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ABSTRACT 

Climate change is accelerating disconnects between snowmelt-driven water supply and 

downstream demand. Identifying what makes people and places vulnerable to these 

disconnects can improve understanding of present conditions and help anticipate future 

changes in water management. This dissertation seeks to understand the potential for 

increasing disconnects between downstream agriculturally productive regions and their 

primary water supply—higher elevation, mountainous (upland) environments. We do so 

by focusing on agriculturally productive regions in the western United States (US) that are 

heavily reliant on seasonal snowmelt-driven streamflow, and using interdisciplinary tools 

such as big data, conceptual modeling, social science, and computational hydrology to 

assess vulnerability from the source (mountains) to demand (agriculture) We find that a 

process-based framework isolating three dominant mechanisms linking snow to 

streamflow helps explain changes in snowmelt-driven streamflow in 537 upland 

catchments throughout the US. We then use a hydrogeological framework and optimized 

averaging in a subset of our initial 537 catchments, highlighting the critical and often 

overlooked role of groundwater contributions in high, arid, and deep mountain catchments. 

Equipped with a more robust understanding of surface water and groundwater supplies in 

the western US, we then quantify the benefits of adaptation to changing snow resources 

particularly in hay-dominated agriculturally productive systems with smaller declines in 

snow relative to reservoir storage. Finally, we derive a flexible approach for expanding 

vulnerability assessments beyond the mountains and show that robust consideration of 

multiple aspects of vulnerability requires better measures of the social value of water as 

well as demand.  
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1 Chapter 1: Introduction 

Snowmelt-driven water supplies are one of the fastest changing aspects of the global 

hydrologic cycle in response to climate change (Musselman et al 2017). Warmer winter 

and spring temperatures are decreasing the fraction of precipitation falling as snow 

(Knowles et al 2006, Klos et al 2014), delaying the initiation of consistent snow cover, 

increasing soil frost (Wobus et al 2017, Burakowski et al 2008), increasing water vapor 

exchanges between snowpack and the atmosphere (Harpold and Brooks 2018, Sexstone et 

al 2018), advancing the timing and slowing the rate of snowmelt (Musselman et al 2017), 

and decreasing the persistence of snow cover (Stewart 2009). In the United States (US) 

alone, snowmelt runoff from high elevation, mountainous (upland) catchments serves 

water to over 60 million people and supports billions of dollars in economic productivity 

(Barnett et al 2005, Sturm et al 2017) with additional impacts on ecosystem health (Allan 

and Castillo 2007), wildfires (Holden et al 2012, Westerling et al 2006), flood risk (Hamlet 

and Lettenmaier 2007), and reservoir management (Ehsani et al 2017).  

Water supplied from mountain environments is perhaps most important in semi-arid 

regions of the northern hemisphere—particularly the western US—where the predictable 

cycle of seasonal snow accumulation and melt, together with vast networks of physical and 

legal infrastructure, enable development in otherwise water limited environments 

(Meybeck et al 2001, Qin et al 2020, Church 1933). These agricultural systems—including 

the infrastructure, institutions, and stakeholders (i.e., managers and users) encompassing 

them—support vast economic productivity (Barnett et al., 2008) and provide critical 

ecosystem services (Claes et al., 2021; Gordon et al., 2020, 2019) are thus effectively 
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coupled to uplands where most precipitation falls as snow (Hansen et al., 2011; Li et al., 

2017; Mankin et al., 2015; McCabe and Clark, 2005; Qin et al., 2020; Viviroli et al., 2007). 

This reliance leaves systems particularly vulnerable to both seasonal and multi-decadal 

changes in higher elevation snow processes (Swain et al., 2016). However, the capacity for 

these systems to adapt to these changes remains less well understood.  

To address the adaptive capacity of human systems to shifts in upland snow dynamics, this 

dissertation asks: what elements make systems vulnerable to disconnects between water 

supply and demand? And secondly, what elements enhance system flexibility in the face 

of these changes? Contributing new information to existing and foundational examinations 

of system vulnerability to changing snow resources (e.g., Barnett et al., 2005; Mankin et 

al., 2015; Qin et al., 2020; Viviroli et al., 2007) requires a more holistic and 

interdisciplinary view of these systems themselves. Motivated by this pressing need, this 

research uses a mix of physical and social science methods and data to answer a pressing 

scientific question: How can we better characterize the vulnerability—and adaptive 

capacity— of socio-hydrologic systems to shifts in water supply and demand as a 

consequence of  climate change?  

We explore social-hydrologic vulnerability and adaptive capacity in four parts, which are 

outlined in Figure 1.1. Each Chapter is presented as a stand-alone, peer-reviewed 

publication. The first two Chapters characterize how climate change is stressing critical 

mountain water supply. In Chapter 3, we then examine how changes in mountain hydrology 

interact with society,  specifically downstream agricultural production. Lastly in Chapter 

4, we outline a more generalizable framework for characterizing vulnerability by 



3 
 

 
 

integrating physical and social aspects of system vulnerability. Each Chapter builds on the 

previous Chapter to present a comprehensive understanding of changing mountain water 

resources—and critically, the mechanisms (Chapter 2), tools (Chapter 3), interactions 

(Chapter 4), and approaches (Chapter 5) that must be considered in assessing societal 

vulnerability to these changes. 

 

Figure 1-1:Schematic of Chapters of this dissertation and driving hypotheses. 

1.1 Chapter 2: Why does snowmelt-driven streamflow response to warming vary? 
A data-driven review and predictive framework 

Research on social-hydrologic systems begins with an investigation of what is known, and 

more importantly what is not known, about changes in seasonal snow accumulation and 

ablation across mid-latitude mountainous regions in the Northern Hemisphere (Gordon et 
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al., 2022a). A systematic literature review on seasonal snowmelt-driven streamflow and 

how it is altered by climate change serves to highlight unsettled questions about how annual 

streamflow volume is shaped by changing snow dynamics. From this literature review, a 

framework is developed based on three testable, inter-related mechanisms, (i) snow season 

mass and energy exchanges, (ii) the intensity of snow season liquid water inputs, and (iii) 

the synchrony of energy and water availability. Each mechanism is explored using data 

distributed across the United States.  We show that streamflow prediction is more 

challenging in regions with multiple interacting mechanisms.   

1.2 Chapter 3: Can we use the water budget to infer upland catchment behavior? 
The role of dataset error estimation and interbasin groundwater flow 

Equipped with a broad understanding of the challenges and opportunities in predicting 

shifts in water resources as snow dynamics change, Chapter 3 investigates one commonly 

used tool—the water budget— for evaluating mountain water resources (Gordon et al., 

2022b). The focus is on the often unappreciated role of groundwater in mountain 

hydrologic systems and measurement error (ε) in the characterization of upland water 

supply. We examination the shortcomings of closed water budgets (CWB), which ignore 

difficult-to-measure variables, including inter-basin groundwater fluxes (G) and ε to derive 

evapotranspiration (ET) from precipitation (P) and streamflow (Q) (e.g., the Budyko 

hypothesis). We contrast the shortcomings of  CWB with open water budgets (OWB), 

which take advantage of remotely sensed ET products, physically-based frameworks for 

improving inferences about G, and tools to statistically characterize ε (Triple Collocation, 

TC). The value of these advances in upland settings is clarified by comparing standard land 

surface model, Ensemble Mean, and TC-Merged P and ET products in 114 upland 
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catchments. When compared against a long-term OWB, we find that the CWB assumptions 

are unsupported in 75-100% of the catchments. Research highlights that groundwater 

resources is an important component of mountain hydrology, and tools like TC, a Fan 

(2019) framework, and ET products improve quantification of  water resources in a 

changing climate. 

1.3 Chapter 4: Water Management Can Reduce Agricultural Vulnerability to 
Decreasing Snowpack  

We contextualize findings about physical hydrological changes in mountain water supplies 

from Chapters 2 and 3 into a socio-hydrologic analysis of vulnerability. Specifically, 

research examines how humans modify the hydrological cycle via adaptation to changes 

in the distribution and magnitude of vulnerability in the western US. Vulnerability is 

defined using at an operational scale using the Exposure, Sensitivity, and Adaptive 

Capacity framework (Cardona et al., 2012). The approach is tested in 13 basins 

experiencing declining snowpack across the western US. These basins  rely on a mix of 

snow and reservoir storage for agricultural production.  Research evaluates if these basins 

can adapt to projected declines in snow using two different strategies: 1) enhancing 

reservoir or groundwater storage capacity via tools like managed aquifer recharge or 

conjunctive use; and/or 2) reducing water use via demand management (i.e., fallowing).  

Results show that these strategies are most effective if implemented rapidly and in systems 

with a higher proportion of hay production relative to overall demand, and with smaller 

declines in snow relative to reservoir capacity. Adaptation yields the largest reductions in 

vulnerability in the near future (2020-2050) in higher elevation tributaries of the Missouri 
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Basin and the least benefit in the far future to certain tributaries of the California and Upper 

Colorado Basins.  

1.4 Chapter 5: Designing dynamic indicator-based vulnerability assessments 

Lastly, research in socio-hydrologic systems considers a framework to assess water supply 

vulnerability in a flexible and multidimensional manner across a range of hydrologic 

systems. Drawing from existing global assessments, we propose a conceptual model and 

then derive a general approach to water supply vulnerability assessment that can be used 

to evaluate multiple aspects of performance (e.g., social, environmental, etc.) in an ongoing 

manner. We then validate this approach using interdisciplinary analyses on a subset of 

indicators from 20 existing indices and find that multiple vulnerability frameworks can be 

integrated into indicator-based assessments. We show that certain key aspects of 

multidimensional system performance (termed domains) can capture a spectrum of existing 

indicators.  However, we also underscore high potential risk for silo-ing when drawing 

upon these indicators—particularly with regard to measures of physical performance where 

redundancies and biases are substantial. Although several pathways for standardizing, 

aggregating, and evaluating multidimensional indicators exist, we highlight significant 

gaps in measures of cultural water use and values, urban water use, and groundwater; all 

of which lack widely available data for evaluation. Using both the raw data and the results 

of these analyses, we establish a database to operationalize our derived dynamic, 

multidimensional approach while maintaining the benefits of indicator-based assessments 

for water managers and policy-makers. We then provide a template for how this approach 

can be applied in practical settings. 
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Abstract 

Climate change is altering the seasonal accumulation and ablation of snow across mid-

latitude mountainous regions in the Northern Hemisphere with profound implications for 

the water resources available to downstream communities and environments. Despite 

decades of empirical and model-based research on snowmelt-driven streamflow, our ability 

to predict whether streamflow will increase or decrease in a changing climate remains 

limited by two factors. First, predictions are fundamentally limited by the high spatial and 

temporal variability in the processes that control net snow accumulation and ablation across 

mountainous environments. Second, we lack a consistent and testable framework to 

coordinate research to determine which dominant mechanisms influencing seasonal snow 

dynamics are most/least important for streamflow generation in different basins. Our data-

driven review marks a step towards the development of such a framework. We first conduct 

a systematic literature review that synthesizes knowledge about seasonal snowmelt-driven 

streamflow and how it is altered by climate change, highlighting unsettled questions about 

how annual streamflow volume is shaped by changing snow dynamics. Drawing from 

literature, we then propose a framework comprised of three testable, inter-related 

mechanisms—snow season mass and energy exchanges, the intensity of snow season liquid 
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water inputs, and the synchrony of energy and water availability. Using data for 537 

catchments in the United States, we demonstrate the utility of each mechanism and suggest 

that streamflow prediction will be more challenging in regions with multiple interacting 

mechanisms. This framework is intended to inform the research community and improve 

management predictions as it is tested and refined. 

2.1 Introduction 

Snowmelt-driven streamflow is a critical—and increasingly vulnerable—freshwater 

resource for downstream environments supporting agriculture, municipalities, and native 

ecosystems (Viviroli et al 2007, Immerzeel et al 2020, Viviroli et al 2020, Li et al 2017, 

Mankin et al 2015). In the United States (US) alone, snowmelt runoff from high elevation, 

mountainous (upland) catchments serves water to over 60 million people and supports 

billions of dollars in economic productivity (Barnett et al 2005, Sturm et al 2017) with 

additional impacts on ecosystem health (Allan and Castillo 2007), the extent and severity 

of wildfires (Holden et al 2012, Westerling et al 2006), flood risk (Hamlet and Lettenmaier 

2007), and reservoir management (Ehsani et al 2017). Snowmelt-derived water resources 

are perhaps most important in semi-arid regions where the predictable cycle of seasonal 

snow accumulation and melt, together with vast networks of physical and legal 

infrastructure, enable development in otherwise water limited environments (Meybeck et 

al 2001, Qin et al 2020, Church 1933). Large interannual variability in snowmelt water 

supply is driven primarily by variability in winter precipitation (P), but also by 30% or 

higher variability in runoff efficiency across basins (Mote 2003, Brooks et al 2021, Harpold 

et al 2012). In spite of this variability, decades of observations have resulted in reasonably 

skilled water supply models dependent on readily observable metrics such as April 1 Snow 
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Water Equivalent (SWE) and temperature-driven melt models (Pagano et al 2004). The last 

few decades, however, have seen a large decrease in the skill of these models (Pagano et 

al 2004) leading to diverse suggestions about limitations in understanding and 

predictability of water supply (Milly et al 2008, Montanari and Koutsoyiannis 2014, Milly 

et al 2015). This review focuses on the mechanisms that give rise to spatial and temporal 

variability in runoff efficiency as snow cover changes in response to a warming climate.  

Seasonal snowmelt-driven streamflow is one of the fastest changing aspects of the global 

hydrologic cycle in response to climate change (Musselman et al 2017). Warmer winter 

and spring temperatures are decreasing the fraction of precipitation falling as snow (fs, 

Knowles et al 2006, Klos et al 2014), delaying the initiation of consistent snow cover, 

increasing soil frost (Wobus et al 2017, Burakowski et al 2008), increasing water vapor 

exchanges between snowpack and the atmosphere (Harpold and Brooks 2018, Sexstone et 

al 2018), advancing the timing and slowing the rate of snowmelt (Musselman et al 2017), 

and decreasing the persistence of snow cover (Stewart 2009). In contrast to a general 

consensus on seasonal snow cover decline under a warming climate, predictions about 

streamflow response are much more diverse. For example, recent research suggests that 

changing snow dynamics may or may not lead to earlier streamflow timing (Fritze et al 

2011, Stewart et al 2005, Moore et al 2007), and may or may not alter annual runoff 

efficiency (Berghuijs et al 2014, McCabe et al 2018). These uncertainties in how changes 

in seasonal snow dynamics will influence streamflow on the scale at which management 

decisions are made (e.g., 100-10000 km2) remain and have been the focus of research 

seeking to improve empirical and model-based forecasting tools (Huang et al 2017; Siirila-

Woodburn et al 2021).  
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The conflicting reports on snowmelt-driven streamflow response to a changing climate 

result in large part from regional differences in the mechanisms controlling seasonal snow 

accumulation and ablation. To better anticipate and adapt to changing upland snow 

resources requires a consistent and testable framework to characterize variability in the 

dominant processes that drive differences in energy-water coupling during the snow 

season. Such a framework would help focus research priorities as well as help the scientific 

community describe variability in how, where, and why streamflow will be impacted by 

changing snow dynamics.  

Our data-driven review presents a consistent framework to answer a question fundamental 

to hydrologic sciences and water management: What are the mechanisms that give rise to 

variable streamflow response to changes in the amount, timing, accumulation, and ablation 

of winter snow cover? We first synthesize current understanding of the seasonal cycle of 

snow accumulation and ablation before summarizing prior work—and outstanding 

questions—on how changes in this cycle under climate change are altering the timing, 

intra-annual distribution, and annual volume of streamflow. We then use our literature 

review to derive a simple framework centered around three potentially competing 

mechanisms that capture how abiotic and biotic factors differentially impact the 

interactions between energy and water during the snow season. These mechanisms include: 

1) snow season water vapor losses, 2) the intensity of liquid water inputs (LWI), which we 

define as the amount of liquid water that reaches the ground surface from either rain or 

melting snow, and 3) the synchrony of water and energy availability. We include a number 

of demonstrative experiments that highlight which regions across the continental United 
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States (CONUS) may be most sensitive to changes in a single snow metric (fs) before 

suggesting research opportunities.  

2.2 Accumulation and ablation of seasonal snow cover  

The annual cycle of snow accumulation and ablation is driven primarily by incoming solar 

radiation, secondarily by longwave radiation exchanges between the snowpack and 

atmosphere, and to a lesser degree by turbulent exchanges of sensible and latent heat and 

ground heat flux (Marks and Dozier 1992). Feedbacks between radiative and turbulent 

energy exchanges may either exacerbate or buffer the effects of climate change, resulting 

in spatially variable responses to the widespread warming observed across western North 

America (Harpold et al 2012, Harpold and Brooks 2018, Bormann et al 2018). To capture 

spatially and temporally variable responses in snow conditions, studies have proposed a 

number of snow metrics, which we review below.  

2.2.1 Snow dynamics, terminology, and measurement  

Point-scale metrics such as event snowfall, accumulated snow depth, and peak SWE have 

been broadly adopted to quantify the amount of snow on the ground (Bohr and Aguado 

2001, Broxton et al 2016). Lapse rate models and assumptions regarding the relationship 

between temperature (T) and precipitation (P) phase have been widely used to estimate fs 

to quantify the contribution of snowfall versus rainfall to annual P (Karl et al 1993, 

Knowles et al 2006, Klos et al 2014). Recent progress in remote sensing (Lundquist et al 

2008; Maggioni et al 2016; Skofronick-Jackson et al 2018) of snowfall in complex terrain 

is helping to distinguish between snow fall and redistribution or ablation of the snowpack. 

Contemporaneous advances in airborne and space-based remote sensing have also 
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enhanced the measurement of snow cover and SWE at large spatial scales (JianCheng et al 

2016, Tedesco et al 2014), facilitating improved gridded snow products (e.g., Broxton et 

al 2016). In spite of these advances, accurate estimation of the amount, phase, and intensity 

of P in complex mountain environments remains a challenge (Rasmussen et al 2012) with 

evidence that high-resolution atmospheric models may be particularly useful tools for 

enabling further improvement (Lundquist et al 2019). In this vein, combinations of 

process-based snow modeling (Painter et al 2016) and observations are beginning to 

uncover terrain-mediated complexities in snow cover (Dong et al 2005). Together, these 

advances—particularly with respect to satellite-based sensors like the Moderate Resolution 

Imaging Spectroradiometer (MODIS) —have improved our ability to characterize the 

temporal and spatial patterns of snow dynamics across regional scales. Measures facilitated 

by this progress include the extent (Karl et al 1993, Groisman and Legates 1994, Rupp et 

al 2013, Tennant et al 2017, Painter et al 2016), duration (Bulygina et al 2009), and 

persistence of snow cover (Hammond et al 2018).  

Historical challenges in obtaining direct measurements and developing scalable metrics for 

snowfall, snow fraction, or SWE led to the focus on choosing a fixed date (e.g., April 1) to 

estimate net snow water input (Changnon et al 1991, Cayan 1996). However, Hamlet et al 

(2005) used trend analyses on March 1, April 1, and May 1 SWE to show how regions 

experience differential sensitivity to changes in P and T (e.g., higher sensitivity of SWE to 

Pin cold regions and higher sensitivity of SWE to T in warm regions). Alternative, although 

less common, approaches have relied on the day of the water year (DoWY) of peak SWE 

to account for regional variance in snow accumulation and ablation (Bohr and Aguado 
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2001, Girotto et al 2014). We summarize several of these metrics and provide a 

standardized definition to assist in their evaluation in Table 1.  

Table 2-1: Overview of key snow metrics considered in this paper. In the table, we present 

units of measurement in terms of t = time and l = length. 

Term Unit Definition Citation 

SNOW METRICS 

Snow 
season  

t Water year: the length of time from the first 
occurrence of snow to the last occurrence of 
snow. 

Site average: site average snow season can be 
found between the 10th and 90th percentile of 
days with snow on the ground 

(Hammond et 
al 2018) 

Snow 
Fraction 

[l l-1] Water year: the fraction of annual precipitation 
that falls as snow  

Snow season: the fraction of snow season 
precipitation that falls as snow, determined 
using the snow season metric above. 

(Klos et al 
2014) 

Snow 
persistence  

[t t-1] Water year: the fraction of time that snow is 
present on the ground 

(Moore et al 
2007, 
Hammond et 
al 2018) 

Mean daily 
snowmelt 
rate  

[l t-1] Water year: the average daily melt rate from 
peak SWE to the day of snow disappearance 

(Trujillo and 
Molotch 
2014) 

Peak SWE [l] Water year: the maximum amount of SWE on 
the ground per snow season 

(Bohr and 
Aguado 
2001) 

Day of peak 
SWE 

[t] Water year: the day of water year when peak 
SWE occurs 

(Trujillo and 
Molotch 
2014) 
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2.2.2 Snowpack energy balance 

A warming climate interacts with seasonal snow cover through energy exchanges that 

occur between the snow surface and the atmosphere. We ground our discussion of the 

potential effects of these changes in the energy balance of a snowpack, written as: 

∆q = ∑ F∆t           (2-1) 

Where ∆q is the change in energy [J m-2], t is time [s] and F is net energy flux [W m-2] and: 

∑ F = Rn  +  H +  LE +  C +  M        (2-2) 

Net radiative fluxes (net radiation) [Rn; W m-2] dominates snowpack energy balance and 

is composed of incoming solar (positive, towards the snow surface) and bi-directional 

longwave radiation (see Eq. (2-6)) (Marks and Dozier 1992). H is net sensible heat flux [W 

m-2] and maybe be positive (downwards towards the snow surface) or negative (upwards 

away from the snow surface) depending on snow and air T (Marks and Dozier 1992). LE 

is net latent heat flux [W m-2] and is typically negative (outgoing away from the snow 

surface) in continental snowpacks but may be positive in maritime environments. Both H 

and LE fluxes strongly relate to boundary layer turbulence and wind speed that drive air 

exchanges between snowpack and overlying atmosphere (Massman et al 1997; Lee et al 

2004). C is typically small net conductive (soil) energy flux [W m-2] and M is net advective 

energy flux typically associated with melt water loss [W m-2] (Marks and Dozier 1992). 

When ∑𝐹𝐹∆𝑡𝑡 = 0, the snowpack is in thermal equilibrium, when ∑𝐹𝐹∆𝑡𝑡 < 0, the snowpack 

is cooling or refreezing, and when ∑𝐹𝐹∆𝑡𝑡 > 0, the snowpack is warming or melting. The 

change in energy state of the snowpack depends on the average snowpack temperature (Ts).  
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𝐼𝐼𝐼𝐼 Ts < 0 °C: ∆q = ∆qcc ,  

𝐼𝐼𝐼𝐼 Ts = 0 °C: ∆q = ∆qmelt           (2-3) 

 

Where qcc [J m-2] is commonly known as the cold content and is the total energy required 

to raise the Ts to 0 °C: 

qcc = −ciρwh𝑆𝑆𝑆𝑆𝑆𝑆(Ts − Tm)         (2-4) 

And qmelt [J m-2] is the energy associated with phase change: 

qmelt = (h𝑆𝑆𝑆𝑆𝑆𝑆)ρwγf          (2-5) 

Where ci is the heat capacity of ice [2102 J kg-1 K-1], Ts is the average T of the snowpack, 

Tm is the melting point of ice (0o C), ρw is the density of water [~1000 kg m-3], and hs is the 

snow depth [m], ℎ𝑆𝑆𝑆𝑆𝑆𝑆  is the snow water equivalent [m], and γ is the latent heat of fusion 

[J kg-1].  

Determining the response of snowpack to climate change is complicated by the fact that 

turbulent exchanges associated with T and Le are typically much small than radiative fluxes 

(Marks and Dozier, 1992), with Rn varying seasonally as a function of solar angle, day 

length, T, cloudiness, and spatially due to near surface topography, terrain, and vegetation 

structure. These complexities require a closer examination of snowpack radiative energy 

balance: 

Rn  =  (1 − α) Rs  +  Rl−in – Rl−out        (2-6) 
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Where Rs is incoming (positive) solar radiation [W m-2], α is albedo [-], R l-in is incoming 

(positive) longwave radiation [W m-2], and Rl-out is outgoing (negative) longwave radiation 

[W m-2]. During sunny days, Rs—which is driven by solar angle (a function of day of year, 

latitude), aspect, topographic reflectance, and both topographic and vegetative shading—

is positive and typically the largest energy flux in Eq. (2-6). The albedo (α) of fresh snow 

is high although it can be modified by snow grain size (typically related to time since last 

snowfall) and impurities in the snowpack (Deems et al 2013, Skiles et al 2012). Net 

longwave radiation (Rl-in - Rl-out) is a function of the T of the snowpack, T of the overlying 

atmosphere, and differences in emissivity of snow and air (Marks and Dozier 1992). For 

example, the atmosphere has a lower emissivity than snow resulting in a cooling of the 

snowpack below ambient air T, especially at night. In contrast, clouds have similar 

emissivity as snow which may prevent snowpacks from cooling, especially at night 

(Ambach 1974, Plüss and Ohmura 1997).  

