemoon ensemble rare event sampling 
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Bluemoon ensemble is a rare event simulation technique that enables the quantification of 

reactions in terms of free energy.16,17 Similar to umbrella sampling which uses restraints, 

Bluemoon utilizes the average force on a constraint to obtain a potential of mean force. 

The use of constraints instead of restraints makes it accessible for AIMD simulations. 

The purpose of this technique was to cross energy barriers that would not occur during a 

molecular dynamics simulation. The deprotonation reaction of the lanthanide aqua ion, 

and the deprotonation of hydrogen-exchanged faujasite, were modeled using this method. 

The constraint used was the distance of an oxygen - hydrogen bond, this was the selected 

reaction coordinate. A series of constrained AIMD simulations were conducted, each had 

the constraint increased as the bound hydrogen was pulled from its initial position to a 

neighboring water molecule. Integration of the forces on the constraint was used to obtain 

a free energy profile for the reactions, then the Helmholtz free energies were obtained 

from the potential of mean force. Error in the free energy profile was estimated by 

calculating the difference between the potentials of mean force using the first half and the 

second half of the trajectory.  

The hydrolysis reactions of the lanthanide aqua ions provided a well-known 

benchmark to determine a computational protocol for replicating lanthanide reaction 

energies.18 The acidity constants of the lanthanide aqua ions are widely reported in 

literature, as the pKa will determine the pH at which a lanthanide aqua ion will 

deprotonate and form bridges between hydroxyl groups and precipitate out of solution. 

The first acidity constant was determined from the potential of mean force. The O-H 

distance between a hydrogen atom on a Ln-coordinated water molecule and a 

neighboring water molecule was the reaction coordinate. 
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The Brønsted acidity of hydrogen-exchanged faujasite was determined through 

Bluemoon rare event sampling. The O-H distance between a protonated aluminum 

tetrahedra and a nearby water molecule, was constrained and served as a reaction 

coordinate. Simulations were conducted for each increment the proton was moved. The 

average force on the constraint was integrated over the reaction coordinate to obtain a 

potential of mean force, which was used to determine the free energy of proton transfer 

and the effect lanthanum had on the Brønsted acidity of faujasite. 

Bluemoon rare event sampling was suitable to obtain a potential of mean force of 

the proton transfer reactions based solely on constraints.19 More complex reaction 

coordinates may require other enhanced sampling techniques, such as metadynamics.20 

 

2.5 Electronic structure calculations 

The second and third hydrolysis constant of the lanthanide aqua ions were not determined 

using Bluemoon rare event sampling; instead, a higher level of theory was utilized to 

quantify reaction energies. The second and third hydrolysis constants were calculated 

relative to the first hydrolysis constant. All electron single point energy calculations for 

all species of the lanthanide aqua ion hydrolysis reactions were conducted. A single point 

energy calculation determined the energy of a structure a single conformation of nuclear 

coordinates, with the benefit of considering all electrons present, thus enabling the 

quantification of thermodynamic properties with greater accuracy. All electron 

calculations were challenging for lanthanides due to many nearly degenerate electronic 

states that are considered. The structures used for the single point energy were not 
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guaranteed to be at global minima, but represent the minima for a large conformational 

space as the structures were produced by AIMD simulation.  These minima represented 

the most stable states the aqua ions reached over given time, but a global, or most stable 

state, is not guaranteed. The all electron calculations were done with ORCA21 with the 

M06 functional.22 

For all electron calculations with lanthanide elements, relativistic effects must be 

considered. The internal magnetic moment resulting from an electron having spin angular 

momentum was accounted to better quantify the behavior of moving electrons while 

accounting for relativity. The relativistic effects have a significant contribution for heavy 

atoms due to the number of electrons present; as a result, the relativistic contributions 

become non-negligible in all electron level calculations. The lanthanides are within this 

range of heavy atoms, and thus a relativistic Hamiltonian was used for its correction to 

the kinetic energy. In short, with lighter atoms with less electrons the relativistic effects 

were negligible in all electron level calculation, but the contribution increases with the 

number of electrons present.    
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3.1. Introduction 

Resolving lanthanide (Ln) solution structures, at atomic resolution, is relevant for rare 

earth separation and purification,1,2,11,3–10 medical contrast agents,12–14 single molecule 

magnets,15–19 luminescent materials,20–25 to mention only a few applications. The most 

common oxidation state of Ln is +III and are characterized by large coordination spheres 

that can accommodate seven to nine coordination sites. They are often more reactive than 

transition metal ions,26 and they form labile, largely ionic coordination bonds with 

ligands or solvent molecules. As a result, Ln3+ ions, with highly reactive and dynamical 

coordination structures, have a large conformational space, which poses challenges in 

determining the coordination structures of lanthanide ions, both computationally and 

experimentally. In this work, we focus on the solution structures of the Ln3+ aqua ions for 

all lanthanides, from lanthanum to lutetium, which has been a matter of considerable 

discussion for decades.27,28,37–46,29,47–54,30–36 

X-ray diffraction (XRD)28–30 and extended x-ray fine absorption structure37,42,47,53 

(EXAFS) measurements have been used to determine average Ln-O distances and 

coordination numbers (CNs) of lanthanide elements, except for Pm due to its 

radioactivity. X-ray diffraction methods were used to determine that the early Ln3+ ions 

(La – Nd) favor a coordination of nine (nona-aqua ions), the later  Ln3+ ions (Tb – Lu) are 

eight-coordinate (octa-aqua ions), and the middle lanthanides are in transition from nine 

to eight, likely in equilibrium between eight and nine CNs.28–30 It is widely accepted that 

that the contraction of Ln3+ radii with increasing atomic number results in a slight 

decrease in the CN of the first hydration sphere. EXAFS measurements have shown a 

gradual change in CN across the lanthanide series.42   
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A classification of the molecular geometry of the first coordination sphere 

remains elusive to this day, due to the labile nature of coordination bonds between water 

molecules and Ln3+ ions. Recent EXAFS measurements suggest a tricapped trigonal 

prism for the lighter lanthanides while stability shifts in favor of the square antiprism 

across the series.42,47 Conventional spectroscopic methods such as X-ray diffraction, 

nuclear magnetic resonance, infrared spectroscopy, or ultraviolet-visible spectroscopy 

have little or no sensitivity for local symmetry about solutes in disordered systems. In 

contrast, EXAFS multiple scattering analysis ―due to its exquisite sensitivity to many-

body correlations―has the potential to elucidate the local symmetry and structure, 

thereby shining light on these long-standing unresolved structures of the lanthanide 

series. Additionally, the geometric complexities of Ln3+ – first-shell water structure 

provide an ideal test case for comprehensive multiple scattering analysis. The ability to 

discriminate different types of hydration symmetry using multiple scattering can be 

ascribed to several key factors: i) there is a very strong angular dependence of the 

photoelectron multiple scattering processes;55 ii)in particular, the collinear multiple 

scattering paths provide greatly enhanced EXAFS signals due to strong re-focusing (or 

lensing) for photoelectron return paths that transit the absorber;56,57 iii) the single 

scattering contributions from second- and higher-shells can be readily differentiated from 

overlapping multiple scattering contributions since the EXAFS phase and amplitude 

functions are quite different,58 and iv) the use of L3- and L1-edges (dominated by pàd 

versus sàp dipole-allowed transitions) provides key independent information that 

disentangles overlapping EXAFS contributions due to the different geometrical 
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dependence of the L3- and L1-edge multiple scattering, dictated by transition matrix 

element.59,60  

The ability of ab initio molecular dynamics (AIMD) to predict EXAFS multiple 

scattering spectra up to about R = 5.0 Å directly from the atom coordinates has been 

previously demonstrated for the 3d transition elements.58 This can be achieved by 

sampling configurations from AIMD trajectories and generating ensemble-averaged 

EXAFS spectra with codes, like FEFF.61–63 It is possible to extend these distances up to 

about 8.5 Å wherein a single ejected photoelectron is subsequently scattered by up to six 

or more atoms before the photoelectron returns to the central absorbing Ln3+ ion. These 

long-distance processes are efficient for Ln3+ due to the relatively low disorder of water 

molecules in the first shell (vide infra) and are key to fingerprinting the coordination 

symmetry. 

Classical molecular dynamics (MD) simulations, with fitted Ln3+ non-bonding 

parameters, have been widely used to simulate the Ln aqua ions.27,32,48–52,64,65,33,36,38,40,43–46 

Careful parametrization of the Ln3+ non-bonded force field parameters, based on either 

electronic structure calculations or experimental data, have resulted in classical MD 

simulations that can replicate Ln-O distances. Consistent with EXAFS measurements, a 

study reports that the lighter lanthanides favor a tricapped trigonal prism geometry with a 

coordination number of nine, while the heavier lanthanides with a coordination of eight 

oscillate between square antiprism and bicapped trigonal prism45. Another study shows 

that the middle lanthanides had non integer coordination numbers and that fluctuations 

between geometries are common between Tb and Dy.43 A more recent study reported 

stable first-sphere geometries where, in particular, Lu3+ had a square antiprism 
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geometry.52 Classical MD simulations have an advantage in that they can access larger 

time and length scales, thereby allowing the simulation to elucidate water exchange 

mechanisms36,40,48 and ion association events.65 However, classical MD force fields are 

based on fitted parameters that may not accurately predict the Ln coordination structure 

for chemical systems that are different from those of the parametrization conditions, and 

when concurrent reactive events are not considered because the electronic structure is not 

explicitly included. 

Recent studies of nona-aqua Ln3+ ions that were based on electronic structure 

calculations, postulate that the bond strength decreases with bond length across the series 

for the capped geometries,66,67 which offers a potential explanation of why the middle 

lanthanides display varying CNs of eight or nine. Although electronic structure studies of 

Ln3+ aqua ions do not capture dynamic effects, relevant properties regarding typical Ln-O 

distances can be revealed  and the lanthanide contraction can be quantified.54 Therefore, a 

computational approach that combines the advantages of MD (molecular sampling) and 

electronic structure (reactivity, no fitted parameters) is needed to determine the molecular 

structure in Ln3+ aqua ions in solution without prior assumptions. 

 We recently optimized the complete set of highly transferable Goedecker, Teter, 

and Hutter (GTH)-type68 pseudopotentials for all the lanthanide elements, and their 

corresponding basis sets, specifically optimized for generalized gradient approximation 

(GGA) calculations in a mixed Gaussian−plane wave scheme.69 Our complete set of 

lanthanide pseudopotentials and accompanying basis sets70 enable us to perform density 

functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) 

simulations of lanthanide ions in explicit water boxes with periodic conditions. This 
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combines the advantages of electronic structure (reactivity, lanthanide coordination bond 

formation) and molecular dynamics simulations (sampling structures with explicit solvent 

molecules) to resolve the solution structure of lanthanide ions in solution. Other types of 

lanthanide pseudopotentials (i.e. effective core potentials) and basis sets were known,71–77 

but can be employed in only electronic structure calculations with lanthanide systems 

containing ∼102 atoms,78,79 and without molecular dynamics sampling. Thus, simulating 

the solution structure of Ln3+ ions, considering the electronic structure, combined with 

molecular dynamics sampling that explicitly includes solvent molecules, was not possible 

until recently. 

We have two goals in this study: i) demonstrate that our pseudopotentials and 

basis sets (LnPP1) with AIMD simulations can replicate and predict the structures of 

lanthanide ions in solution, and ii) resolve the structural dynamics of lanthanide aqua ions 

with AIMD simulations and EXAFS studies that includes analysis of the multiple 

scattering contributions in a detailed and judicious manner. Previously, we showed70 that 

our LnPP1 pseudopotentials and basis sets can replicate lanthanide oxidation reactions, 

heats of formation, and ionization potentials (i.e. reactivity). In this work, we show that 

our pseudopotentials and basis sets with AIMD simulations also replicate the solution 

structure of Ln3+ aqua ions within 0.05 Å comparing to experimental measurements. We 

reveal that Ln3+ aqua ions have a highly dynamic first coordination sphere with no fixed 

molecular geometry. Further, we directly compare c(𝑘)spectra from EXAFS 

measurements with c(𝑘) spectra from AIMD simulations to verify our simulation results. 

By means of a coupled approach (measured EXAFS and simulated AIMD-EXAFS), we 

take full advantage of the sensitivity to many-body structural correlations via multiple 
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scattering processes, and we employ a comprehensive EXAFS multiple scattering 

analysis for the first time to evaluate the local molecular geometry and inherent dynamics 

of the first sphere of Ln3+ aqua ions. The much smaller core-hole lifetime broadening at 

the L-edges of even the late lanthanides in contrast to the corresponding K-edge is 

indispensable to help directly capture the high-frequency signals that encode the local 

geometry in the XAFS signal.47,80 This work extends multiple scattering analysis to much 

higher distances, R ~ 6.5 Å, and demonstrates enhanced sensitivity for the fine details of 

hydration structure from a multitude of different photoelectron scattering processes that 

emanate from scattering within the first solvent shell. Our approach, which considers 

coordination bond formation concurrently with solvent molecule dynamics, is uniquely 

suited to resolve elusive solution structures.  

 

3.2. Methods 

 

3.2.1 Ab initio molecular dynamics simulations and analysis 

We independently simulated each Ln aqua ion with 64 explicit water molecules, 

including hydrogen atoms, in a cubic periodic box having a length of 12.42 Å. All Ln 

ions were simulated in the +III oxidation state and for this reason 3 Cl- ions were added 

to the simulation box to provide the neutral system with closed-shell chlorine anions and 

with lanthanide cations including all the spin density. The Ln3+ multiplicities, assigned 

with Hund’s rule, are presented in the Supporting Information (SI). All the atoms in the 

AIMD simulation boxes were modelled with DFT. 
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All DFT calculations and AIMD simulations were conducted in the PBE 

functional,81 which has been well-tested for both water82,83 and lanthanides,84,85 using the 

CP2K package.86,87 Core electrons were modeled with norm-conserving GTH 

pseudopotentials,68 valence electrons were modelled with polarizable double-zeta basis 

sets,88 and our LnPP1 pseudopotentials and basis sets70 were used for the Ln3+ ions. Long 

range electrostatic terms were determined with a supplementary plane wave basis set, 

using a 500 Ry cutoff for La – Gd, 800 Ry for Tb – Tm, and 1000 Ry for Yb – Lu. Larger 

density cutoff values were used for later lanthanides because we adopted medium-core 

pseudopotentials for Tb to Lu.70 Grimme’s D3 corrections89 were used to account for van 

der Waals interactions within a 6.0 Å radius in all simulations. 

All AIMD simulations were done in the NVT ensemble at room temperature, in 

12.42 Å cubic boxes. Our initial simulation was with the Eu3+ ion where the Eu and Cl 

atoms were randomly placed in a 64-water box (density of water at room temperature) 

with sufficient spacing between them to avoid ion pair formation in the AIMD time scale. 

Cl- anions were chosen as counter ions due to AIMD simulation box size limitations. We 

observed the formation of an 8-coordinate water environment around the Eu3+ after > 20 

ps of AIMD. Due to computational resources, all further simulations started from the 

formed the octa-aqua Ln3+ ion coordinates. We replaced the Eu3+ ion with each La – Lu 

independently, and then undertook the following protocol for each Ln3+ ion: i) an initial 

geometry optimization, ii) 1ps of NVT simulation at 500K with 1 fs time steps to ensure 

proper mixing and to test the stability of the Ln3+ aqua ion, iii) slow annealing to 0K over 

2 ps, iv) a final geometry optimization. The final geometry optimized step was the 

starting point for production NVT simulations at room temperature. Initially, a 0.5 fs time 
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step was chosen, but we subsequently observed that a 1 fs time step is sufficient. We ran 

the production NVT AIMD simulations for > 15 ps, until we observed at least 10 ps of 

simulation with a stable potential. 

Eu – Lu were simulated as octa-aqua ions: starting from the initial Eu simulation, 

we replaced Eu3+ with each Ln3+ ion, and following the protocol described above. An 

additional water molecule was added to La – Sm to simulate nona-aqua ions with the 

protocol described. The ninth water left the Sm3+ first coordination shell, so Eu3+ and all 

subsequent Ln3+ ions were simulated as 8-coordinate. Sm3+ was simulated as both 8- and 

9-coordinate independently for > 10ps, but the Ln-O distances of the nona-aqua had 

better agreement with experiment. Therefore, La – Sm were simulated as 9-coordinate, 

starting from the initial Eu octa-aqua ion geometry with the addition of the ninth water 

molecule to the Ln3+ first coordination sphere, then following the protocol described.  

At least 10 ps of stable production AIMD simulations were used to analyze Ln3+ 

aqua ion dynamics. Simulation analysis began with calculating the Ln-O radial 

distribution functions (RDFs) to quantify frame-averaged Ln-O pair distances (SI). Ln-O 

distances can be directly compared with experimental measurements in the literature. The 

maximum of centroid of the first peak of each RDF was used as the average distance 

between each Ln3+ ion and its first sphere oxygen atoms of the surrounding water 

molecules. O-Ln-O angles were extracted from the equilibrated AIMD simulations to 

construct angle distribution functions (ADFs). No ion pairs were observed since Cl- ions 

do not come within 4 Å of Ln3+ ions (SI). The distant starting position diffusionally 

isolates it from the cation over the course of the AIMD trajectory. 
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The average Ln-O distances were used to generate reference molecular 

geometries for each Ln3+ ion: square, square antiprism, trigonal dodecahedron (DDH), 

and bicapped trigonal prism (BTP), for the lanthanides with a coordination number of 

eight;90,91 and capped square antiprism, capped square, and tricapped trigonal prism 

(TTP) for lanthanides with a coordination number of nine. The O coordinates of these 

reference molecular geometries were used to calculate the root mean square deviation 

(RMSDs). A single RMSD value is derived from the distances between the eight (or 

nine) oxygen atoms of the reference molecular geometry and the corresponding eight (or 

nine) oxygen atoms that form the first coordination sphere in an AIMD simulation frame. 

We calculated the RMSD between each AIMD frame and all reference molecular 

geometries and then averaged these over the entire AIMD trajectory to quantify which 

reference molecular geometry each Ln3+ ion is most similar to. 