The amount, extent, persistence, and freshness of snow strongly influence 𝑅𝑅𝑛𝑛 (e.g. Meira-

Neto et al 2020) by altering the fraction of 𝑅𝑅𝑠𝑠 that is reflected (Schneider and Dickinson 

1974, Ingram et al 1989). Snow has much higher albedo than most terrestrial surfaces and 

thus, as 𝑅𝑅𝑛𝑛 increases the climate system reduces snow cover in a positive feedback process 

known as the snow-albedo feedback (Thackeray and Fletcher 2016, Hall 2004, Déry and 

Brown 2007, Fletcher et al 2012, Qu and Hall 2014). If early season snowfall is sufficient 

to cover the lower albedo terrestrial surfaces, the snow-albedo feedback will reduce 𝑅𝑅𝑛𝑛 and 

tend to preserve snow cover until solar angles increase in the spring (e.g., Koster et al 

2010). A reduction in snow cover during spring when Rs is higher can enhance local 
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warming (Thackeray and Fletcher 2016, Hall 2004, Déry and Brown 2007) with the future 

potential for a 1% reduction in surface albedo per degree of warming (Fletcher et al 2012, 

Hall et al 2008, Qu and Hall 2014). In contrast, spring snowfall events may increase albedo, 

reducing 𝑅𝑅𝑛𝑛, colling the local environment, and delaying melt. Superimposed on these 

larger scale radiative feedbacks are the effects of landscape heterogeneity, including aspect 

and vegetation (Harding and Pomeroy 1996, Broxton et al 2015, Tennant et al 2017) that 

remain difficult to measure in complex, mountainous terrain (Reba et al 2009) and under 

variable snow cover conditions (Schlögl et al 2018). These feedbacks may result in high 

local variability in the partitioning of available energy to sublimation fluxes, cooling the 

snowpack, versus greater energy fluxes causing melt, advancing snowmelt, and causing 

snow-albedo feedbacks (Sexstone et al 2018). 

2.2.3 Water vapor fluxes between atmosphere and seasonal snowpacks  

Complex interactions between the snow surface and the atmosphere drive variability in the 

amount of water vapor lost during the snow season. Strong T lapse rates associated with 

either orographic or convective uplift can result in snowfall during most months in high 

mountains; however, consistent seasonal snow cover does not begin to accumulate until 

solar angles are low and Rn favors net cooling of the land surface following a fresh snowfall 

(Bales et al 2006, Markovich et al 2019). During the snow season, air T is low and 

transpiration is typically assumed to be limited (Bowling et al 2018, Day et al 1989, 

Huxman et al 2003, Goulden and Bales 2014); however, other water vapor losses are 

possible. For example, exposed snowpacks above treeline, in meadows, forest gaps, fields, 

and in forest canopies are subject to considerable vapor loss over winter from sublimation 

(Sexstone et al 2018, Harpold et al 2012, Biederman et al 2015, Molotch et al 2009, Veatch 
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et al 2009, Gustafson et al 2010, Rinehart et al 2008). In continental alpine systems, 20% 

to 30% of winter snowfall may sublimate before melt (Hood et al 1999, Sexstone et al 

2018). Sublimation effects are most dominant during snowpack accumulation and increase 

with low atmospheric pressure, low humidity, increased solar radiation and high wind 

speed (Lundberg and Halldin 2001, Earman et al 2006, Stigter et al 2018). Sublimation of 

snow intercepted by forest canopies are estimated at roughly 30% of local snowfall 

depending on leaf area (Essery et al 2003, Storck et al 2002), but similar to sublimation 

from open exposed snowpack on the ground, their sensitivity to climate change is poorly 

characterized (Lundquist et al 2021). Potential water vapor losses from the snowpack to 

the atmosphere may increase due to greater energy availability (both 𝑅𝑅𝑛𝑛 and T) (Meira-

Neto et al 2020) and lower LE associated with evaporation of liquid water within the 

snowpack relative to sublimation of ice crystals in winter (Jambon-Puillet et al 2018).  

2.2.4 Snowmelt and catchment liquid water input (LWI)  

During the snow season, the intensity and timing of LWI—the amount of liquid from either 

rain or melting snow that reaches the ground surface in a given control volume (e.g., 

catchment) — is typically a function of snowmelt rates (Trujillo and Molotch 2014, 

Harpold and Brooks 2018, Musselman et al 2017; Harpold and Kohler 2017) and is thus 

relatively predictable (Harpold and Kohler 2017). However, the season-long interaction 

between P, snow accumulation and redistribution, and ablation processes causes highly 

heterogeneous snowmelt (Tennant et al 2017). Snowpacks become isothermal at 0 °C and 

begin to melt as solar angle increases, days lengthen, and surface albedo decreases (Cline 

1997, Skiles et al 2012), which can be influenced by warming T, cloud cover, increased 

humidity (Clow 2010, Harpold and Brooks 2018), as well as snowpack depth and aspect 
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(Kormos et al 2014, Christensen et al 2021). For snowmelt water infiltration into the soil 

zone sufficient melt must occur to overcome matric forces within the snowpack (including 

preferential flowpaths), which is often referred to as the snowpack becoming “ripe” 

(Leroux and Pomeroy 2017, Marsh and Woo 1984). As such, large snow-covered areas in 

the catchment which receive sufficient energy to overcome cold content and become ripe 

experience a relatively predictable seasonal increase in LWI driven by snowmelt (Dunne 

and Black 1971). When driven by snowmelt, LWI tend to occur over a longer duration than 

when driven by rain and at an intensity well below the infiltration capacity of most 

mountain soils, particularly those with well-developed organic layers (Liu et al 2008). In 

the absence of rare extremely warm rainfall and condensation (rain on snow) events, for 

example, snowmelt rates in the western CONUS rarely exceed 10 cm per day and average 

closer to 2.5 cm per day (Harpold and Kohler 2017). An important exception is frozen 

soils, where lower infiltration rates can be exceeded by LWI (Shanley and Chalmers 1999, 

Bayard et al 2005). As a result, LWI driven primarily by snowmelt during the snow season 

are often associated with more consistent hydrological effects on shallow subsurface flow 

response, which is the dominant pathway for water redistribution and streamflow 

generation in upland catchments (Barthold and Woods 2015). 

Because of moisture thresholds imposed by catchment-scale properties (e.g., infiltration 

capacity or soil water holding capacity), both the timing and intensity of LWI control how 

it is partitioned between subsurface and surface pathways (Harr 1981, Barnhart et al 2016, 

Berghuijs et al 2016). In general, snowmelt lags P inputs and there is some evidence 

suggesting that sequential melt results in more substantial soil moisture response—

especially at deeper depths—than ephemeral snowmelt and rainfall (Kormos et al 2014, 
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Petersky and Harpold 2018, Hammond et al 2019). However, it remains challenging to 

estimate how LWI will be partitioned between the atmosphere, streamflow, and subsurface 

storage at catchment scales (Meixner et al 2016, Frisbee et al 2012, Harpold et al 2012, 

Brooks et al 2015, Blöschl et al 2019). When the delivery of LWI exceeds catchment-

specific thresholds such as soil water holding capacity, infiltration capacity, and/or rates of 

water vapor losses, it promotes subsurface drainage below the rootzone or activates 

subsurface and surface lateral flow (Seyfried et al 2009, Hammond et al 2019).  

2.3 Streamflow response to changing snow dynamics 

Interactions between snowmelt-driven LWI and the subsurface, atmosphere, and vegetation 

exert a complex control over streamflow generation in mountainous catchments. For 

example, subsurface and surface lateral flow arising from seasonal increases in snowmelt-

driven LWI leads to seasonal increases in streamflow generation via a number of 

mechanisms including infiltration excess overland flow (Horton 1933), saturation excess 

overland flow (Dunne 1978), preferential subsurface flow, as well as fill and spill flow in 

certain cases (Meerveld and McDonnell 2006, McDonnell et al 2021). To help illustrate 

these connections, we adopt the below form of the snow season water budget for upland 

catchments following Godsey et al (2014), which we modify to include error:  

∆𝑆𝑆 = 𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐸𝐸𝐸𝐸 − 𝑄𝑄 +/− 𝜖𝜖       (2-7) 

Where ∆𝑆𝑆 is the change in storage within the catchment excluding storage in the snowpack 

itself [mm], LWI [mm] is the effective liquid rain and snowmelt water input into the 

catchment, ET [mm] is combined water vapor losses from the catchment, Q is streamflow 

[mm] exiting the catchment, and ϵ is any error, including unaccounted fluxes or stores 
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within the catchment [mm]. Recent commentaries have noted that the term ET is 

linguistically imprecise and inconclusive with respect to interception fluxes (Miralles et al 

2020). We adopt ET in this paper due to its widespread use, however, we clarify that it 

refers to the loss of water to the atmosphere via evaporation and sublimation including 

canopy interception effects and blowing snow sublimation (Mcmahon et al 2013). The 

theoretical maximum rate of vaporization from a saturated surface is often referred to as 

potential evaporation or evapotranspiration (PET), which is a function of both the available 

energy (primarily 𝑅𝑅𝑛𝑛, see also Eq. (2-5) and Eq. (2-6)) and the atmospheric water vapor 

pressure deficit (Meira-Neto et al 2020). Without limitations on available water, ET would 

be expected to equal PET. During the snow season, the Eq. (2-7) assumes that groundwater 

inflows and outflows from neighboring catchments are minimal although this assumption 

may be problematic in upland catchments over longer periods (Fan 2019). Interactions 

between variables in Eq. (2-7) lead to a distinct hydrograph in snowmelt-dominated 

systems typified by relative predictability in the timing and distribution of annual Q volume 

(Pagano et al 2004). Given the importance of stationarity for water supply prediction (Milly 

et al 2008), a diversity of metrics have been developed to better characterize the timing, 

distribution, and volume of Q. We detail several of these Q metrics below, including their 

derivation and significance for a discussion of the snowmelt-driven hydrograph and 

evidence for potential changes in Q.  

2.3.1 Streamflow terminology and measurement 

Studies assessing the connection between snow and streamflow timing have typically relied 

on the day of center of mass timing (DOQ50) (Stewart et al 2004, McCabe and Clark 2005, 

Regonda et al 2005, Hidalgo et al 2009) with some studies including day of 25% (DOQ25) 
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and 75% of mass (DOQ75) (Morán-Tejeda et al 2014). More recently, Krogh et al (2021) 

proposed the 20th percentile of snowmelt days to predict DOQ25 and DOQ50. Other work 

has assessed changes in Q distribution throughout the water year via the seasonal or 

monthly fraction of Q (Aguado et al 1992, Dettinger and Cayan 1995, Stewart et al 2005), 

change in annual low Q (Godsey et al 2014), baseflow indices (Beck et al 2013), floods 

(Wenger et al 2010, Davenport et al 2020), maximum annual flows (Berghuijs et al 2016), 

and extreme runoff days (Li et al 2019). Mean annual Q (Hammond et al 2018, Berghuijs 

et al 2014, Stewart et al 2004, Barnhart et al 2016), runoff ratio or Q efficiency (e.g., the 

ratio of Q to P) (McCabe et al 2018, Li et al 2017), and Budyko Q anomaly—which 

quantify the difference between estimated and modeled Q based on a Budyko-type curve 

(Barnhart et al 2016, Berghuijs et al 2014, Ni et al 2015) — have also been used in 

mountainous environments. We summarize these metrics in Table 2-2.  

Table 2-2: Overview of key streamflow dynamic metrics considered in this paper. In the 

table, we present units of measurement in terms of t = time and l = length. 

Term Unit Definition Citation 

STREAMFLOW METRICS 
Mean annual 
runoff ratio 

[l l-1] Water Year: The dimensionless ratio of 
streamflow to precipitation.  

(Wenger 

et al 2010) 

10-year flood [l] Water Year: Calculated by finding the largest 
flood for each year. The 90th percentile of 
annual maximum series defines the daily flow 
that occurs every 10 years on average. 

(Wenger 

et al 2010) 

25-year flood [l] Calculated by finding the largest flood for each 
year. The 96th percentile of annual maximum 
series defines the daily flow that occurs every 
25 years on average. 

(Wenger 

et al 2010) 
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Mean annual 
DOQ25; DOQ50; 
DOQ75  

[t] Water Year: The day of the water year when 
cumulative discharge is at 25%, 50%, and 75% 
of its annual value. 

(Wenger 

et al 2010) 

Mean annual 
baseflow index  

[l l-1] Water Year: The ratio of the lowest 7-day flow 
of summer (May 1 – September 30) to mean 
annual streamflow. 

(Wenger 

et al 2010) 

Mean annual 
Budyko 
streamflow 
anomaly 

[l l-1] Water Year: The difference between estimated 
(1-ET/P) and modeled (1-f(PET/P)) 
streamflow using a Budyko-type equation. 

(Berghuijs 

et al 2014, 

Ni et al 

2015) 

Mean annual 
streamflow 
volume 

[l3] Water Year: Mean of yearly cumulative 
discharge 

(Wenger 

et al 2010) 

Seasonal or 
monthly 
fractional 
streamflow 

[l3 l-

3] 
Seasonal: Fraction of annual streamflow 
occurring during a defined season (e.g., snow 
season or cool season, warm season or active 
growing season, winter, summer, etc.). 
Monthly: Fraction of annual streamflow 
occurring during a specific month of the year.  

(Stewart 

et al 2005) 

2.3.2 Changes in the snowmelt-dominated hydrograph 

Climate change is altering the annual hydrograph in mountain environments with impacts 

to the timing, distribution and amount of streamflow (Stewart 2009, Lettenmaier and Gan 

1990, Knowles and Cayan 2002, Gleick 1987, Hidalgo et al 2009, Rauscher et al 2008) 

with profound implications for downstream communities and environments (Westerling et 

al 2006, Viviroli et al 2007, Mankin et al 2015). Although there is strong evidence that the 

effects on different aspects of Q are linked (Aguado et al 1992, Fritze et al 2011, Nash and 

Gleick 1991, Dettinger and Cayan 1995), consensus about changes can also depend on the 

metric evaluated (Figure 2-1). There are relatively consistent findings about spring runoff 

or peak hydrograph timing (Figure 2-1A, 2-1D) and fraction of streamflow occurring 
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during the snow season (Figure 2-1A, 2-1C) and the warm season (e.g., active growing 

season, Figure 2-1A). In contrast, there is less consensus with regard to changes in the 

annual volume of Q (Figure 2-1A, 2-1B) (McCabe et al 2018, Berghuijs et al 2014, Ni et 

al 2015, Stewart et al 2005, Nash and Gleick 1991, Das et al 2009, Jefferson 2011). As 

such, we treat these metrics separately in our review. 

 

Figure 2-1: A) Synthesis of a subset of findings about Q response to climate change impacts 

on snow from literature reviewed in Section 2.3.3 and 2.3.4; B) Summary of findings from 

Figure 2-1A regarding changes in the mean annual volume of Q; C) Same as B), but for 

seasonal fraction of Q during the snow season, as an indicator of changes in the annual 
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distribution of Q; and, D) Summary of spring Q timing. We note that spring timing is 

measured in a multitude of ways (e.g., runoff timing, melt-out, peak Q, DOQ25) in the 

studies reviewed. We elected to use spring Q or runoff timing as an umbrella term to reflect 

the different ways in which changes in Q timing is measured. * Denotes a study that 

presented variable results, but where some results outside the scope of this review and thus 

categorized as earlier. In the case of Jeton et al (1996), we excluded their cooler scenario 

results, Arnell (1999) conducted a global analysis and we included only results for western 

North America. We also note that some results presented evidence for stronger trends in 

certain regions, as is the case for earlier spring Q or runoff timing at mid-elevation basins. 

In these cases, we followed the authors description of their results in categorizing them as 

earlier versus variable to the best of our ability. 

2.3.2.1 Sensitivity of spring streamflow timing to changing snow dynamics 

Strong evidence supports a trend towards earlier spring streamflow resulting from climate-

induced changes in snow across the CONUS (Figure 2-1, McCabe and Clark 2005, Stewart 

2009, Stewart et al 2005, Krogh et al, 2021). Initial studies highlighting western North 

America connected advances in Q timing to warmer winter and spring air T (Aguado et al 

1992, Burn 1994), with follow on studies emphasizing the particular sensitivity of mid to 

lower elevation basins where air T was close to 0° C (Dettinger and Cayan 1995, McCabe 

and Clark 2005). Stewart et al (2005), for example, found that the timing of Q has shifted 

one to four weeks earlier in western North America in connection with widespread, 

monotonic increases in T, which contemporaneous studies (e.g., McCabe and Clark 2005, 

Regonda et al 2005) further connected to climate change. Knowles et al (2006) proposed 
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that advances in spring Q timing were driven by decreases in both the amount and 

persistence of snow leading to earlier snowmelt. Research has also highlighted the potential 

for variability and/or statistically insignificant trends in the sensitivity of Q timing to 

climate change based on elevation in particular (Moore et al 2007, Fritze et al 2011, 

Stewart et al 2005, McCabe and Clark 2005).  

Subsurface hydrological processes are typically invoked to explain catchment to regional 

scale streamflow timing sensitivity to changing snowpack. Tague and Grant (2009), Safeeq 

et al (2013), Maurer and Bowling (2014), and Harpold and Molotch (2015) all suggested 

that regional-scale subsurface hydrology provides a mechanistic explanation for the 

variable sensitivity of Q timing to climate change. Harpold and Molotch (2015), for 

example, emphasized that the timing of peak soil moisture can either exacerbate or 

moderate the sensitivity of Q to changes in snowmelt timing. Work in the Pacific Northwest 

highlights the role of bedrock properties and larger subsurface storage in moderating spring 

flows (Tague and Grant 2009, Safeeq et al 2013). Additional synthesis efforts have 

highlighted T and/or P, elevation, and atmospheric circulation variations to explain 

differences in Q timing sensitivity with mid to lower elevation basins exhibiting the 

greatest potential for earlier Q in western North America (Stewart 2009).  

2.3.2.2 Sensitivity of annual streamflow volume to changing snow dynamics 

There is clear evidence for the effects of changing snow on the distribution of annual 

streamflow (Dettinger and Cayan, 1995, Stewart et al 2005); however, the question of 

whether and how changes in snow will impact changes the annual volume of streamflow 

remains largely unsettled despite decades of research (Berghuijs et al 2014, McCabe et al 
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2018, Milly et al 2018, Ni et al 2015). Below, we outline previous contributions to these 

questions, focusing on changes in intra-annual Q distribution and changes in annual Q 

volume.  

2.3.2.2.1 Snow effects on intra-annual streamflow distribution  

Empirical work in the CONUS clearly connected advances in streamflow timing to an 

increase in the seasonal fraction of streamflow occurring during the snow season (Dettinger 

and Cayan, 1995, Stewart et al 2005). Dettinger and Cayan (1995) and Stewart et al (2005) 

found statistically significant increases in winter Q and decreases in warm season summer 

Q, which were echoed in smaller-scale analysis by Nayak et al (2010) in Idaho. Using 

hydrological modeling, Godsey et al (2014) later showed that simulated future changes in 

fs lead to a 10% decrease in the volume of warm season Q with evidence of considerable 

inter-site sensitivity to changes in fs. A hydrogeologic analysis by Safeeq et al (2014) 

suggested that future changes in fs might render areas with higher summer Q (greater 

subsurface storage) particularly vulnerable to climate change. On the whole, many of these 

lines of evidence about the intra-annual distribution of Q (Stewart et al 2005, Regonda et 

al 2005; Dettinger and Cayan, 1995) emphasized that they did not translate into statistically 

significant changes in the amount of interannual Q. Consistent with this conclusion, some 

later research reported changes in the seasonal fraction of Q without attendant changes in 

the magnitude of annual Q (Nayak et al 2010). The legacy of these findings is one line of 

evidence suggesting that changes the intra-annual distribution of Q without necessarily 

impacting the volume of annual Q.  
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2.3.2.2.2 Snow effects on annual streamflow volume  

Multiple lines of evidence connecting changes in snow to changes in the annual volume of 

streamflow underscore conflicting results (Hammond and Kampf 2020, Berghuijs et al 

2014, Barnhart et al 2016, Ni et al 2015). Some research has proposed that earlier 

streamflow timing and changes in the distribution of Q (e.g., increase in fractional Q during 

the snow season) increase the amount of runoff—and subsequently the annual volume of 

Q—assuming that the timing of energy inputs remains the same (Tague and Peng 2013). 

Jeton et al (1996), for example, used a process-based model to suggest that increased 

asynchrony between water and energy inputs may increase Q from high elevations basins 

and decrease Q in middle elevation basins. However, other research (Risbey and Entekhabi 

1996, Dettinger et al 2004) found that advances in Q may also increase water-limitations 

on ET, thereby offsetting impacts on Q. Reflecting this uncertainty, other have recorded 

scattered trends in both the mean and median annual flow (Luce and Holden 2009, Stewart 

et al 2005). 

More recent work by both Berghuijs et al (2014) and Ni et al (2015) marked a divergence 

from previous literature by hypothesizing that climate change driven declines in fs will 

lower streamflow efficiency. Specifically, Berghuijs et al (2014) supplemented an 

investigation of Budyko Q anomaly with more direct annual analysis to connect lower 

Budyko Q anomalies with lower fs. Parallel work on the role of increased ET in driving 

down Q (Milly and Dunne 2020, Goulden and Bales 2014)—particularly in higher 

elevation catchments with gentle slopes (Jepsen et al 2018) –offers some process 

explanation for this hypothesis.  
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However, physical explanations for the hypothesis that declines in snowfall will drive 

declines in streamflow remain elusive (Berghuijs et al 2014). Some research has posited 

that increases in spring P may also buffer Q against declines in fs (Pederson et al 2011) or 

that rainfall and mixed P inputs during the winter may countervail reductions in Q from 

declining fs (Hammond and Kampf, 2020) and model results suggest that higher snowmelt 

rates may have a larger effect on runoff ratios (Barnhart et al 2016). There is also recent 

evidence that efforts reliant on Budyko-based estimates of streamflow response to snow 

may be sensitive to poor assumptions about PET (Meira-Neto et al 2020). Complicating 

matters further, McCabe et al (2018) found that declines in fs have not altered runoff ratios 

in an empirical analysis of streamflow in the Pacific Northwest. These mixed findings on 

annual Q volume and runoff efficiency to changing snow conditions limit our ability to 

anticipate and respond to climate change.  

2.4 Towards a framework linking snow processes and streamflow generation  

Despite abundant research on changes in snowmelt-driven Q (Section 3), we lack a robust, 

consistent, and readily testable framework to explain varying Q response to climate change. 

Below, we present a conceptual framework that distills interactions between snow and the 

atmosphere, vegetation, and the subsurface into three inter-related mechanisms that can be 

tested using different snow (e.g., fs as in our demonstrations) and Q metrics (e.g., annual 

volume and runoff efficiency):  

1. Mechanism 1—Snow Season Water Vapor Fluxes. Snow dynamics influence the 

available energy via Eq. (2-1 to 2-6), which influence the timing and amount of 

water vapor fluxes to the atmosphere during the snow season.  
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2. Mechanism 2—Intensity of Liquid Water Inputs. Because snow persists after it 

falls, snow dynamics can also modify the intensity of LWI, which in combination 

with site-specific thresholds (e.g., soil water holding capacity or infiltration 

capacity) can alter how water is partitioned to other water budget variables.  

3. Mechanism 3—Energy-Water Synchrony. Snow enables the release of LWI after 

P has fallen. As such, snow dynamics facilitate greater temporal synchrony between 

LWI and PET during periods of higher radiation. 