 

3.2.2 Experimental measurement of extended X-ray absorption fine structure 

spectra  

Experimental measurements were done by Mahalingam Balasubramanian and John 

Fulton, see details in the published paper: Shiery et al., Inorganic Chemistry, 2021, 60, 

3117 - 3130.  

 

3.2.3 Extended X-ray absorption fine structure spectra from ab initio molecular 

dynamics 

The general method of MD-XAFS has been previously described.92 Comparing predicted 

and measured EXAFS spectra is particularly well suited to resolve the coordination 
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structure of heavy elements.93 We generated c(𝑘) spectra from AIMD trajectories,94 

using FEFF8.5,62 to directly compare with experimentally generated EXAFS spectra. 

From the equilibrated AIMD trajectory of each Ln3+ ion, we extracted 200 equispaced 

frames, and retrieved the Ln and O coordinates, to generate ensemble average spectra. An 

AIMD-EXAFS spectrum92,94,95 is generated for each AIMD snapshot, or frame. The 

EXAFS computation accumulated ~105 single- and multiple-scattering paths (up to 8.5 

Å) from a single AIMD frame. Then, an ensemble-average spectrum was generated from 

200 frames for each case (Ln3+, L# edge). The final spectrum is then comprised of 

approximately 107 scattering paths. Within FEFF8.5 the significance-threshold 

(CRITERIA) for any given paths was set to zero to be sure that small contributions from 

hundreds of paths that might contribute to a high-R feature are all included in the 

calculation. A further FEFF8.5 adjustment was to change the default value of 1200 total 

paths to include up to 35,000 paths in order to include all the atom backscattering out to 

about 8.5 Å. Only Ln and O atoms were included in the FEFF calculations because the 

inclusion of H atoms results in a too large number of scattering paths that fail to 

converge. Also, H atoms are expected to contribute approximately 5% to the total 

scattering signal in the R-plot regions between 2 to 2.5 Å, which is below the region for 

the multiple scattering signal that is the focus of this paper. The Hedin-Lundqvist 

exchange-correlation potential (default for FEFF8.5) was used with no SCF. 

The EXAFS photoelectron single-scattering process provides a simple and 

accurate measure of the first-shell Ln-O distances. On the other hand, photoelectron 

multiple scattering processes for the various colinear and triangular paths provide 

information about the symmetry of water in the first hydration shell. The sequential series 



 

   

32 

of scattering by up to six or more atoms were included for a single ejected photoelectron. 

A detailed interpretation of the multiple scattering features for pure octahedral symmetry 

of the first-row transition metals has been previously reported.58 While it is relatively 

easy to manually apply a multiple scattering analysis to systems having octahedral 

symmetry, where there is a limited degree of path degeneracy, such manual fitting of 

more complex symmetries (CN > 6) is intractable due to their complexity. Here, the 

AIMD-EXAFS method generates an accurate and comprehensive representation of the 

entire sets of photoelectron scattering processes. If the simulated structure faithfully 

reproduces the symmetry of the experimental structure, then all aspects of the single- and 

multiple-scattering contributions will be quantitatively reproduced. The phase and 

amplitude functions at the two edges, L3 and L1, depend not only on the 

symmetry/structural geometry that determines the multiple scattering contributions, but 

also on the nature of the final state electronic wave function governed by the dipole-

allowed selection rule. Hence, the multiple scattering portions of L3- and L1-edge spectra 

give independent and enhanced information on the local symmetry, instead of being 

mere, redundant measurements.59 

A single adjustable parameter, the edge energy or 𝐸A, of the experimental spectra 

is adjusted to match the spectra created via FEFF8.5 calculations. The main criterion is 

that the primary oscillations in χ(k) plots of the experiment and simulated spectra 

converge as k approaches zero. As a further test, the 𝐸A setting was applied to the 

multiple scattering paths. For instance, the set of multiple scattering peak that lies 

between approximately 3.5 to 4.5 Å was windowed in R-space and then back-

transformed to 𝜒(𝑞) where the same convergence of oscillations at low q was confirmed. 
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Overall, we find that the 𝐸A parameter is only weakly correlated with Ln-O distances and 

Debye-Waller factor. 

It is possible to use the AIMD trajectory to decompose the total EXAFS spectra 

into the relative contributions from: i) single scattering or multiple scattering paths, ii) 

individual first, second, or higher shell contributions, and iii) from the individual 

contributions from sets of molecular geometries that are present in equilibrium. This can 

be achieved by varying FEFF input parameters, by isolating sets of atoms in certain 

shells, or by sorting MD trajectory frames using appropriate order parameters, 

respectively. For the multiple scattering, the contributions up to 8.5 Å are appropriate 

since they are derived from only the first-shell structure that is well represented by 

AIMD. We compared the single scattering paths (NLEG=2, RPATH = 8.5) to multiple 

scattering (NLEG=8, RPATH 8.5) paths for one case in order to show the relative 

contribution of multiple scattering paths to the total spectral signal.  The single scattering 

contributions beyond 4.5 Å are quite weak due to high disorder while the multiple 

scattering contributions are relatively high due to the very low disorder in the first shell. 

 

3.3. Results & Discussion 

 

3.3.1. First coordination sphere structure predicted with AIMD matches experiment 

We independently simulated with AIMD all Ln3+ ions (Figure 3-1), and calculated their 

Ln-O radial distribution functions (RDFs), see details in the Methods Section 2.1, to 

obtain Ln-O distances in solution at room temperature. The first peak of the Ln-O RDFs 
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for each Ln3+ ion are reported in Table 3-1, and graphically represented in Figure 3-2, 

alongside the experimental Ln-O distance values reported in the literature.28–30,37,42,47,53  

 
Figure 3-1. Example of an all-AIMD, periodic simulation box, includes a Ln3+ ion 
(green), 3 Cl- anions (purple), and 64 water molecules with oxygen (red) and hydrogen 
(white) atoms. 
 

Table 3-1. The Ln-O (Å) RDFs from the AIMD simulations, alongside measured Ln-O 
distances (Å), and the mean average deviation for each element. This data is graphed in 
Figure 3-2. References A: Habenschuss and Spedding, J. Chem. Phys. 1979, 70, 3758–
3763; Habenschuss and Spedding, J. Chem. Phys. 1979, 70, 2797–2806; Habenschuss 
and Spedding, J. Chem. Phys. 1980, 73, 442–450. Reference B: Persson et al., Chem. Eur. 
J. 2008, 14, 3056–3066. Reference C: D’Angelo et al., Inorg. Chem. 2011, 50, 4572–
4579. Reference D: Yamaguchi et al., J. Chem. Phys. 1988, 89, 5153–5159. Reference E: 
Allen et al., Inorg. Chem. 2000, 39, 595–601.  

Our 
AIMD 
Results 

XRD 
References 

A 

EXAFS 
Reference 

B 

EXAFS 
Reference 

C 

EXAFS 
Reference 

D 

EXAFS 
Reference 

E 

Mean 
Average 
Deviatio

n 
La 2.57 2.580 2.542 2.600 - 2.54 0.02 
Ce 2.56 - 2.538 2.570 - 2.52 0.02 
Pr 2.53 2.539 2.503 2.550 - - 0.02 
Nd 2.53 2.513 2.488 2.525 2.51 2.49 0.02 
Pm 2.47 - - - - - - 
Sm 2.45 2.474 2.455 2.490 2.45 - 0.02 
Eu 2.44 2.450 2.424 2.470 2.43 2.43 0.02 
Gd 2.43 - 2.415 2.455 2.41 - 0.02 
Tb 2.42 2.409 2.390 2.440 2.39 - 0.02 
Dy 2.42 2.396 2.373 2.425 2.37 - 0.03 
Ho 2.39 - 2.359 2.405 - - 0.02 
Er 2.38 2.369 2.350 2.390 2.34 - 0.02 
Tm 2.36 2.358 2.334 2.375 2.33 - 0.02 
Yb 2.38 - 2.317 2.360 - 2.32 0.05 
Lu 2.34 2.338 2.310 2.345 2.31 - 0.02 
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Our Ln-O distances from the RDFs of the AIMD simulations are consistent with 

the experimentally measured Ln-O distances using EXAFS,37,42,47,53 as well as XRD.28–30 

All simulated Ln-O distances are within 0.05 Å of experimental measurements, with a 

maximum mean average deviation of 0.05 Å reported for Yb. Replicating Ln-O distances 

is a strong indicator that the AIMD protocol employed with our LnPP1 pseudopotentials 

and basis sets can accurately predict the structure of Ln3+ ions in solution, without fitting 

any parameters. 

 
Figure 3-2. The Ln-O distances from AIMD RDF values (green triangles), for all Ln3+ 
ions, overlaid with data from literature (left). A sample RDF (Ce3+-O, right) to show how 
average Ln-O distances were calculated. Top left shows the first coordination sphere (rest 
of water molecules excluded for clarity) of Ce3+ (green), water oxygen (red) and 
hydrogen (white) atoms. Ytterbium has the highest deviation when compared to 
experimental results, which is within 0.05 Å of the experimental results. References A: 
Habenschuss and Spedding, J. Chem. Phys. 1979, 70, 3758–3763; Habenschuss and 
Spedding, J. Chem. Phys. 1979, 70, 2797–2806; Habenschuss and Spedding, J. Chem. 
Phys. 1980, 73, 442–450. Reference B: Persson et al., Chem. Eur. J. 2008, 14, 3056–
3066. Reference C: D’Angelo et al., Inorg. Chem. 2011, 50, 4572–4579. Reference D: 
Yamaguchi et al., J. Chem. Phys. 1988, 89, 5153–5159. Reference E: Allen et al., Inorg. 
Chem. 2000, 39, 595–601. 
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Experimental measurements of the EXAFS spectra at the L edges of Nd, Dy, Er, 

and Lu were performed, as described in the Methods Section 2.2. We also generated 

spectra from the AIMD trajectories, as described in Section 2.3, for direct comparison to 

the experiment. Figure 3-3 provides this comparison between the experimentally 

measured EXAFS spectra with those that have been calculated directly using the atomic 

coordinates from the AIMD trajectories and scattering from FEFF8.5. Figure 3-3 

contains both the L3- and L1-edge spectra for Nd3+ and for Er3+.  For Nd3+, the 𝑘C𝜒(𝑘) 

plots show very good agreement for overall frequency, the shape and amplitudes of the 

oscillations as would be expected from an accurate prediction of the Nd-O first shell 

distance by the AIMD simulation. This is further confirmed in the Fourier transform 

results in Figure 3-3 for 𝑅𝑒[𝜒(𝑅)] showing an excellent match of the first-shell peak 

structure at about 1.8 Å. Further, the features at about 4Å arising from multiple 

scattering, and especially well-defined in the L1-edge spectra, are faithfully reproduced 

by the AIMD simulations. For the experimental Nd EXAFS there are known artifacts 

from multi-electron excitation contributions96 at about 6 Å-1 in both the L3- and L1-edge 

spectra. While these have little effect on determining the first-shell distances, they do 

introduce a non-structural contribution into the longer range structure for R > 2.5 Å, 

especially for the L3 spectra. For early- to mid-lanthanides, multi-electron excitations are 

a concern because they have spectral features that can include (i) step changes, (ii) slope 

changes, (iii) and strong white-line features that are very apparent in the lanthanide 

series.97 For lanthanides, the magnitude of the multi-electron edges is very large with 

respect to the EXAFS contribution.96 In addition, there are a series of multi-electron 
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edges that occur at increasingly high energies exciting lower valance electrons, whose 

spacing can be coincident with the EXAFS oscillations. Since the 𝜒(𝑘) range is finite, the 

manifestation of these artifact occurs in different ways in the Fourier transform, including 

termination effects that are present in the experimental data. In contrast, for the later 

lanthanides these multi-electron features are much weaker.96 

Figure 3-3 also shows the corresponding set of EXAFS spectra for Er3+.  For 

Er3+, Dy3+ and Lu3+, the spectral features are not as quantitatively reproduced by AIMD 

as for Nd3+, with the simulated Ln-O distance being approximately 0.07 Å longer than the 

experiment. If the theoretical EXAFS spectra are rescaled to correct for the 0.07Å 

distance overestimation (approximately 3%) excellent agreement with experimental 

spectra is seen. Empirical potentials that are used in classical MD can be quite accurate47 

since they are parametrized to fit XRD or EXAFS measurements. However, the 

agreement that we are reporting for the Ln3+ ions is one of the first using DFT/AIMD 

simulations and thus represents an excellent result for this level of theory (using 

generalized gradient approximation with exchange correlation functionals). Unlike fitted 

potentials used in classical MD, our AIMD simulations are completely independent of 

experimental measurements, and they are accurately reproducing the structure of the first 

coordination sphere of Ln3+ aqua ions. Going forward, the ability of DFT/AIMD methods 

to model systems with high chemical complexity sets it apart from mostly chemically-

unresponsive empirical potential models, since it allows to concurrently simulate the 

reactivity and solution structure Ln-containing systems, for example in separation 

chemistry or solution-phase catalysis. 
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Figure 3-3.  Comparison of calculated AIMD and experimental EXAFS spectra for the 
Nd3+ and Er3+ L1- and L3-edges.  Figures A, C are derived from 𝑘C-weighting of 𝜒(𝑘) 
(emphasizing first-shell structure) while Figures B, D representing 𝑅𝑒[𝜒(𝑅)], are derived 
from 𝑘F-weighting (emphasizing multiple scattering structure for R > 2 Å). The Nd L1 
and L3 data were windowed between 1.6 < 𝑘 < 12.5 Å-1 and 1.5 < 𝑘 < 10 Å-1, 
respectively. The Er L1 and L3 data were windowed between 1.6 < 𝑘 < 14 Å-1 and 1.6 < 𝑘 
< 13 Å-1. The figures represent a simple overlay of independently generated 𝜒(𝑘) spectra 
from simulation with those from experiment. No fitting was done for this comparison, the 
AIMD-EXAFS and measured EXAFS spectra are completely independent of each other. 
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We observe that for the AIMD simulations, the nine-coordinate structure is 

preferred from La – Sm while the eight-coordinate structure from Eu – Lu is in 

agreement with experiment.28–30,37,42,47,53 It should be noted that the AIMD simulations do 

not sample large enough time scales to observe water exchange events, although we did 

spontaneously observe that the AIMD trajectory for a nine-coordinate Sm3+ ion became 

eight-coordinate (see Methods). In qualitative agreement, a transition in the apparent 

molal volume with respect to ionic radius occurs at Sm.98 We are not advocating that a 

clear divide occurs between Sm and Eu, due to the limitations of AIMD sampling. Unlike 

in experimental measurements or classical MD simulations, AIMD cannot average the 

equilibria between the eight- and nine-coordinate states, nor sample the 9-to-8 transition 

in coordination number.99 Along these lines, we note that the notion of the clear 

“gadolinium break” has been challenged in recent experimental findings.42 The shift in 

coordination number has been historically explained by the lanthanide contraction, but 

more recently electronic structure calculations at the CCSD(T) level of theory67 point to 

decreasing bond strength when progressing through the lanthanide series. 

 

3.3.2. Dynamic first coordination sphere geometry 

For the first coordination sphere in the AIMD simulations of all Ln3+ ions, we calculated 

the root mean square distance (RMSD) between the first coordination sphere of each 

AIMD frame and the reference molecular geometries (Figure 3-4), see details in the 

Methods Section 2.1. The abbreviations that we use to identify the reference molecular 

geometries are also provided in Figure 3-4. The RMSD values were averaged over the 

entire AIMD trajectory to quantify the distance (Å) between corresponding oxygen atoms 
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in the Ln3+ aqua ions’ first coordination sphere and their reference molecular geometries. 

The RMSDs were used to identify the more probable geometries for either the eight- or 

nine-coordinate Ln3+ ions. For example, a low RMSD value for the square antiprism 

geometry with respect to three other eight-coordinate reference molecular geometries, 

would mean that the dynamic solution structure of that simulated ion is most similar to a 

square antiprism geometry.  

 
Figure 3-4. The first sphere molecular geometries for nine- and eight-coordinate Ln3+ 
ions. The color image is from an AIMD snapshot showing the first coordination spheres 
with Ln3+ (green) water oxygen (red) and hydrogen (white). Figures in black and white 
show the reference molecular geometries that are used to quantify the geometry of the 
first coordination sphere for each Ln3+ ion along the AIMD trajectory, where the circles 
represent oxygen atoms positions of that geometry. 
 

The simulation-averaged RMSD values with respect to the reference molecular 

geometries, for all Ln3+ ions, are reported in Tables 3-2 and 3-3. The RMSD values 

suggest that all Ln3+ first coordination spheres are dynamic in solution at room 

temperature (AIMD conditions). Most RMSD values, for all reference geometries, are not 

near-zero (between ~0.40 Å and ~0.50 Å), meaning that the first coordination spheres of 

lanthanides do not have set molecular geometries, but are symmetrically disordered.  



 

   

41 

 
Table 3-2. Average RMSDs between the nine-coordinate Ln3+ ions and reference 
molecular geometries, as seen in Figure 3-4. 

Element Average RMSD ± Standard Deviation (Å)  
Capped Square Antiprism Capped Square Tricapped Trigonal Prism 

La 0.42 ± 0.02 0.47 ± 0.02 0.38 ± 0.03 
Ce 0.45 ± 0.03 0.47 ± 0.02 0.38 ± 0.03 
Pr 0.36 ± 0.03 0.43 ± 0.02 0.43 ± 0.03 
Nd 0.42 ± 0.02 0.41 ± 0.02 0.48 ± 0.03 
Pm 0.41 ± 0.02 0.45 ± 0.02 0.36 ± 0.03 
Sm 0.51 ± 0.02 0.43 ± 0.02 0.39 ± 0.02 

 

Previous classical MD studies27,43–45,51 suggest that the early lanthanides favor the 

TTP geometry. Similarly, our AIMD simulations’ RMSD values (Table 3-2) are 

generally lower for TTP than other geometries, especially Ce, Pr, Pm, and Sm being most 

TTP-like. However, our AIMD simulations point to dynamic nine-coordinate geometries 

(RMSD values ~0.4 Å), with the RMSD average values of TTP within the standard 

deviation of those of C-SAP for La and Pr. Further, the first coordination sphere of Nd3+ 

is the least TTP-like, with lower RMSD average values for the C-SAP and C-SQU 

geometries. 

Table 3-3. Average RMSDs between the eight-coordinate Ln3+ ions and reference 
molecular geometries, as seen in Figure 3-4. 

Element Average RMSD ± Standard Deviation (Å) 
Square Dodecahedral Square Antiprism Bicapped Trigonal Prism 

Eu 0.49 ± 0.02 0.40 ± 0.03 0.48 ± 0.02 0.43 ± 0.03 
Gd 0.50 ± 0.02 0.42 ± 0.02 0.52 ± 0.02 0.49 ± 0.02 
Tb 0.48 ± 0.02 0.43 ± 0.03 0.43 ± 0.04 0.45 ± 0.03 
Dy 0.49 ± 0.02 0.42 ± 0.03 0.43 ± 0.03 0.48 ± 0.03 
Ho 0.47 ± 0.02 0.46 ± 0.02 0.43 ± 0.03 0.40 ± 0.02 
Er 0.48 ± 0.02 0.46 ± 0.02 0.43 ± 0.02 0.45 ± 0.02 
Tm 0.44 ± 0.04 0.41 ± 0.03 0.37 ± 0.04 0.49 ± 0.03 
Yb 0.50 ± 0.02 0.42 ± 0.02 0.42 ± 0.02 0.46 ± 0.02 
Lu 0.47 ± 0.02 0.44 ± 0.02 0.39 ± 0.02 0.42 ± 0.03 

The octa-aqua Ln3+ ions, like the nona-aqua ones, show RMSD values that are not 

close to zero, which means that they do not tightly fit with any of the reference molecular 
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geometries; however, the RMSD values show us to which molecular geometry they are 

most similar to at room temperature. The middle ions (Eu3+ – Dy3+) are mostly DDH-like, 

with only Ho3+ having the lowest average RMSD to the BTP molecular geometry, within 

the standard deviation range to the SAP average RMSD. Gd3+ is the most DDH-like in 

the series. The average RMSD values of Eu3+ to DDH and BTP are close to each other, 

likewise for Tb3+ and Dy3+ and DDH and SAP average RMSD values are within their 

standard deviations. Similarly, a classical MD study43 showed fluctuation between 

geometries for the middle lanthanides. We found that the later ions (Er3+ – Lu3+) favor the 

SAP molecular geometry, however, very close to the BTP (Er3+, Lu3+) or the DDH 

geometries (Er3+, Tm3+, Yb3+). In agreement with our findings, recent classical MD 

studies, report that the SAP geometry is favored for the later lanthanides.27,49,50,52 

We calculated O-Ln-O values for all Ln3+ AIMD simulations and compared the 

angle distribution functions (ADFs) with those of the reference molecular geometries. 

Figure 3-5 shows the comparison for Nd3+ (top) and Er3+ (bottom). 
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Figure 3-5: Ensemble of O-Ln-O distributions, top frame includes the Nd3+ angle 
distribution from the AIMD trajectory and those of the nine-coordinate reference 
geometries for comparison, while the bottom frame includes the Er3+ angle distribution 
from the AIMD trajectory and those of the eight-coordinate reference geometries for 
comparison. 
 

 From distribution of angles in Figure 3-5, one can clearly see that the capped 

square (9-coordinate) and square (8-coordinate) geometries are not favored by Nd or Er, 

in agreement with the RMSD values. Our Nd3+ O-Ln-O plot (Figure 3-5, top) shows that 

the ADF from AIMD matches the TTP geometries, unlike our RMSD values (Table 3-2), 

that, for the Nd3+ aqua ion, shows lower RMSD values to the C-SAP and C-SQU 

geometries. The lower RMSD values to the C-SAP and C-SQU geometries could be due 

to a single, longer capping Ln-O bond unlike the TTP geometry which has three longer 

Ln-O capping bonds. Similarly, a recent study,50 which includes O-Ln-O analysis of 

classical MD simulations, supports that the C-SAP geometry is favored in the early 
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lanthanides. Previous classical MD studies44,49,50,52 that analyzed O-Ln-O distributions 

show the best agreement to the SAP geometry for the later lanthanides, in agreement with 

our Er3+ O-Ln-O plot (Figure 3-5, bottom). However, the RMSD analysis shows that the 

later lanthanides’ first coordination sphere, although most SAP-like, is also very close to 

the BTP or DDH geometries. The simulation-averaged RMSD values for most Ln3+ 

molecular geometries are within the standard deviation of the other molecular geometries, 

meaning that the Ln3+ ions’ first sphere presents a dynamic behavior between different 

molecular geometries. 

 

3.3.3. EXAFS multiple scattering analysis of Ln3+ aqua ion molecular geometries 

Figure 3-6 compares the Er3+ L3 and L1  𝑅C-weighted 𝑅𝑒[𝜒(𝑅)] plots from AIMD with 

those for the reference molecular geometries.  Figure 3-7 compares these same types of 

plots from AIMD with those from the experimental data for the series of Dy3+, Er3+, and 

Lu3+. We briefly explain the rationale behind the use of an 𝑅C-weighted representation of 

these radial structure plots. The 𝑅C-weighting is used to accentuate the spatial structure at 

high-𝑅 that is due mostly to photoelectron multiple scattering from within the first shell. 

There is sufficient sampling in both theoretical and experimental data to faithfully capture 

these long-range distances with a high signal-to-noise ratio. The longer-R features (𝑅 >

2.5	Å) in these 𝑅𝑒[𝜒(𝑅)] plots originate primarily from multiple scattering oscillations in 

the 𝜒(𝑘) spectrum in the region below 𝑘 = 8 Å-1. The signal-to-noise ratio (~ 103) in a 

typical EXAFS scan over the region from 1.5 < 𝑘 < 8 Å-1 is sufficiently high to justify 

the 𝑅C-weighting used in these plots. For the AIMD EXAFS spectra, convergence tests 

were employed to ensure sufficient sampling (inclusion of 200 frames were deemed 
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sufficient) for low-noise spectra. This fact was also effectively demonstrated by 

comparing two 𝑅𝑒[𝜒(𝑅)] plots generated from a single trajectory using different 

scattering cutoff distances of 6.5 to 8.5 Å (FEFF parameter “RPATH”) in which new 𝑅 

structure due to multiple scattering is observed between 5.5 to 7 Å when applying the 

longer cutoff distance. 

 
Figure 3-6: R3-weighted 𝑅𝑒[𝜒(𝑅)] spectra generated from the Er3+ AIMD simulation 
and from the four different eight-coordinate reference molecular geometries (see Figure 
3-4). For the reference molecular geometries, a universal setting of 𝜎F = 0.015 Å2 has 
been applied, as an approximation, to all multiple scattering paths, here as the first-shell 
single scattering paths were set to 0.007 Å. For AIMD, the 𝜎F values were calculated 
exactly for the entire set of Ln-O configurations in the trajectory. 
 

Figure 3-6 compares Er3+ L3 and L1 spectra that were calculated for the four 

eight-coordinate reference molecular geometries (Figure 3-4). Prior EXAFS studies for 

lanthanides have evaluated only the single scattering processes for the first shell that 

includes the region up to approximately 2.5 Å in this plot. It is clear to see from Figure 
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3-6, that in this region, the spectra for the reference molecular geometries are the nearly 

the same and hence they contain no information about the first-shell symmetry. In 

marked contrast, the multiple scattering region above 2.5 Å provides a unique and 

powerful method to differentiate molecular geometries. In Figure 3-6, the SQU geometry 

is completely different from that of the other geometries demonstrating the unique effect 

of collinear multiple scattering paths that are only present for SQU. In comparing both 

the L3 and L1 spectra, BTP has distinct features that clearly differentiate it from SAP and 

DDH. Finally, the differences between SAP and DDH are more nuanced but collectively 

the features allow some discrimination. From a comparison of the L3 and L1 spectra in 

Figure 3-6, it is also clear to see that the selection rules impose a different set of allowed 

transitions for these two edges. Hence, the structure of their multiple scattering spectra 

are completely different, illustrating the power of acquiring different edge spectra to 

provide independent measures of the local symmetry. Another important result illustrated 

in Figure 3-6 is that better differentiation of the various symmetries occurs at higher 𝑅.  

The EXAFS spectrum generated from AIMD (Figure 3-6) is exactly derived from 

the molecular geometries of the simulation and includes an ensemble average of 

equilibrium structures through a sampling of the trajectory structures. Figure 3-6 

compares the 𝑅C-weighted 𝑅𝑒[𝜒(𝑅)] spectra from AIMD to those of the four reference 

molecular geometries. For the Er3+ aqua ion, the ADF suggests that the O-Ln-O values 

are most consistent with the SAP geometry, despite similar RMSD values to SAP, DDH, 

and BTP. However, multiple scattering EXAFS shows from the L3 and L1 AIMD spectra 

show the best agreement with either DDH or SAP or perhaps a mixture of the two. The 

𝑅C-weighted 𝑅𝑒[𝜒(𝑅)] spectra easily exclude the presence of SQU. Finally, AIMD could 
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also be represented by a smaller percentage of BTP in equilibrium with DDH and SAP.  

These conclusions are in general agreement with the relative prevalence of SAP, DDH 

and BTP from the RMSD values in Table 3-3. Overall, the EXAFS results agree with a 

room temperature speciation in which Ln3+ aqua ions, in solution, are dynamic and 

symmetrically disordered. 

 

 
Figure 3-7. The Dy3+, Er3+, and Lu3+ L3 and L1  𝑅C-weighted 𝑅𝑒[𝜒(𝑅)] plots for AIMD 
and the experimental data.  The vertical dashed lines identify common spectral features 
between the AIMD and the experimental spectra. The horizontal axis of the AIMD 
spectra has been scaled by 3% to account for the measured difference in the first shell Er-
O distance (0.07 Å). 
 

Figure 3-7 compares the L3 and L1  𝑅C–weighted 𝑅𝑒[𝜒(𝑅)] plots from AIMD 

with those from experiment. First, for the set of experimental spectra (lower panels), the 

spectral features are quite similar for the series of Dy3+, Er3+, and Lu3+ implying that, on 

an average, their local structures and associated symmetries are similar. Above ~3.5 Å, 

the experimental series show a modest progression of spectral features (see arrows in 
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Figure 3-7) in regions of the L3 and L1 spectra. Such changes could be ascribed to slight 

changes in the packing geometry with increasingly smaller ion radius (Table 3-1).  

The EXAFS multiple-scattering spectra calculated from the AIMD simulations 

agree with the experimental spectra since there is a one-to-one correspondence for most 

of the spectral features. Thus, based upon the geometry analysis in Figure 3-6, this 

suggests that the dominant geometries for the experimental system are SAP and/or DDH. 

The results are also consistent with the RMSD analysis that shows that Dy3+ favors the 

DDH and SAP geometries, Er3+ favoring DDH, SAP, and BTH geometries, while Lu3+ 

being the most SAP-like of the three (Table 3-3). These results confirm the general 

symmetry structure predicted by the simulation.  

 

3.4. Conclusions 

In this work we examined the long-debated structure of Ln3+ aqua complexes by a 

combination of the first AIMD simulations of all fifteen Ln3+ complexes and EXAFS 

measurements, including multiple scattering at high k-values to assign local coordination 

geometry. Measured EXAFS spectra of four Ln3+ ions were compared with AIMD-

generated EXAFS spectra, and we observe excellent agreement for the early lanthanides 

(Nd3+), and acceptable (Ln-O bond lengths within < 0.07 Å) for the later ones (Dy3+, Er3+, 

Lu3+). Analysis of the AIMD trajectories reveals that all Ln3+ aqua ions in solution have 

dynamic first coordination shells, which at room temperature, are symmetrically 

disordered. In short, solvated Ln3+ species do not possess a rigid molecular geometry, but 

rather are fluxional. Previously, the solution symmetry of Ln3+ ions has been inferred 

from experimentally measured Ln-O bond distances. In this work, multiple scattering 
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EXAFS spectra, from experimental measurements and AIMD simulations, are able to 

discriminate between different molecular geometries of the first coordination shells by 

measuring Ln-O distances and angular correlations, confirming that the Ln3+ aqua ions 

are subject to a dynamic solvation structure. This is the first time that the symmetry (i.e. 

Ln-O distances and angular correlations) of hydrating waters about Ln3+ has been 

experimentally measured by any technique thereby increasing our understanding about 

lanthanide coordination chemistry. 
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Supporting Information for Chapter 3 

 

Table. 3-S1 Ln3+ electronic configuration and multiplicities 
 

Ln3+ Electronic 
configuration 

Multiplicity 

La 5s25p6 1 
Ce 4f1 2 
Pr 4f2 3 
Nd 4f3 4 
Pm 4f4 5 
Sm 4f5 6 
Eu 4f6 7 
Gd 4f7 8 
Tb 4f8 7 
Dy 4f9 6 
Ho 4f10 5 
Er 4f11 4 
Tm 4f12 3 
Yb 4f13 2 
Lu 4f14 1 
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Figure 3-S1. The plot of all radial distribution functions of the Ln3+ aqua ion AIMD DFT 
simulations. 
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Figure 3-S2. A plot of all Ln – Cl radial distribution functions from AIMD simulations. 
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4.1. Introduction 

Probing the structure of aqueous lanthanide (Ln) ions with changes in temperature 

provides key insights into the factors controlling various first coordination sphere 

structures. Since the Ln properties of interest (e.g., ligand binding strength, luminescence, 

coordination, catalytic rates) depend on molecular structure, resolving if and how 

temperature changes Ln-containing structures is important to determine how these 

fundamental properties will be affected. For example it has been shown that i) the 

stability constants of Ln-ligand complexes change with temperature,1 the intensity of 

emission spectra of Ln-ligand complexes show significant changes with temperature;2 iii) 

the Ln coordination structure in peptides is flexible, sensitive and changes for different 

Ln3+ ions;3 and iv) the structure of Ln-ligand catalysts affects redox reactions.4 The 

associated applications will likely also be impacted or controlled by temperature-induced 

structural changes, including i) separations in which temperature affects Ln extraction;5,6 

ii) non-invasive nanothermometers, where it is desirable to have Ln-ligand complexes 

with highly temperature-sensitive dependence of their luminescent properties;7,8 iii) 

synthetic peptides for Ln3+ binding, which could change binding affinity to a particular 

Ln3+ ion with temperature, and iv) Ln homogeneous catalysts reaction rates, which may 

vary according to changes in the catalyst structure due to temperature. 

Temperature affects Ln-ligand structures in different ways that depends upon 

complex interactions between different ligands, anions, and solvent molecules. For this 

reason, the relative simplicity of aqua Ln3+ ions make them well suited to assess the 

structural changes of these cations with temperature. Here we describe how temperature 
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changes the first- and second-coordination spheres about Ce3+, Sm3+, and Lu3+ aqua ions 

that were selected from the center and the two endpoints of the Ln series. 

 Computationally, the coordination structures of the Ln aqua ions have been 

studied with electronic structure calculations,9–11 ab initio molecular dynamics 

simulations,12–15 and classical molecular dynamics simulations.16,17,26–30,18–25 

Experimentally, their structures have been resolved with X-ray diffraction,31–33 X-ray 

absorption spectroscopy,34–38 and excitation and emission spectroscopy.39 Most 

computational and experimental studies on the structure of Ln aqua ions have been done 

at room temperature, although the temperature dependence of water exchange rates has 

been investigated with classical molecular dynamics.26 There are studies that report the 

structure of Ln aqua ions in different phases: between liquid and frozen water,39 crystal 

and solution phases,38 hydrated in liquid water and solidified with ligands,36 and water 

liquid and glassy states.34 In this work, we focus on the effect of temperature on the 

coordination structure of Ln ions in liquid water. 

 Temperature dependent extended X-ray absorption fine structure (EXAFS) 

measurements of ions have been employed extensively to describe atomic structure 

within solutions.40,41 Temperature induced structural transitions in both geometry and 

coordination have been shown to occur in a variety of metal ion-based solutions.42–44 

These solvation and structural transitions can be captured and quantified through 

element-specific EXAFS measurements. Specifically, EXAFS is highly sensitive to 

changes in bond lengths, solvation geometry and speciation through analysis of the 

photoelectron scattering paths. 
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 This work reports a combination of ab initio molecular dynamics (AIMD) 

simulations and predicted EXAFS spectra from AIMD simulations, that were used to 

determine how temperature affects the structure of the first and second coordination 

spheres of the Ce3+, Sm3+, and Lu3+ ions in liquid water. 

 

4.2. Methods 

 

4.2.1. Ab initio molecular dynamics simulations 

Previously we simulated all Ln3+ aqua ions in water, at 25 °C, using density functional 

theory (DFT) level AIMD simulations: predicted Ln-O distances are within ~0.05 Å from 

those measured with EXAFS.12 In this work, we took room-temperature equilibrated 

frames from the Ce3+, Sm3+, and Lu3+ trajectories and ran AIMD simulations at 90 °C to 

determine how temperature affects the structure of their first coordination spheres.  

DFT-level AIMD simulations were done in the PBE functional45 using the CP2K 

package.46,47 Core electrons were modeled with norm-conserving GTH 

pseudopotentials,48 valence electrons were modelled with polarizable double-zeta basis 

sets,49 and our LnPP1 pseudopotentials and basis sets50 were used for Ce3+, Sm3+, and 

Lu3+. Long range electrostatic terms were determined with a supplementary plane wave 

basis set,51 using a 500 Ry cutoff for Ce and Sm, and 1000 Ry Lu. Grimme’s D3 

corrections52 were used to account for van der Waals interactions within a 6.0 Å radius in 

all simulations. Ln Multiplicities were assigned with Hund’s rule, see Table 4-S1 of the 

Supporting Information. 
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AIMD simulations were done in periodic boundary conditions with cubic boxes 

having a length of 12.42 Å, with 64 explicit water molecules, which corresponds to a 

density of 0.998 g/mL. Three Cl- anions were added to neutralize the charge of the Ln3+ 

cations. AIMD simulations were done in the canonical (NVT) ensemble at 90 °C with 1 

fs time steps. The simulations were performed until at least 10 ps of simulation with a 

stable potential were observed, which were used to calculate Ln-O radial distribution 

functions (RDFs), O-Ln-O angle distribution functions (ADFs), calculate root mean 

square distances (RMSDs) to ideal geometries, and to predict EXAFS spectra. 