 

Figure 2-2: Conceptual figure outlining the three proposed mechanisms in this 

commentary. We emphasize that this is a diagram explaining each of these mechanisms 

individually and do not consider combined effects of different mechanisms. The threshold 

pictured for Mechanism 2 represents physical hydrological controls, which might include 

soil water holding capacity among other things. We acknowledge that future, rainy climate 

representations are speculative, particularly with respect to LWI intensity, which some 

research (Harpold and Kohler 2017, Godsey et al 2014) indicates may vary depending on 

environment. 
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We designed several data-driven demonstrations that rely on publicly available data from 

the Catchment Attributes for Large Sample studies (CAMELs) database (Addor et al 2017) 

to illustrate variable sensitivity to each mechanism across a range of study sites in the 

CONUS. Please see Text S2.1 for a full description of the data and Figure S2-1 for a map 

of study sites. Importantly, the intention of these experiments is not to quantitatively relate 

our mechanisms to Q or examine the effects of other snow dynamics, but rather to establish 

consistent mechanisms that can be further developed and tested in future empirical and 

process-based modeling work. As such, we focus explicitly on demonstrating the 

maximum potential sensitivity of each mechanism to a decline in fs to zero (e.g. an all rain 

future) because it is well-connected to both snow and Q metrics (see Section 2.4.1 below), 

reliably quantified without incorporating additional remotely-sensed data, and used to 

investigate Q response in several widely-cited studies (McCabe et al 2018, Berghuijs et al 

2014). However, our framework leaves much room to be improved with additional snow 

and Q metrics to coordinate research on how and why Q response to changing snow 

dynamics varies. Additionally, our framework and demonstration are intended to establish 

a consistent set of mechanisms, thus we elect to treat each mechanism as distinct, but 

discuss the implications of interacting mechanisms in the conclusion. 

2.4.1 Isolating snow metrics important for streamflow across the CONUS 

Through correlation statistics, we assess relationships between snow metrics presented in 

Table 2-1 and Q metrics in Table 2-2 in 537 catchments to justify our focus on fs. Figure 

2-3A illustrates that snow metrics are highly correlated to each other, with few metrics 

exhibiting Spearman correlation values below ~0.4. The mean annual fs captures a variety 

of snow dynamics similarly to snow persistence. Although each metric ultimately conveys 
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different information about the characteristics of snow, both metrics exhibit the strongest 

and broadest correlation with other snow dynamics (Figure 2-3A) and Q characteristics 

(Figure 2-3B) of interest. As expected from past studies, relationships between the fs and 

Q volume metrics were weaker than timing metrics and fs negatively correlated to flood 

metrics (Davenport et al 2020). All of the metrics used in this evaluation with the exception 

of streamflow timing (e.g., DOQ25,50,75), runoff ratio, baseflow index, and flood metrics 

rely heavily upon modeled data. 

  

Figure 2-3: Correlograms of Pearson coefficients determined using streamflow data from 

the CAMELs database (please see Text S2.1) and NLDAS-2 (Xia et al 2012) forcing data 
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during the period 1980-2014 for: A) snow metrics defined in Table 2-1 and B) Q metrics 

defined in Table 2-2 as well as snow fraction and persistence. Black forward slash marks 

indicate statistically insignificant values (p> 0.05). 

2.4.2 Mechanism 1: Changes in snow season water vapor fluxes  

Snow dynamics influence abiotic interactions between the land surface and the atmosphere 

by exerting a first-order control over the amount of available energy that can drive water 

vapor fluxes (Mechanism 1). To investigate differences in the regional sensitivity to 

Mechanism 1, we performed several linear regressions between fs and Rn grouped by snow 

season P amount (Figure 2-4A to 2-4C). Grey bounds in Figure 2-4A to 2-4C reflect the 

95% confidence interval for regressions. We refer to the reader to Figure S2-2 for 

scatterplots of the underlying data. Grouping by P accounts for the correlation between 

snow season fs and snow season length. Within snow season P groups, annual data were 

binned into nine groups of roughly equal number of catchments based on mean daily snow 

season solar radiation. We then used linear regression to identify the expected value of 𝑅𝑅𝑛𝑛 

when fs=0 (Figure 2-4D to 2-4F) and estimated the maximum potential change in 𝑅𝑅𝑛𝑛 as the 

difference between modeled 𝑅𝑅𝑛𝑛 using the mean historical snow season fs and the modeled 

𝑅𝑅𝑛𝑛 when snow season fs = 0. Assuming that the maximum potential change 𝑅𝑅𝑛𝑛 was 

exclusively available to latent heat flux per Eq. (2-2), we then converted this value to a 

water flux (i.e., ET using latent heat of vaporization into mm d-1) and normalized the 

resulting value by mean annual snow season P. We note that although the 95% confidence 

interval for our regressions is narrow in many cases (grey bounds in Figure 2-4A-C), our 
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demonstration relies on a regression model (please see Figure S2-2 for more in-depth 

presentation of the underlying data).  

Linear regressions support the moderating role of higher snow season fs on 𝑅𝑅𝑛𝑛 in sunny, 

moderate to high P environments (orange and red lines in Figure 2-4B and 2-4C, Figure 2-

4E to 2-4F, dark green circles). We summarize these linear regressions in Tables S2-1 to 

S2-3 Consistent with our linear regressions, we observe strong coherence between circle 

color (indicating higher potential changes in the ratio of ET to P) and circle size (indicating 

historically higher fs) in medium and high P environments (Figure 2-4E-F). Results suggest 

that areas with historically larger snowfall during the snow season have the highest 

potential sensitivity to increases in snow season water vapor losses. These dynamics are 

most important in the interior western and central CONUS with some evidence of 

sensitivity at higher latitudes in the northeastern CONUS.  
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Figure 2-4: Potential for changes in snow season vapor fluxes (Mechanism 1) as illustrated 

by linear regression between snow season Rn and fs as illustrated using Daymet data from 

the CAMELs database (please see Text S2.1). A-C: Grouped site-year regression based on 

average daily snow season incoming shortwave (𝑅𝑅𝑠𝑠) for low, medium, and high P 

environments (n ~5000 per low, medium, and high P). Grey bounds represent the 95% 

confidence interval for binned regressions. D-F: Map of the maximum potential daily 

increase in snow season ET is calculated between average historical fs and fs = 0, then 

normalized by snow season P. 
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2.4.3 Mechanism 2: Changes in LWI intensity  

In certain environments, the unique characteristic seasonal of snow to persist after falling 

can facilitate the release of LWI later in time and at a lower or higher intensity than 

incoming P. Potential for changes in LWI together with physical hydrological thresholds 

(e.g., soil water holding capacity) exerts a first-order control on infiltration and runoff 

generation. We investigated the maximum potential change in peak LWI intensity (mm d-

1) under a complete transition from snowfall to rainfall (fs = 0) in Figure 2-5. We selected 

the annual peak intensity of LWI and P inputs for each catchment for a running 1-day, 3-

day, and 14-day mean value. Windows were selected to capture different potential effects 

of LWI intensity on streamflow generation. Assuming stationarity in the intensity of P, we 

then estimated the maximum potential change in the intensity of LWI as the difference 

between the intensity of snowmelt-driven LWI and P inputs when fs=0 (no snow storage). 

Increases in rainfall intensity due to higher saturated vapor pressure with rising T (i.e., 7% 

increase per 1°C of warming) (Trenberth 2011) or melt during rain-on-snow events (Li et 

al 2019) could further intensify LWI beyond what we consider here. 

Our results indicate that maximum potential LWI intensity at 1, 3, and 14-day durations 

will increase from historical snowmelt values as snowfall turns to rain, especially in 

catchments with higher historical fs (size of the grey circles in Figure 2-5A-C). This effect 

is particularly apparent for the 1 and 3-day LWI intensities (Figure 2-5A and 2-5B), with 

substantially lower shifts in the 14-day LWI intensities after shifts to rainfall (Figure 2-5C). 

Intuitively, in places with historically low fs there is already relatively little difference in 

LWI and P intensity, which is reflected in the clustering of small grey circles at x = 0 in 

Figure 2-5A-C. The map in Figure 2-5D-F highlights broad regional trends in sensitivity 
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at the different temporal scales. The intensity of LWI in catchments at higher latitude and 

in the interior western CONUS appears most sensitive an increase as fs declines. However, 

the relationship between annual fs and maximum shift in LWI intensity does not fully 

explain the regional patterning in Figure 2-5D-F. For example, catchments along the 

central CONUS-Canadian border and some catchments along the western slope of the 

Appalachian Mountains also show large differences between LWI and P intensity. This 

suggests that other factors, such as intense spring rain, might explain or modulate the 

sensitivity to changes in LWI intensity.  
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Figure 2-5: Potential for changes in LWI intensity (Mechanism 2) as illustrated using 

Daymet data from the CAMELs database (please see Text S2.1). Here we calculate the 

potential shift in LWI intensity (mm d-1) over 1-day, 3-day, and 14-day intervals as the 

difference between LWI and P. A-C: Scatterplots of the maximum LWI intensity for each 

site versus the shift in LWI intensity (mm d-1) for 1 day, 3 day, and 14 day intervals. D-F: 

Map of the maximum potential shift in LWI based on an fs = 0 for 1 day, 3 day, and 14 day 

intervals. 

2.4.4 Mechanism 3: Water-energy synchrony 

Snowpacks provide temporary storage of higher winter P that is released as LWI later in 

the season, which is a first-order control on Q via the partitioning of stored water to ET 

versus Q generation or groundwater. We simulate the maximum potential difference in the 

timing of LWI and P inputs under a complete transition from snow to rain (fs = 0). For each 

catchment, we calculated the mean DoWY in which the catchment achieved 25% and 50% 

of LWI and P inputs across all years. Using these data, we then approximated the maximum 

shift in the timing of LWI inputs as the difference between 25% or 50% LWI and P inputs, 

respectively (i.e., assuming that the timing of LWI would equal the timing of P inputs if fs 

= 0 and there is no snowmelt to modulate the timing of LWI inputs). Consistent with Tague 

and Peng (2013) and our own analysis of the PET timing variability, we assumed that 

changes in the timing of LWI was the largest driver of potential asynchrony between LWI 

and energy inputs. 

We observed that catchments with a higher annual fs also experienced greater maximum 

shifts between 25% and 50% LWI and P inputs as indicated by increase in circle size along 
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the y-axis in Figure 2-6A and 2-6B. This relationship between fs and the maximum 

potential shift in the timing of LWI is evident across catchments regardless of the DoWY 

they reach 25% or 50% of their annual LWI (e.g., x-axis in Figure 2-6A-B), although it 

does appear to scale the magnitude of the shift between LWI and P inputs. Intuitively, 

catchments with less annual snowfall experience relative harmony between LWI and P 

inputs. The translation of these results to geographic locations in Figure 2-6C-D highlights 

distinct regional trends in sensitivity, with largest potential shifts in the timing of 25% and 

50% LWI in the interior western CONUS (dark purple circles). In both the 25% (early 

streamflow generation) and 50% LWI (peak streamflow generation) cases, the maximum 

risk for potential shifts in LWI timing were well connected to mean annual fs, as 

demonstrated by the coherence between circle size and shading in Figure2-6C-D.  
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Figure 2-6: Potential for changes in the synchrony of water-energy inputs (Mechanism 1) 

as illustrated using Daymet data in the CAMELS database (please see Text S2.1). A-B: 

Mean annual historical DoWY when 25% and 50% of LWI occur versus maximum shift 

in days between 25% and 50% of LWI timing and P timing. C-D: Map of the potential 

maximum shift in the timing of 25% and 50% of LWI when fs = 0 (e.g., all LWI driven by 

rainfall). 

2.5 Summary and conclusions 

Our data-driven review focuses on how regional variability in climate differentially 

influences the partitioning of winter precipitation along a gradient of fractional snow cover 
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within the CONUS. We identify three inter-dependent mechanisms based on how 

snowpack mass and energy balance interacts with local climate, infiltration, and catchment 

water storage. Our framework leads to testable hypotheses useful for evaluating regional 

variability in streamflow response under a warmer climate. 

• Mechanism 1 addresses how a warmer and drier climate will impact snow season 

water vapor fluxes. Although often ignored, both snowpack sublimation and 

evaporation losses can be large components of the annual water budget, which are 

likely to increase in a warming climate. These losses are likely to be greatest in the 

Great Basin, Missouri, Upper and Lower Colorado, Souris-Red-Rainey, and 

Arkansas White-Red basins (Figure 2-7), with the potential to exacerbate summer 

drought stress and reduce annual Q consistent with Milly and Dunne (2020) who 

used a physically-based model in the Upper Colorado River Basin to estimate a 

9.3% decrease in Q per degree Celsius of warming because of increased ET due 

primarily to snow albedo feedbacks.  

• Mechanism 2 addresses how increased LWI intensity driven by snow season rainfall 

(e.g., fs = 0) will interact with physical hydrological controls on infiltration and 

routing. The maximum potential risk for more intense LWI are greatest in the 

Pacific Northwest, California, Great Basin, Upper Colorado, and Missouri Basins 

in the western CONUS as well as the Great Lakes and New England Basins in the 

eastern CONUS (Figure 2-7). These changes (Figure 2-5) would be expected to 

increase the amount of Q occurring during the snow season consistent with 

Davenport et al (2020), who showed that declines in fs led to proportionally larger 
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increases in streamflow and advance the timing of spring Q. As such, changes could 

potentially exacerbate summer drought stress per Harpold and Molotch (2015) with 

variable impacts on annual Q volume.  

• Mechanism 3 addresses the role of subsurface storage in buffering earlier water 

inputs (energy-water synchrony) in a warmer, rainier climate. The maximum 

potential risk for decreased temporal synchrony between water and energy inputs 

is greatest in the Pacific Northwest, California, Great Basin, Upper Colorado, Rio 

Grande, and Missouri Basins in western CONUS (Figure 2-7). However, the extent 

to which temporal asynchrony may or may not impact seasonal and annual Q 

volume or drought stress remains difficult to parse consistent with Jeton et al (1996) 

who showed that higher and lower elevation basins experience bi-directional 

changes in annual Q volume in a warmer climate. 
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Figure 2-7: Summary graphic highlighting the potential utility of the framework proposed 

as part of this data-driven review. Here, we use both experimental results and literature 

review with experience of the authorship team to highlight where each Mechanism—and 

the set of processes it represents—may be most important. Hydrologic regions correspond 

to United States Geological Survey (USGS) HUC (Hydrologic Unit Code) 2 boundaries. 

We show the study sites and HUC 2 boundaries in Figure S2-1. 

Our review provides a consistent framework for assessing the impacts of climate change 

on snowmelt-derived streamflow, highlighting differential risks across regions of the 

western U.S. There are, however, limitations in our initial demonstration worth 
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considering. First, using one snow metric (fs) as a proxy for climate change may not capture 

all the potential nuances in each of our mechanisms, especially at smaller spatial scales. 

Related to this, there is also a clear opportunity for future research to evaluate how the 

mechanisms we identify influence streamflow generation using the metrics aggregated for 

this review. Finally, although mechanisms may interact, an in-depth investigation of these 

interactions was beyond the scope of our demonstration. However, our initial results can 

help to characterize end-members for future research by establishing a set of testable, inter-

related mechanisms that reflect the dominant processes connecting snow to streamflow 

across CONUS. Snowmelt-driven streamflow in areas with either less persistent snow 

cover, small historical fs, and with low intensity P during the snow season (e.g., the HUCS 

in the northeastern CONUS in Figure 2-7) may be easier to predict than in areas with 

persistent snow cover, large historical fs, and higher intensity P during the snow season 

(e.g., HUCs in the interior western CONUS in Figure 2-7), where snowmelt-driven 

streamflow is likely to have unique feedbacks not completely captured in our framework.  

Ultimately, hydrologic models need to capture potential interactions of these three 

mechanisms to accurately predict future changes in snowmelt-driven streamflow. 

Specifically, improvements in modeling capabilities should be focused in three areas: 1) 

representing complexities in snowpack-atmosphere energy fluxes and how this variability 

influences snow ablation; 2) representing variability in subsurface storage as soil and 

groundwater and how these stores are partitioned to either atmosphere fluxes or 

streamflow; and 3) continuing to develop high quality forcing datasets, including P, T, 𝑅𝑅𝑛𝑛, 

humidity, and wind speed, in complex terrain. Progress on these fronts requires advances 

in hydrologic models, process understanding, conceptual frameworks, and observations. 
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As a critical link in this chain, our mechanistic framework offers value for evaluating and 

communicating changes in critical mountain water supplies in an increasingly complex and 

uncertain hydrologic future. 
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In Section 2.4, we explore the difference in regional sensitivity to Mechanisms 1-3 outlined 

above across the CONUS using data from 1980-2014 in 537 catchments within the 

Catchment Attributes and Meteorology for Large Sample Studies (CAMELS) database 

(Addor et al 2017). The database of unimpaired, gauged catchments includes modeled 

snowmelt data from the SNOW-17 and Sacramento Soil Moisture Accounting (SAC-

SMA) hydrologic modeling system forced with Daymet (Thornton et al 1997) data and 

Phase 2 of the North American Land Data Assimilation System (NLDAS-2). We obtained 

combined LWI and precipitation information from the CAMELS database. Because the 

CAMELS database does not include Rn, we supplement it with the NCA-LDAS (Kumar et 

al 2019) model to assess changes in the snow season surface energy balance (Mechanism 

1). For Mechanism 1, we evaluate snow season fs (see Table 2-1 in the main Chapter). For 

Mechanisms 2 and 3, we evaluate annual fs.  

For each mechanism, we establish maximum sensitivity to changes in fs by assuming the 

complete transition from snowfall to rainfall (fs = 0), which is highly improbable in the 

near-term, particularly for colder, higher elevation sites (O’Gorman 2014). However, this 

approach establishes a theoretical upper-limit for potential changes in each mechanism, 

which can be used in future research to explore controls on the variability in Q outlined in 

Section 2.3 of the main Chapter. 
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Figure S2-1: All study sites include in the demonstrations in the main text of the manuscript 

and an outline of the HUC2 Regions used to construct Figure 2-7. 
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Figure S2-2: Linear regression between snow season Rn and fs as illustrated by Daymet 

data in the CAMELS database. A-C: Scatterplot of all points used to generate grouped site-

year regression based on average daily snow season incoming shortwave (Rs) for low, 

medium, and high P environments (n = ~5000 per low, medium, and high P). Points are 

colored by average daily snow season Rs. D-F: Map of the maximum potential daily 

increase in snow season ET is based on an fs of 0 and normalized by snow season P for 

low, medium, and high P environments. 

Table S2-1: Summary statistics for regressions between fs and Rn for the low snow season 

precipitation group in the main Chapter. 
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Low Snow Season P Regression Coefficients 
Mean Daily 

Snow Season 
Rs [W/m2] Estimate Statistic p-value Method Alternative 

12 to 88 -0.49551 22864735 2.56E-29 

Spearman's 
rank 
correlation 
rho two.sided 

88 to 93 -0.58797 94325359 3.82E-67 

Spearman's 
rank 
correlation 
rho two.sided 

93 to 96 -0.62385 1.2E+08 2.04E-83 

Spearman's 
rank 
correlation 
rho two.sided 

96 to 100 -0.55945 2.96E+08 5.06E-87 

Spearman's 
rank 
correlation 
rho two.sided 

100 to 103 -0.67774 41629287 1.59E-72 

Spearman's 
rank 
correlation 
rho two.sided 

103 to 108 -0.69145 56438317 2.26E-84 

Spearman's 
rank 
correlation 
rho two.sided 

108 to 116 -0.67532 89746230 2.22E-92 

Spearman's 
rank 
correlation 
rho two.sided 

116 to 135 -0.67503 43959402 4.50E-73 

Spearman's 
rank 
correlation 
rho two.sided 

135 to 178 -0.68266 20335309 1.65E-58 

Spearman's 
rank 
correlation 
rho two.sided 
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Table S2-2: Summary statistics for regressions between fs and Rn for the medium snow 

season precipitation group in the main manuscript. 

Medium Snow Season P Regression Coefficients 
Mean Daily 

Snow Season 
Rs [W/m2] Estimate Statistic 

p-
value Method Alternative 

12 to 88 -0.56489 10432945 
3.20E-

30 

Spearman's 
rank 
correlation 
rho two.sided 

88 to 93 -0.55346 1.14E+08 
2.74E-

62 

Spearman's 
rank 
correlation 
rho two.sided 

93 to 96 -0.66373 63249119 
7.63E-

79 

Spearman's 
rank 
correlation 
rho two.sided 

96 to 100 -0.65834 1.67E+08 
3.16E-

106 

Spearman's 
rank 
correlation 
rho two.sided 

100 to 103 -0.66875 47289744 
4.45E-

73 

Spearman's 
rank 
correlation 
rho two.sided 

103 to 108 -0.64303 1E+08 
1.14E-

84 

Spearman's 
rank 
correlation 
rho two.sided 

108 to 116 -0.64974 1.96E+08 
2.40E-

108 

Spearman's 
rank 
correlation 
rho two.sided 

116 to 135 -0.79295 62945684 
1.04E-

129 

Spearman's 
rank 
correlation 
rho two.sided 



65 
 

 
 

135 to 178 -0.72474 21297029 
1.29E-

69 

Spearman's 
rank 
correlation 
rho two.sided 

 

Table S2-3: Summary statistics for regressions between fs and Rn for the high snow season 

precipitation group in the main manuscript. 

High Snow Season P Regression Coefficients 
Mean Daily 

Snow 
Season Rs 

[W/m2] Estimate Statistic 
p-

value Method Alternative 

12 to 88 -0.22674 3.64E+08 
1.35E-

15 
Spearman's rank 
correlation rho two.sided 

88 to 93 -0.79556 24974147 
1.04E-

96 
Spearman's rank 
correlation rho two.sided 

93 to 96 -0.80783 10535294 
1.33E-

76 
Spearman's rank 
correlation rho two.sided 

96 to 100 -0.78577 37203378 
5.64E-

106 
Spearman's rank 
correlation rho two.sided 

100 to 103 -0.77775 24388552 
2.39E-

89 
Spearman's rank 
correlation rho two.sided 

103 to 108 -0.82843 68829951 
6.11E-

155 
Spearman's rank 
correlation rho two.sided 

108 to 116 -0.84513 59382434 
8.33E-

159 
Spearman's rank 
correlation rho two.sided 

116 to 135 -0.81631 1.09E+08 
3.68E-

171 
Spearman's rank 
correlation rho two.sided 

135 to 178 -0.41783 3.06E+08 
2.70E-

47 
Spearman's rank 
correlation rho two.sided 
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3 Chapter 3: Can we use the water budget to infer upland catchment behavior? 
The role of dataset error estimation and interbasin groundwater flow 

By: Beatrice L. Gordon, Wade T. Crow, Alexandra G. Konings, David N. Dralle, Adrian 
A. Harpold 

Citation: Gordon, B. L., Crow, W. T., Konings, A. G., Dralle, D. N., & Harpold, A. A. 
Can we use the water budget to infer upland catchment behavior? The role of dataset error 
estimation and interbasin groundwater flow. Water Resources Research, e2021WR030966. 

Abstract 

Water budgets are essential for characterizing water supplies from snow-dominated upland 

catchments where data are sparse, groundwater systems are complex, and measurements 

are prone to error (ε). One solution is imposing water budget closure (CWB) by ignoring 

difficult-to-measure variables, including inter-basin groundwater fluxes (G) and ε. 

However, conventional CWB-based analyses, which derive evapotranspiration (ET) from 

precipitation (P) and streamflow (Q) (e.g., the Budyko hypothesis), are limited in their 

ability to take advantage of recent advances in ET products, physically-based frameworks 

for improving inferences about G, or tools to statistically characterize ε (Triple Collocation, 

TC); all of which offer promise for improved water supply predictions via open water 

budgets (OWB). We clarify the value of these advances in upland settings by comparing 

standard land surface model, Ensemble Mean, and TC-Merged P and ET products in 114 

upland catchments. When compared against a long-term OWB, we find that the CWB 

assumptions are unsupported in 75-100% of our 114 catchments, depending on the product. 

We then show how applying these CWB assumptions in snowy, steep catchments where ε 

is large can inflate inferences about streamflow response to climate change by up to 9 times 

more than independent (OWB) estimates of ET using TC. Finally, we demonstrate how 

advances in OWB analysis reveal that high, arid settings with deep permeable substrate are 
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groundwater exporters while most other basins are groundwater importers. Our results 

highlight the advantages of OWB analyses that harness new products, tools, and 

frameworks for characterizing inter-basin groundwater fluxes in critical upland settings.  

3.1 Introduction 

Higher elevation (upland) catchments are critical for generating downstream water supplies 

(Barnett et al., 2008; Ehsani et al., 2017; Harpold et al., 2012; Li et al., 2017; Viviroli et 

al., 2007). As such, there is a pressing need to quantify how upland water supplies—

including both surface and groundwater—will respond to changing climate (Gordon et al., 

2022; Immerzeel et al., 2020; Mankin et al., 2015; Qin et al., 2020). Water budgets are 

foundational tools in this pursuit (Barnhart et al., 2016; Berghuijs et al., 2014; Ni et al., 

2015). However, accurately closing the water budget in upland settings remains elusive 

due to complex hydrologic pathways and difficult-to-measure variables such as 

groundwater fluxes (G) and evapotranspiration (ET). Moreover, measurement error—

particularly biases (i.e., systematic error) in estimates of precipitation (P) associated with 

complex topography and snow plague water balance closure in upland catchments (Bales 

et al., 2006; Carroll et al., 2019; Henn et al., 2018). To circumvent these challenges, 

conventional approaches often assume that unknown or uncertain variables (including 

error) can be ignored by imposing a closed water budget (CWB, Fan, 2019; Safeeq et al., 

2021, Kampf et al., 2020). To illustrate this point, we present a simple, but complete, 

catchment water budget following Fan (2019): 

𝑃𝑃 –  𝐸𝐸𝐸𝐸 –  𝑄𝑄 =
Δ𝑆𝑆
Δ𝑡𝑡

 +  𝐺𝐺 + 𝜀𝜀𝑃𝑃  + 𝜀𝜀𝐸𝐸𝐸𝐸 + 𝜀𝜀𝑄𝑄 ,  
Eq. (3-

1) 
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where P is precipitation, ET is evapotranspiration, Q is streamflow, Δ𝑆𝑆
Δ𝑡𝑡

 is change in 

terrestrial water storage, G is interbasin-groundwater flux into or out of the catchment, and 

𝜀𝜀𝑃𝑃, 𝜀𝜀𝐸𝐸𝐸𝐸 , and 𝜀𝜀𝑄𝑄 are combined systematic and random error in the measurement of P, ET, 

and Q, respectively. Here, we define systematic errors as correlated to the true value of the 

variable whereas random errors are uncorrelated to the true value of the variable. Because 

they are difficult to separate, we refer to the combination of εp, εET , and εQ as a single term 

(ε) and assume that 𝜀𝜀 is a combination of systematic and random error. When a CWB is 

imposed, right-hand side terms in Eq. (3-1) including G, Δ𝑆𝑆
Δ𝑡𝑡

 , and ε are assumed to be zero, 

resulting in a simplified CWB form of the water budget in which P – ET – Q = 0. This 

simplification implies that ET can be calculated as 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 = P – Q. 

Of the simple water budget-based tools that rely on CWB assumptions to derive 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶, 

the Budyko hypothesis (Budyko, 1974) has emerged as a particularly useful and common 

framework for characterizing upland water resources (Barnhart et al., 2016; Berghuijs et 

al., 2014; Greve et al., 2020). The Budyko hypothesis posits that water budget partitioning 

(e.g., the ET fraction or ET/P and runoff ratio or Q/P) can be determined solely based upon 

the ratio of available energy (often expressed as annual potential evapotranspiration, 𝐸𝐸𝑜𝑜, in 

equivalent water depth) to available water (expressed as annual P, also in water depth) 

(Sposito, 2017). Relying on this simplification, prior research has attributed observations 

of systematic patterns (i.e., statistically detectable trends) in catchment plotting relative to 

Budyko-type curves to underlying physical processes or catchment properties (e.g., Li et 

al., 2013; Padrón et al., 2017; Potter et al., 2005), such as streamflow response to shifts in 
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precipitation phase measured as the annual fraction of P falling as snow (fs) and intensity 

under climate change (Barnhart et al., 2016; Berghuijs et al., 2014; Ni et al., 2015).  

To accurately characterize the water supplied from upland catchments, the above 

applications of the Budyko hypothesis require the imposition of (valid) CWB assumptions 

– specifically, that G = 0, ε = 0  𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 = P – Q. However, there is growing evidence 

that these assumptions may not hold in upland catchments (Kampf et al., 2020; Safeeq et 

al., 2021). First, G—specifically interbasin groundwater exportation—is typically ignored 

in CWBs, but can be a significant component of the upland water budget (Frisbee et al., 

2016; Safeeq et al., 2021) with potential to bias 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 either high or low (Fan, 2019). 

Prior research has sought to characterize how non-zero groundwater fluxes and stores can 

impact catchment plotting in the Budyko space using models and densely instrumented 

catchments (Condon & Maxwell, 2017; Istanbulluoglu et al., 2012; Wang et al., 2009). 

Quantifying interbasin groundwater import or export, however, is notoriously difficult in 

upland settings due to a lack of data and the complexity of hydrologic pathways (Carroll 

et al., 2019; Fan, 2019; Maxwell & Condon, 2016). In the absence of available data, Fan 

(2019) proposed a new physically-based framework comprised of several explanatory 

criteria to condition expectations about the role of G in water budgets including: 1. 

catchment size, 2. catchment position, 3. aridity, 4. depth of permeable regolith, and 5. 

geological permeability (see Section 3.2). For example, the framework argues that 

headwater catchments with deep permeable regolith are likely to export groundwater (G > 

0), violating CWB assumptions. Second, ε—particularly systematic error in P in snowy, 

steep upland catchments—can also impact upland water budget closure, violating CWB 
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assumptions and impacting 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 as a result. Upland gauges are often too sparse to 

represent spatial variability in P (Jing et al., 2017) and are plagued by under-catch bias in 

snowy and windy conditions (Rasmussen et al., 2012). Moreover, orographic enhancement 

and complex terrain can hamper both satellite retrievals and high-resolution models in 

these settings (Dettinger et al., 2004; He et al., 2019; Henn et al., 2018; Wrzesien et al., 

2019). Given the above, there is a pressing need to better understand how evidence for non-

zero G and 𝜀𝜀 interacts with CWB assumptions to influence  inferences about upland water 

supplies derived from widely used tools like the Budyko hypothesis (Andréassian & Perrin, 

2012; Valéry et al., 2010).  

Open water budget (OWB) approaches, which require an independent estimate of ET 

(henceforth, 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂), offer a pathway to more rigorously investigate the role poor 

assumptions about G and 𝜀𝜀 may play in inferences about upland water supplies (Kampf et 

al., 2020). In upland settings, advances in land data assimilation systems (LDASs) (e.g., 

Kumar et al., 2019) and remote sensing (e.g., Anderson et al., 2011; Mu et al., 2011) have 

given rise to a suite of new 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 datasets. However, each of these 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 datasets are 

subject to considerable uncertainties (Polhamus et al., 2013), which makes it challenging 

for users to determine if the benefits of adopting 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 outweigh the previously described 

disadvantages of propagating assumptions about G and ε into 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶. If users adopt an 

OWB-based approach at all, they are often left to rely on best judgement in selecting from 

a range of 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 datasets. In some cases, users might simply select an 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 dataset that 

uses other water budget variables like P and Q as inputs, hoping that this will reduce the 

total independent error sources (e.g., Barnhart et al., 2016). In other cases, users might elect 
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to merge different estimates of 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 together via an ensemble mean (e.g., Abolafia-

Rosenzweig et al., 2021; Yilmaz et al., 2012). Doing so, however, implicitly assumes all 

estimates are equally error-prone. Information about the levels of errors in different 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 

estimates could facilitate a more accurate averaged best estimate. This can be achieved 

using triple collocation (TC)—a tool that objectively obtains random error estimates from 

three or more spatially and temporally collocated products to attain a single product with 

reduced random error (Gruber et al., 2017; Stoffelen, 1998; Yilmaz et al., 2012). Recent 

research has highlighted the value of TC for comparing different ET datasets (Khan et al., 

2018). By improving estimates of P (Alemohammad et al., 2015), other research suggests 

that TC may also improve 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 (Burnett et al., 2020) with additional benefits to water 

budget evaluations more generally. Despite the promise of TC, it is limited to providing 

statistical descriptions of random errors (see Section 3.3.1) and its limitations to describe 

or remove systematic errors impacting Eq. (3-1) in upland settings are unexplored. 

OWBs—aided by recent advances in approaches to condition expectations about G (e.g., 

Fan (2019)), tools to characterize ε (e.g., TC) and products to estimate 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂— offer 

promise in evaluating the benefits and limitations of using CWB assumptions to make 

inferences about critical upland water supplies (Kampf et al., 2020; Safeeq et al., 2021). 

Because the value of these advances remains largely speculative, this study aims to clarify 

what—if any—benefit they provide to potential users in 114 snow-dominated upland 

catchments that import and export G and have large potential for ε (Condon et al., 2020; 

Ying Fan, 2019; Henn et al., 2018; Rasmussen et al., 2012; Wrzesien et al., 2019). Using 

our study catchments, we first investigate the validity of CWB assumptions through an 
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evaluation of long term water budget closure and the Fan (2019) framework. Second, we 

interrogate the consequences of improper CWB assumptions when inferring the response 

of upland surface water supplies to climate change—specifically upland streamflow 

response to changes in P. Here, we focus our analysis of these benefits on the Budyko 

hypothesis because it is a widely used CWB-based tool that has been used to set 

expectations about upland water resources in response to climate change (Barnhart et al., 

2016; Berghuijs et al., 2014; Greve et al., 2020). We follow Condon & Maxwell (2017) 

who more rigorously evaluate the effects of CWB assumptions in the Budyko space using 

𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 and 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂. Third, we examine whether these advances improve inferences about 

upland groundwater resources ignored in conventional applications of CWB-based tools 

like the Budyko hypothesis or otherwise masked by products with large ε. To do this we 

identify splits in our data using splits (e.g., thresholds) identified thorugh conditional 

inference trees—a type of unbiased recursive partitioning. Using these splits, we establish 

statistically-based rules to categorically classify our watersheds based on agreement with 

the Fan (2019) criterion. We distill the motivation of this study into three central questions: 

1) Does long term OWB closure—assisted by the Fan (2019) framework, TC, 

and 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 products— validate conventional CWB assumptions (i.e., G = 0, ε 

= 0  𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 = P – Q) in upland catchments? 

2) In upland catchments where CWB assumptions are invalid (e.g., ε ≠ 0 due to 

P bias in steep, snowy catchments  𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 ≠ P – Q), how do the Fan (2019) 

framework, TC, and 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 products differ in Budyko-based inferences about 
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water supplies (i.e., streamflow efficiency in response to changes in 

precipitation phase, fs)? 

3) When ε is characterized using TC, can the Fan (2019) framework and 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 

products improve insights about G export or import in upland settings? 

3.2 Study Area and Data 

3.2.1 Study Area 

We focus on a large collection of upland catchments compiled using a subset of the 

Catchment Attributes and Meteorology for Large Sample studies (CAMELs) database 

(Newman et al., 2015). The CAMELS database is comprised of data for 671 catchments 

distributed throughout CONUS and includes forcing data for P, 𝐸𝐸𝑜𝑜 , and 𝑄𝑄. To select for 

upland catchments with high measurement uncertainty, we used the same subset of 268 

catchments from the CAMELs database located throughout CONUS with fs > 0.15 used 

by Berghuijs et al. (2014). Catchments range from 6 to 2679 km2 in drainage area with a 

mean size of 387 km2 (see Figure 3-1). Additional details on candidate catchments are 

provided in Table S3-1. 



74 
 

 
 

  

Figure 3-1: Map of candidate study sites broken out into the Western US (California, Great 

Basin, Pacific Northwest, Upper and Lower Colorado, and Rio Grande regions), Central 

US (Missouri, Upper Mississippi, Great Lakes, and Souris-Red-Rainey regions), and 

Northeastern US (Ohio, New England, and Mid-Atlantic regions). Here regions are 

abbreviated as follows: NE is New England, MA is Mid-Atlantic, OH is Ohio, GL is Great 

Lakes, UM is Upper Mississippi, MI is Missouri, SRR is Souris-Red-Rainey, UC is Upper 

Colorado, RG is Rio Grande, LC is Lower Colorado, GB is Great Basin, CA is California, 

and PNW is Pacific Northwest. 
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3.2.2 Data 

In this study, we relied on multiple datasets (summarized in Table 3-1) to perform the 

analyses outlined in Section 3.3. For gridded time-series products, all data were obtained 

for the period from October 1, 2001 to September 30, 2016 for each catchment in Figure 

1, which represents the maximum overlap between products allowable for the application 

of the TC approach outlined in Section 3.3.1. Please see Text S3.1 and S3.2 for more detail.  

To assist users in evaluating the advantages and disadvantages associated with different 

estimates of 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 and to test the value of TC-based merging in upland settings, we 

compared three different data products selected to represent the most common choices 

available to users in upland settings: 1) an NLDAS product (Section 3.2.2.1); 2) an 

Ensemble Mean product (Section 3.2.2.2); and 3) a TC-Merged product (described in 

Section 3.2.2.3 and 3.3.1 below).  

Table 3-1: Summary of input data products used for this study including 5 P products and 

4 ET products. Details about specific data products are summarized in Table 3-1 below. 

We note whether the data were included in the CAMELs database in the reference column. 

Data that were not available in the CAMELs database were independently estimated from 

the sources listed in Section 3.7. We provide more detail on each product in Text S3.2. 

Product 
Spatial 
Resoluti

on 

Spatial 
Extent 

Temporal 
Resolutio

n 

Tempor
al Extent Source 

Included 
in 

Ensemble 
Mean? 

Reference  

WATER BUDGET AND BUDYKO VARIABLES 
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PRECIPITATION 

ERA5 31 km Global Hourly 1979-
Present 

Reanal
ysis No 

(Hersbach 
et al., 
2020) 

PERSIA
NN-
CDR 

27.75 km Quasi-
Global Daily 1983-

Present 
Satellit

e No 

(Sorooshia
n et al., 
2014; 

Ashouri et 
al., 2015) 

NLDAS
-2 

13.875 
km 

North 
Americ

a 
Hourly 1979-

Present 
Gauge 
Based Yes 

(Xia et al., 
2012) 

Included 
in 

CAMELs 
database 

Daymet 1 km 
North 

Americ
a 

Daily 1980 -
Present 

Gauge 
Based Yes 

(Thornton 
et al., 
2014) 

Included 
in 

CAMELs 
database 

PRISM 4 km CONU
S Daily 1981-

Present 
Gauge 
Based Yes 

(Daly et 
al., 1997, 

2008) 

EVAPOTRANSPIRATION 

ALEXI 10 km CONU
S Daily 2001-

Present 

Therma
l: 

TSEB 
No 

(Anderson 
et al., 
2011) 

SSEBop 1 km CONU
S Daily 2000-

Present 
Therma

l: 
Penma

Yes (Senay et 
al., 2013) 
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n-
Montei

th 

NCA-
LDAS 12 km CONU

S Daily 1979-
2016 

Land 
Surface 
Model: 
Penma

n-
Montei

th 

Yes (Kumar et 
al., 2019) 

MODIS
16 0.5 km Global 8-day 2001-

Present 

Satellit
e (Near 
Infrare

d): 
Penma

n-
Montei

th 

Yes (Mu et al., 
2013) 

POTENTIAL EVAPOTRANSPIRATION* 

NLDAS
-2 

13.875 
km 

North 
Americ

a 
Hourly 1979-

Present 

Penma
n 

Based 
N/A 

(Xia et al., 
2012) 

Included 
in 

CAMELs 
database 

STREAMFLOW* 

USGS catchmen
t 

North 
Americ

a 
Daily 1980-

2014  
Gauge 
Based N/A 

(Addor et 
al., 2017; 

Newman et 
al., 2015) 

Included 
in 

CAMELs 
database 
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CATCHMENT AND SUBBASIN ATTRIBUTES 

SNOW FRACTION 

- catchmen
t 

North 
Americ

a 

Average 
Annual 

1980-
2014 

(CAMEL
S); 

variable 

- N/A 

(Addor et 
al., 2017; 

Newman et 
al., 2015) 

Included 
in 

CAMELs 
database 

DEPTH TO BEDROCK 

Pelletier catchmen
t Global - - Model-

Based N/A 

(Pelletier et 
al., 2016) 

Included 
in 

CAMELs 
database 

MAXIMUM SUB-BASIN ELEVATION 

SRTM 3 arc 
second Global - - Model-

Based N/A (Yang et 
al., 2011) 

MEAN CATCHMENT ARIDITY 

- catchmen
t 

CONU
S 

Average 
Annual 

1980-
2014 

(CAMEL
s);variabl

e 

Model-
Based N/A 

(Addor et 
al., 2017; 

Newman et 
al., 2015) 

Included 
in 

CAMELs 
database 
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3.2.2.1 NLDAS product (Example of a single model) 

The NLDAS product consists of NLDAS P forcing data, which is derived from a temporal 

disaggregation of gauge-only Climate Prediction Center (CPC) data with the PRISM 

topographical adjustment, CPC hourly CONUS gauge data, hourly Doppler radar 

precipitation data, half-hourly CPC data, 3-hourly North American Regional Reanalysis 

data (Xia et al., 2012). The NLDAS product also includes NCA-LDAS ET, which is 

generated by running the National Climate Assessment-Land Data Assimilation System 

(LDAS) with NLDAS forcings, including P (Kumar et al., 2019). The NLDAS product 

was selected to investigate the relative advantage of selecting a single dataset for P and ET 

(e.g., Barnhart et al., 2016). NCA-LDAS was specifically selected based on the widespread 

use of LDASs for agricultural and water resources management applications and based on 

NCA-LDAS’ explicit focus on the terrestrial water cycle. Unlike the other products, errors 

in NLDAS products are not mutually independent and are constrained to balance (over 

sufficiently long time periods). That is, unlike the two products below, the NLDAS product 

errors in P may be compensated by errors in Q and/or ET.  

GEOLOGIC PERMEABILITY 

GLHY
MPS 

~100 km2 
(average 
polygon 

size) 

Global - - 

Databa
se 

synthes
is 

N/A 

(Gleeson et 
al., 2014) 

Included 
in 

CAMELs 
database 
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3.2.2.2 Ensemble Mean product (Example of merging of multiple datasets) 

The Ensemble Mean product in this study was comprised of an ensemble mean of NLDAS, 

PRISM, and Daymet P datasets and an ensemble mean of MOD16, NCA-LDAS, and 

SSEBop ET datasets, which are noted in Table 3-1. The Ensemble Mean product was 

selected to investigate the common approach of merging multiple datasets. We elected to 

combine the P and ET products into the Ensemble Mean above based on their public 

availability, ease of access, and widespread use in studies of upland/mountain 

environments (Addor et al., 2017; Hahm et al., 2019; Newman et al., 2015; Velpuri et al., 

2013). 

3.2.2.3 TC-Merged product (Example of optimized merging of multiple datasets) 

The TC-Merged product in this study was comprised of all P and ET datasets in Table 3-1 

and was constructed following the methodology outlined in Section 3.3.1 below. The TC-

Merged product was selected to investigate the merging of multiple datasets using an 

objective statistical representation of their random errors. Our constructed P triplets 

followed prior work (Massari et al., 2017) and were comprised of the following: 1) a 

reanalysis product; 2) a satellite-based product; and 3) a gauge-based interpolation or 

gauge-based interpolation/Land Surface Model (LSM) hybrid. ET triplets were constructed 

using: 1) a thermal product, 2) a LSM; and, 3) a near-infrared product.  

3.3 Methods 

To answer our three research questions, we first constructed new estimates of ET and P 

using TC-based merging (Section 3.3.1.), which required a robust characterization of cross-

correlated estimation errors (Section 3.3.1.1). Once we characterized cross-correlated 
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errors, we used TC outputs as the basis for optimized merging (Section 3.3.1.2) to obtain 

TC-Merged P & ET with minimized random error (Section 3.2.2.3). We then evaluated the 

performance of TC-Merged P & ET against NLDAS (Section 3.2.2.1) and Ensemble Mean 

(Section 3.2.2.2) P & ET.  

We used TC-Merged, NLDAS, and Ensemble Mean P & ET to assess the validity of CWB 

assumptions, which are necessary for conventional application of the Budyko hypothesis. 

We did this by comparing ‘inferred groundwater behavior’ (e.g., 𝐺𝐺 + 𝜀𝜀) obtained using 

each of our three products in a long term OWB. We evaluated the long term OWB by 

rearranging Eq. (3-1) as: 

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠  – 𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠  – 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 =  𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠 ,  Eq. (3-2) 

where the subscript ‘sum’ indicates the 15-year sum of each variable. We neglected the 

contribution of Δ𝑠𝑠
Δ𝑡𝑡

 because existing measurements of it were too coarse for our application 

(Tapley et al., 2004) and it was challenging to reliably separate G from Δs
Δ𝑡𝑡

 (Enzminger et 

al., 2019). Consistent with reported common assumptions for USGS streamflow data from 

Hamilton & Moore (2012), we assumed Qsum was accurate to within 5% at a 95% 

confidence interval. We normalized the resulting inferred groundwater behavior (i.e., 𝐺𝐺 +

𝜀𝜀) by P and sorted catchments into the three different categories described in Table 3-2: 

groundwater neutral, groundwater importer, or groundwater exporter.  

Table 3-2: Summary of water budget closure categories adopted for this study based on 

Fan (2019) and their implications for G and 𝜀𝜀. Psum is the sum of P over the 15-year period 

of record, ETsum is the sum of ET over the 15-year period of record, and so on. 
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Because each category in Table 3-2 can be influenced by true G and/or 𝜀𝜀, we further tested 

the physical support for inferred groundwater behavior using five criteria proposed by Fan 

(2019) (described further in Section 3.3.2). We applied a type of unbiased recursive 

partitioning to establish splits in the five criteria related to differences in inferred 

groundwater behavior and then used the raw number of supporting criteria as the basis for 

classifying catchments with physically supported groundwater import or export (Section 

3.3.2.1). Next, we used these results to examine the impacts of propagating poor CWB 

assumptions about G and ε into 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 via the Budyko hypothesis (Section 3.3.3).  

3.3.1 Characterization of random 𝜺𝜺: TC analysis  

TC analysis requires the construction of a TC triplet with three distinct measurement 

systems (e.g., X, Y, and Z) of the same environmental variable (McColl et al., 2014; 

Stoffelen, 1998). Henceforth, we use TC[X-Y-Z] to refer to a generic TC triplet of a single 

environmental variable constructed from measurement systems X, Y, and Z. In order to 

obtain valid outputs for TC[X-Y-Z], TC requires that a number of assumptions are met 

(Gruber et al., 2017). The first of these assumptions (assumption 1) is that each 

measurement system or product (e.g., X, Y, Z) has a linear relationship to the “true” variable 

(CT) which can be modeled for a generic variable C as follows: 

Category Mathematical 
Description per Eq. (2) 

Implication for 
𝑮𝑮𝒔𝒔𝒔𝒔𝒔𝒔 + 𝜺𝜺𝒔𝒔𝒔𝒔𝒔𝒔 

Implication for 
CWB 

Groundwater 
Neutral 

 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 –  𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 –  𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠= 
0 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠 +  𝜺𝜺𝑠𝑠𝑠𝑠𝑠𝑠 = 0 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 = 

𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂  
Groundwater 

Exporter 
𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 –  𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 –  𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 > 
0 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠 +  𝜺𝜺𝑠𝑠𝑠𝑠𝑠𝑠 > 0 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 > 

𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂  
Groundwater 

Importer 
𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 –  𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 –  𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 < 
0 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠 +  𝜺𝜺𝑠𝑠𝑠𝑠𝑠𝑠 < 0 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 < 

𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂  
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 Ci = α𝑖𝑖 CT + ϵ𝑖𝑖 Eq. (3-3) 

Here, I is the individual measurement system or product (e.g., X, Y, or Z), α𝑖𝑖 is a measure 

of the relation between Ci and CT, and ϵ𝑖𝑖 are the respective random zero-mean errors 

associated with each measurement system or product. P errors are typically modeled as 

multiplicative in short-term and/or fine-scale applications (Alemohammad et al., 2015); 

however, recent work by Massari et al. (2017) and Dong et al. (2019) suggests that the 

assumption of a multiplicative error model for TC application at the daily timescale is not 

necessary. As such, we assumed that the underlying error model for both 8-day P and ET 

was linear and no logarithmic transformation was applied.  

The second assumption (assumption 2) relates to signal and error stationarity, where 

stationarity is satisfied if the statistical properties of a geophysical process do not change 

over time. To satisfy assumption 2, we tested the performance of raw time-series data 

against time-series anomalies obtained by removing both the long-term and seasonal mean 

(e.g., DJF, MAM, JJA, and SON, Text S3.1). Because the TC results for all P and ET 

triplets were equivalent using raw and anomaly time-series data (not shown), we used raw 

time-series data in this analysis to avoid any effects introduced from seasonality 

determination on TC results.  

The final two assumptions (assumptions 3 and 4) are that the signal and the error in the 

geophysical measurements are independent (error orthogonality) and that the errors in the 

selected geophysical measurements are independent (zero error cross-correlation) (Gruber 

et al., 2016). Additionally, obtaining valid ETC results requires that each triplet have at 
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least 50 or more points and that all correlation outputs are positive for each of the input 

timeseries datasets (Chen et al., 2018). If assumptions 1 - 4 are satisfied, then the error 

variances (σ2) can be determined using six unique elements from sample covariance matrix 

(e.g., AXY) between three measurement systems using TC following Eq. (3-4 to 3-6): 

 σx2 = AXX −
AXYAXZ

AYZ
 Eq. (3-4) 

   

 σy2 = AYY −
AXYAYZ

AXZ
 

 

Eq. (3-5) 

 σz2 = AZZ −
AXZAYZ

AXY
 

 

Eq. (3-6) 

The additional contribution of extended triple collocation (ETC) following McColl et al. 