 

4.2.2. Predicted extended X-ray absorption fine structure spectra 

The EXAFS photoelectron single-scattering process provides a simple and accurate 

measure of the first-shell Ln-O distances. EXAFS spectra can be predicted from 

molecular dynamics simulations.53 Comparing predicted and measured EXAFS spectra 

has been done to determine the coordination structure of heavy elements.12,54 To directly 

compare with measured EXAFS spectra, we predicted c(𝑘) spectra from AIMD 

trajectories,55 using FEFF8.5.56 The Ln and O coordinates from 200 equispaced frames 

from equilibrated AIMD trajectories were used to generate ensemble average spectra. An 

AIMD-EXAFS spectrum53,55,57 is generated for each frame and ensemble-average spectra 

resulted from the 200 frames of each case. FEFF8.5 was adjusted to include up to 35,000 

paths. Only Ln and O atoms were included in FEFF calculations because the inclusion of 

H atoms results in a large number of scattering paths that fail to converge. The Hedin-

Lundqvist exchange-correlation potential (default for FEFF8.5) was used with no SCF.  
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4.3. Results 

Figure 4-1 includes the radial distribution functions (RDFs) from the AIMD simulations 

of the Ce3+, Sm3+, and Lu3+ aqua ions, at 25 °C and 90 °C. As expected, the increase in 

temperature resulted in shorter, broader peaks in the oxygen – oxygen RDFs in all cases 

(Figure 4-1, RHS). However, temperature had a much less pronounced effect on Ln-O 

RDFs (Figure 4-1, LHS). The first peak of Ce- and Sm-O distances shows slightly lower 

Ln-O distances at 90 °C than at 25 °C, which is counterintuitive. This can be explained 

by the fact that the Ce3+ and Sm3+ aqua ions changed their coordination number: they are 

9-coordinate in the 25 °C AIMD simulations but 8-coordinate in the 90 °C AIMD 

simulations. The rearrangement of the second coordination sphere due to the change in 

coordination number in the first sphere also explains why temperature seemingly does not 

change the second peak in the Ce- and Sm-O RDFs: in simulation, the second sphere 

effects of temperature and change in coordination number average out. 

On the other hand, the Lu3+ aqua ion remained 8-coordinate at 90 °C. This allows 

to isolate the effect of temperature on the structure of the first and second solvation 

sphere without a change in coordination number. The Lu-O RDF shows an almost 

identical first peak at 25 °C and 90 °C, but the second peak is broader at 90 °C than at 25 

°C (Figure 4-1, LHS, bottom row). This implies that temperature has almost no effect on 

the first coordination sphere of the Lu3+ ion, which is somewhat unexpected, but it did 

make the second sphere more disordered, as expected. 
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Figure 4-1: Plots of Ln-O (left hand column) and O-O radial distribution functions (right 
hand column) of the Ce3+ aqua ion (top row), Sm3+ aqua ion (middle row), and Lu3+ aqua 
ion (bottom row) AIMD simulations, each case at 25 °C (blue) and 90 °C (red). 

 

Figures 4-2 and 4-3 display the EXAFS c(𝑘), and the Fourier-transformed 𝜒(𝑅) 

spectra generated from AIMD simulations. The c(𝑘) from the AIMD (Figure 4-2) show 

that increasing the temperature from 25 °C to 90 °C has a modest effect on the predicted 

spectra. The Ce c(𝑘) spectra in Figure 4-2, and to a lesser extent the Sm spectra, show 

appreciable phase shifts in the oscillations consistent with a contraction in the Ln-O bond 

distance at higher temperature. It is important to note that the simulated spectra for Lu3+ 

at 25 °C and 90 °C are both from eight-coordinate first-sphere structures, while those for 
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Ce3+ and Sm3+ represent an eight-coordinate structure at 90 °C and a nine-coordinate 

structure at 25°C.  Thus, to a large extent the change coordination number in first sphere 

symmetry explains the observed differences in the AIMD EXAFS spectra of the Ce3+ and 

Sm3+ ions at the two different temperatures. The AIMD-predicted Lu3+ ion EXAFS 

spectra show a small but systematic shift to lower k-values at 90 °C, which corresponds 

to a slightly increased average distance of the first coordination shell, as shown in the 

first peak of the Lu-O RDF (Figure 4-1, LHS bottom row).  

The 𝜒(𝑅) spectra in Figure 4-3 provide further insights into trends within the 

lanthanide series with regards to increases in temperature. The AIMD spectra for Ce3+ 

and Sm3+ (LHS) show a contraction of the distance and a reduction in the amplitude of 

the 𝜒(𝑅) that is consistent with the difference in the nine- (25 °C) versus the eight-

coordinate (90 °C) ions. The near-identical first peak of the Lu-O RDFs at 25 °C and 90 

°C (Figure 4-1, bottom row) corresponds with the near-identical EXAFS spectra for Lu3+ 

at 25 °C and 90 °C, for the predicted spectra (Figures 4-2 and 4-3, bottom row). 
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Figure 4-2: k2-weighted 𝜒(k) spectra of the Ce3+ (top row), Sm3+ (middle row), and Lu3+ 
(bottom row) L3-edges predicted with simulation (left hand column), each case at 25 °C 
(blue) and 90 °C (red). 
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Figure 4-3: Re[𝜒(R)] spectra derived from k2-weighting of the Ce3+ (top row), Sm3+ 
(middle row), and Lu3+ (bottom row) L3-edges predicted with simulation (left hand 
column), each case at 25 °C (blue) and 90 °C (red). The inserts of the figures show the 
expanded regions between 2.8 to 5 Å-1 where the multiple scattering contributions, that 
are enhanced by certain symmetries, become more important. 
 

 

4.4 Discussion 

A change in the coordination number of the first sphere, or symmetry of the first sphere 

within a coordination number, would be detected in EXAFS as modest changes in 

average Ln-O distances or Debye-Waller factors. However, the multiple scattering 

region, from ~2.5 < R < ~6 Å, shown in the Figure 4-3 inserts, provides a much more 
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sensitive fingerprint of the coordination symmetry.12 For the AIMD (Figure 4-3), the 

structure of the multiple scattering regions at 25 °C and 90 °C are significantly different 

for Ce3+, and Sm3+ ions, and to a less but still significant extent for the Lu3+ ion.  

The Ln3+ ions were treated as having a single coordination number. A limitation 

of AIMD simulations is that nanosecond or greater timescales are not attainable, and 

therefore we cannot simulate water exchange events or back-and-forth changes in 

coordination number,58 which results in that the AIMD simulations includes only 

equilibrium sampling of single coordination number conformations. Longer time scales 

would result in non-integer average coordination numbers that are a more complete 

sample of what is observed in experiment.36 Since temperature is likely to reduce the 

difference in population between 9- and 8-coordinate species (these were estimated with 

electronic structure calculations for the Ce3+ aqua ion to change from ~31:1 CN=9:CN=8 

species at 25 °C to ~13:1 CN=9:CN=8 species at 90 °C), longer simulation times that 

sample both coordination numbers could be used to accurately determine the free energy 

difference and relative populations of both coordination numbers at 25 and 90 °C. Longer 

AIMD simulations, with water exchange events, will likely result in EXAFS spectra 

whose differences between 25 °C and 90 °C more accurately model coordination.  

Although AIMD simulations cannot sample water exchange events, they can 

identify the preferred coordination number of lanthanide aqua ions.12 The Ce3+ and Sm3+ 

ions began as 9-coordinate in the AIMD simulations at 90 °C (starting point was the 

equilibrated 25 °C structures), however, they readily became 8-coordinate in the AIMD 

time scale at 90 °C, therefore the equilibrium simulation of the Ce3+ and Sm3+ aqua ions 

only samples 8-coordinate conformations. 
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The O-Ln-O angle distribution functions (Figure 4-4) from AIMD simulations, 

which correspond to the first peak of the Ln-O RDFs, show similar findings. For the Ce3+ 

and Sm3+ ions, the ADFs between 25 °C and 90 °C vary, due to the change in 

coordination number. For the Lu3+ ion, the ADFs at 25 °C and 90 °C are quite similar. A 

small difference is observed: the broadening of a minor peak around ~115° - 120° at the 

higher temperature. This is explained by the fact that, at room temperature, the Lu3+ aqua 

ion, although highly disordered and dynamical,12 prefers the square antiprismatic 

geometry.12,29 However, at 90 °C the dodecahedral geometry becomes preferred over the 

square antiprism. This is shown in the bottom frame of Figure 4-4, which superimposes 

the Lu3+ ion’s ADFs with the angle distributions of ideal square antiprism and 

dodecahedral geometries. Also, the RMSD of the first coordination sphere of the Lu3+ 

aqua ion to the square antiprism slightly increased from 0.39+/-0.03 Å to 0.43+/-0.04 Å 

between 25 °C and 90 °C; it slightly decreased to the dodecahedral geometry from 

0.44+/-0.02 Å to 0.41+/-0.05 Å.  
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Figure 4-4: Plots of O-Ln-O angle distribution functions of the Ce3+ aqua ion (top row), 
Sm3+ aqua ion (middle row), and Lu3+ aqua ion (bottom row) AIMD simulations, each 
case at 25 °C (blue) and 90 °C (red), normalized for comparison. The angle distribution 
of the square antiprism (SAP, green) and dodecahedral (DDH, yellow) ideal geometries 
are superimposed for visual comparison. 
 

There is distinction to be made regarding the definition of disorder for water 

molecules in the first coordination sphere of cations. The Debye-Waller factor (𝜎F) for 

the Ln-O interaction in EXAFS measures only the radial component of the thermal 

ellipsoid of the oxygen atom with respect to the Ln position. The simulated Debye Waller 

factors for Ln3+ ions (~0.007 Å2) are approximately the same as for first-row transition 

metals.12,59 First-row transition elements, in the III oxidation state, are considered to have 

well-ordered first spheres water molecules with octahedral symmetry. In the case of the 
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Ln3+ ions, however there may be larger disorder in the symmetry within the water 

hydration sphere due to water packing efficiency: an excess of ion-surface area can 

accommodate multiple symmetries with a higher degree of disorder than suggested by a 

relatively small Debye-Waller factor. At 25 °C, the lanthanide contraction reaches a point 

around the middle of the series where the packing limitation favors a change in 

coordination number from 9 to 8. The AIMD simulations in this work suggest that at 90 

°C this change occurs in the early lanthanides; therefore, the later lanthanides remain 8-

coordinate 90 °C, with water molecules in the first sphere that show similar disorder at 25 

°C and 90 °C.  

 

4.5. Conclusions 

AIMD results suggest that the first coordination sphere of the lanthanide aqua ions 

remain similarly disordered as temperature increases, more so for the Lu3+ ion that 

remains eight-coordinate, than for the Ce3+ and Sm3+ ions that change their preferred 

coordination number from nine to eight. AIMD simulations point to a structure of first 

coordination sphere of the Lu3+ ion that almost does not vary between 25 °C and 90 °C. 

Lanthanide – water coordination bonds have a highly ionic character that allow disorder 

in the geometry of the first coordination sphere at room temperature, yet are strong 

enough that temperature does not increase their disorder significantly, aside from 

changing the preferred coordination number from nine to eight for the lighter- to middle-

lanthanides. As the lanthanide aqua ions are contracted along the series due to f electrons 

there is less temperature-induced disorder of the first coordination sphere. 
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Supporting Information for Chapter 4 
 

 
Table 4-S1. LnIII electronic configuration and multiplicities 
 

LnIII Electronic 
configuration 

Multiplicity 

La 5s25p6 1 
Ce 4f1 2 
Pr 4f2 3 
Nd 4f3 4 
Pm 4f4 5 
Sm 4f5 6 
Eu 4f6 7 
Gd 4f7 8 
Tb 4f8 7 
Dy 4f9 6 
Ho 4f10 5 
Er 4f11 4 
Tm 4f12 3 
Yb 4f13 2 
Lu 4f14 1 
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Computational prediction of all lanthanide aqua ion acidity constants  
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5.1. Introduction 

The protonation state of lanthanide-containing species affects their molecular structure 

and changes their reactivity. Any heteroatom-hydrogen group in lanthanide (Ln) 

compounds can gain/lose the proton, with consequences in their properties. Some 

examples illustrate the importance: 

(i) LnIII aqua ions undergo hydrolysis and form LnIII(OH) species, which react 

with each other forming complexes with multiple Ln atoms linked by OH groups or O 

atoms, and precipitate.1 This affects Ln separations, as the solution pH, and each LnIII 

aqua ion’s pKa values, will determine their speciation and whether they precipitate or 

remain in solution. 

(ii) A single change in the protonation state of ethylenediaminetetraacetic acid in 

Ln-EDTA complexes, (e.g., [LaIII-EDTA4-]- and [LaIII-EDTA3-]0) changes the stability of 

the complex by one order of magnitude.2 This illustrates that the stability of Ln-ligand 

complexes with multi-acidic ligands is very sensitive to protonation state. Metal-

chelating ligands are known to have pH-sensitive binding, for example siderophores,3 and 

pH has been used to control Ln biosorption.4 

(iii) Contrast agents for magnetic resonance imaging include gadolinium-ligand 

complexes, for example Gd-DTPA, which must have at least one coordinated water 

molecule.5,6 If a coordinated water molecule undergoes hydrolysis and becomes a 

hydroxyl, the Gd-ligand complex could lose its functionality, and its complex stability 

will change, which has consequences as uncomplexed GdIII ions are involved in causing 

nephrogenic systemic fibrosis.7  
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(iv) Lanthanum exchanged faujasite is the principal component in catalysts used 

for petroleum cracking.8 Brønsted acidic sites, on faujasite itself, and from H2O or OH 

species coordinated to La atoms,9 play a catalytic role to degrade hydrocarbons,10 and 

possibly also on the hydrothermal stability of La-exchanged faujasite during steam 

treatment in cracking.  

(v) Changes in protonation state will affect hydrogen bonding in rare earth metal 

organic frameworks,11 which determines the optical and electronic properties of the 

porous material. 

(vi) The role of LnIII ions in enzyme active sites will depend on the Ln 

coordination structure with amino acid residues,12–16 which are susceptible to protonation 

state changes, therefore affecting the whole coordination structure in the enzymes’ active 

site. 

It is difficult to identify the protonation state of specific acid sites in compounds 

or materials with multiple Brønsted acidic sites. Experimentally, titrations yield 

observable, ensemble quantities that do not connect particular acid sites, i.e., it is 

challenging to assign which particular acidic site corresponds to each measured pKa 

value. Additionally, competing protonation among acidic sites cannot be deconvoluted to 

determine the acidity of a specific acidic group. In the case of porous materials such as 

zeolites or metal organic frameworks, the number of protonation sites can vary due to 

defects or impurities in the material structure. Further, the chemical environment affects 

protonation state, as is well known in protein structure where neighboring amino acid 

residues change local pKa values.17–19 Therefore, the pKa values of a Ln-containing 

compound could change in mixtures, for example in Ln/actinide mixtures seen in the 
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nuclear fuel cycle.20 Computationally, determining the protonation state of a Brønsted 

acidic site requires considering the electronic structure (forming/breaking heteroatom-H 

bonds) to compute a thermodynamic quantity. In the case of Ln-containing compounds, 

electronic structure calculations are complicated by the fact that lanthanides have a large 

number of nearly degenerate electronic states with high electronic spin multiplicity.  

We optimized transferable GTH-type21 pseudopotentials and their corresponding 

basis sets for lanthanides (LnPP1), for generalized gradient approximation calculations in 

a mixed Gaussian and plane wave setting.22 These allow performing density functional 

theory (DFT) calculations and DFT-level ab initio molecular dynamics (AIMD) 

simulations in periodic conditions with explicit solvent molecules, well suited for Ln-

containing systems in the condensed phase, e.g., porous materials, Ln-ligand complexes 

in solution. Other effective core potentials and basis sets are available for the 

lanthanides,23–29 which are suitable for electronic structure calculations, at higher levels 

of theory, with systems containing up to ∼100 atoms. 

We recently showed that our LnPP1 pseudopotentials and basis sets with AIMD 

simulations can replicate the coordination structure of LnIII aqua ions and Ln-ligand 

complexes in solution.30,31 In this work, we employ a rare event simulation technique 

paired with solution phase AIMD simulations with explicit solvent, to predict a 

thermodynamic quantity: the first hydrolysis constant of all LnIII aqua ions. The second 

and third hydrolysis constants were also quantified, with respect to the first, using 

electronic structure calculations at a higher level of theory and including relativistic 

effects. The hydrolysis constants of the LnIII aqua ions are the best characterized Ln 

complexes with multiple Brønsted acid sites. In this work, they were chosen as an ideal 
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experimental reference point, representative of the entire Ln series with many 

measurements for most Ln elements (except Pm due to radioactivity), to determine an 

approach to quantify absolute pKa values of multi-acidic Ln-containing systems solely 

from computation. 

 

5.2. Methods 

 

5.2.1. Approach 

Water molecules coordinated on LnIII ions in aqueous solution undergo three hydrolysis 

reactions: 

p𝐾ST:	𝑋CW + [LnYYY ⋅ (HFO)] + HFO]C^ ↔ 𝑋CW + [LnYYY(OH) ⋅ (HFO)]WT + HCO^]C^ 

p𝐾SF:	𝑋FW + [LnYYY(OH) ⋅ (HFO)]WT + HFO]F^

↔ 𝑋FW + [LnYYY(OH)F ⋅ (HFO)]WF + HCO^]F^ 

p𝐾SC:	𝑋W + [LnYYY(OH)F ⋅ (HFO)]WF + HFO]^

↔ 𝑋W + [LnYYY(OH)C ⋅ (HFO)]WC + HCO^]^ 

where n is the LnIII coordination number, and X is the charge neutralizing anion. La – Sm 

were treated nine coordinate, and Eu – Lu eight coordinate, as in our previous work.30 

Reaction free energies ∆𝐺 can be converted to pKa units: 

p𝐾b =
−∆𝐺

𝑅𝑇ln(10)			(5.1) 

at a given temperature T. All simulations and calculations in this work were done at room 

temperature (298 K). 