(2014), is the estimation of Pearson’s correlation coefficient (R) between Ci and CT using 

Eq. (3-7), which estimates R between CX and CT as an example, and where σ𝑋𝑋𝑋𝑋 is the 

covariance between CX and CY: 

 RX =  �
σXYσYZ
σx2σXY

 Eq. (3-7) 

   

3.3.1.1 Estimation of uncertainties and 95% confidence interval calculations  

Because of the 15-year period of record available across all data, considerable estimation 

errors arising from differences in our sample and the true variable were expected in our 
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results. Furthermore, because two of the data products used were incorporated in all 

possible triplets, estimation errors were also assumed to be highly correlated across 

products (Chen et al., 2018). This correlation affects the 𝑅𝑅𝑋𝑋 calculated by ETC, despite 𝑅𝑅𝑋𝑋 

representing a value that is only influenced by product X (CX) and the true signal CX. 

Comparison of 𝑅𝑅𝑋𝑋 values across different triplets can thus be used to detect the influence 

of estimation errors on the TC results (Crow et al., 2017; Yilmaz & Crow, 2014). For 

example, with minimal bias from cross-correlated estimation errors, the RX obtained from 

TC[X-Y-Z] would be expected to be the same (or very similar) to RX obtained from TC[X-

Y-W]. We would therefore anticipate small pairwise differences in calculated correlation 

values (ΔR). Thus, it is important to quantify when the difference in pairwise ΔR values is 

significant to appropriately interpret ETC results.  

To detect cross-correlated estimation errors, we obtained uncertainty intervals for ΔR 

values sampled across all catchments using a 1000-member boot-strapping approach. 

Pairwise ΔR were assessed in this manner for all common products (e.g., the RX obtained 

from TC[X-Y-Z] – RX obtained from TC[X-Y-W]). Each boot-strapped sample in this 

approach was constructed using the exact same set of days. We then constructed 95% 

confidence intervals from the boot-strapped sampling distribution, which we defined as the 

range between the 2.5th and 97.5th percentile of boot-strapped ΔR values. We assumed that 

the results for any catchment that fell outside the 95% confidence interval in any pairwise 

ΔR comparison were unacceptably impacted by cross-correlated estimation errors and 

removed those catchments from further analysis.  
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3.3.1.2 TC-based merging 

We then used a composite of the TC-based merging methodologies put forward by Yilmaz 

et al. (2012) and Gruber et al. (2017) to obtain an estimate of the true underlying values 

for both P and ET based on the ETC results. This method was also applied by Burnett et 

al. (2020). Using this methodology, TC-based error variance estimates (as opposed to ETC-

based R estimates) can be used to obtain a single more accurate dataset for a given 

geophysical variable (denoted CM , the TC-based merged estimate of CT): 

 CM = 𝑤𝑤𝑥𝑥 CX + 𝑤𝑤𝑦𝑦 CY + 𝑤𝑤𝑧𝑧 CZ,,  Eq. (3-8) 

where 𝑤𝑤 is a weight obtained from the TC-based error variances obtained from Eq. (3-4 to 

3-6) obtained for each measurement system or product using Eq. (3-9 to 3-11): 

 𝑤𝑤𝑥𝑥 =  
𝜎𝜎𝑦𝑦2𝜎𝜎𝑧𝑧 

2

𝜎𝜎𝑥𝑥2𝜎𝜎𝑦𝑦 
2 + 𝜎𝜎𝑥𝑥2𝜎𝜎𝑧𝑧 

2 + 𝜎𝜎𝑦𝑦2𝜎𝜎𝑧𝑧 
2 Eq. (3-9) 

 𝑤𝑤𝑦𝑦 =  
𝜎𝜎𝑥𝑥2𝜎𝜎𝑧𝑧 

2

𝜎𝜎𝑥𝑥2𝜎𝜎𝑦𝑦 
2 + 𝜎𝜎𝑥𝑥2𝜎𝜎𝑧𝑧 

2 + 𝜎𝜎𝑦𝑦2𝜎𝜎𝑧𝑧 
2 

Eq. (3-

10) 

 
𝑤𝑤𝑧𝑧 =  

𝜎𝜎𝑥𝑥2𝜎𝜎𝑦𝑦 
2

𝜎𝜎𝑥𝑥2𝜎𝜎𝑦𝑦 
2 + 𝜎𝜎𝑥𝑥2𝜎𝜎𝑧𝑧 

2 + 𝜎𝜎𝑦𝑦2𝜎𝜎𝑧𝑧 
2 

 

Eq. (3-

11) 

3.3.2 Characterization of G: Fan (2019) analysis 

Because both G and/or 𝜀𝜀 can contribute to inferred groundwater behavior (Table 3-2) based 

on the evaluation of Eq. (3-2), we investigated the physical support for apparent 

groundwater neutrality, export, or import in each catchment using five criteria proposed by 

Fan (2019): 
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• Criterion 1 (Catchment Scale). Small catchment size increases the likelihood of 

groundwater importer or exporter behavior. If the catchment is small compared to its 

permeable regolith, the catchment has a greater likelihood of being a groundwater 

exporter. We assessed this factor in our study catchments using catchment size 

sourced from the CAMELS database and depth to bedrock estimates from Pelletier 

et al. (2016).  

• Criterion 2 (Catchment Position). Catchments situated at the high end of a regional 

elevation gradient are more likely to be groundwater exporters (Buss et al., 2013) 

while catchments situated at the low end of the gradient are more likely to be 

importers (Genereux et al., 2013). We assessed this factor in our study catchments 

using the ratio of mean catchment elevation relative to the maximum elevation of the 

sub-basin (HUC8) containing each study catchment (e.g., higher ratio corresponds to 

higher catchment position and vice versa). Mean catchment elevation was assessed 

using data from the CAMELs database and maximum sub-basin elevation was 

assessed using data from Yang et al. (2011).  

• Criterion 3 (Climate). Headwater catchments under a dry climate with seasonal 

aridity or interannual droughts are more likely to be groundwater exporters. Fan 

(2019) argue that an arid climate leads deep local water tables below stream beds in 

the headwaters. Water from precipitation and losing streams in arid headwater 

catchments enters regional groundwater flow systems and resurfaces in lower basins 

to feed gaining systems (Käser & Hunkeler, 2016). They further hypothesize that the 

amount of groundwater export will increase if the climate is wetter in the headwaters 

and drier in the lower basin and decrease in the reverse case. We assessed this factor 
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in our study catchments using aridity data from the CAMELs database (Addor et al., 

2017).  

• Criterion 4 (Substrate Properties). Catchments underlain by thick regolith, 

fractured rock, or sediments in the headwaters facilitate are likely to be groundwater 

exporters (Buss et al., 2013). This is particularly true in tectonically active terrain 

under a humid climate. We assessed this factor using depth to bedrock from Pelletier 

et al. (2016).  

• Criterion 5 (Geologic Structure). Catchments situated atop high-permeability, 

dipping sedimentary beds extending beyond the catchment, or shared sedimentary 

beds—particularly carbonate rocks—are more likely to be groundwater importers or 

exporters. We assessed the geologic permeability (expressed as mu(K) where K is 

hydraulic conductivity using data from the GLobal HYdrogeology MaPS 

(GLHYMPS) (Gleeson et al., 2014).  

For each data product, we first assessed the statistical relationships between Fan (2019) 

criteria and inferred groundwater behavior based on Eq. (3-2) using Kruskal-Wallis and 

pairwise Wilcoxon rank sum tests. We binned catchments into roughly equal groups unless 

there were objective breakpoints (e.g., climate and substrate properties). We then used a 

Kruskal-Wallis test to determine if any statistically significant differences were observed 

between groups and OWB closure assuming an α of 0.05. In the case that statistically 

significant differences were observed using the Kruskal-Wallis test, we then used a 

pairwise Wilcoxon rank sum test to further characterize the statistical significance of 

differences between groups. 
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To relate the Fan (2019) criteria to our data, we established splits (e.g., thresholds) in each 

Fan (2019) variable used for categorical classification of our catchments. Splits were 

determined using conditional inference trees, which are a type of unbiased recursive 

partitioning (Hothorn, Hornik, & Zeileis, 2012; Hothorn, Hornik, Van De Wiel, et al., 

2012). Following Hothorn et al. (2015), the algorithm we used first tested independence 

between input variables (e.g., catchment scale, position, and so on) and the response (i.e., 

OWB closure). The algorithm stopped if all variables are found to be independent of the 

response; otherwise, the variable with the strongest association –as measured by a p-value 

–was selected and a binary split was implemented. This process was then repeated 

recursively to obtain splits reported in Table 3-3. For more details on this method we refer 

to Hothorn et al. (2015) and for more details on its implementation in this study we refer 

to Figure S3-1 to S3-6. We report the qualitative Fan (2019) criterion, the split identified 

by unbiased recursive partitioning that was assumed to represent any qualitative threshold 

(e.g., catchment was positioned on the high end of a regional gradient) reported by Fan 

(2019), and the resulting rules for defining agreement between apparent groundwater 

behavior and the Fan (2019) criteria in Table 3-3. 

Table 3-3: Summary of the classification rules for Fan (2019) factors developed via 

conditional inference trees as described by Hothorn et al. (2015) and reported in Figure S3-

1 to S3-6. We define two rules for position as Fan (2019) clearly indicate that lower lying 

catchments are more likely to be importers and higher up catchments are more likely to be 

exporters. In the absence of agreement with any rules listed, catchments retained their 

apparent groundwater behavior (e.g., importer, exporter, or neutral), but were classified 

with lower confidence per Section 3.3.2.1. 
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Criterion Split based on unbiased 
recursive partitioning 

Agreement rule with Fan 
(2019) 

Catchment Scale No statistically significant 
relationship (Figure S3-1) 

None defined 

Position Statistically significant split in 
the relationship between OWB 
closure and position (m/m) > 
0.56 (Figure S3-2) 

Apparent groundwater export if 
OWB + position > 0.56  
 
Apparent groundwater import if 
OWB + position < 0.56 

Climate Statistically significant split in 
the relationship between OWB 
closure and aridity (mm/mm) > 
0.42 (Figure S3-3) 

Apparent groundwater export if 
OWB + aridity > 0.42 

Substrate 
Properties  

Statistically significant split in 
the relationship between OWB 
closure and soil depth (m) > 
2.09 (Figure S3-4) 

Apparent groundwater export if 
OWB + soil depth > 2.09 

Geologic 
Structure 

Statistically significant split in 
the relationship between OWB 
closure and permeability 
(mu(K)) > -12.6 (Figure S3-5) 

Fan (2019) does not indicate 
clear expectation for G, so none 
defined 

3.3.2.1 Classification of G or ε dominance analysis 

Fan (2019) argued that multiple criteria provide the strongest evidence for groundwater 

leakage; in other words, satisfying one of the criteria outlined in Section 3.3.2.2. does not 

unambiguously support groundwater export or import. For example, they find that 

catchments are more likely to be leaky if positioned at the high end of a steep regional 

gradient, underlain by deep substrates, and in a drier climate. As such, we do not focus on 

whether a catchment satisfies a single criterion for our classification. We grouped 

catchments into four categories based on the agreement between inferred groundwater 

behavior based on the evaluation of Eq. (3-2) and agreement with the Fan (2019) criteria 

as defined in Table 3-3.  
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• Self-Contained. We defined catchments as self-contained if long term Gsum + εsum 

was 0% +/- Q uncertainty bounds. These catchments were not assessed for 

agreement with Fan (2019) criteria.  

• Dominant 𝜺𝜺 (No Fan (2019) criterion met). We assumed that 𝜀𝜀 in the underlying 

water budget variables caused the lack of agreement between any explanatory 

physical criteria and inferred groundwater behavior. We had the lowest degree of 

confidence in the physical realism of our upland water budgets in these catchments. 

• G and 𝜺𝜺 (One Fan (2019) criterion met). We assumed that both 𝜀𝜀 and G 

influenced the agreement between only one explanatory physical criterion and 

inferred groundwater behavior. We did not attempt to further disentangle the 

influence of 𝜀𝜀 and G due to data limitations and had a lower degree of confidence 

in the physical realism of our upland water budgets in these catchments.  

• Dominant G (Two or more Fan (2019) criteria met). We assumed that agreement 

between multiple explanatory physical criteria and inferred groundwater behavior 

indicated true signal associated with G. We had the highest degree of confidence in 

the physical realism of our upland water budgets in these catchments. 

3.3.3 Impacts of unsupported CWB assumptions in the Budyko space analysis 

The impacts of broken CWB assumptions on water budget-based inferences are 

underexplored (Andréassian & Perrin, 2012; Koppa & Gebremichael, 2017). In order to 

investigate potential impacts, we first conducted a direct comparison of 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 and 

𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 using each of our three data products. We then assessed how broken CWB 

assumptions influenced deviation from a Budyko modeled ET (i.e., 𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) fraction by 
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contrasting our observed 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 fraction against our observed 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 fraction. Finally, we 

evaluated how these differences impacted inferences about Budyko streamflow anomaly 

(𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) to fs —a metric commonly used as a proxy for climate change in upland 

catchments (Gordon et al., 2022). 

3.3.3.1 Budyko ET fraction analysis 

We compared long term estimates of 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 or 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 across all study sites using our three 

different products. Using potential evapotranspiration data from NLDAS (Table 3-1, Text 

S3.2) and our three different realizations of P, we then evaluated how our different 

realizations of ET fraction interacted with G and 𝜀𝜀 in the Budyko space. To do this, we 

used the conventional form of the Budyko hypothesis presented in Eq. (3-12) to obtain a 

modeled estimate of 𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 by multiplying the left-hand side by P:  

 𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵��������������

𝑃𝑃�
= �𝐸𝐸𝑜𝑜����

𝑃𝑃�
tanh � 𝑃𝑃

�

𝐸𝐸𝑜𝑜����
� �1 − exp �− 𝐸𝐸𝑜𝑜����

𝑃𝑃�
��, Eq. (3-12) 

where 𝐸𝐸𝐸𝐸����, 𝑃𝑃�, and 𝐸𝐸𝑜𝑜��� are mean annual ET, P, and 𝐸𝐸𝑜𝑜 over the 15-year period of record and 

𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵������������ is the mean annual modeled Budyko ET. 

3.3.3.2 Budyko 𝑸𝑸𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 fraction analysis 

In upland settings, analyses of Budyko streamflow anomalies (𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) have indicated that 

greater-than-expected streamflow efficiency (or runoff ratio—Q/P) is correlated to higher 

fs, suggesting that streamflow will decline with an increase in winter rain under climate 

change (Berghuijs et al., 2014). However, to the best of our knowledge, these analyses 

have not considered whether findings are sensitive to assumptions about G and 𝜀𝜀 imbedded 

in 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 despite evidence for large systematic 𝜀𝜀 due to P under-catch in snow-dominated 
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catchments (Lundquist et al., 2021; Wrzesien et al., 2019). Here, we test how G and 𝜀𝜀 

influence the relationship between Budyko streamflow anomaly and fs using the equation 

below: 

𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎����������

𝑃𝑃�
= �1 − 𝐸𝐸𝐸𝐸����

𝑃𝑃�
� − �1 − 𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵��������������

𝑃𝑃�
�, 

Eq. (3-13) 

 

where 𝐸𝐸𝐸𝐸���� is mean annual ET calculated via 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 or 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 over the 15-year period of 

record and 𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵������������ is obtained from Eq. (3-12). We then examined the correlation 

between different realizations of streamflow anomaly and mean annual fs. 

3.4 Results 

3.4.1 Characterization of random 𝜺𝜺: TC-merging results 

A limitation of our TC-based analysis is the need to exclude catchments with cross-

correlated estimation error (Section 3.3.1). Catchments where any pairwise ΔR values 

(Section 3.3.1.1) fell outside the 95% confidence intervals (indicated by black dashed lines 

in Figure S3-7 and S3-8, respectively) were excluded (see Table S3-2 and S3-3). This 

exclusion led to a reduction in the number of study catchments (from 268 to 114). In the 

valid 114 catchments, pairwise ΔR values were small and close to zero (see red lines in S3-

7 and S3-8). The similarity in mean R values obtained for different products (e.g., ERA5 P 

in Figure 3-2A shaded in light purple) suggests that any bias from cross-correlated 

sampling errors in the constructed triplets had a small impact on ETC results. Based on this 

logic, ETC was deemed successful in 114 of the 268 candidate catchments. There were 143 

valid catchments for ET and 170 catchments for P, with 114 catchments that had both. For 

successful catchments, individual performance—as measured by R—in P products (Figure 
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3-2A) was more varied than for ET (Figure 3-2B). The ERA5 most strongly correlated to 

the unknown “true” value of P in 85 of 170 catchments (~50%), NLDAS in 58 of 170 

catchments (~34%), Daymet in 20 of 170 catchments (~12%), and PRISM in 7 of 170 

catchments (~4%). In 124 of 143 catchments (~87%), NCA-LDAS exhibited the strongest 

correlation to the unknown “true” value of ET. In the remaining 19 catchments, ALEXI 

had the strongest correlation to the true ET in 8 catchments (~6%), MOD16 in 6 catchments 

(~4%), and SSEBop in 5 catchments (~3%).  

 

Figure 3-2: A) ETC R results for P products in all valid catchments (n = 170); and B) ETC 

R results for ET products in all valid catchments (n = 143). Boxplots describe variability 

across catchments. Here R is an estimation of the correlation between the product and the 

“true” underlying P or ET value as described in Section 3.3.1. Boxplots show the minimum, 

25th percentile, median, 75th percentile, and maximum values. Catchments where any 

pairwise ΔR values (Section 3.3.1.1) fell outside the 95% confidence intervals (indicated 
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by black dashed lines in Figure S3-7 and S3-8, respectively) were excluded (see Tables S3-

2 and S3-3). 

3.4.2 Characterization of G: Fan (2019) results 

We assessed Eq. (3-2) using TC-Merged P & ET, NLDAS P & ET, and Ensemble Mean P 

& ET to obtain an estimate of inferred groundwater behavior (i.e., G + 𝜀𝜀). Median inferred 

groundwater behavior was -1.8% of P using TC-Merged P & ET , -9.7% of P using 

NLDAS P & ET , and -19.3% of P using Ensemble Mean P & ET; all of which are 

consistent with findings by Safeeq et al. (2021) in a smaller number of densely 

instrumented catchments. Table 3-4 reports the number of catchments classified as 

groundwater exporters (i.e., Psum – Qsum – ETsum > 0), groundwater neutral (i.e., Psum – Qsum 

– ETsum ≅ 0), or groundwater importers (i.e., Psum – Qsum – ETsum < 0) in accordance with 

the definitions outlined in Table 3-2. A greater number of catchments were characterized 

as groundwater exporters or groundwater neutral in the Northeastern and Central US (e.g., 

green and tan boxes in the top half of Figure 3-3) using TC-Merged P & ET. Conversely, 

all products indicated widespread regional groundwater importation in the Western US 

(e.g., red and blue colored boxes in the bottom half of Figure 3-3) and particularly the 

Pacific Northwest (labeled PNW in Figure 3-3) although this could be error related per our 

results in Figure 3-5.  



96 
 

 
 

 

Figure 3-3: Regional variability in the evaluation of Eq. (3-2) where: A) groundwater 

importers are defined based on long-term water budget closure support for negative Gsum 

(Psum – Qsum – ETsum < 0), groundwater neutrality is defined based on long-term water 

budget closure support for Gsum equal to 0 (Psum – Qsum – ETsum ≅ 0), and groundwater 

exporters are defined based long-term water budget support for positive Gsum (Psum – Qsum 

– ETsum > 0) are estimated using the NLDAS P & ET; B) same as above but with Ensemble 

Mean P & ET; C) same as above but with TC-Merged P & ET. We plot the water budget 

closure as a percent of each respective Psum to facilitate more intuitive and contextual 

interpretation of the results. Grey bounds indicate the potential uncertainty introduced by 

Qsum. We refer the reader to Figure 3-1 for abbreviations. Inset histograms represent the 

distribution of OWB closure across catchments using each of the three different products. 
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Table 3-4: Summary of inferred groundwater behavior (e.g., Gsum + εsum) based on the 

evaluation of Eq. (3-2) with NLDAS, Ensemble Mean, and TC-Merged products.  

We found that OWB closure using TC-Merged P & ET was the most consistent with 

physical reasoning based on Fan (2019). For example, when TC-Merged P & ET were used 

we observed that groundwater exporters were positioned higher up in the containing sub-

basin (Figure 3-4F), were variably more arid (Figure 3-4I) and had deeper permeable 

regolith or fractured rock (Figure 3-4L), consistent with Fan (2019). TC-Merged P & ET 

indicated statistically significant differences between inferred groundwater behavior and 

catchment position (Table 3-5), with groundwater exportation (i.e., positive G + 𝜀𝜀) 

observed for higher catchment positions (Figure 3-4F) as postulated by Fan (2019). 

Although NLDAS P & ET indicated a similar rightward shift in the boxplots as drainage 

position increased (Figure 3-4D), it supported widespread groundwater importation (i.e., 

negative G + 𝜀𝜀 ) counter to our expectation. TC-Merged P & Et also supported a 

statistically significant relationship between higher groundwater exportation (i.e., positive 

G + 𝜀𝜀) and aridity (Figure 3-4I, Table 3-5). Conversely, NLDAS and Ensemble Mean P & 

Category 
 

Mathematical 
Description 

 

NLDAS 
 

Ensemble 
Mean 

 

TC-Merged 
 

#  % of 
total #  % of 

total #  % of 
total 

Groundwater 
Neutral 

 Gsum + εsum = 
Psum – Qsum – 
ETsum = 0 

25 21.9% 0 0% 29 25.4% 

Groundwater 
Exporter 

Gsum + εsum > 
Psum – Qsum – 
ETsum > 0 

7 6.1% 0 0% 33 28.9% 

Groundwater 
Importer 

Gsum + εsum < 
Psum – Qsum – 
ETsum < 0 

82 71.9% 114 100% 52 45.6% 
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ET indicated a statistically significant relationship between groundwater importation (i.e., 

negative G + 𝜀𝜀) and aridity (Figure 3-4G, 3-4F, Table 3-5). Consistent with the expectation 

that deep regolith or fractured rock increased groundwater export (Fan, 2019), TC-Merged 

P & ET supported statistically significant relationships between greater depth to bedrock 

and groundwater export (i.e., positive G + 𝜀𝜀) (Figure 3-4L). Neither NLDAS nor Ensemble 

Mean P & ET (Figure 3-4J and 3-4L) indicated any statistically significant relationships 

between depth to bedrock and inferred groundwater behavior (Table 3-5).  

  

Figure 3-4: Boxplots showing the 25th percentile, 50th percentile, 75th percentile and the 

standard error bars for inferred groundwater behavior based on Eq. (2) versus each of the 
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five Fan (2019) criteria proposed in Section 3.3.2.1 to determine whether a catchment is an 

importer, neutral, or exporter. The criteria are plotted as follows: A-C) Catchment size 

relative to depth of permeable regolith (Criteria 1); D-F) Catchment position relative to a 

regional gradient measured as the ratio of mean catchment elevation to maximum sub-

basin elevation; G-I) Catchment climate as measured using the aridity index; J-L) 

Catchment depth of permeable substrate or fractured rock as measured by depth to bedrock; 

and M-O) Catchment geological permeability as measured by the log of hydraulic 

conductivity (K). Inferred groundwater behavior is approximated for plots A, G, D, J, M 

using NLDAS P & ET, for plots B, E, H, K, N using Ensemble Mean P & ET, and plots C, 

F, I, L, and O using TC-Merged P & ET. We report the Kruskal-Wallis p-value assuming 

a significance level of α = 0.05 for each plot. If the Krushkal-Wallis p-value was 

statistically significant, we reported the results of a Pairwise Wilcoxon Rank Sum Test 

(Table 3-5).  

Table 3-5: Table of the statistically significant results for Pairwise Wilcoxon Rank Sum 

Tests for each of the five Fan (2019) factors proposed in Section 3.3.2.1. We assumed a 

significance level of α = 0.05 and report significant p-values for pairwise comparisons 

within the groups above using a Pairwise Wilcoxon Rank Sum Test. We did not calculate 

pairwise statistics if the Kruskal-Wallis p-value was not significant. 

Factor Pairwise 
Comparison 

Group 1 Group 2 NLDAS Ensemble 
Mean  

TC-
Merged  

Name Sample 
Size Name Sample 

Size p Value p Value p Value 
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 Position 
(m/m) 

0.1-0.4 
versus 0.6-

0.7 

0.1-
0.4 20 0.6-

0.7 21 0.008 0.048 0.005 

0.1-0.4 
versus 0.7-

0.9 

0.1-
0.4 20 0.7-

0.9 38 0.008 NS 0.000 

0.4-0.5 
versus 0.6-

0.7 

0.4-
0.5 19 0.6-

0.7 21 0.012 0.008 0.017 

0.4-0.5 
versus 0.7-

0.9 

0.4-
0.5 19 0.7-

0.9 38 0.006 0.044 0.001 

0.5-0.6 
versus 0.6-

0.7 

0.5-
0.6 16 0.6-

0.7 21 0.047 NS 0.025 

0.5-0.6 
versus 0.7-

0.9 

0.5-
0.6 16 0.7-

0.9 38 0.020 NS 0.002 

Aridity 
(mm/mm) 

0-0.5 versus 
0.5-1 0-0.5 17 0.5-1 79 0.000 0.000 0.000 

0-0.5 versus 
1-1.5 0-0.5 17 1-1.5 7 0.002 0.002 0.002 

0-0.5 versus 
1.5-2.5 0-0.5 17 1.5-

2.5 11 0.000 0.000 0.000 

Depth 
(m) 

0-10 versus 
30-40* 0-10 102 30-40 5 NS NS 0.003 

0-10 versus 
40-50* 0-10 102 40-50 3 NS NS 0.023 

10-20 versus 
30-40 10-20 3 30-40 5 NS NS 0.036 

log(K) 
(m2) 

-12 versus -
14 -12 21 -14 29 0.007 0.01 0.019 

-12 versus -
15 -12 21 -15 31 0.013 0.005 0.003 

-12 versus -
16 -12 21 -16 8 NS NS 0.032 
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-13 versus -
14 -13 25 -14 29 0.024 0.001 NS 

-13 versus -
15 -13 25 -15 31 NS 0.002 NS 

3.4.2.1 Classification of G or ε dominance results 

We separated catchments into the four groups reported in Table 3-6 using the classification 

rules established via our unbiased recursive partitioning analysis (Table 3-3). Per Figure 3-

5, we observed distinct regional patterning in our catchment classification. For example, 

of the 37 catchments located in the Western US (Table S3-2) that were not apparently self-

contained, there was strong physical support for inferred groundwater behavior in only one 

catchment (~3% of 37) with weak support for 10 catchments (~27% of 37) and 

inconclusive support in 23 catchments (~62% of 37) using TC-Merged P & ET with 

NLDAS and Ensemble Mean P & ET yielding similar results. Some of these catchments 

in the Western US with the greatest implied 𝜀𝜀 were in steeper terrain and generally had a 

larger fs (consistent with gauge under-catch; see Figure S3-9), which would be expected to 

lead to the systematic under-prediction of P (Henn et al., 2018; Rasmussen et al., 2012; 

Wrzesien et al., 2019). Overall, TC-Merged P & ET yielded the highest number of 

catchments with strong physical support as assessed against the Fan (2019) framework, 

particularly in the Central and Eastern US (Figure 3-5, Table 3-6). 

Table 3-6: Summary of inferred groundwater behavior (e.g., Gsum + εsum) based on the 

evaluation of Eq. (3-2) with NLDAS, Ensemble Mean, and TC-Merged products.  

Classification 
Agreement 
with Table 

3 Rules  
Assumptions 

NLDAS Ensemble 
Mean 

TC-
Merged 

#  % of 
total #  % of 

total #  % of 
total 
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Self-
Contained  N/A G = 0, ε = 0 25 21.9% 0 0.0% 29 25.4% 

Dominant ε No rules 
satisfied 

Very weak 
physical 

support for 
inferred 

groundwater 
behavior 

41 36.0% 65 57.0% 19 16.7% 

G and ε One rule 
satisfied 

Inconclusive 
physical 

support for 
inferred 

groundwater 
behavior 

29 25.4% 30 26.3% 33 28.9% 

Dominant G 
Two or 
more rules 
satisfied  

Strong 
physical 

support for 
inferred 

groundwater 
behavior 

19 16.7% 19 16.7% 33 28.9% 
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Figure 3-5: Variability in physical support for inferred groundwater behavior based on the 

Fan (2019) criterion presented in Section 3.3.2.1 using A) NLDAS P & ET; B) Ensemble 

Mean P & ET; and C) TC-Merged P & ET. Maps displaying catchment classification using 

D) NLDAS P & ET; E) Ensemble Mean P & ET; and C) TC-Merged P & ET. 

Abbreviations for the regions correspond to Figure 3-1. 

3.4.3 Impacts of unsupported CWB assumptions  

3.4.3.1 Budyko ET fraction results  

Our results show that choices about ET, including whether it is evaluated independently 

(e.g., 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂) or derived (e.g., 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶) by ignoring G and 𝜀𝜀, can lead to substantially 

different hydrologic inferences in upland catchments (Figure 3-6A to 3-6C). Across all 

products, we observed limited agreement between 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 and 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 with inset histograms 

reinforcing widespread potential for 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 to underestimate 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 (warmer colors in 

Figure 3-6A to 3-6C). This underestimation of 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝐵𝐵 was particularly pronounced in 

places (e.g., steep, snowy catchments in the western US, Figure S3-9) where the estimation 

of P is more variable (larger circles in Figure 3-6A to 3-6C). We suggest that this is 

consistent with large unconsidered 𝜀𝜀 (Figure 3-5) arising from systematic under-prediction 

of P (Henn et al., 2018; Rasmussen et al., 2012; Wrzesien et al., 2019). TC-Merged P & 

ET were less obviously biased towards underestimation than either NLDAS or Ensemble 

Mean P & ET, particularly in the central and eastern US. Here, the TC-Merged P & ET 

indicated potential for 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 to overestimate 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂, which is consistent with 

unconsidered G exportation and our classification results (Figure 3-5).  
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Figure 3-6: Differences between long-term 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 and 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 across all catchments (n = 

114) using: A) NLDAS P & ET and USGS Q; B) Ensemble Mean P & ET and USGS Q; 

and C) TC-Merged P & ET and USGS Q. Coloring is based on observed on the percent 

difference between 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 and 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 with values less than -100% and more than 100% 

constrained to those bounds for plotting. Sizing is based on the maximum disagreement 

between long-term estimates of P. We present scatterplots of 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 versus 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 colored 

by aridity in Figure S3-10. 

In the Budyko space, we found that the largest differences in plotted ET fraction were 

driven by the propagation of CWB assumptions about G and 𝜀𝜀 into 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 with smaller 

differences based on the selection of an individual product (Figure 3-7A, C, E versus Figure 

3-7B, D, F). When 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 was used, we observed that ET fraction was substantially lower 

than expected based on Eq. (3-12) in catchments impacted by 𝜀𝜀 (triangles and inverted 

triangles in 3-7A, C, and E) when compared to smaller deviations in catchments with 

physically realistic G (squares in Figure 3-7) or that were self-contained (circles in Figure 
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3-7) consistent with Jones et al. (2012). Voepel et al. (2011) suggested that steeper 

catchments may be associated with lower ET fraction; however, we found that steepness 

may increase 𝜀𝜀 bias in observed ET fraction. That is, catchments impacted by 𝜀𝜀 also tended 

to be steeper, snowier, and in the Western US (see Figure S3-9), where other research 

suggests that there is large potential for 𝜀𝜀 —particularly systematic P under-prediction 

(Henn et al., 2018; Rasmussen et al., 2012; Wrzesien et al., 2019). When 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 was used, 

G and 𝜀𝜀 had less obvious influence over ET fraction (Figure 3-7B, D, F), underscoring how 

these assumptions are propagated into the Budyko space via 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 when not properly 

considered.  
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Figure 3-7: Variability in Budyko plots across all catchments (n = 114) using 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 

combined with: A) NLDAS P; C) Ensemble Mean P; and E) TC-Merged P. Variability in 

Budyko plots across all catchments using 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 combined with: B) NLDAS P & ET; D) 

Ensemble Mean P & ET; and F) TC-Merged P & ET. Shapes correspond to Fan (2019) 

classification based on Figure 3-5. Coloring is based on observed OWB closure as 

calculated according to Section 3.3.2. Evaporative Index values less than 0 were forced to 

0 for plotting purposes and are denoted as smaller symbols. 

3.4.3.2 Budyko 𝑸𝑸𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 results  

Per Eq. (3-13), lower-than-expected ET fraction drives higher-than-expected streamflow 

anomaly in Budyko-based assessments. Although previous research has attributed higher-

than-expected streamflow anomaly to larger fs in upland catchments (Barnhart et al., 2016; 

Berghuijs et al., 2014; Ni et al., 2015), we found that the strength of this relationship is 

also systematically influenced by 𝜀𝜀 in particular when 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 is used. For example, when 

TC-Merged P was used to obtain 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶, we found that catchments impacted by 𝜀𝜀 (dashed 

lines in Figure 3-8E, Table 3-7) were 5.5 times more sensitive to fs than catchments with 

physically realistic G (dotted lines in Figure 3-8E, Table 3-7) and 3 times more sensitive 

than self-contained catchments (solid lines in Figure 3-8E, Table 3-7). This patterned 

response was similar using NLDAS P (Figure 3-8C), but more muted using Ensemble 

Mean P (Figure 3-8A). The contrast with 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 across all products further highlighted the 

effect of poor CWB assumptions about 𝜀𝜀 versus G on the relationship between streamflow 

anomaly and fs (Figure 3-8B, D, F, Table 3-7). Notably, when TC-Merged P & ET were 

used in catchments impacted by G (i.e., with strong physical support for underlying water 
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budget), streamflow sensitivity to fs was consistent between 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 (slope = 0.13, Table 

3-7) and 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 (slope = 0.11, Table 3-7) and lower than previous results (e.g., slope = 

0.37 from Berghuijs et al. (2014) and 0.32 from Barnhart et al. (2016)). Both TC-Merged 

P & ET and NLDAS P & Et also yielded consistent slopes in self-contained catchments 

per Table 3-7. 

 

 

Figure 3-8: Variability in the relationship between Budyko streamflow anomaly and fs 

across all catchments (n = 114) using 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 combined with: A) NLDAS P; C) Ensemble 

Mean P; and E) TC-Merged P. Variability in the relationship between Budyko streamflow 

anomaly and fs using 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 combined with: B) NLDAS P & ET; D) Ensemble Mean P 
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& ET; and F) TC-Merged P & ET. Shapes correspond to Fan (2019) classification based 

on Figure 3-5. Coloring is based on the evaluation of Eq. (3-2) using ETOWB. Line-type 

corresponds to binned linear regressions based on catchment grouping according to Fan 

(2019) classification based on Figure 3-5. Consistent with Figure 3-6, 𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�������� values greater 

than 1 were forced to 1 for plotting purposes and are denoted as smaller symbols. 

Table 3-7: Table of the binned linear regression equations and correlation coefficients 

corresponding with Figure 3-7A to 3-7F. Here, y = 𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�������� and x = 𝑓𝑓𝑓𝑓���. 

Data 
Product 

Number of Fan 
(2019) Criteria 

Met 

ETCWB ETOWB 

Equation r Equation r 

NLDAS 

Self-Contained 
 y = 0.31x + 

0.04 0.66 
 y = 0.32x + 

0.03 0.68 

Dominant 𝜀𝜀 
 y = 0.66x + 

0.09 0.62 
 y = 0.35x + 

0.03 0.63 

Dominant 𝜀𝜀 or G 
 y = 0.65x + 

0.38 0.32  y = 0.21x + 
0.08 0.44 

Dominant G 
y = -0.10x + 

0.21 -0.15 y = 0.26x + 0.08 0.60 

Ensemble 
Mean 

Self-Contained - -  - - 

Dominant 𝜀𝜀 
 y = 0.55x + 

0.04 0.560 
 y = 0.29x – 

0.09 0.53 

Dominant 𝜀𝜀 or G 
y = 0.81x + 

0.27 0.44 y = 0.22x + 0.01 0.46 

Dominant G 
y = 0.38x + 

0.07 0.27 y = 0.06x – 0.01 0.11 

TC-
Merged 

Self-Contained 
 y = 0.23x + 

0.13 0.58 
 y = 0.21x + 

0.14 0.62 

Dominant 𝜀𝜀 
 y = 0.72x + 

0.15 0.58 
 y = 0.08x + 

0.15 0.28 
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Dominant 𝜀𝜀 or G 
 y = 1.68x + 

0.14 0.41  y = 0.04x + 0.2 0.09 

Dominant G 
 y = 0.13x + 

0.08 0.13  y = 0.11x + 
0.20 0.14 

3.5 Discussion 

3.5.1 Does long term OWB closure— assisted by the Fan (2019) framework, TC, 

and 𝑬𝑬𝑬𝑬𝑶𝑶𝑶𝑶𝑶𝑶 products — validate conventional CWB assumptions in upland 

catchments? 

Neglecting the contributions of G and ε to upland water budgets by imposing closure 

conveniently reduces data requirements to P and Q . However, our results show that these 

assumptions are unsupported in a range of upland settings (see Figure 3-3, 3-5) with 

significant implications for CWB-based tools, including conventional forms of the Budyko 

hypothesis. We show that when a CWB is inappropriately applied, the true G and 𝜀𝜀 

magnitudes are deposited into a calculated ET (𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶) (Figure 3-6), leading to systematic 

biases in catchment plotting in Budyko space (Figure 3-7, 3-8) as discussed in Section 

3.5.2.  We contrast these results with an evaluation of Eq. (3-2) using an OWB-based 

approach that leverages a physically-based framework for characterizing G proposed by 

Fan (2019), TC-based merging, and several independent estimates of 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂. The 

combined result of these advances indicated widespread non-zero G + 𝜀𝜀 in a range of 

upland settings: for example, inferred groundwater behavior (i.e., G + 𝜀𝜀) as determined by 

the evaluation of Eq. (3-2) using TC-Merged P & ET suggested that 85 of 114 upland 

catchments were not self-contained. These findings provide broad and quantitative 

evidence in support of recent calls to revisit common assumptions about G and 𝜀𝜀 used to 
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close the water budget and derive 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 in upland settings (Fan, 2019; Kampf et al., 2020; 

Safeeq et al., 2021).  

At the same time, our results point to the very real challenge of disentangling signal 

associated with G from 𝜀𝜀 (Figure 3-3, 3-5, Tables 3-4 to 3-6) in upland settings that lack 

comprehensive groundwater datasets (Fan, 2019) and are more susceptible to the 

systematic under-prediction of P (Lundquist et al., 2019; Rasmussen et al., 2012; Wrzesien 

et al., 2019). This is particularly true for steeper, snowier catchments in the western US 

due to orographic enhancement and complex terrain (Dettinger et al., 2004; He et al., 2019; 

Henn et al., 2018; Wrzesien et al., 2019), sparse precipitation measurements (Jing et al., 

2017), and P under-catch (Rasmussen et al., 2012). Consistent with this body of research, 

we found that the evaluation of Eq. (3-2) in these catchments was disproportionately 

impacted by 𝜀𝜀 (Figure 3-3, 3-5, S9), limiting confidence in the resulting water budgets 

regardless of the products, approaches, and tools used. Although this challenge is a 

significant one, as bias correction methodologies improve estimations of P (Beck et al., 

2020) the benefits of using TC-Merged estimates of 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 to evaluate Eq. (3-2) may 

enable more robust water budget-based supply predictions in these particular settings. 

3.5.2 In upland catchments where CWB assumptions are invalid, how do the Fan 

(2019) framework, TC, and 𝑬𝑬𝑬𝑬𝑶𝑶𝑶𝑶𝑶𝑶 products differ in Budyko-based 

inferences about water supplies? 

Recent research has highlighted the need to better connect systematic shifts in catchment 

location in the Budyko space to physical explanation (Berghuijs et al., 2020). Previous 

work (Hahm et al., 2019; Istanbulluoglu et al., 2012; Jones et al., 2012) has suggested that 
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groundwater losses can lead to systematic deviations in catchment plotting below the 

Budyko curve due to lower ET fractions and illustrated impacts to streamflow (Han et al., 

2021), with a diminished focus on 𝜀𝜀. Meanwhile, other work has examined the influence 

of 𝜀𝜀 without consideration of G (Andréassian & Perrin, 2012; Koppa & Gebremichael, 

2017; Valéry et al., 2010). Our results underscore that there is a pressing need for future 

work to simultaneously consider both (Figure 3-3 to 3-8, Tables3-4 to 3-7)—particularly 

when 𝜀𝜀 is systematic in nature (Section 3.4.2.1)—as it can potentially bias  estimates of 

𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 (Figure 3-5 to 3-6), which are widely used in upland settings (Barnhart et al., 2016; 

Berghuijs et al., 2014; Condon & Maxwell, 2017; Greve et al., 2020). Consistent with prior 

work on the influence of groundwater in the Budyko space (Hahm et al., 2019; 

Istanbulluoglu et al., 2012; Jones et al., 2012), we observed that catchments tracked 

slightly below the Budyko curve. We observed slightly lower-than-expected ET fractions 

based on modeled 𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 per Eq. (3-12) when constrained to catchments with strong 

physical support for inferred groundwater behavior (see squares in Figure 3-7). However, 

large 𝜀𝜀 in the underlying water budget led to more uniform and dramatic deviations from 

ET on modeled 𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (see triangles and inverted triangles in Figure 3-7). 

Understanding whether and how changes in precipitation phase will influence streamflow 

remains a pressing challenge as reflected in contrasting literature results (Barnhart et al., 

2016; Berghuijs et al., 2014; McCabe et al., 2018; Milly & Dunne, 2020; Gordon et al., 

2022). By imposing CWB assumptions in upland catchments, some research (Berghuijs et 

al., 2014; Ni et al., 2015) has used the Budyko hypothesis to posit that higher fs influences 

lower-than-expected ET fractions (higher-than-expected 𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) based on modeled 
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𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵. However, snow-dominated upland catchments where fs is higher are also likely 

to experience non-zero G (Carroll et al., 2019) and are particularly susceptible to 

systematic under-prediction of P (Dettinger et al., 2004; He et al., 2019; Henn et al., 2018; 

Wrzesien et al., 2019). We also observed non-zero G and 𝜀𝜀 in the majority of our 

catchments (Table 3-4), the balance of which was propagated into the relationship between 

𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and fs via 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 (Figure 3-8, Table 3-7). Across all products, we found that the 

relationship between 𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and fs was highly sensitive to broken assumptions about 𝜀𝜀 

when 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 was used. Using TC-Merged 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 , the sensitivity of 𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 to fs was 5.5 

times greater in catchments impacted by 𝜀𝜀 than in catchments with physically supported G 

and 3 times greater than in self-contained catchments (Figure 3-8, Table 3-7). Within 

catchments impacted by 𝜀𝜀, we further observed that the use of 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶  increased the 

sensitivity of 𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 to fs by 9 times when compared to 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 . Catchments impacted by 

𝜀𝜀 tended to be steeper, snowier catchments in the western US (Figure 3-5, S9), highlighting 

that systematic under-prediction of P can bias Budyko-based inferences about upland water 

supplies in important and unconsidered ways.  

Using TC-Merged P & ET in catchments with strong physical support for OWB closure 

(Section 3.4.2) also led to weaker relationships between 𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and fs than in previous 

results (slope = 0.13 for 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶, slope = 0.11 for 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 per Table 3-7 versus slope = 0.37 

from Berghuijs et al. (2014) and 0.32 from Barnhart et al. (2016)). These findings are 

consistent with recent research showing that climate change-driven declines in fs have not 

led to anticipated declines in streamflow efficiency in the Western US (McCabe et al., 

2018) and/or that rain may countervail reductions in streamflow from declining fs 
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(Hammond & Kampf, 2020). Given this, we suggest that caution is warranted when 

applying the conventional (CWB-based) form of the Budyko hypothesis to make 

predictions about water supplies in upland settings where disentangling the effects of 

physical (e.g., G) and non-physical (e.g., 𝜀𝜀) factors remains a challenge. Expansion of the 

Budyko equation and subsequently Eq. (3-13) to include G and ε variables following prior 

work by Istanbulluoglu et al. (2012) may be one way to enable more robust inferences.  

3.5.3 When ε is characterized using TC, can the Fan (2019) framework and 𝑬𝑬𝑬𝑬𝑶𝑶𝑶𝑶𝑶𝑶 

products improve insights about G export or import in upland settings?  

CWBs and associated tools like the Budyko hypothesis ignore G to derive 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 and make 

inferences about upland surface water supplies over longer timescales. However, evidence 

increasingly suggests that upland catchments can import/export substantial groundwater 

resources even over longer periods of time (Condon et al., 2020; Fan & Schaller, 2009; 

Fan, 2019). We found that TC-Merged P & ET facilitated insights about G that were not 

possible with other products tested (Figure 3-5) and importantly, that are ignored altogether 

in many applications of CWBs and CWB-based tools including the Budyko hypothesis 

(Section 3.5.1 and 3.5.2). Consistent with expectations based on relevant literature (Fan & 

Schaller, 2009; Welch & Allen, 2012), TC-Merged P & ET substantially increased the 

number of catchments classified as groundwater exporters based on inferred groundwater 

behavior (i.e., positive G + 𝜀𝜀 based on Eq. (3-2) over other products (33 with TC-Merged 

P & ET versus 7 with NLDAS P & ET versus 0 with Ensemble Mean per Table 3-4). When 

inferred groundwater behavior was further evaluated using the criteria outlined in Section 

3.3.2., TC-Merged P & ET yielded 33 catchments with strong physical support for inferred 
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G (Table 3-6), which was almost two times the catchments NLDAS P & ET or Ensemble 

Mean P & ET yielded (19 catchments each, respectively). Overall, statistically 

characterizing random 𝜀𝜀 via TC substantially increased the number of catchments with 

physically supported G based on five testable physical criteria drawn from Fan (2019) 

(Figure 3-5, Table 3-6). Furthermore, results using TC-Merged P & ET confirmed the 

profile of groundwater exporting catchments drawn by Fan (2019): that they are positioned 

higher up in their containing sub-basins, are drier, and have deeper permeable regolith or 

fractured rock (Figure 3-4 and 3-5, Table 3-5 and 3-6). When combined with Section 3.5.1 

and 3.5.2, this suggests that there is robust potential for novel combinations of TC-based 

merging and the Fan (2019) framework to harness advances in independent estimates of 

𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 to improve predictions about critical surface and groundwater resources originating 

in upland settings.  

3.5.4 Limitations and paths forward 

Accurately closing the water budget in data-limited upland settings has eluded hydrologists 

for decades (Kampf et al., 2020) and is likely to remain elusive for many more (Safeeq et 

al., 2021). However, incremental progress that weaves together novel tools like TC and 

physically based frameworks like the one presented by Fan (2019) into OWBs can facilitate 

critical insight about upland water supplies. Nevertheless, several limitations are worthy of 

further discussion.  

First, near term measurement limitations in interbasin groundwater fluxes and stores 

(Condon & Maxwell, 2017; Fan, 2019) undeniably exist and were a limitation in this study. 

Due to these limitations, we were restricted in our validation of inferred groundwater 
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behavior and neglected the contribution of Δ𝑠𝑠
Δ𝑡𝑡

 due to the too coarseness of existing data 

(Tapley et al., 2004) and challenges associated with distinguishing G from Δs
Δ𝑡𝑡

 (Enzminger 

et al., 2019). However, a number of promising paths are being pursued to estimate 

groundwater fluxes and stores using gravity based measurements such as the Gravity 

Recovery and Climate Experiment (GRACE) mission (Tapley et al., 2004) and follow-on 

mission (Flechtner et al., 2014). Here too, there is potential value in microwave-based soil 

moisture retrievals (Crow et al., 2017b), which could serve as a down-scaling tool. Other 

approaches, such as hydro-geophysical characterization (Gordon et al., 2020; Schmidt & 

Rempe, 2020; Smith et al., 2017), or some combination of the above in combination with 

the water budget (Hahm et al., 2019) may also be helpful in improving our understanding 

of upland groundwater resources. At larger scales, however, physically based frameworks 

like the one put forward by Fan (2019) can help to improve and refine our understanding 

of the characteristics that promote interbasin groundwater import or export beyond those 

illustrated here. There are, however, challenges associated with linking qualitative criteria 

to quantitative data in a robust and repeatable manner. In this study, we used a Kruskal-

Wallis and pairwise Wilcoxon rank sum to first establish statistical relationships between 

water budget closure and continuous data used to approximate the physical criteria 

proposed by Fan (2019). We then use conditional inference trees to establish rules relating 

observed water budget closure to physical criteria. Although our results indicate strong 

statistical support for the use of Fan (2019), future work could improve linkages between 

this generalizable framework and continuous data. When incorporated into the template 

put forward by Istanbulluoglu et al. (2012), advances in the quality and availability of 
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groundwater data could assist simple tools like the Budyko hypothesis in more robustly 

accounting for conventionally ignored water budget variables.  