Absolute values of the first hydrolysis reaction constant (p𝐾bT) were calculated 

from constrained, Bluemoon ab initio molecular dynamics simulations,32,33 which gave 

potentials of mean force of the first hydrolysis reaction, i.e., the proton transfer from a 
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LnIII-coordinated water molecule to a solution water molecule. Then, free energies were 

extracted from the potentials of mean force, and p𝐾bT values calculated with equation 

5.1. 

Separately, electronic structure calculations were employed to calculate free 

energies of the hydrolysis reactions as: 

∆𝐺T = 𝐺fghhh(ij)⋅(j-i)k,l + 𝐺jmin − 𝐺fghhh⋅(j-i)k − 𝐺j-i			(5.2) 

∆𝐺F = 𝐺fghhh(ij)-⋅(j-i)k,- + 𝐺jmin − 𝐺fghhh(ij)⋅(j-i)k,l − 𝐺j-i			(5.3) 

∆𝐺C = 𝐺fghhh(ij)m⋅(j-i)k,m + 𝐺jmin − 𝐺fghhh(ij)-⋅(j-i)k,- − 𝐺j-i			(5.4) 

Then, the relative values of the second and third hydrolysis reaction constants, ∆p𝐾b,FWT 

and ∆p𝐾b,CWF, were calculated with relative reaction free energies: 

∆∆𝐺FWT = |∆𝐺F − ∆𝐺T|			(5.5) 

∆∆𝐺CWF = |∆𝐺C − ∆𝐺F|		(5.6) 

∆p𝐾b,FWT =
∆∆𝐺FWT
𝑅𝑇ln(10)			(5.7) 

∆p𝐾b,CWF =
∆∆𝐺CWF
𝑅𝑇ln(10)			(5.8) 

Finally, the values of p𝐾bF and p𝐾bC were calculated with ∆p𝐾b,FWT and ∆p𝐾b,CWF, using 

p𝐾bT values, obtained from constrained AIMD simulations, as the reference point: 

p𝐾bF = p𝐾bT + ∆p𝐾b,FWT			(5.9) 

p𝐾bC = p𝐾bF + ∆p𝐾b,CWF			(5.10) 

 

5.2.2. Constrained ab initio molecular dynamics simulations for pKa1 

We previously simulated all LnIII aqua ions with DFT-level AIMD to identify their first 

sphere coordination structures, which were verified with extended X-ray absorption fine 

structure (EXAFS) measurements.30 We took equilibrated simulation frames from our 
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previous work as the starting point to build potentials of mean force of proton transfer of 

the first hydrolysis reaction, see Figure 5-1. 

 
Figure 5-1: All simulations to quantify the first hydrolysis constant included a LnIII ion 
(green), three Cl- ions (purple) to neutralize the charge, and 64 water molecules (oxygen 
red, hydrogen white) in periodic conditions to simulate aqueous solution. 
 

For each LnIII aqua ion in their starting frame, we pulled a proton from a 

coordinated water molecule to a neighboring water molecule in 0.05 Å increments, with 

O-H bond distances ranging from ~1.00 Å to ~1.40 Å. For each LnIII ion, nine 

independent simulation boxes, with varying O-H distances, were generated. Each 

simulation box included 64 explicit water molecules in a cubic periodic box of 12.42 Å 

length, which corresponds to a water density of 0.998 g/mL. Three Cl- ions were added to 

simulation boxes to neutralize the charge. LnIII multiplicities were assigned following 

Hund’s rule, and appear in the Supporting Information (SI). For each simulation box, the 

O-H distance was constrained (Figure 5-2), and 15 ps of NVT simulation were 

performed with 1 fs time steps. The forces on the constraint (SHAKE Lagragian 

multipliers) were averaged over the last 10 ps (5 to 15 ps) of NVT simulation, to generate 

an average force on the constraint for each O-H distance (rO-H). An integration of the 

forces on the constraint over rO-H was done to obtain potentials of mean force (i.e., free 
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energy profile) of proton transfer in the first hydrolysis reaction, from which p𝐾bT values 

calculated using equation 5.1. Helmholtz free energies are obtained from the potentials 

of mean force, but they approximate Gibbs free energies due to a very small PV term 

from the simulation box. The potential of mean force of the first hydrolysis constant of 

GdIII appears in Figure 5-2. To estimate the error in p𝐾bT values, we took the absolute 

difference between p𝐾bT values calculated with the first half of equilibrated trajectory (5 

to 10 ps) with those calculated with second half (10 to 15 ps) of the equilibrated 

trajectory. 

 

 
Figure 5-2: Potentials of mean force (top) of a proton transfer from [GdIII(H2O)8]3+ to 
H2O, the first hydrolysis reaction. Similar potentials of mean force were generated for all 
LnIII aqua ions. For each point on the graph, an AIMD simulation with a constraint on rO-

H was performed. Each AIMD simulation was done as shown in Figure 5-1, in this figure 
only the LnIII-coordinated water molecules, and the water molecules which accepts a 
proton, are shown for clarity (bottom) with same coloring scheme as in Figure 5-1. 
 

Potentials of mean force of proton transfer from constrained DFT-based AIMD 

simulations have been shown to be an accurate way to calculate pKa values.34–36 This 
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approach has been employed to obtain the acidity constants of oxide surfaces,37 organic 

compounds,38–42 and transition metal complexes.43 The recent work by Schilling and 

Luber is informative and discusses different constraints and methods to quantify pKa 

values from AIMD simulations; they find that simple distances between heteroatoms and 

H atoms are an adequate constraint to calculate absolute pKa constants in inorganic 

compounds.43 Using O-H distances as the constraint in AIMD simulation for potentials of 

mean force of proton transfer reactions are best suited for first hydrolysis reactions: the 

second and third reactions have additional Ln-coordinated -OH groups that may accept a 

proton from the solvent, via a Grothus-type mechanism, as the proton is transferred from 

the Ln-coordinated H2O molecule to a solvent H2O molecule for the second or third 

hydrolysis. 

All atoms in the AIMD simulation boxes were modeled with density functional 

theory (DFT), conducted in the PBE functional44 using the CP2K package.45,46 The PBE 

functional has been tested for water47,48 and lanthanides.49,50 Core electrons were modeled 

with norm-conserving GTH pseudopotentials,21 valence electrons were modelled with 

polarizable double-zeta basis sets,51 and our LnPP1 pseudopotentials and basis sets22 

were used for LnIII ions. Long range electrostatic terms were determined with a 

supplementary plane wave basis set, using a 500 Ry cutoff for La – Gd, 800 Ry for Tb – 

Tm, and 1000 Ry for Yb – Lu. Grimme’s D3 corrections52 were used to account for van 

der Waals interactions within a 6.0 Å radius in all simulations. AIMD simulations, as 

here described, replicated LnIII aqua ion molecular geometries, including LnIII-O 

distances within ~0.05 Å of experiment, in our recent work.30 
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5.2.3 Electronic structure calculations for pKa2 and pKa3 

The free energies of the three hydrolysis reactions were calculated in a thermodynamic 

integration (equations 5.2 – 5.4). To determine the free energies of each species in 

equations 5.2 – 5.4, we used an implicit water solvent model (conductor-like polarizable 

continuum model).53 Water and hydroxide molecules directly coordinated to LnIII ions 

were explicitly included (Figure 5-3). 

 

 
Figure 5-3: Optimized geometries of GdIII (green) aqua ion hydroxides. All coordinated 
water molecules (oxygen red, hydrogen white) and hydroxyl groups (orange oxygen) 
were included in geometry optimization and energy calculations for the thermodynamic 
integration. 
 

For each LnIII ion, the molecular coordinates of all the species to complete the 

thermodynamic integration were optimized with the M06 functional54 using effective 

core potentials and corresponding basis sets (Stuttgart RSC Segmented + ECP) for LnIII 

ions,23,55 and the cc-PVTZ basis set56 for atoms in H2O, OH- and H3O+ species. 

Vibrational frequencies of the optimized structures were obtained as well to compute free 

energies. Multiple geometry optimizations were performed because LnIII aqua ions and 

hydroxides have multiple minima that are close in energy. Although the identified 

optimized structures are not guaranteed to be global minima, they represent the minima in 

a large conformational space, because our starting structures came from AIMD 

[Gd.(H2O)8]3+ [Gd(OH).(H2O)7]2+ [Gd(OH)2.(H2O)6]+ [Gd(OH)3.(H2O)5]0
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simulations. The SI provides additional discussion on the vibrational frequencies. With 

the optimized geometries, all-electron single-point energy calculations were performed 

using the M06 functional, a relativistic second order Douglas–Kroll–Hess (DKH2) 

Hamiltonian,57,58 segmented all-electron relativistically contracted (SARC) basis set59 for 

the Ln elements, and the minimally augmented60 ma-def2-TZVPP basis set61,62 was used 

for atoms in H2O, OH- and H3O+ species. Diffuse functions in the basis sets of single 

point energy calculations improved our predicted p𝐾bF and p𝐾bC for values. Also, a study 

of lanthanide-ligand binding energies reports that basis sets with diffuse functions (ma-

def2-TVZP) resulted in Ln-ligand binding energies that are energetically more 

favorable.63 Additional discussion is provided in the SI regarding the use of basis sets 

with diffuse functions in geometry optimizations. The M06 functional is reliable for 

calculating thermodynamic properties,64 including those with the lanthanides.49,50 The 

efficiency of DKH2 and SARC basis set in electronic structure calculations with 

lanthanides has been shown65–67.  Relativistic effects need to be considered for accurate 

calculations with Ln elements68. For geometry optimizations and frequency calculations, 

we used small core effective core potentials in which core electrons interact with the 

valence electrons,69 and for all-electron single-point energy calculations we used scalar 

relativistic approximations (Douglas−Kroll−Hess approach).57,58,70 The more accurate all-

electron calculations are computationally too expensive for geometry optimizations (four 

species per LnIII ion, 15 LnIII ions, Figure 5-3). All electronic structure calculations were 

done with ORCA71 using the resolution of identity chain of sphere (RIJCOSX)72 to 

improve the calculations efficiency using “Grid7” and “GridX7” grids. 
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With reaction free energies (equations 5.2 – 5.4) quantified from electronic 

structure calculations, the values of p𝐾bF and p𝐾bC for each LnIII ion were calculated 

using relative reaction free energies (equations 5.5 – 5.10), based on the absolute p𝐾bT 

values for each LnIII ion predicted with constrained AIMD simulations in the solution 

phase. All simulations and calculations correspond to aqueous solution (explicit solvent 

for p𝐾bT, implicit solvent for p𝐾bF and p𝐾bC); no gas phase energies were used. 

 

5.3. Results and Discussion 

For each predicted pKa value, of each LnIII ion, we calculated mean absolute deviations 

(MAD) of our calculations with experimentally measured hydrolysis constants in the 

literature. Our calculated LnIII ion pKa values at room temperature in aqueous solution are 

reported in Table 5-1. The +/- margin of error in	p𝐾bT predictions were quantified as 

described in section 5.2.2, and carries over to p𝐾bF and p𝐾bC predictions. The small 

margins of error (<1 pKa) indicate that the trajectories are equilibrated, and sufficient 

sampling was obtained in 15 ps of NVT simulation. The margins of error were not used 

to lower the MAD values, the MAD values reported represent the absolute deviation of 

our calculations with experimentally reported hydrolysis constants. Our predicted first 

hydrolysis (p𝐾bT) constants have MAD values that range between 0.5 and 2.4 pKa units 

from experiment; the second hydrolysis (p𝐾bF) constants range between 0.2 and 4.5 pKa 

units, and the third hydrolysis (p𝐾bC) constants range between 0.4 and 7.1 pKa units.  
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Table 5-1: LnIII ion hydrolysis constants calculated in this work, and their MAD to 
experimentally measured hydrolysis constants.   

First Hydrolysis Second Hydrolysis Third Hydrolysis 
pKa1 MAD pKa2 MAD pKa3 MAD 

La 8.4 ± 0.9 0.7 13.4 4.5 19.6 7.1 
Ce 8.8 ± 0.3 0.5 17.1 0.8 20.0 5.3 
Pr 9.0 ± 0.5 0.6 14.0 - 20.8 4.9 
Nd 8.3 ± 0.5 0.5 12.9 3.8 17.8 6.6 
Pm 8.7 ± 0.5 2.2 12.8 - 19.9 - 
Sm 7.0 ± 0.1 1.1 10.9 4.5 16.7 6.9 
Eu 10.1 ± 0.2 2.4 19.8 - 23.9 0.4 
Gd 8.4 ± 0.4 0.6 15.8 0.3 17.2 5.5 
Tb 9.1 ± 0.5 1.6 15.4 - 20.4 3.0 
Dy 9.1 ± 0.1 1.6 16.1 - 21.2 1.7 
Ho 8.4 ± 0.5 0.9 15.2 1.1 18.8 3.9 
Er 7.2 ± 0.9 0.9 11.8 4.2 15.9 6.8 
Tm 8.9 ± 0.1 1.7 12.1 3.9 15.8 6.1 
Yb 8.2 ± 0.3 0.9 15.1 0.2 18.3 3.6 
Lu 7.9 ± 0.9 0.9 14.0 1.2 17.1 4.3 

 

Our p𝐾bT predictions have an average MAD value for all Ln elements of 1.1 pKa 

units. A significant deviation from experiments comes from a single set of 

measurements73 that underestimates the first hydrolysis constant by ~2 – 4 pKa units 

compared to the other reported measurements. Higher MAD values were obtained for 

p𝐾bF and p𝐾bC with average MAD values for all Ln elements of 2.5 and 4.7 pKa units 

respectively. This is, in part, because less experimental measurements have been done for 

the second and third hydrolysis constants, and, in part, because the magnitude of pKa 

values also increase for the second and third hydrolysis constants.  

Table 5-2 contains our results and all the experimentally measured LnIII ion 

hydrolysis constants, along with their references, that were used to calculate the MAD 

values. Table 5-2 provides an updated compilation of all experimentally measured LnIII 

ion hydrolysis constants in a single, useful reference table. There is a large variation in 
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experimentally measured p𝐾bT values, generally more pronounced for the later 

lanthanides. For most elements, our predicted p𝐾bT values, are inside the range of 

experimentally measured first hydrolysis constants with a few exceptions: we slightly 

overestimate the	p𝐾bT values for Eu, Tb, Dy, and Tm, as well as for Pm which only has a 

single experimental measurement. On the other hand, for p𝐾bF and p𝐾bC lower pKa 

values are predicted in most instances. Basis sets with diffuse functions improved the 

calculated p𝐾bF and p𝐾bC values with respect to experiment: our underestimated values 

could be due to the fact that the interactions between Ln electrons with oxygen electrons, 

far from the nuclei, is not being accurately replicated with the level of theory used in this 

work.  
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Table 5-2: LnIII ion hydrolysis constants calculated in this work, and experimentally 
measured hydrolysis constants reported in the literature.  

First Hydrolysis Second Hydrolysis Third Hydrolysis 
pKa1 Source pKa2 Source pKa3 Source  
7.4 73 

  
   

7.77 74 
  

   
8.14 75 

  
   

8.4 ± 0.9 This Work 
  

   
8.4 76 

  
   

8.5 2 
  

   
8.5 77 

  
   

8.52 78 
  

19.6 This Work  
8.53 79 13.4 This Work 26.12 80 

La 8.6 81 17.9 81 26.56 79  
8.81 82 

  
26.84 78  

8.87 83 
  

27.3 81 
 8.89 84     
 9.1 85     
 9.2 86     
 9.33 87     
 9.94 88     
 10 89     
 10.0 90     
 10.1 91     
 10.3 92      

8.02 75 
    

 
8.1 93 

  
   

8.31 84 
    

 
8.34 82 

  
20.0 This Work 

Ce 8.34 77 16.3 93 23.65 94 
 8.43 79 17.1 This Work 26.0 93 
 8.8 ± 0.3 This Work   26.25 79 
 9.1 95     
 9.3 96      

7.1 73 
    

 
7.86 75 

    
 

8.1 77 
    

 
8.3 84 

    
 

8.32 82 
    

 
8.32 79 

    

Pr 8.5 96 14.0 This Work 20.8 This Work 
 8.5 97   25.66 79 
 8.54 83     



 

   

94 

 8.82 87     
 8.94 98     
 9 ± 0.5 This Work     
 9.0 90     
 9.5 92      

7 73   
  

 
7.76 75      
8.0 2   

  
 

8.0 77   
  

 
8.1 99   17.8 This Work  

8.13 84 
  

23.54 80  
8.18 82 9.2 100 23.8 101 

Nd 8.24 79 12.9 This Work 23.9 102  
8.3 ± 0.5 This Work 16.2 99 24.0 100 

 8.5 96 17.35 103 24.3 99 
 8.5 97   25.16 79 
 8.7 87   26.2 103 
 9.0 90     
 9.4 104     
 9.46 88     

Pm 6.5 73 12.8 This Work 19.9 This Work  
8.7 ± 0.5 This Work 

    
 

4.4 73 
    

 
7.0 ± 0.1 This Work 

    
 

7.11 78 
    

 
7.5 105 

  
16.7 This Work  

7.6 75 10.9 This Work 22.7 105 
Sm 7.84 82 15.0 105 23.44 78 

 7.84 84 15.84 78 24.62 79 
 7.9 77     
 8.02 79     
 8.61 87     
 8.9 90      

4.8 73 
    

 
6.7 106 

    
 

7.3 107 
    

 
7.49 75 

    
 

7.49 108 
    

 
7.66 84 

    
 

7.76 82 
    

 7.8 77     
Eu 7.91 79 19.8 This Work 23.9 This Work 

 8 85   24.34 79 
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 8.08 109     
 8.1 110     
 8.2 111     
 8.31 112     
 8.34 83     
 8.58 87     
 8.7 113     
 10.1 ± 0.2 This Work      

7.1 73   
  

 
7.3 114 

    
 

7.36 75 
    

 
7.83 82 

    
 

7.87 84 
    

 
7.87 79 15.16 115 17.2 This Work 

Gd 7.87 115 15.8 This Work 21.9 114 
 8 77 15.82 116 22.16 80 
 8.2 89   23.92 79 
 8.3 85     
 8.44 116     
 8.4 ± 0.4 This Work     
 8.62 87     
 9.2 117      

5.2 73 
    

 7.18 75     
 7.55 115     
 7.6 84     

Tb 7.64 82 15.4 This Work 20.4 This Work 
 7.74 79   23.43 79 
 7.9 77      

8.43 87 
    

 8.44 116      
9.1 ± 0.5 This Work      

5.6 73 
    

 7.5 118     
 7.53 84     

Dy 7.59 82 16.1 This Work 21.2 This Work 
 7.72 79   22.92 79 
 8.0 77      

8.37 87 
    

 
9.1 ± 0.1 This Work      

5.7 73 
    

 6.8 75     
 7.43 84     
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 7.56 82     
Ho 7.66 79 15.2 This Work 18.8 This Work 

 7.85 74 16.25 79 22.71 79 
 8 77     
 8.14 119      

8.31 87 
    

 
8.4 ± 0.5 This Work      

5.5 73      
6.3 120 

  
  

 6.56 75     
 7.2 ± 0.9 This Work     
 7.46 84 11.8 This Work 15.9 This Work 

Er 7.52 82 14.5 2 22.23 79 
 7.63 79 16.15 79 23.1 2  

7.9 77 17.4 89   
 8.16 83      

8.26 87   
  

 8.4 88      
9 121 

    
 

4.4 73 
    

 6.36 75     
 7.34 84     
 7.39 82     

Tm 7.51 79 12.1 This Work 15.8 This Work 
 7.7 77 15.98 79 21.91 79  

8.22 87 
    

 8.58 122      
8.9 ± 0.0 This Work      

4.3 73 
  

  
 6.24 75     
 7.24 82     
 7.31 84     
 7.45 79 15.1 This Work 18.3 This Work 

Yb 7.7 123 15.5 123 20.68 80 
 7.7 77 15.59 79 21.72 79 
 8.0 85   23.2 123  

8.19 87 
    

 
8.4 124 

    
 

8.2 ± 0.3 This Work      
8.6 92 

    
 

3.5 73 
    

 6.04 75      
6.6 96 
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 7.27 82     
 7.33 84     

Lu 7.41 79 14.0 This Work 17.1 This Work 
 7.6 77 15.21 79 21.43 79  

7.7 85 
    

 7.9 ± 0.9 This Work     
 8.0 125      

8.11 83 
    

 
8.17 87     

 

The calculated pKa values in this work agree with the well observed trend that 

LnIII ion acidity increases from the lighter to the heavier lanthanides. However, our 

predicted p𝐾bT values show higher constants (lower acidity than experiment) for the 

middle lanthanides (Eu – Dy). As observed in experiment, our calculations report 

increasing hydrolysis constants from the first to the third hydrolysis reactions within each 

LnIII aqua ion. 

Electronic structure calculations, which can generate relative pKa values, are 

typically combined with an experimental quantity, most commonly the free energy of 

proton hydration, to predict absolute pKa values via thermodynamic integration;126–133 

using implicit solvent models134,135 to model aqueous conditions. In this work, we 

calculate absolute values of p𝐾bT from solution phase AIMD simulations, and use that as 

the reference point to calculate p𝐾bF and	p𝐾bC with electronic structure calculations in an 

implicit solvation model. Despite that constrained AIMD simulations are computationally 

more expensive than electronic structure calculations, they have the advantage that 

absolute pKa values in the condensed phase can be obtained due to periodic conditions. 

AIMD simulations also allow to include explicit solvation which is critical to accurately 

predict pKa values in species with a large conformational space, as has been observed 
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with metal ions,130,131 as well as organic compounds with multiple Brønsted acid sites.132 

Additionally, with recently available Ln pseudopotentials and basis sets,22 larger periodic 

systems, such as Ln-ligands complexes in solution or porous materials are within reach of 

constrained AIMD simulations. This is relevant in the case of LnIII ions due to a wide 

range of reported experimental values, for example the first hydrolysis constant LuIII has 

reported values between 3.5 and 8.17 (Table 5-2). Constrained AIMD simulations will be 

useful to determine the Brønsted acidity of Ln-containing systems, such as those 

described in the Introduction, with multiple acidic sites. 

 

5.4. Conclusions 

Absolute pKa values of lanthanide-containing species can be calculated with Bluemoon 

AIMD simulations. This is shown with the first hydrolysis constant of all LnIII aqua ions, 

which are the best characterized LnIII complexes with multiple Brønsted acidic sites along 

the entire Ln series. For each LnIII aqua ion, the remaining pKa sites were calculated using 

electronic structure calculations that include relativistic effects with respect to the pKa of 

the acidic site quantified with constrained AIMD simulations. This approach is 

particularly advantageous to characterize the Brønsted acidity of LnIII-ligand complexes, 

or Ln-containing systems, which have multiple acidic sites and measured pKa values 

cannot be connected with a particular acidic group. 
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Supporting Information for Chapter 5 

 

Table 5-S1. LnIII electronic configuration and multiplicities 
LnIII Electronic 

configuration 
Multiplicity 

La 5s25p6 1 
Ce 4f1 2 
Pr 4f2 3 
Nd 4f3 4 
Pm 4f4 5 
Sm 4f5 6 
Eu 4f6 7 
Gd 4f7 8 
Tb 4f8 7 
Dy 4f9 6 
Ho 4f10 5 
Er 4f11 4 
Tm 4f12 3 
Yb 4f13 2 
Lu 4f14 1 

 

 

Discussion on vibrational frequencies in electronic structure calculations 

It is difficult to identify the energy minimum of LnIII aqua ions because they are highly 

flexible, fluxional species. For the thermodynamic integration, despite exhaustive 

geometry optimization calculations [M06 functional, Stuttgart RSC Segmented effective 

core potentials and corresponding basis sets for LnIII ions, cc-PVTZ basis sets other 

atoms] few imaginary frequencies remained for some compounds. We chose to optimize 

geometries with small-core effective core potentials and corresponding basis sets, rather 

than using a less rigorous approach, without relativistic effects, and observe geometries 

no imaginary frequencies. All optimizations were taken to a point where the energy did 

not change significantly (>6 kJ/mol, ~pKa unit at 298 K) which is within the accuracy of 
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density functional theory used to calculate 𝑝𝐾bT values from which 𝑝𝐾bF and 𝑝𝐾bC values 

are based on. All remaining imaginary frequencies are below 500 cm-1 (6 kJ/mol, 1.4 

kcal/mol). Finally, the numerical Hessian was used, most errors (< ~150 cm-1) are within 

numerical noise. 

 

Discussion on basis sets with diffuse functions in geometry optimizations 

We calculated pKa2 and pKa3 for La, Ce, Pr, Nd, Ho, Er, Lu using the ma-def2-TZVPP 

basis set in the optimizations. This resulted in pKa values that are further from experiment 

(mean absolute deviations MAD values) than those reported in the manuscript (see 

Methods). The specific numbers are given in the table below. 

Table 5-S2 
Element pKa2 MAD in 

manuscript 
pKa2 MAD using ma-
def2-TZVPP in 
optimization 

pKa3 MAD in 
manuscript 

pKa3 MAD using ma-
def2-TZVPP in 
optimization 

La 4.5 5.5 (did not improve) 7.1 8.6 (did not improve) 
Ce 0.8 5.1 (did not improve) 5.3 5.9 (did not improve) 
Pr - - 4.9 9.6 (did not improve) 
Nd 3.8 4.0 (did not improve) 6.6 5.7 (improvement) 
Ho 1.1 2.1 (did not improve) 3.9 2.7 (improvement) 
Er 4.2 8.7 (did not improve) 6.8 5.8 (improvement) 
Lu 1.2 2.3 (did not improve) 4.3 1.4 (improvement) 
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CHAPTER 6 

The Effect of Lanthanum Ions on the Brønsted Acidity of Faujasite and 

Implications for Hydrothermal Stability 

Richard C. Shiery, Stuart J. McElhany, David C. Cantu 

Department of Chemical and Materials Engineering, University of Nevada, Reno 

 

Modified from a manuscript that was published in The Journal of Physical Chemistry C, 

125, 13649 – 13657, with the same title and authors 
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6.1. Introduction 

Faujasite (FAU) has applications as a catalyst, molecular sieve, adsorbent, and ion 

exchanger. Faujasite, chiefly as zeolite Y with Si/Al ratios greater than 5, is the principal 

catalytic component in most fluid cracking catalysts, which operates under harsh heat and 

steam conditions, resulting in their destabilization by dealumination which most often 

begins in Brønsted acid sites.1 As a result, the average lifetime of fluid catalytic cracking 

catalysts is one month and is a significant cost contributor in the production of 

gasoline.2,3 

The presence of lanthanum, even in relatively small quantities, significantly 

improves the hydrothermal stability of fluid catalytic cracking catalysts, mainly by 

decreasing FAU dealumination.4–7 The location, and atomic configuration, of rare earth 

elements in faujasite affects framework stability.8 Lanthanum distributions in FAU are 

known9, indicating lanthanum ions will adsorb in multiple FAU sites; however, the exact 

atomic configurations of lanthanum in FAU remains unclear; they are likely to vary by 

Si/Al ratio and conditions, since lanthanum, most commonly as ion in the +III state 

(La3+), can undergo hydrolysis and form hydroxide species which react with each other.10 

Atomic configurations have been proposed, based both in experimental and 

computational results.11,12 

 Despite that much work has been done on lanthanides and FAU,13 and that 

lanthanum will form coordination bonds with FAU,12 the fundamental role of lanthanum 

in preventing dealumination remains poorly understood. A proposed mechanism is that 

lanthanum raises the activation energy of dealumination reactions in faujaiste.14 

Similarly, other cations have been proposed to hinder dealumination in other zeolites.15 
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Regardless of the mechanism by which lanthanum stabilizes faujasite, dealumination 

most likely happens by water-mediated mechanisms.14–24 In this work, we discuss 

additional putative mechanisms based on how La3+ ions change the Brønsted acidity of 

faujasite. 

 Brønsted acid sites in zeolites reduce their hydrothermal stability since they 

attract water molecules to Al tetrahedra,25–27 which can start dealumination reactions. 

Despite affecting zeolite hydrothermal stability,28 Brønsted acid sites on zeolites are of 

great interest due to their catalytic activity in various reactions, not only for petroleum 

cracking.11,29–41 Upon binding lanthanum, changes in the acid strength of the remaining 

zeolite Brønsted acid sites have been observed, increasing zeolite stability as well.16,42,43  

 Modeling lanthanum in faujasite, as well as proton transfer reactions (i.e., 

Brønsted acidity), requires considering the electronic structure because of 

forming/breaking La-O coordination bonds as well as O-H bonds. Further, due to the 

large conformational space that water molecules and La ions can occupy in faujasite, and 

the effects of temperature, sampling needs to be considered as well. Therefore, we 

employ density functional theory-based molecular dynamics simulations to identify the 

binding configurations of water and La3+ ions in faujasite. We use a rare event simulation 

technique to perform constrained ab initio molecular dynamics simulations and obtain 

potentials of mean force of proton transfer reactions in lanthanum-exchanged faujasite. In 

this work, we quantify how La3+ binding changes the acidity of faujasite Brønsted acid 

sites, and discuss its implications regarding the hydrothermal stability of faujasite.  
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6.2. Computational Methods 

All density functional theory (DFT) calculations and ab initio molecular dynamics 

(AIMD) simulations were performed in mixed a Gaussian and plane wave approach with 

the CP2K44,45 package, within the generalized gradient approximation using the PBE 

functional,46 which has been tested for water47,48 and lanthanides.49,50 Core electrons were 

modeled with norm-conserving GTH pseudopotentials,51 valence electrons were 

modelled with polarizable double-zeta basis sets.52 For lanthanum, our LnPP1 

pseudopotential and basis set was used.53 Long range electrostatics were calculated using 

a supplementary plane wave basis set with a 500 Ry cutoff. To account for van der Waals 

interactions, Grimme’s D3 corrections54 were used with a 6.0 Å radius. We recently 

employed AIMD simulations, with our LnPP1 pseudopotential and basis sets,53 to resolve 

the solution structure of all Ln3+ aqua ions,55 and europium-ligand complexes,56 with 

Ln3+-O distances within ~0.05 Å of experiment. 

 

6.2.1. Preparing faujasite model for simulation 

The coordinates of all-silica FAU were obtained from the Database of Zeolite 

Structures,57 and a rhombohedral cell was constructed, as done by Schüßler and co-

workers,12 to reduce the cell size (a=b=c: 17.6975 Å; 𝛼=𝛽=𝛾: 60 degrees) and number of 

FAU atoms (144). Si tetrahedra were replaced with Al tetrahedra, using an Si/Al ratio of 

five, and a hydrogen atom was added in an oxygen atom binding each Al atom to 

neutralize the charge, resulting in hydrogen-exchanged faujasite with Si/Al=5 (H-FAU5). 

Protons were added preferably on the oxygen atoms of Al tetrahedra that form part of 

sodalite hexagonal windows, or that form part of the supercage for the Al tetrahedra that 
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are not in hexagonal windows, see additional discussion in the Supporting Information 

(SI). We optimized the cell coordinates and geometry in CP2K, as described above. We 

tested five random Al distributions in FAU, discarded those that violated Lowenstein’s 

rule in periodic conditions, optimized the cell size and geometry for each Al distribution 

H-FAU-5 model independently, and chose the structure with the lowest energy, see 

Figure 6-1. The H-FAU-5 model with the energetically favored Al distribution has the 

resulting cell dimensions (a=b=c: 17.53 Å; 𝛼=𝛽=𝛾: 60 degrees), contains eight Al-

tetrahedra, eight H atoms, forty Si tetrahedra.  

 

 
Figure 6-1: Rhombohedral cell of faujasite, only atoms in the unit cell show in ball-and-

stick for clarity. Si (yellow), Al (gray), H (white), faujasite O atoms (pink). 
 

6.2.2. Water binding energies 

Starting from the optimized H-FAU-5 model (Section 6.2.1), the binding energies of 

water were determined through geometry optimizations of water molecules bound in the 

following FAU sites: hexagonal prism (S1), sodalite cage (S1’), hexagonal window of the 

super cage (S2), and square window of the super cage (S3). For each site, binding 

energies were quantified with water molecule(s) binding directly on the aluminum atom, 
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and independently on the hydroxyl group (-OH), see Figure 6-2. For each site (S1, S1’, 

S2, S3) and FAU binding atom(s) (Al, OH), the binding energies of one to four water 

molecules were quantified, each water added sequentially forming hydrogen bonds with 

the previous water added. To quantify water binding energies on the Al atom, the position 

of the first water was constrained, because in unconstrained optimizations the first water 

molecule changed position to bind the -OH group. The binding energy of water was 

determined from the energy of water-bound FAU with respect to FAU without water and 

a single gas phase water molecule in the same periodic box size, and calculated with: 

 

𝐵𝑖𝑛𝑑𝑖𝑛𝑔	𝐸𝑛𝑒𝑟𝑔𝑦	𝑜𝑓	𝑊𝑎𝑡𝑒𝑟	(𝐵𝐸���)

= 𝐸[FAU + (HFO)]] − 𝐸[FAU] − 𝑛 ∙ 𝐸[HFO]				(6.1) 

 

For each site (S1, S1’, S2, S3) and FAU binding atom(s) (Al, OH), the energy (E) of each 

species in equation 6.1 was obtained with DFT calculations as described above and 

independent geometry optimizations. The initial water binding position in the Al 

tetrahedra depends on which FAU site the water binding energies are being calculated. 

 

 
Figure 6-2: In each FAU site, water binding energies were independently calculated 

bound to the -OH group (left) and the -Al- atom (right). Only relevant atoms shown in 
ball-and-stick for clarity. Si (yellow), Al (gray), H (white), faujasite O atoms (pink), 

water O atoms (red). 
 

 

OH-bound water Al-bound water
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6.2.3. Lanthanum ion binding energies 

Starting from the optimized H-FAU-5 model, a [La×(H2O)9]3+ ion was placed in middle of 

the supercage, and three protons (H+) removed to maintain a neutral simulation box (La-

H-FAU-5); five protons remained because our model structure has eight Al-tetrahedra 

(Section 6.2.1). The position of La3+ was constrained in the middle of the supercage (S4) 

and the geometry of FAU with [La×(H2O)9]3+ in the S4 site optimized to determine the 

energy of the reference point, see Figure 6-3. The water molecules, which were 

unconstrained, remained coordinated to the lanthanum ion in the optimization. In other 

FAU sites, in which the La3+ ion directly coordinates to FAU, water molecules originally 

coordinated to the La3+ ion are replaced with OFAU atoms, the displaced water molecules 

were placed in the simulation box, so to contain the same number of atoms and be able to 

compare energies. Due to the large conformational space, we determined the energy of 

La3+ bound to other FAU sites using AIMD simulations with the following protocol: (i) 

an initial geometry optimization, (ii) followed by 2 ps of AIMD simulation in the NVT 

ensemble at high temperature (1000 K), this was followed by (iii) annealing to 0K over 

4ps of AIMD simulation in the NVE ensemble, and lastly (iv) a final geometry 

optimization. Although this protocol does not guarantee a global minimum, it identifies 

the minimum in a large conformational space sampled during the high temperature 

AIMD. The high temperature simulation also ensures that La3+ finds the energetically 

favored conformation in each site. The coordinates of La3+ were not constrained during 

the high temperature AIMD, simulated annealing, nor final optimization. 
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Figure 6-3: [La×(H2O)9]3+ in FAU in the middle of the supercage (S4 site). Only large 

pore and [La×(H2O)9]3+ atoms shown in ball-and-stick for clarity. Si (yellow), Al (gray), 
H (white), faujasite O atoms (pink), water O atoms (red), La (green). 