Second, the use of TC in our study reduced the number of study catchments from 268 to 

114, which underscores an important limitation of this method, at least based on the levels 

of correlated errors in currently available products. Because our methodology required 

valid TC outputs (e.g., outputs that do not violate assumptions listed in Section 3.1) for 

both P and ET, it is not surprising that many catchments had to be excluded in our analysis. 

Interestingly, valid ET estimates proved to be more challenging for TC (n = 143 valid 

estimates) than valid P outputs (n =170). These challenges could be attributed in part to the 

pervasiveness of systematic errors in the underlying P data, including persistent under-

catch, which tend to be more resilient to filtering via averaging (Yilmaz & Crow, 2014). 

Despite these challenges, TC enabled physically supported insight about G and 𝜀𝜀 that were 

otherwise obscured using other products (Figure 3-8). Improvements in bias-correction 

methodologies and underlying estimations (Beck et al., 2020) could work in concert with 

advances in data and modeling to expand the number of products with independent error 

sources available in upland settings. Of particular interest is the role dynamic atmospheric 

models like the Weather Research and Forecasting (WRF) model may have in improving 

estimates of P by better accounting for topographical features and mountain-precipitation 

interactions (He et al., 2019; Lundquist et al., 2019). Advances in remote sensing may also 

improve detection of solid and/or mixed phase P in complex topography (Lundquist et al., 

2008; Maggioni et al., 2016), which is a goal of the on-going Global Precipitation 

Measurement (GPM) mission (Skofronick-Jackson et al., 2018). Continued improvement 

in measurement technology can help further eliminate systematic errors, enhancing the 
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efficiency of TC for statistically characterizing and filtering random error in upland water 

budgets.  

3.6  Conclusions 

Water budgets and associated tools like the Budyko hypothesis are likely to remain central 

to investigations of upland catchment behavior. Recent advances in approaches to 

condition expectations about G (e.g., Fan (2019)), tools to characterize ε (e.g., TC), and 

products to estimate 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 offer an opportunity for users to pivot away from the 

restrictive—and increasingly fragile—assumptions required to impose water budget 

closure. Motivated by this opportunity, our study sought to better understand the value of 

these advances for understanding the validity and consequences—in terms of inferences 

about surface and groundwater —of CWB assumptions (i.e., G = 0, ε = 0  𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 = P – 

Q) in a range of upland settings.  

Here we find that propagating largely unsupported CWB assumptions into 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 had a 

profound effect on inferences about upland surface and groundwater resources when 

assessed against an OWB assisted by a physical framework proposed by Fan (2019), TC, 

and independent estimates of 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂. In particular, we observed that unconsidered 𝜀𝜀 can 

unrealistically alter expectations about streamflow response to climate change and mask 

groundwater contributions. Long term OWB closure supported non-zero G and ε in 85 of 

114 catchments (~75%) using TC-Merged P & ET, 89 of 114 catchments (~78%), using 

NLDAS P & ET, and all 114 catchments using Ensemble Mean P & ET over a 15-year 

period. When these were screened based using five testable criteria proposed by Fan 

(2019), TC-Merged P & ET led to physically realistic G in 33 of 114 catchments (~29%)—



118 
 

 
 

the most of any product tested. Using TC-Merged estimates of 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 , we observed 

inflated (5.5 times higher) streamflow response to fs in catchments with large 𝜀𝜀 compared 

to those with smaller suspected 𝜀𝜀. Furthermore, within catchments with large 𝜀𝜀, we found 

that TC-Merged 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶  increased the sensitivity of streamflow to fs by 9 times more than 

TC-Merged 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 . Because 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶  is commonly used to make these types of inferences, 

our results highlight the need for users to consider the effects of 𝜀𝜀—in addition to physical 

factors such as G—in discussions about catchment behavior in the Budyko space. More 

fundamentally though, the widespread conflict between CWB assumptions and observed 

OWB closure in upland catchments points to the need for users to critically evaluate the 

Budyko assumptions when error and groundwater flow are expected to be high. 

In the vital pursuit of improved predictions about upland water supplies, our results 

demonstrate the value of TC and a physically-based framework proposed by Fan (2019) 

for harnessing advances in the estimation of 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 and expanding the use of OWBs. While 

CWB approaches—and to a lesser extent conventional products (e.g., a standard model and 

ensemble mean)—overlooked strong evidence for G, the combination of TC-based 

merging and the physically-based framework proposed by Fan (2019) revealed 

groundwater exportation in high positioned, arid catchments with deep substrates. Albeit 

challenging, larger and more comprehensive groundwater datasets in upland settings could 

help to further refine insights about G in Budyko-type analyses. As modeling, remote 

sensing, data assimilation, and bias correction techniques in upland settings advance in 

tandem, combining TC and evidence-based frameworks is a promising path forward to 

improve predictions about upland water supplies. 
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https://disc.gsfc.nasa.gov/ (last access: 10 July 2020) (Kumar et al., 2019), and MODIS16 

evapotranspiration data were accessed at 
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https://ral.ucar.edu/solutions/products/camels (last access: July 20, 2021). 
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3.9 Supplemental Information 

Text S3.1: Spatial and Temporal Upscaling 

All raw data for P and ET products were upscaled to an 8 day temporal resolution to match 

with the MODIS16 product resolution. For products with a daily temporal resolution, 

missing data for more than 3 days within the 8 day period resulted in the 8 day aggregate 

being considered ‘not available’ in the resulting timeseries. On average, P and ET triplets 

were comprised of 581 of a maximum 689 collocated data points with a standard deviation 

of 85 points. 

Text S3.2: Data 

ERA5 P 
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ERA5 is the fifth atmospheric reanalysis product generated by the European Centre for 

Medium-Range Weather Forecasts (ECMWF), which combines model data with global 

observations to create a complete and consistent record of selected variables, including 

precipitation (Hersbach et al., 2020). It is based on the Integrated Forecasting System 

Cy41r2, which leverages developments in model physics, data assimilation, and core 

dynamics. Details about the spatial and temporal resolution of ERA5 and all other datasets 

are provided in Table 2 below. For this analysis, we used the daily aggregate ERA5 product 

available through Google Earth Engine (Gorelick et al., 2017) and extracted the mean daily 

total precipitation for each candidate catchment from October 1, 2001 to September 30, 

2016.  

PERSIANN-CDR P 

PERSIANN-CDR is a continuous, long-term precipitation data product that is generated 

using gridded satellite (GridSat-B1) infrared data (Ashouri et al., 2015). PERSIANN-CDR 

is adjusted using the Global Precipitation Climatology Project monthly product to ensure 

consistency in the data sets. Like the ERA5 product, the mean daily total precipitation from 

PERSIANN-CDR was extracted for each candidate catchment from October 1, 2001 to 

September 30, 2016 using Google Earth Engine. 

NLDAS-2 P 

NLDAS-2 precipitation data set is an hourly product based on temporal disaggregation of 

Climate Prediction Center CONUS gauge data (Cosgrove et al., 2003; Higgins et al., 2000; 

“NLDAS-2 Forcing Dataset Information | LDAS,” 2020), CPC hourly gauge data, hourly 

Doppler Stage II radar precipitation data, half-hourly CMORPH data, and 3-hourly North 



132 
 

 
 

American Regional Reanalysis precipitation data. A more complete account of the 

NLDAS-2 precipitation forcing data are provided by NASA (Xia et al., 2012). NLDAS-2 

precipitation data were obtained from the CAMELS database for October 1, 2001 to 

December 31, 2014. Precipitation data from 2015-2016 were obtained from Google Earth 

Engine following the same methods as for ERA5 and PERSIANN-CDR.  

Daymet P 

Daymet product provides gridded weather parameters for North America and includes 

continuous daily precipitation (Thornton et al., 1997). The Daymet algorithm uses ground 

observations from meteorological stations throughout the United States sourced from the 

Cooperative Summary of the Day network run by the National Climate Data Center 

(NCDC) and the SNOwpack and TELemetry (SNOTEL) dataset managed by the Natural 

Resources Conservation Service (NRCS) (Thornton et al., 1997). Daymet additionally 

requires a digital elevation model and land mask. Daymet precipitation data were obtained 

using the same methodology as above.  

PRISM P 

PRISM generates gridded estimates of climatic parameters using a combination of point 

data, elevation models, and spatial datasets (Daly et al., 1997). PRISM data are generated 

using a process called climatologically aided interpolation (CAI) and in some cases, 

Doppler radar data. Within the PRISM model Point data for precipitation are taken from 

19 different networks, which include SNOTEL and NOAA’s Cooperative Observer 

Network (COOP) among others. A station-weighted climate-elevation regression is 

calculated for each 4 km grid cell across CONUS, with weighting based on station 
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characteristics like elevation, position, and orographic effectiveness of terrain. For more 

details, we refer to Daly et al. (2008). Daily PRISM precipitation data were obtained from 

October 1, 2001 to September 30, 2016 using Google Earth Engine as above. 

ALEXI ET 

ALEXI maps ET using multi-sensor thermal infrared (TIR) remote sensing of LST 

(Anderson et al., 2011). ALEXI couples a two-source (soil and canopy) land-surface model 

with an atmospheric boundary layer model to map daily fluxes in canopy transpiration and 

soil evaporation (combined in ET) across CONUS at 5 to 10 km resolution. Daily ALEXI 

ET data were obtained from the National Aeronautics and Space Administration (NASA) 

and the United States Department of Agriculture-Agricultural Research Service (USDA-

ARS) and extracted for each candidate catchment from October 1, 2001 to September 30, 

2016.  

SSEBop ET 

SSEBop combines remotely sensed thermal imagery from the Moderate Resolution 

Imaging Spectroradiometer (MODIS) with reference ET. Data are parameterized using pre-

defined, seasonally dynamic boundary conditions for each pixel. SSEBop estimates 

transpiration and soil evaporation (combined in ET) every 8 days (Senay et al., 2013) at a 

1 km resolution. Daily SSEBop ET data were downloaded from the United States 

Geological Survey and extracted for each candidate catchment from October 1, 2001 to 

September 30, 2016 using the same methods as described for ALEXI.  

NCA-LDAS ET 
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NCA-LDAS couples the Noah model (Ek et al., 2003; Niu et al., 2011) with the Weather 

Research Forecasting (WRF) regional atmospheric model, the NOAA coupled Climate 

Forecast System, and the Global Forecast System (GFS) (Rui & Mocko, 2018). Daily data, 

including evapotranspiration, are simulated using the Noah-3.3 LSM and mapped to a grid 

with 12 km spacing. NCA-LDAS data measures canopy transpiration and soil 

evapotranspiration (combined in ET). ET data were downloaded from the Goddard Earth 

Sciences Data and Information Services Center (GES DISC) and extracted for each 

candidate catchment from October 1, 2001 to September 30, 2016 using the method 

described above. 

MOD16 ET 

MOD16 is based on the Penman-Monteith equation and uses daily meteorological 

reanalysis data from NASA Global Modeling and Assimilation Office (GMAO) combined 

with MODIS products for vegetation characteristics, land cover, and albedo (Mu et al., 

2013). MOD16 produces 8-day soil evaporation and canopy transpiration (combined in 

ET) at a 1km resolution. 8-day MOD16 data for each catchment from October 1, 2001 to 

September 30, 2016 were obtained using Google Earth Engine. 

NLDAS-2 E𝑜𝑜 

Although there are different ways to estimate 𝐸𝐸𝑜𝑜 (Xu & Singh, 2002) that can affect the 

absolute aridity index values across catchments although uncertainty in 𝐸𝐸𝑜𝑜is not the focus 

of this study.  Because not all above ET datasets contained a readily available estimate of 

E𝑜𝑜, we elected to use a common E𝑜𝑜 from NLDAS-2 because it is a Penman-based 

calculation which is understood to estimate apparent atmospheric demand (Peng et al., 
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2018).  Daily E𝑜𝑜 values for all candidate watersheds were obtained from the CAMELS 

database as described above and were aggregated to obtain an annual value.  

USGS Q 

Daily values for Q from October 1, 2001 to December 31, 2014 were obtained from the 

CAMELS database for each catchment. More details are provided in Addor et al. (2017).   

Daily values for Q from January 1, 2015 to September 30, 2016 were obtained from the 

USGS streamflow database (USGS, 2020). While Q is also subject to uncertainty, it is 

widely presumed to be the most certain water budget component (Bales et al., 2006) with 

an assumed uncertainty (±) 5% at the 95% confidence interval (CI) for gauged streamflow 

in North America (Hamilton & Moore, 2012).    

Snow Fraction 

Mean snow fraction (fs) was obtained from the CAMELS database for each catchment. 

More details are provided in Addor et al. (2017), fs values use Daymet data and leverage 

pervious work (Newman et al., 2015). We use the CAMELS fs dataset in the main 

manuscript but tested the fs using the same methodology as in the CAMELS database with 

Daymet precipitation and temperature data from 2001-2016, which had no significant 

impact on our findings.  
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Figure S3-1: Results for unbiased recursive partitioning between OWB closure and Fan 

(2019) Criterion 1 (Catchment Scale) in the main Chapter. Here we use observed OWB 

closure using all three products (n = 342). To account for biases, we adjust observed OWB 

closure by the median observed OWB closure across all sites (-12.8%).  
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Figure S3-2: Results for unbiased recursive partitioning between OWB closure and Fan 

(2019) Criterion 2 (Catchment Position) in the main manuscript. Here we use observed 

OWB closure using all three products (n = 342). To account for biases, we adjust observed 

OWB closure by the median observed OWB closure across all sites (-12.8%).  
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Figure S3-3: Results for unbiased recursive partitioning between OWB closure and Fan 

(2019) Criterion 3 (Climate) in the main manuscript. Here we use observed OWB closure 

using all three products (n = 342). To account for biases, we adjust observed OWB closure 

by the median observed OWB closure across all sites (-12.8%).  
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Figure S3-4: Results for unbiased recursive partitioning between OWB closure and Fan 

(2019) Criterion 4 (Substrate Properties) in the main manuscript. Here we use observed 

OWB closure using all three products (n = 342). To account for biases, we adjust observed 

OWB closure by the median observed OWB closure across all sites (-12.8%).  
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Figure S3-5: Results for unbiased recursive partitioning between OWB closure and Fan 

(2019) Criterion 4 (Geological Structure) in the main manuscript. Here we use observed 

OWB closure using all three products (n = 342). To account for biases, we adjust observed 

OWB closure by the median observed OWB closure across all sites (-12.8%).  
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Figure S3-6: Results for unbiased recursive partitioning between OWB closure and all Fan 

(2019) in the main manuscript. Here we use observed OWB closure using all three products 

(n = 342). To account for biases, we adjust observed OWB closure by the median observed 

OWB closure across all sites (-12.8%).  
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Figure S3-7: ΔR histograms for common elements in constructed ET Triplets and 95% CI. 

 

 

Figure S3-8: ΔR histograms for common elements in constructed ET Triplets and 95% CI. 
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Figure S3-9: Fraction of precipitation as snowfall versus min, max, and mean (ε + ΔS)/P 

shaded by mean slope (m/km) and sized by elevation. Circles indicate catchments within 

the northeastern and central US regions (see Figure 1 in manuscript for definition) and 

diamonds indicate catchments in the western US region (see Figure 1 in manuscript for 

definition). 
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Figure S3-10: Long-term 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 versus 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 across all catchments (n = 114) using: A) 

NLDAS P & ET and USGS Q; B) Ensemble Mean P & ET and USGS Q; and C) TC-

Merged P & ET and USGS Q. Coloring is based on observed on aridity. Sizing is based on 

the maximum disagreement between long-term estimates of P. 
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Table S3-1: Summary of candidate catchments per hydrologic region; ecoregion. * 

Indicates Temperate. State abbreviations are used where appropriate. 

Catchment Count by Hydrologic Region 

AWR  CA  GB  GL  LC  MA MO NE OH  

PN

W RG SRR  UC 
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M  

2 12 18 28 8 32 34 23 15 61 7 8 17 3 

Catchment Count by Ecoregion 
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  41 18 3 14 63 122 7 

 

Table S3-2: Summary of ETC success in candidate catchments broken out by Hydrologic 

Region. 
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Hydrologic Region 

# of Valid 

Catchments 

# of 

Candidate 

Catchments 

% Valid 

Catchments US Region 

Great Basin Region 1 18 5.6 Western 

Upper Colorado Region 2 17 11.8 Western 

California Region 1 12 8.3 Western 

Lower Colorado Region 1 8 12.5 Western 

Pacific Northwest Region 27 61 44.2 Western 

Rio Grande Region 5 7 71.4 Western 

Souris-Red-Rainy Region 1 8 12.5 Central 

Missouri Region 5 34 14.7 Central 

Great Lakes Region 12 28 42.9 Central 

Upper Mississippi Region 3 3 100.0 Central 

Arkansas White Red 0 2 0.0 Central 

New England Region 11 23 47.8 Northeastern 

Mid-Atlantic Region 30 32 93.8 Northeastern 

Ohio Region 15 15 100.0 Northeastern 

 
Table S3-3: Summary of ETC success in candidate catchments broken out by Ecoregion. 
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Ecoregion 

# of Valid 

Catchments 

# of 

Candidate 

Catchments 

% Valid 

Catchments 

North American Deserts 0 14 0 

Temperate Sierras 1 7 14.3 

Great Plains 5 18 27.8 

Northwestern Forested Mountains 35 122 28.7 

Northern Forests 40 63 63.5 

Marine West Coast Forest 2 3 66.7 

Eastern Temperate Forests 31 41 75.6 
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4 Chapter 4: Water Management Can Reduce Agricultural Vulnerability to 
Decreasing Snowpack 

By: Beatrice L. Gordon, Gabrielle F.S. Boisrame, Newsha K. Ajami, Rosemary W.H. 
Carroll, Bryan Leonard, Christine Albano, Naoki Mizukami, Alejandro Andrade-
Rodriguez, Elizabeth Koebele, Adrian A. Harpold  

Abstract:1 

By focusing on physical changes in mountain water supplies as snow declines, prior 

research has shown high potential for catastrophic damage to downstream water users and 

ecosystems (i.e., vulnerability) in certain river basins in the western US. However, humans 

can also modify the hydrological cycle via adaptation (socio-hydrology), altering the 

distribution and magnitude of vulnerability in this region. Here, we present a new paradigm 

for indexing the susceptibility of agricultural systems to damages arising from declines in 

snowpack at an operational (e.g., district or water user group) scale and test this approach 

in 13 basins with declining snowpack in the western US. Each of these basins relies on 

both snow storage and reservoir storage to meet agricultural production and contains no 

impairment above their reservoirs.  Research evaluates ability of each basin to adapt to 

projected declines in snow storage using two different strategies : 1) enhancing reservoir 

or groundwater storage capacity via tools like managed aquifer recharge or conjunctive 

use; and/or 2) reducing water use via demand management (i.e., fallowing).  Results show 

that these strategies are most effective if implemented rapidly; and if applied to systems 

with a higher proportion of hay production relative to overall demand, and with smaller 

declines in snow relative to reservoir capacity. Adaptation reduces vulnerability values by 

a median of 3.6 times in the near future (2020-2050), 1.9 times in the mid future (2050-

2080), and 1.8 times in the far future (2080-2100) with the largest benefits for higher 
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elevation tributaries of the Missouri Basin and the least benefit to certain tributaries of the 

California and Upper Colorado Basins. As climate change continues to alter snow storage 

throughout the western US, findings present a roadmap for identifying priority areas for 

adaptation in critical basins.  

4.1 Introduction 

Agricultural production is the western US depends on snow, which is one of the fastest 

changing aspects of the hydrological cycle in response to climate change (Musselman et al 

2017). Warmer winter and spring temperatures are decreasing the fraction of precipitation 

falling as snow in headwater catchments, reducing the size (Knowles et al 2006, Klos et al 

2014) and persistence of seasonal snowpacks (Stewart 2009), and altering the timing and 

rate of snowmelt (Barnett et al 2008, Rauscher et al 2008). Because the amount of water 

temporarily held in snow has long exceeded built storage capacity in this region (Nijssen 

et al 2001, Barnett et al 2005), declines in snow leave water management to face a 

transformational change in how surface water is stored in mountain environments. In order 

to reduce damage to people and the environment arising from this change (henceforth, 

termed vulnerability), headwater management must confront two interacting stresses. First, 

more streamflow will occur earlier during the winter when flood risk is also higher, forcing 

tradeoffs between water capture and release (Davenport et al 2020, Herrera-Estrada et al 

2019). Second, reductions in summer streamflow connected to declines in snow storage 

will enhance reliance on stored surface water during the growing season (Harpold et al 

2012, Ehsani et al 2017, Lundquist et al 2008, Barnett et al 2008).  
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Prior research has emphasized how these interacting stresses will leave large portions of 

the western US  vulnerable to continued declines in snow storage (Immerzeel et al 2020, 

Barnett et al 2008, Mantkin et al 2015, Qin et al 2020). Early research by Barnett et al 

(2005) showed that, given insufficient reservoir storage capacity, earlier winter streamflow 

will be passed to the oceans. They suggest this will enhance water demand competition in 

places like the Columbia River Basin. Mankin et al (2015) incorporated historical demand 

data into an analysis of projected changes in snowmelt-driven streamflow at the basin scale, 

finding that the San Joaquin, Sacramento, Rio Grande, Colorado, Klamath, and Upper 

Great Basin in the western US could experience substantial (albeit uncertain) increases in 

unmet demand as snow storage declines. More recently work (Qin et al (2020) has analyzed 

relationships between seasonal snowmelt-driven water supply and projected agricultural 

water demand to demonstrate the vulnerability of irrigated agriculture (specifically, wheat, 

maize, and rice) in the San Joaquin, Colorado, and Columbia River Basins to declines in 

snow. These findings were echoed in a global vulnerability assessment conducted by 

Immerzeel et al (2020a), who underscored the pressing need for water management to 

adapt to these stresses via increased buffering capacity (i.e., storage management) and 

enhanced water-use efficiency (i.e., demand management).  

To date, however, there is limited information about where adapting to declines in snow 

storage by enhancing water storage (e.g., reservoir expansion or groundwater banking) or 

reducing demand (e.g., fallowing or crop switching) throughout the western US  (Dilling 

et al 2015, He et al 2021, Rising and Devineni 2020). Decisions about adaptive strategies 

require information about how physical hydrology is modified by infrastructure, 

institutions, and stakeholders (Kellner and Brunner 2021). In order to account for these 
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interactions, vulnerability must be quantified in a robust manner and at a local and 

operationally meaningful scale (Dilling et al 2015, Dilling and Berggren 2015, Sullivan 

2011). While previous assessments highlighting basin-scale vulnerability can help inform 

areas of priority, better information about the distribution of vulnerability across the 

western US at smaller scales is necessary to plan and implement effective adaptation 

strategies to declines in snow storage. 

Here, we present a novel approach for addressing this research-to-application gap by 

assessing the adaptive capacity—or the flexibility of agricultural systems to adapt to 

declines in snow using storage and/or demand management—at an operational scale in the 

western US. In contrast with previous basin-scale assessments, we identify 13 snow-

dominated, headwater reservoir systems across western US that serve downstream 

agriculturally productive regions. Using historical and projected supply, demand, and 

storage data, we explore their vulnerability to changing snow using the exposure, 

sensitivity, and adaptive capacity (ESAC)  framework for indexing vulnerability (Cardona 

et al 2012).  We quantified exposure as the likelihood of a headwater reservoir system to 

experience stress related to the impacts of climate change on snow resources, sensitivity as 

the system’s ability to meet with agricultural demand in response to declining snowpack 

(Cardona et al 2012, Luers et al 2003), and adaptive capacity as system’s flexibility to 

adapt storage and/or demand under declining snowpack. We then combined these elements 

to evaluate vulnerability with and without adaptive capacity, which allowed us to quantify 

where, how, and when storage and demand management can buffer headwater reservoir 

systems in the western US against declines in snow storage. 
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4.2 Study Area and Data 

4.2.1 Study Area 

We identified 13 systems comprised of 28 individual demand regions (i.e., irrigation 

districts, water conservation districts, water users’ associations, cooperative units, or 

reclamation districts) connected to 23 points of surface water supply distributed across the 

western US (Table 4-1). Each resulting system listed in Table 4-2 was selected based on 

three criteria: 

1. Basins were selected based on surface water originating in mountainous catchments 

with at least one headwater type reservoir identified using the National Inventory 

of Dams (USACE, 2021) and the Global Reservoir and Dam database (GRanD, 

Lehner et al 2011).   Headwater type reservoirs were defined as any reservoir 

located within or directly adjacent to mountains in the western CONUS without 

significant upstream impairment or managed inflows.   

2. Basin selection was limited to those with agriculture designated as their primary or 

secondary use.   