 

The molecular conformations of single lanthanum ions (La3+) in FAU were 

independently determined in sites were La3+ ions are known9 to bind: the hexagonal 

prism, (S1) sodalite cage (S1’), the hexagonal window of the super cage (S2), the square 

window of the super cage (S3), the middle of the supercage (S4), and in the window 

between two supercages (S5). Since La3+ ions are nine-coordinate in water, the starting 

conformation of La3+ in each site was set to be a nine-coordinate species, with La3+ 

forming coordination bonds with faujasite oxygen atoms (OFAU) and coordination bonds 

with water oxygen atoms (OWAT) with water molecules coordinated on La3+ sites not 

bound to FAU. Nine water molecules were present in all La3+/FAU calculations and 

simulations, water molecules not directly coordinating La3+ ion were placed in other FAU 

locations. To determine which site is energetically favored for La3+ ions to bind, we 

calculated the binding energy of La3+ ions on each site using the energy of [La×(H2O)9]3+ 
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in the middle of the supercage (S4) as the reference point to calculate binding energies on 

each site. 

 

𝐵𝑖𝑛𝑑𝑖𝑛𝑔	𝑒𝑛𝑒𝑟𝑔𝑦	𝑜𝑓	LaC^(𝐵𝐸fb) = 𝐸[LaC^	𝑖𝑛	FAU	𝑠𝑖𝑡𝑒] − 𝐸[LaC^	𝑖𝑛	FAU	𝑆4]				(6.2) 

 

6.2.4. Quantification of Brønsted acidity 

To quantify Brønsted acidity, we calculated free energies of proton transfer (∆𝑭𝐩𝐫𝐨𝐭) from 

potentials of mean force of proton transfer obtained from constrained Bluemoon58,59 

AIMD simulations. To quantify how bound [La×(H2O)n]3+ ions affect the acidity of FAU 

(Section 6.3.2), potentials of mean force were obtained for the following cases. Case 1: A 

proton from the -OH group in an Al tetrahedron adjacent to a sodalite-bound 

[La×(H2O)n]3+ ion was transferred to a water molecule. Case 2: The same potential of 

mean force as Case 1 was obtained without the [La×(H2O)n]3+ ion as a reference curve to 

Case 1. Case 3: A proton from the -OH group in an Al tetrahedron not adjacent to a 

sodalite-bound [La×(H2O)n]3+ ion was transferred to a water molecule. Case 4: The same 

potential of mean force as Case 3 was obtained but without the [La×(H2O)n]3+ ion as a 

reference curve to Case 3. 

For each case, we pulled a proton from a water molecule to a neighboring water 

molecule in 0.05 Å increments, along O-H bond distances (rO-H) ranging from ~1.00 Å to 

~1.40 Å. Our reaction coordinate (rO-H), or collective variable, has been found to be an 

adequate constraint to describe Brønsted in inorganic compounds.60 Potentials of mean 

force of proton transfer from Bluemoon ensemble AIMD simulations are an accurate way 
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to quantify Brønsted acidity,61–63 and this approach has been employed on oxide 

surfaces,64 organic compounds,65–69 and transition metal complexes.60 

For each case, nine independent AIMD simulation boxes, with varying O-H 

distances (rO-H), were generated. For each AIMD simulation box, rO-H was constrained, 

and 15 ps of NVT (T=298 K) simulation were performed with 1 fs time steps. The forces 

on the constraint (SHAKE Lagragian multipliers) were averaged over the last 10 ps (5 to 

15 ps) of NVT simulation, to generate an average force on the constraint (rO-H). An 

integration of the forces on the constraint over rO-H was done to obtain potentials of mean 

force, i.e., free energy profile. Helmholtz free energies are obtained from the potentials of 

mean force, and ∆𝑭𝐩𝐫𝐨𝐭 values can be calculated as the difference in free energy between 

unprotonated and protonated states. 

 

∆𝐹���� = 𝐹�]�����]S��� − 𝐹�����]S���			(6.3) 

 

To estimate the error in	∆𝑭𝐩𝐫𝐨𝐭 values, we took the absolute difference between ∆𝑭𝐩𝐫𝐨𝐭 

values calculated with the first half of equilibrated trajectory (5 to 10 ps) with those 

calculated with second half (10 to 15 ps) of the equilibrated trajectory.  

 

6.3. Results and Discussion 

 

6.3.1. Sodalite is the energetically favored binding site for water and lanthanum ions  

The binding energies of water are reported in Table 6-1. The two main findings are that it 

is energetically favored for water molecule(s) to bind the hydroxyl group rather than the 



 

   

121 

Al atom in all FAU sites (S1, S1’, S2, S3); and that the sodalite cage is the energetically 

preferred binding site for water molecule(s). 

Table 6-1: Water binding energies in hydrogen-exchanged faujasite with an Si/Al ratio of 
5.  

Binding Energies of Water 𝐵𝐸��� (kJ/mol)  
1st Water 
Molecule 

2nd Water 
Molecule 

3rd Water 
Molecule 

4th Water 
Molecule 

Site/Bound to Al OH Al OH Al OH Al OH 
S1 (hexagonal 
prism) 

14 -35 26 15 47 51  - -  

S1' (sodalite cage) 32 -82 -14 -85 -24 -85 -37 -84 
S2 (supercage, 
hexagonal window) 

4 -84 -40 -85 -46 -79 -45 -78 

S3 (supercage, 
square window) 

30 -81 -18 -55 -17 -65 -24 -50 

 

 For single water molecules, favorable binding energies are observed in hydroxyl 

groups of all sites, with similar magnitudes for the sodalite cage and supercage binding 

sites. As the number of water molecules increases, hydroxyl group binding energies favor 

the sodalite cage over the supercage, while remaining energetically favorable for both 

cages. Figure 6-4 shows how water molecules bind on the OH-group in the sodalite cage. 

Repulsive energies are found for additional water molecules in the hexagonal prism 

hydroxyl site, in which space allows for up to three water molecules. 

 
Figure 6-4: Water binding on the OH-group in a FAU sodalite cage. Only relevant atoms 

shown in ball-and-stick, and some transparent, for clarity. Si (yellow), Al (gray), H 
(white), faujasite O atoms (pink), water O atoms (red). 

1st Water 2nd Water 3rd Water 4th Water
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 On Al atoms, repulsive energies are found for single water molecules in all sites. 

Additional water molecules, which are hydrogen-bound to the first Al-bound water 

molecule, are energetically favored to bind, with the exception of the hexagonal prism. 

However, for all sites and number of water molecules, binding to the hydroxyl group is 

energetically favored over the Al atom. Excluding the hexagonal prism, water binding 

energies for hydroxyl group increased slightly as more water is added, while water 

binding energies for the Al tetrahedron decreased or remained similar in magnitude. 

Studies with SSZ,19 LTA15 and ZSM24 zeolites also observed that water is 

energetically favored to bind on the OH-group over the Al atom in Brønsted acid sites. 

This is relevant to the hydrothermal stability of faujasite since water placement has been 

shown to affect dealumination mechanisms and energetics in zeolites SSZ,19 LTA15 and 

ZSM.24 

Table 6-2 includes the binding energies of complexed La×(H2O)n3+ ions in FAU, 

and are reported as relative to the energy of La×(H2O)93+ in the S4 site. We found that 

La3+ ions will energetically favor binding in the sodalite cage. Binding energies for the 

remaining sites are much lower in magnitude than that for S1’, however, still preferred 

over the S4 site.  

Table 6-2: Energetics of La3+ binding in FAU sites. 
Site Binding Energy of La3+ 𝐵𝐸fb (kJ/mol) 

S1 (hexagonal prism) -241 
S1' (sodalite cage) -314 
S2 (supercage, hexagonal window) -74 
S3 (supercage, square window) -259 
S4 (middle of supercage) 0 
S5 (window between two supercages) -240 
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La×(H2O)n3+ ions in the sodalite cage have a coordination number of seven, with 

five OFAU atoms forming coordination bonds with the La3+ ion along with two water 

molecules directly coordinated, Figure 6-5. A third water molecule remains in the 

sodalite cage which forms hydrogen bonds with both La3+-coordinated water molecules. 

This La3+ binding conformation, identified through annealing AIMD simulations, is in 

qualitative agreement with previous studies that report La3+ ion binding in the sodalite 

cage.9,11,12,14,42 

 
Figure 6-5: [La×(H2O)n]3+ in the S1’ site in FAU in. Only sodalite and [La×(H2O)n]3+ 

atoms shown in ball-and-stick for clarity. Si (yellow), Al (gray), H (white), faujasite O 
atoms (pink), water O atoms (red), La (green). 

 

Recent studies propose that cations increase zeolite hydrothermal stability by 

heightening dealumination energy barriers: (i) Louwen et al., showed that La3+ ions 

increase dealumination energy barriers in faujasite,14 and (ii) Sun et al., showed that 

alkali and alkaline earth cations increase dealumination barriers in LTA.15 In addition to 

mechanisms by which La3+ increases dealumination energy barriers, we hypothesize, 

that, La3+ ions may stabilize faujasite by competing with water molecules for sodalite 
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binding sites, since both water molecules and La3+ ions are energetically favored to bind 

in sodalite cages. Proposed zeolite dealumination mechanisms explicitly involve water 

molecules.14–24 Therefore, La3+ ions in sodalite, by occupying preferred water binding 

sites, may slow faujasite dealumination by inhibiting the access of water molecules to Al 

tetrahedra.  

 

6.3.2. La3+ ions increase the acidity of Brønsted acid sites in faujasite 

Figures 6-6 and 6-7 show potentials of mean force that describe how [La×(H2O)n]3+ ions 

bound in sodalite affect the Brønsted acidity of FAU. In Figure 6-6, we compare the 

Brønsted acidity of an Al tetrahedra (i.e., -Al-OH-Si-) adjacent to the La3+-bound 

sodalite, with (Case 1) and without (Case 2) La3+ bound to FAU. In Figure 6-7, we 

compare the Brønsted acidity of an Al tetrahedra not adjacent to the La3+-bound sodalite, 

with (Case 3) and without (Case 4) La3+ bound to FAU, see descriptions in Section 6.2.4. 

We found that La3+ ions make FAU Brønsted sites more acidic, with significant changes 

in the free energy profiles due to the inclusion of La3+ ions, with a more pronounced 

effect for Brønsted sites adjacent to the La3+ binding site. 
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Figure 6-6: Potentials of mean force of proton transfer from a FAU acid site to a 

neighboring water molecule, for FAU without La3+ (circles, top) and for FAU with La3+ 
bound in sodalite adjacent to the Al tetrahedra with the Brønsted acid site (triangles, 

bottom). Only cage, water molecules, and [La×(H2O)n]3+ atoms shown in ball-and-stick 
for clarity. Si (yellow), Al (gray), H (white), faujasite O atoms (pink), water O atoms 

(red), La (green). The transferred proton is circled in blue. 
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Figure 6-7: Potentials of mean force of proton transfer from a FAU acid site to a 

neighboring water molecule, for FAU without La3+ (circles, top) and for FAU with La3+ 
bound in sodalite not adjacent to the Al tetrahedra with the Brønsted acid site (triangles, 
bottom). Only cage, water molecules, and [La×(H2O)n]3+ atoms shown in ball-and-stick 
for clarity. Si (yellow), Al (gray), H (white), faujasite O atoms (pink), water O atoms 

(red), La (green). The transferred proton is circled in blue. 
 

For the La3+-adjacent Brønsted acid sites (Figure 6-6), the free energies of proton 

transfer (∆𝑭𝐩𝐫𝐨𝐭) changed from 4 ±1 kJ/mol without a La3+ ion in FAU to -6 ±3 kJ/mol 

with a La3+ ion in FAU: most noteworthy, a sign change is observed, meaning that, for 

La3+-adjacent sites, the proton on FAU Brønsted acid sites will not remain in FAU, but 
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rather it is energetically favorable for it to readily form H3O+ species with water 

molecules. The change is less pronounced for FAU Brønsted acid sites not adjacent to a 

FAU-bound La3+ ion (Figure 6-7): ∆𝑭𝐩𝐫𝐨𝐭 values changed less than for the adjacent site, 

from 6 ±2 kJ/mol without a La3+ ion in FAU to 0 ±3 kJ/mol with a La3+ ion in FAU. 

However, still a meaningful change is observed, because, when La3+ binds FAU, Al 

tetrahedra will become more acidic, even for sites not adjacent to the sodalite-bound La3+ 

ion. The small margins of error in ∆𝑭𝐩𝐫𝐨𝐭 values show that sufficient sampling was 

obtained in the AIMD simulations. 

Both potentials of mean force without La3+ in FAU (circles in Figures 6-6 and 6-

7) show similar FAU acidity, and that the protons on FAU Brønsted acid sites have an 

energetically preferred O-H distance of ~1.05 Å. The small energy difference between 

protonated and unprotonated states of Brønsted acid sites suggest that H3O+ species will 

form, in agreement with previous experimental and computational studies.27,70–74 The 

potential of mean force for the La3+ adjacent site (triangles in Figure 6-6) show proton 

dissociation from Al tetrahedra, and is a clear indication of increased Brønsted acidity 

due to the presence of La3+ ions. The potential of mean force for the site not adjacent to 

La3+ (triangles in Figure 6-7) shows that the protonated and unprotonated states of the 

Brønsted acid site are isoenergetic, and that between states (i.e., a proton not bound to 

FAU nor H3O+) is energetically unfavorable. 

The increase of Brønsted acidity in La-exchanged faujasite (La-H-FAU) 

compared to hydrogen-exchanged faujasite (H-FAU) is consistent with experimental 

results indicative of fewer acid sites with greater acid strength upon lanthanum 

adsorption.42 Zeolites with mostly Si tetrahedra are hydrophobic,75–78 however those with 
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an increased number of Al tetrahedra are hydrophilic, with water sorption near Brønsted 

acidic sites.26,27 Further, Prodinger et al., found that the concentration of Al tetrahedra 

plays an important role to determine water concentrations in zeolites and their stability.25 

Also, the proton on Brønsted acid sites has been proposed to start dealumination in 

faujasite.28 To test the effect of deprotonation on the hydrophilicity of Al tetrahedra, we 

calculated the binding energy of a water molecule on the Al tetrahedra that undergo 

proton transfer in Figures 6-6 and 6-7; in their unprotonated state (La3+-bound FAU), and 

their protonated state (without La3+ ion binding in FAU). We found that, upon La3+-

induced deprotonation, the binding energy of a water molecule changed from -85 kJ/mol 

to -37 kJ/mol on the La3+-adjacent Al tetrahedron, and changed from -85 kJ/mol to -44 

kJ/mol on the non-adjacent Al tetrahedron, which makes water less energetically 

favorable to bind by 56% and 48% for the La3+-adjacent and non-adjacent Al tetrahedral 

sites, respectively. Therefore, we hypothesize that increased Brønsted acidity is another 

mechanism by which La3+ ions increase the hydrothermal stability of faujasite: La3+ ions 

decrease the hydrophilicity of Al tetrahedra by making the Al tetrahedra more likely to be 

in the unprotonated state, which makes water-mediated dealumination mechanisms less 

likely to occur.  

 

6.4. Conclusions 

From our study, two conclusions are made regarding La3+ ions in faujasite and Brønsted 

acidity: (i) La3+ ions and water molecules prefer binding in the sodalite cage; and (ii) La3+ 

ions make Brønsted acid sites more acidic even for those not adjacent to the FAU-bound 

La3+ ions. These have implications on understanding how La3+ ions stabilize faujasite. 
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Cations, including La3+, have been proposed to increase the hydrothermal stability of 

zeolites by raising the energetic barriers of dealumination.14,15 Based on our conclusions, 

and that dealumination occurs via water-mediated mechanisms,14–24 we propose that, in 

addition to raising dealumination energy barriers, La3+ ions stabilizes faujasite in two 

other ways. First, La3+ ions impede water molecules from binding in La3+-occupied 

sodalite cages, therefore preventing water molecules from interacting with Al tetrahedra 

coordinated to La3+ ions. Second, by increasing the acidity of Brønsted acid sites, Al 

tetrahedra become deprotonated which reduces their hydrophilicity, especially since 

water molecules prefer to bind on the OH groups, which makes water molecules less 

likely to interact with Al tetrahedra and start water-mediated dealumination reactions. 
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Supporting Information for Chapter 6 

 

Placement of H atoms in FAU-5  

 
Table 6-S1. The relative energies of H-FAU-5, with the H atom in the four different 
oxygen atoms of its Al tetrahedron: 
 

Al tetrahedral oxygen site Relative energies (kJ/mol) 
Hexagonal window of a sodalite 0 (lowest energy, reference state) 

Large window between two supercages +8 kJ/mol 
Large window between two supercages +15 kJ/mol 
Square window of a hexagonal prism +40 kJ/mol 

 
Therefore, we placed the H-atoms on the H-FAU-5 models preferably on hexagonal 
windows, with two exceptions: i) when an Al tetrahedra did not form part of a hexagonal 
window, in such case they were placed in the supercage, and ii), to calculate the binding 
energy of water on an -OH group in a particular FAU site (e.g., S1 hexagonal prism). 
 

 

Table 6-S2. Comparing the energies of different H-FAU-5 model structures 

Unit cell dimensions and energies of the optimized structures of H-FAU-5 model 
structures with different Al distributions 
 

Model Structures Unit cell dimensions 
(𝛼 = 𝛽 = 𝛾 = 60�) 

Relative Energy 
(kJ/mol) 

Lowenstein’s Rule 

Lowest energy structure  a=b=c=17.530 Å 0 Does not violate 
Isomer 1 a=b=c=17.516 Å 1 Does not violate 
Isomer 2 a=b=c=17.544 Å 99 Violates 
Isomer 3 a=b=c=17.539 Å 132 Violates 
Isomer 4 a=b=c=17.533 Å 181 Violates 
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7.1. Introduction 

Faujasite (FAU) is a zeolite that has applications as a catalyst, absorbent, and ion 

exchanger. The applications of FAU as an ion exchanger range from treatment and 

separation of radioactive elements from nuclear waste1 to removal of conventional heavy 

metal contaminants2,3 and  separations of rare earth metals.4–8  

 For separations in water, for example ion exchange, zeolites will operate under a 

range of solution pH values.2,9–11  Hydrogen exchanged zeolites possess Brønsted acid 

sites that provide catalytic properties, for example in the cracking of petroleum or other 

conversions of organic compounds.12–21 Brønsted acid sites increase the hydrophilicity of 

aluminum tetrahedra and provide binding sites for water molecules, promoting water-

mediated dealumination.22–25 Ion exchange affects the Brønsted acidity of faujasite, for 

example La3+ binding on hydrogen exchanged FAU favors the deprotonation of OH 

groups in aluminum tetrahedra and reduce their hydrophilicity.22 The Brønsted acidity of 

hydrogen-exchanged FAU depends on the number of structural aluminum present, and 

Si/Al ratio will affect acid catalyzed reactions, shown by optimal Si/Al ratios for catalytic 

performance.26  Si/Al ratio is also known to affect the chemical and physical properties of 

zeolites in liquid water in the context of ion exchange.27 Therefore, it is important to 

determine how the structure of liquid water in zeolitic confinement is affected by Si/Al 

ratio and exchanged cation. 

The structure of confined water in zeolites has been quantified through x-ray 

diffraction measurements,28,29 and with molecular simulations.30–35 However, the effect of 

Si/Al ratio, and that of which counter ion is exchanged, on the structure of water has been 

studied much less. The work presented here examines how Si/Al ratio (hydrophilicity in 
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hydrogen-exchanged FAU), as well as which cation is exchanged in FAU, affect the 

structure of confined water. 

 

7.2. Computational Methods 

All density functional theory (DFT) calculations and ab initio molecule dynamics 

(AIMD) simulations were performed with the CP2K36,37 package utilizing the general 

gradient approximation and the PBE functional.38 The core electrons were modeled with 

norm conserving GTH pseudopotentials,39 while the valence electrons were modeled with 

a polarizable double zeta basis set.40 For lanthanum, we used our LnPP1 pseudopotential 

and basis set.41 The long range electrostatics were calculated using a supplementary plane 

wave basis set with a 500 Ry cutoff. The van der Waals interactions were included with 

Grimme’s D3 corrections42 within a 6.0 Å radius. 

 We independently simulated eight different water-containing FAU systems, each 

including 55 explicit water molecules, as well as different exchange cations, in a 

rhombohedral periodic box with varying box lengths as seen in Table 7-1. A cubic water 

box containing 55 explicit water molecules was also simulated. 

Table 7-1: Simulated systems and optimized periodic box dimensions 
System Description a=b=c (Å) α=β=γ (°) 
Pure Water, 55 water molecules 11.800 90 
FAU, all Si, 55 water molecules 17.254 60 
12H-FAU3, Si/Al=3, 55 water molecules 17.485 60 
8H-FAU5, Si/Al=5, 55 water molecules 17.412 60 
4H-FAU11, Si/Al=11, 55 water molecules 17.279 60 
1La5H-FAU5, Si/Al=5, 55 water molecules 17.391 60 
2La2H-FAU5, Si/Al=5, 55 water molecules 17.403 60 
3Na5H-FAU5, Si/Al=5, 55 water molecules 17.254 60 
6Na2H-FAU5, Si/Al=5, 55 water molecules 17.399 60 
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A consistent number, fifty-five (55), of water molecules was used to better 

compare the Owat-Owat radial distribution functions between the different systems in 

Table 7-1 and avoid the structure of confined water being affected by the number of 

water molecules, due to the limited sampling inherent in DFT AIMD simulations. The 

number of water molecules in FAU was determined from a series of canonical ensemble 

(NVT) simulations (2ps total, 1fs time step) of the all-Si FAU, with the number of water 

molecules ranging from 45 to 85, and selecting the number of water molecules that 

produced the lowest non-negative pressure. Figure 7-1 shows the all-Si FAU structure 

with 55 water molecules.  

 
Figure 7-1. All-Si FAU with 55 water molecules, FAU oxygen atoms are pink, silicon 
atoms are yellow, while water oxygen atoms are red and hydrogen atoms are white.  
 

All faujasite model structures were prepared as described in our previous work.22  

The initial model of an all-Si FAU was obtained from the Database of Zeolite 

Structures,43 and converted to a rhombohedral cell to reduce the number of atoms.44 The 

8H-FAU5 model structure was prepared in our previous work,22 by replacing Si 

framework atoms with Al, following Löwenstein’s rule, and performing a cell 
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optimization calculation in CP2K. The models of faujasite with a Si/Al ratio of 3 (12H-

FAU3) and 11 (4H-FAU11) were constructed from the 8H-FAU5 model (Si/Al ratio of 

5), replacing structural aluminum with silica, or vice versa, to increase, or decrease, the 

Si/Al ratio while following Löwenstein’s rule, and optimized the periodic cell dimensions 

and molecular geometry for each. 12H-FAU3 contains twelve Al tetrahedra, thirty-six 

silica tetrahedra and twelve hydrogen atoms. 8H-FAU5 contains eight Al tetrahedra, forty 

silica tetrahedra and eight hydrogen atoms. 4H-FAU11 contains four Al tetrahedra, forty-

four silica tetrahedra and four hydrogen atoms. For systems that also contain La3+ or Na+, 

the added ions substituted hydrogen atoms to ensure a net neutral system. The La3+ and 

Na+ ions that replaced the hydrogens were placed in the hexagonal window of the 

sodalite cage and square window of the supercage as to remain near the original 

aluminum tetrahedra. 

AIMD simulations of nine systems in Table 7-1 were conducted in the NVT 

ensemble at 298 K, running for at least 20,000 steps with a 1 fs timestep. The last 15 ps 

were subject to analysis via Owat-Owat radial distribution functions (RDF) to quantify the 

structure of water in FAU. Changes between the Owat-Owat RDFs of different systems are 

indicative of how different Si/Al ratios (hydrophilicity) and exchanged ions changes in 

the structure of water in faujasite.  

The Helmholtz free energies of proton transfer were extracted from potentials of 

mean force of proton transfer produced by constrained Bluemoon45,46 AIMD simulations 

to quantity the acidity of H-FAU in regards to water in the gas phase and in the 

condensed phase. We pulled a proton from a FAU Al tetrahedral site to a neighboring 

water molecule in increments in 0.05 Å along the O-H bond distance ranging from ~1.00 
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Å to ~1.40 Å. The reaction coordinate (rO-H) is an adequate constraint to describe proton 

transfer in inorganic systems,47–49 and was used to quantify the Brønsted acidity of H-

FAU in the gas phase in our previous work.22 Nine independent AIMD simulations were 

performed with different O-H distances (rO-H). For each AIMD simulation, rO-H was 

constrained, and 15 ps of NVT (at 298 K) simulation were generated with a 0.5 fs time 

step. The forces on the constraint (SHAKE Lagragian multipliers) were averaged over the 

last 10 ps of the NVT simulation and were used to calculate the average force on the 

constraint. The potential of mean force was obtained by integrating the forces on the 

constraint over rO-H. 

 

7.3. Results and Discussion 

Changes in the structure of water were quantified by comparing the Owat-Owat RDFs of 

the nine different systems (Table 7-1). The water box provides an unconfined system to 

compare to the all-Si FAU to examine confinement without Brønsted acidity or 

contributions from counterions. The RDFs of 12H-FAU3, 8H-FAU5, and 4H-FAU11 

captured changes in the structure of water due to changes in Brønsted acidity, and the 

systems containing lanthanum and sodium were used to quantify the effect of the number 

of exchanged ions and charge. Table 7-2 summarizes the results by showing the distance 

of the first peak and the average number of water molecules in the first coordination 

sphere of a water molecule. A higher number of water molecules in the first coordination 

sphere is a measure of a more ordered water structure. 
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Table 7-2. Maximum of the first peak, and number of water molecules in the first 
coordination sphere, for the eight water containing systems. 

System Description First peak 
maximum (Å) 

Number of water 
molecules in first 
coordination sphere 

Pure Water, 55 water molecules 2.72 2.11 
FAU, all Si, 55 water molecules 2.77 3.40 
12H-FAU3, Si/Al=3, 55 water molecules 2.68 2.54 
8H-FAU5, Si/Al=5, 55 water molecules 2.69 2.98 
4H-FAU11, Si/Al=11, 55 water molecules 2.73 3.11 
1La5H-FAU5, Si/Al=5, 55 water molecules 2.73 3.01 
2La2H-FAU5, Si/Al=5, 55 water molecules 2.73 3.02 
3Na5H-FAU5, Si/Al=5, 55 water molecules 2.71 2.80 
6Na2H-FAU5, Si/Al=5, 55 water molecules 2.73 2.95 

 

 Comparing the Owat-Owat RDFs of the water box and the all-Si FAU displayed a 

greater population of similarly distanced water molecules in the all-Si FAU. The 

population of water molecules that are within 2.5 Å to 3.0 Å of each other increases for 

water confined in FAU (Figure 7-2). This agrees with experimental and computational 

studies that report Owat-Owat distances between 2.74  Å to 2.79  Å for confined water.28,32 

Water becomes more hydrogen bound in all-Si FAU confinement as the peak of the Owat-

Owat RDF increases from 2.72 Å to 2.77 Å (Table 7-2), which is also shown by an 

increase of molecules in the first coordination sphere from 2.11 to 3.40. FAU 

confinement produces a more orderly arrangement of water molecules. 



 

   

144 

 
Figure 7-2. The Owat-Owat radial distribution function for the water box (blue) and the all-
Si FAU (red). Water confined in FAU has a higher population of similarly distanced 
water molecules, in the hydrogen-bonding range, compared to pure water. 
 

 The addition of aluminum tetrahedra increases the hydrophilicity of hydrogen-

exchanged faujasite. As more aluminum is added, the populations of similarly distanced 

water molecules in the Owat-Owat RDFs of 4H-FAU11 to 12H-FAU decreases, see Figure 

7-3A. Aluminum tetrahedra in H-FAU attract water molecules, and as the number of Al 

tetrahedra increases, it disrupts the uniformity of confined water in all-Si H-FAU. This is 

likely because, in the liquid phase, H-FAU protons dissociate from FAU resulting in 

solvated H3O+ species, which are shown by the HFAU-Al RDFs (Figure 7-3B). The 

increase in hydrophilicity diminishes the number of water molecules in the hydrogen 

bonding range, as shown by broader Owat-Owat peaks with a lower population between 2.5 
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and 3.0 Å (Figure 7-3A), and by a lower number of water molecules in the first 

coordination sphere of a water with increasing Al content (Table 7-2).  

 

 
Figure 7-3. A: The Owat-Owat radial distribution function for the all-Si H-FAU compared 
against the systems with varying Si/Al ratio of 3, 5 and 11. As more Al is added, the 
population of similarly-distanced water molecules decreases, indicating a more 
disordered water structure. B: The HFAU-Al radial distribution function for hydrogen 
exchanged FAU for Si/Al ratio of 3, 5, and 11.  

 

Since protons affect the confined water structure, we quantified how liquid water 

changes the Brønsted acidity of H-FAU. A potential of mean force of proton transfer of 

an 8H-FAU5 hydrogen on an aluminum tetrahedra to a neighboring water molecule in the 

supercage was constructed and appears in Figure 7-4. Figure 7-4 also includes the 

potential of mean force of the same proton transfer, but to a neighboring water molecule 

in the gas phase, which was published in our previous work.22 The gas phase free energy 

profile is that of proton transfer from FAU to three water molecules in the supercage, 

while the liquid phase free energy profile is that of proton transfer from FAU to water-

filled supercage. The potentials of mean force show that, for hydrogen exchanged FAU5, 

protons are energetically favored to remain bound to Al tetrahedra in the gas phase, but 
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protons are energetically favored to become unbound in the liquid phase, and form H3O+ 

species in water-filled pores. Therefore, the presence of water increases the Brønsted 

acidity of hydrogen-exchanged faujasite. Similarly, recent experimental and 

computational studies have shown that, in the presence of water, protons on Al tetrahedra 

readily dissociate in other zeolite structures such as ZSM-5 or chabazite.50,51 

 

 
Figure 7-4. Potentials of mean force of proton transfer from an 8H-FAU5 Al tetrahedra 
to a neighboring water molecule, for a low number of water in the supercage (gas phase) 
and a water-filled supercage (liquid phase). The graphic on the right shows rO-H, which 
increases as the proton is slowly moved from FAU to a nearby water molecule.  
 

 Figure 7-5 compares the effect of ion charge and number of ions on the structure 

of water in faujasite. The general trend established by the plot of the Owat-Owat RDF for 

the systems that contained sodium or lanthanum was that additional exchanged ions 

resulted in higher water disorder, as observed with H+ in Figure 7-3. However, the 

number of ions is relevant, and not only the total compensated charge from how many Al 

tetrahedra are present, as two La3+ ions had a less significant change in the population of 

similarly distanced water molecules compared to the six Na+ ions (Figures 7-5A, 7-5C). 

Implications for ion exchange are dependent on the disruption in the structure of water, 
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large highly charged molecules will produce less disruption once bound. A higher 

number of ions present results in a higher disruption of the local structure of water, since 

the more ions confined in FAU increases the likelihood of ions being in the large pores 

and interacting with confined water molecules. However, unlike H+, Na+ and La3+ 

remained in the vicinity of Al tetrahedra, as shown by La-Al and Na-Al RDFs. 

Due to the higher number of Na+ ions needed, once the initial Na+ ions occupy 

sodalite binding sites, additional Na+ will bind in the square or hexagonal windows of the 

supercage. The presence of Na+ in the supercage disrupts water structure, in contrast to 

less La3+ ions, bound in the sodalite cage, away from the open pore, and thus interacts 

with fewer water molecules. Ion coordination also contributes to the disruption of local 

water structure, as large, highly charged ions (La3+) coordinate more water molecules 

than monovalent Na+ ions. The disruption in the local structure of water decreases the 
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population of similarly distanced water molecules, which correlates to the presence of 

more ions in the open pore with the confined water. 

 

 
Figure 7-5. A: The Owat-Owat radial distribution function for the all-Si FAU compared 
with the La3+ exchanged FAU5. B: La-Al radial distribution function for La3+ exchanged 
FAU5 C: The Owat-Owat radial distribution function for the all-Si FAU compared with 
Na+ exchanged FAU5. D: Na-Al radial distribution function for La3+ exchanged FAU5. 
 

7.4. Conclusion 

How confinement, Si/Al ratio, and ion charge alter the structure of water in faujasite was 

examined by analyzing Owat-Owat radial distribution functions obtained from AIMD 

simulations. Confinement in the all-Si faujasite resulted in a higher population of 
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similarly distanced water molecules, and thus more ordered than unconfined liquid water. 

In hydrogen exchanged FAU, the increase in aluminum content led to the disruption of 

the confined water structure as more protons entered the liquid water. This is consistent 

with the free energy profile of proton transfer which shows that it is thermodynamically 

favored for protons to be in the liquid water rather than bound to FAU Al tetrahedra. 

Exchanged Na+ and La3+ counterions also disordered the confined water structure, despite 

remaining in the vicinity of Al tetrahedra in liquid water. The number of counterions to 

balance the Al in FAU has a larger effect on the structure of water than the charge of the 

ion itself, as two La3+ ions disrupted water less than six Na+ ions. 
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CHAPTER 8 

Conclusions 

 

The f-orbital chemistry of the lanthanides provides them with unique properties that are 

essential for their applications. However, it is the similar properties of elements in the 

lanthanide series that provide challenges for rare earth separations: similar ionic radius, 

oxidation states, and reactions, such as the formation of hydroxides. Modeling the 

coordination of lanthanide ions is further complicated in porous materials, where the 

conformational binding space is large, coupled with many possible chemical reactions. 

Atomic resolution is essential to determine the chemistry of lanthanides in porous 

materials, and ab initio molecular dynamics (AIMD) provides such resolution as well as 

the ability to account for the f-orbital chemistry. Furthermore, ab initio molecular 

dynamics provides the optimal scale to consider both reactivity and dynamics for a bulk 

system for zeolites.   

 The solution structure of the lanthanide aqua ions and their acidity constants were 

replicated to quantify the limits of the computational approach. The use of density 

functional theory (DFT) and ab initio molecular dynamics to quantify the solution 

structures and acidity constants of the lanthanide aqua ions enabled the simulations to be 

compared against an extensive collection of experimental findings. The solution 

structures of the lanthanide aqua ions were determined within ~0.05 Å from experiment, 

while the first acidity constants for all lanthanide elements were replicated within ~1.1 

pKa units. The ab initio molecular dynamics protocol, coupled with Bluemoon rare event 
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sampling, culminated in a thorough methodology to quantify structure and reactions of 

the lanthanides in the condensed phase, specifically in porous materials and in solution.  

 The molecular resolution of water molecules in hydrogen- and lanthanum-

exchanged faujasite provided unique insights into the ambiguous mechanism of how 

lanthanum stabilizes the zeolite. The techniques utilized resulted in the ability to model in 

periodic conditions, account for reactions, and long-range electrostatic contributions, all 

of which allows for an in-depth examination of the phenom occurring in lanthanum-

exchanged faujasite. Results point toward two general mechanisms by which lanthanum 

prevents water-mediated dealumination in faujasite: i) the increase in the Brønsted acidity 

of faujasite as a result of lanthanum exchange makes faujasite favor the deprotonated 

state, reducing the hydrophilicity of the aluminum tetrahedral sites; and ii) the preferred 

binding sites of both the lanthanum cation and water in sodalite hinders the access of 

water molecules to aluminum tetrahedra, inhibiting dealumination reactions. 

 Modeling liquid water in faujasite, with explicit water molecules, enabled 

resolving the local structure of water and changes within the structure due to 

confinement, hydrophilicity of faujasite, and the exchanged cation. The Owat – Owat radial 

distribution function obtained from AIMD simulations quantify how the local structure of 

water changes in zeolitic confinement. In hydrogen-exchanged faujasite, the addition of 

liquid water results in the deprotonation of aluminum tetrahedra, which results in 

hydronium ions that cause disorder in the local structure of water. In the case of sodium- 

and lanthanum-exchanged faujasite, monovalent cations have an increased likelihood of 

occupying windows of the supercage, disrupting the local structure of water. The number 



 

   

156 

of exchanged cations had a more significant effect on the structure of confined water than 

the charge of the cations. 

The study of zeolites as ion exchangers for rare earth elements requires an 

understanding of the selectivity of the zeolite, with the structure of confined water 

playing an important role. The ability to accurately model and predict structures and 

reactions that occur in the liquid phase, within rare earth-exchanged zeolites, provides a 

computational approach to study lanthanides in solution in porous confinement, with 

relevance to ion exchange-based separations for rare earth elements. 

 