3. A continuous record of streamflow of 26 years for major points of surface water 

inflow into the system with 25% percent tolerance for NAs was required. Water 

supply points were defined as reservoirs or streams with explicit rights to direct 

withdrawal granted to users in a given demand region. Points of surface supply in 

the system were identified using a combination of publicly available materials and 

personal communication with water managers. 
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The approximate area of each demand region was manually digitized by georeferencing 

publicly available maps. The approximate contributing area for each identified point of 

surface water supply for each system was delineated using the Terrain analysis using digital 

elevation (TauDEM) toolbox (Tarboton, 2005).  

Table 4-3: Summary of headwater reservoirs, including demand regions and specific points 

of water supply, adopted for this study. The Kern County Water Agency is abbreviated as 

KCWA. * Indicates a source of water that was omitted from consideration due to lack of 

data or complexity. 

Demand Region State Points of Surface Water 
Supply 

System 

Stanfield Irrigation District OR Umatilla River, McKay 
Reservoir Umatilla 

Westland Irrigation District OR Umatilla River, McKay 
Reservoir 

Greenfields Irrigation District MT 
Pishkun Dike*, Willow Creek 

Reservoir, Sun River via Gibson 
Reservoir 

Sun 

Lakeview Irrigation District* WY South Fork of the Shoshone 
River 

Shoshone 

Deaver Irrigation District WY Shoshone River via Buffalo Bill 
Reservoir 

Willwood Irrigation District WY Shoshone River via Buffalo Bill 
Reservoir 

Shoshone Irrigation District WY Shoshone River via Buffalo Bill 
Reservoir 

Heart Mountain Irrigation 
District WY Shoshone River via Buffalo Bill 

Reservoir 

Midvale Irrigation District WY Bull Lake, Pilot Butte Reservoir Wind 

Bridger Valley Water 
Conservancy District WY 

Blacks Fork River via Meeks 
Cabin Reservoir, Smiths Fork 
River via Stateline Reservoir 

Bridger 

North Fork Water 
Conservancy District CO 

North Fork of the Gunnison 
River via Anthracite Creek and 

Paonia Reservoir 

Paonia 
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Rio Costilla Cooperative 
Livestock Association NM Rio Costilla via Costilla Dam Costilla 

Price Valley Water Users 
Association UT 

Price River via Scofield 
Reservoir, White River, and 

Willow Creek 

Price 

Little Wood River Irrigation 
District ID Little Wood River via Little 

Wood River Reservoir 

Little 

Wood 

Walker River Irrigation 
District NV 

West Walker River via Topaz 
Lake, East Walker River via 

Bridgeport Reservoir 

Walker 

Olcese Water District 
(KCWA) CA Kern River via Isabella 

Reservoir 

Kern 

North Kern Water Supply 
District (KCWA) CA Kern River via Isabella 

Reservoir 
Kern Delta Water District 

(KCWA) CA Kern River via Isabella 
Reservoir, State Water Project* 

Henry Miller Water District 
(KCWA) CA Kern River via Isabella 

Reservoir, State Water Project* 
Rosedale Rio Bravo Water 
Supply District (KCWA) CA Kern River via Isabella 

Reservoir, State Water Project* 
Buena Vista Water Supply 

District (KCWA) CA Kern River via Isabella 
Reservoir, State Water Project* 

Kaweah Delta Water 
Conservation District CA 

Kaweah River via Kaweah 
Lake, Federal Central Valley 

Project*, Dry Creek* and 
Yokohl Creek* 

Kaweah 

Kittitas Reclamation District WA Keechelus and Kachness Lakes Kittitas 
4.2.2 Data 

4.2.2.1 Water supply (Q) 

Water supply is defined as streamflow, including reservoir inflows, (Q) to which the 

demand region is granted access. We used the following data to quantify historical and 

projected Q into each system identified in Table 4-4.  

4.2.2.2 Reservoir inflows and streamflow (Q) 

Historical streamflow is defined using a combination of data from United States Geological 

Survey (USGS), the United States Bureau of Reclaimation (USBR), and the United States 
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Army Corps of Engineers (USACE). We obtained simulated historical and projected 

streamflow from the localized constructed analogue (LOCA, Pierce et al 2014) CMIP5 

hydrologic projections (Vano et al, 2020) routed in MizuRoute (Mizukami et al 2016) 

using the Kinematic Wave tracking option.  

Streamflow was modified using the statistical change factor method to account for biases 

in simulated water supply (Minville et al 2008, Chen et al 2011, Mankin and Diffenbaugh 

2015). Twenty-six 14-day windows (or, in the case of leap years, a single 15-day window) 

were defined based on a consistent day of the water year.  The cumulative Q and median 

(𝑄𝑄�) value for each of these windows uses the observed and simulated data over the 

historical period (1979-2005); and simulated data for the near future (2020-2050), mid 

future (2050-2080), and far future (2080-2100). Simulated data includes the 64  RCP-GCM 

pairs in the CMIP5 ensemble. A statistical change factor was applied to account for biases 

in the CMIP5 ensemble:  

 𝑄𝑄bıas,future������������� = 𝑄𝑄observed,hıstorıcal���������������������� 𝑥𝑥 �
𝑄𝑄sımulated,future�������������������
𝑄𝑄sımulated,hıstorıcal������������������������ Eq. (4-1) 

Where 𝑄𝑄bıas,future������������� is the bias corrected median simulated streamflow over the near, mid, 

or far future period, 𝑄𝑄observed,hıstorıcal���������������������� is the median observed streamflow over the 1979-

2005 historical period, 𝑄𝑄sımulated,hıstorıcal����������������������� is the median observed streamflow over the 

1979-2005 historical period, and 𝑄𝑄sımulated,future������������������� is the median simulated streamflow over 

the near, mid, or far future period. Bias correction at sub-annual timesteps can change the 

magnitude of annual streamflow (𝑄𝑄𝑊𝑊𝑊𝑊) per Zhu et al (2005) and Hamlet and Lettenmaier 
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(1999). To preserve simulated 𝑄𝑄𝑊𝑊𝑊𝑊, we thus applied a second bias correction to each 

𝑄𝑄bıas,future������������� value obtained from Eq. (4-1) as described in Eq. (4-2): 

 𝑄𝑄corrected,future������������������� = 𝑄𝑄bıas,future������������� 𝑥𝑥 �
𝑄𝑄WY,sımulated,future�����������������������������������

𝑄𝑄WY,simulated,historical
𝑄𝑄WY,bıas,future��������������������������

𝑄𝑄WY,observed,ℎ𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤���������������������������������������

�  Eq. (4-2) 

Where 𝑄𝑄corrected,future������������������� is the simulated 𝑄𝑄� bias-corrected using the statistical change factor 

and adjusted to preserve the annual simulated 𝑄𝑄𝑊𝑊𝑊𝑊������, and 𝑄𝑄WY,sımulated,future����������������������� was obtained 

as the sum of all 𝑄𝑄sımulated,future������������������� values each i 14-day window in the water year: 

 𝑄𝑄WY,sımulated,future����������������������� =  � 𝑄𝑄sımulated,future,ı��������������������
𝑖𝑖=26

0

 Eq. (4-3) 

We then used the resulting estimates of 𝑄𝑄corrected,future������������������� on the left-hand side of Eq. (4-3) 

to obtain corrected median annual streamflow (𝑄𝑄WY,future)�������������� for each of our three future time 

periods.  

4.2.2.3 Water demand (D) 

4.2.2.3.1 Net Irrigation Water Demand (𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵) 

Water demand (D) is defined as the sum of net irrigation water demand (NIWR) and 

reservoir evaporation demand (𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) for each basin identified in Table 4-1. Data from 

the United States Department of Agriculture (USDA) and the USBR (Huntington et al., 

2014; Allen et al (2020)) is used to simulate water demand over each future period. To 

account for changes in atmospheric water demand, a west-wide irrigation net irrigation 

water requirement (NIWR) dataset was selected from the USBR (Huntington et al 2014) 

The USBR NIWR dataset was selected because it is the only product that provides a 
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dynamic estimate of NIWR  (m) and that accounts for differences among the major crop 

types for each demand region. The dataset contains 10 simulations of projected future 

agricultural water requirement for major crop types in each demand region using the 

climate from 2020-2050, from 2050-2080, and from 2080-2100 as well as a historical 

irrigation water demand from 1950-1999.  

The USBR NIWR data was combined with area  estimates for each crop type in each 

demand regions based on Cropland Data Layer (CDL) data (Huntington et al 2014, Allen 

et al 2020) to produce a volumetric demand rate. Following Lark et al (2017), CDL data 

were bias corrected using published error super matrices (USDA NASS RDD Spatial 

Analysis Research Section, 2016), which were then multiplied by the estimated crop class 

area to obtain a bias corrected estimate of the total area for each crop class for each year in 

each demand region (Acrop). Using the same 26 14-day windows in the water year, a 

cumulative 14-day NIWR was calculated for each crop type in each demand region. From 

these estimates, a  median 14-day NIWR (NIWRcrop,hıstorıcal�����������������������) was calculated based on the 

historical period (1950-1999) and the near, mid, and far future periods (NIWRcrop,future)���������������������. 

Because NIWR data over the historical period are already bias-corrected per Huntington et 

al (2014) and Allen et al (2020), no further bias-correction was applied.  

The CDL data were used to estimate a ‘Business-as-Usual’ or BAS cropping mix to 

simulate a no-change future scenario and a ‘Demand Management’ or DM cropping mix 

to simulate reduced water demand for each demand region.  For each of the 12 years in the 

CDL record, an estimate of NIWD (NIWDCDL) was calculated as:  
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 NIWDCDL =  NIWRcrop,hıstorıcal����������������������� 𝑥𝑥 Acrop Eq. (4-4) 

Where NIWRcrop,hıstorıcal����������������������� refers to the median historical NIWR for each crop in the USBR 

NIWR (m) and Acrop refers to the area for each crop for each year based on the CDL data 

(m2). Because of the harmony between the two datasets, there is good agreement between 

crops represented in the USBR NIWR dataset and the CDL dataset.  However, in the case 

of  an imperfect cross-reference, crop coefficient data were used to approximate the closest 

fit with available data (e.g., miscellaneous vegetables were classified as field corn in the 

case that miscellaneous vegetables was not a crop class provided in the USBR data). All 

12 values of NIWDCDL were used to estimate a BAS crop mix for each demand region 

(ABAS) or the crop mix corresponding to the median system-wide NIWD and a DM crop 

mix for each demand region (ADM)  or the crop mix corresponding to the 25th percentile 

system-wide NIWD.  

The median historical NIWD is calculated assuming a BAS cropping scenario for each 

demand region (NIWDhıstorıcal������������������): 

 
NIWDhıstorıcal������������������ = � NIWRhıstorıcal������������������ 𝑥𝑥 Acrop,BAS

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑛𝑛

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐= 1

 

 

Eq. (4-5) 

Where n is the number of individual crops (crop) represented in the BAS crop mix (𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵) 

and Acrop,BAS is the area of each individual crop contained in the BAS cropping scenario. 

The median future NIWD assuming a BAS cropping scenario for each demand region 

(NIWDBAS,future�������������������) is calculated as: 
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NIWDBAS,future������������������� = � NIWRcrop,future�������������������� 𝑥𝑥 Acrop,BAS

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑛𝑛

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐= 1

 

 

Eq. (4-6) 

Where 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�������������������� is the median NIWD under the BAS cropping scenario for each of 

the three future periods. Lastly, the median future NIWD was calculated assuming a DM 

cropping scenario: 

 NIWDDM,future������������������ = � NIWRcrop,future�������������������� 𝑥𝑥 Acrop,DM

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑛𝑛

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐= 1

 Eq. (4-7) 

Where 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐷𝐷𝐷𝐷,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�������������������� is the median NIWD under the DM cropping scenario for each of 

the three future periods, n is the number of individual crops (crop) represented in the DM 

crop mix (𝐴𝐴𝐷𝐷𝐷𝐷), and Acrop,DM is area of each individual crop contained in the DM cropping 

scenario.  

4.2.2.3.2 Reservoir Evaporation Demand (𝑬𝑬𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓) 

A combination of datasets is used to estimate volumetric reservoir evaporation (𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟). 

In the absence of future evaporation data for each headwater reservoir listed in Table 4-1, 

we assumed that potential evapotranspiration from the USBR NIWR dataset was a 

reasonable approximation of evaporative demand (E in m). The maximum surface area 

(𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 in m2) for each headwater reservoir (Lehner et al, 2011) was combined with a 

cumulative 14-day E for each demand region to obtain a median 14-day E (𝐸𝐸ℎ𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤������������) 

based on the historical period (1950-1999) and the near, mid, and far future periods 

(𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓���������). Because E data over the historical period are already bias-corrected (Huntington 

et al, 2014); Allen et al, 2020), no further bias-correction was applied.  
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Because the rules of future reservoir operations are unknown, our projections of 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

use a gross annual consumption approach proposed by Hogeboom et al (2018) where: 

 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�������������������� = 10 𝑥𝑥 𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓��������� 𝑥𝑥 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑥𝑥 𝑘𝑘  Eq. (4-8) 

Where k [-] is a correction factor to account for differences in the filling condition and 

𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, which Hogeboom et al (2018) propose should be set to 0.5625 for most 

reservoirs based on Kohli & Frenken (2015). The median historical 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟������������ uses Eq. (4-

8) but replaces 𝐸𝐸ℎ𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤������������ on the right-hand side.  

4.2.2.3.3 Annual Demand (𝑫𝑫𝐖𝐖𝐖𝐖) 

NIWD and 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 are used to construct median annual estimated of water demand 

(𝐷𝐷WY������) for each system over the historical and future periods. 𝐷𝐷WY,hıstorıcal���������������� is calculated as: 

 
𝐷𝐷WY,hıstorıcal���������������� =  � NIWDhıstorıcal,ı�������������������

𝑖𝑖=26

0

+ 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,ℎ𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤,𝚤𝚤������������������������ 

  

Eq. (4-9) 

Where i refers to each 14-day window in the water year. For the near, mid, and far future 

periods, 𝐷𝐷WY,BAS,future����������������� was estimated using the same equation but with NIWDBAS,future,ı�������������������� 

and 𝐷𝐷WY,DM,future����������������� was estimated using the same equation but with NIWDDM,future,ı��������������������. The 

fraction of 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�������������������� to 𝐷𝐷WY,hıstorıcal���������������� is reported in Table S4-1.  

4.2.3 Water Storage (S) 

Surface water storage (S) is defined as the combination of natural snow storage 

(𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), approximated as snow water equivalent (SWE) and built reservoir storage (𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏).  
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A storage transition metric (∆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) is the difference between the future and  historical 

fraction of natural (𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) to built (𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) storage using the data sources described below.  

4.2.3.1 Natural Storage (𝑺𝑺𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔) 

To quantify observed historical 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, we used SWE from the National Climate 

Assessment-Land Data Assimilation System (NCA-LDAS, Kumar et al 2019) available 

from 1979-2005. From NCA-LDAS SWE, a daily accumulated depth of SWE is calculated 

as 𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗  = 𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗 - 𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗−1, where j is a day of the water year. Each value of 𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗 is 

multiplied by the contributing area for each source of water supply outlined in Table 4-1.  

The same process is used to obtain simulated historical and projected 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, except with 

𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗  obtained from LOCA ( Pierce et al 2014) CMIP5 hydrologic projections (Vano et 

al, 2020). Using the same 26 14-day windows as for Q and D,  cumulative observed 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

is calculated over the historical period (1979-2005) and simulated 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 over the historical 

and future periods. The median observed value of 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 over the historical period 

(𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,ℎ𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤�����������������������������) and for each of the 64 simulated RCP-GCM pairs in the CMIP5 

ensemble over the historical period (𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,ℎ𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤������������������������������) and for each of our future 

periods 𝑆𝑆𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓���������������������������). Simulated future 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠������� , is bias-corrected using the same 

methodology as for Q. It is aggregated following Eq. (4-3) to obtain median annual 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

over the three future periods (𝑆𝑆snow−𝑊𝑊𝑊𝑊,corrected,future������������������������������). Median observed annual 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

(𝑆𝑆snow−WY,observed,hıstorıcal���������������������������������) was evaluated similarly. 
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4.2.3.2 Built Storage (𝑺𝑺𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩) 

Following Masia et al (2018), a single annual volume of  𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 for each basin is calculated 

as a function of the maximum capacity for each headwater reservoir in Table 4-1 reported 

by Lehner et al (2011).    

4.3 Methods 

Using the data outlined in Section 4-2, the vulnerability of our headwater systems is 

assessed to a storage transition metric (∆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), which evaluates changes in 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

relative to 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏.  Vulnerability assumes the ESAC framework adopted by the IPCC 

(Cardona et al 2012), which relies on quantification of exposure (Section 4.3.1), sensitivity 

(Section 4.3.2), and adaptive capacity (4.3.3).  

4.3.1 Exposure Analysis 

Following Cardona et al (2012), exposure is defined as the likelihood of a headwater 

reservoir system to experience stress related to the impacts of climate change on snow 

resources.  Existing literature suggests that although the impacts of change snow resources 

on water supply are varied, changes in the center of water supply mass (DoQ50) and 

changes in the annual volume of water supply (QWY)  are critical sentinels for water 

management (Stewart 2009, Stewart et al 2004, Regonda et al 2005, Gordon et al 2022). 

Exposure is defined via Eq. (4-10 to 4-11) below.  A timing exposure metric is calculated 

as the center of water supply mass timing: 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐼𝐼 = �DoQ50,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓��������������������������� −  DoQ50,observed,hıstorıcal������������������������������  Eq. (4-10) 
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Where DoQ50−c𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓���������������������������� is the median simulated day of water supply center of mass 

timing for the near, mid, or far future periods and DoQ50−observed,hıstorıcal������������������������������  is the median 

observed day of water supply center of mass timing for the historical period (1979-2005).  

A magnitude metric based on QWY per is given as: 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐼𝐼 = QWY,corrected,future�����������������������������

QWY,observed,ℎ𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤���������������������������������  Eq. (4-11) 

The timing and magnitude indicators are rescaled following Gonzales and Ajami (2017a) 

as: 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐼𝐼 = 1 + (10 − 1) ∗  (𝐼𝐼−𝐴𝐴)
(𝐵𝐵−𝐴𝐴)

    Eq. (4-12) 

Where 𝐼𝐼 refers to a generic indicator, A and B are the upper and lower bound of the original 

scale, respectively. The rescaled I retains its original ranking, but on a 1 to 10 scale. In the 

case of the Magnitude I, for example, higher values are associated with decreased exposure 

and vice versa, which is retained in the Rescaled Magnitude I. Rescaled Timing I and 

Magnitude I then combined into estimate of Exposure for each system over each future 

period using the geometric mean following Gonzales and Ajami (2017a) where: 

 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = [ (11 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐼𝐼)* 

(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐼𝐼)]1/2 
Eq. (4-13) 

4.3.2 Sensitivity Analysis 

Sensitivity is defined as the system’s response (i.e., its ability to meet water demand from 

agricultural regions listed in Table 4-1) under exposure from declining snowpack (Cardona 

et al 2012, Luers et al 2003). Following  Luers et al (2003), Sensitivity is defined as: 
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 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = |𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑|
𝑊𝑊/𝑊𝑊𝑜𝑜

  Eq. (4-14) 

Where 𝑑𝑑𝑑𝑑is the change in well-being (W) with respect to the change in the stressor 𝑑𝑑𝑑𝑑 

and 𝑊𝑊𝑜𝑜 is the threshold value of W below which the system is assumed to incur damage. 

W is defined as QWY,corrected,future�����������������������������

𝐷𝐷WY,BAS,future���������������������  and the 𝑑𝑑𝑑𝑑 is evaluated against QWY,observed,hıstorıcal��������������������������������

𝐷𝐷WY,hıstorıcal�������������������� . 𝑑𝑑𝑑𝑑 

is evaluated as (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 - 0). We then evaluate the threshold below which the system 

incurs damage (𝑊𝑊𝑜𝑜) as QWY,observed,hıstorıcal��������������������������������

𝐷𝐷WY,hıstorıcal�������������������� , meaning that the system is susceptible to 

damage if it falls below the historical value of 𝑊𝑊𝑜𝑜, which is selected to avoid penalizing 

basins that rely on groundwater and import (Table 4-1). This, in effect, quantifies system 

sensitivity to changes in headwater supply.  Sensitivity was then rescaled to the same 1-10 

range as Exposure using Eq. (4-6).  

4.3.3 Adaptive Capacity Analysis 

Adaptive capacity is defined as system flexibility to meet water demand from agricultural 

regions under stress (Cardona et al 2012, Luers et al 2003). Two different adaptive 

capacities are defined for the western US: demand management and storage management 

(He et al 2021, Consulting 2020, Heikkila 2003, Olmstead 2014, Elliott et al 2014).  

Demand management is the fraction of water savings obtained by reducing and/or altering 

crop type and area following work by Gonzales and Ajami (2017b) in urban water systems 

where: 

 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐼𝐼 = 𝐷𝐷WY,DM,future��������������������− 𝐷𝐷WY,BAS,future���������������������

𝐷𝐷WY,BAS,future���������������������   Eq. (4-15) 

The adaptive potential of storage management follows the storage recharge indicator 

proposed by Masia et al (2018) where: 



169 
 

 
 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐼𝐼 =

(𝑄𝑄WY,future− 𝐷𝐷WY,BAS,future)������������������������������������������−(𝑄𝑄WY,future− 𝐷𝐷WY,BAS,future)������������������������������������������ 
𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

   

Eq. (4-

16) 

Both Demand Management and Storage Management I were rescaled following Eq. (4-12) 

and combined using the geometric mean where: 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = [(11 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐼𝐼)  ∗

 (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐼𝐼)] 1/2   

Eq. (4-

17) 

4.3.4 Vulnerability Analysis 

Using results from Section 4.3.1 to 4.3.3,  vulnerability follows Cardona et al (2012) as: 

 
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =  (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 +

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) –  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶           

Eq. (4-

18) 

Where Exposure, Sensitivity, and Adaptive Capacity are the re-scaled values obtained from 

Eq. (4-10 to 4-17).  Vulnerability with and without adaptive capacity is calculated to 

identify systems where adaptive strategies reduce vulnerability. Based on Eq. (4-18), the 

highest value of vulnerability for an individual system is 20 based on maximum values of 

10 for exposure and sensitivity and removal of adaptive capacity consistent with previous 

work (Qin et al 2020, Mankin et al 2015, Immerzeel et al 2020b). The lowest value of 

vulnerability for an individual system is -8 based on minimum values of 1 for exposure and 

sensitivity and a maximum value of 10 for adaptive capacity. Vulnerability scores were 

used to establish three groups based on terciles representing high vulnerability (upper 

tercile of scores), moderate vulnerability (middle tercile of scores), and low vulnerability 

(lowest tercile of scores). 
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4.4 Results 

The vulnerability of 13 headwater reservoir systems to climate change were examined by 

focusing on declines in snow storage (𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) relative to built storage (𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) in order to 

evaluate changes in surface water storage  (∆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠).  ∆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is defined as a change 

from historical 𝑆𝑆𝑠𝑠𝑠𝑠𝑜𝑜𝑤𝑤/𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 over the three future periods (early, mid, far). Historical 

headwater storage conditions are provided in Figure 4-1.  Historical 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ranges from a 

low of ~28 million m3 in Costilla to a high of ~583 million m3 in Wind with a median value 

of ~164 million m3 across all systems (Figure 4-1A). Historical 𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ranges from a low 

of ~20 million m3 in Costilla to a high of ~746 million m3 in Shoshone with a median value 

of ~110 million m3 all systems (Figure 4-1B). Given that median 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 exceeds median 

𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 across all systems, it is unsurprising that 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is 1.54 across all systems.  This 

result is consistent with previous findings at larger scales suggesting that 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 generally 

exceeds 𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝑙𝑙𝑡𝑡 in this region (Nijssen et al 2001, Barnett et al 2005). The least 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

dependent system is Kittitas (𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0.19) and the 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 dependent system is Paonia 

(𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 3.92). 
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Figure 4-1: A) Historical median 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (1979-2005) and B) maximum 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 for all 

reservoirs within each system. 

4.4.1 Exposure  

Exposure (Figure 4-2A to 4-2C), or the likelihood of experiencing stress from declining 

𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, is a function of changes in the timing and magnitude of Q (Figure 4-2D to 4-2F).  

Results indicate that our systems are exposed to declines in 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 following two different 

typologies: 1) higher near future exposure that does not increase into the mid and far future 

periods and 2) lower near future exposure that accelerates over the mid and far future.  

Exposure appears largely a function of geography dictating differences in snowpack and 

climate. For example, lower elevation coastal systems (e.g., Kittitas, Umatilla, Walker, 

Kern, and Kaweah) experience high but stable exposure, as indicated by consistent darker 

red symbol coloring in Figure 4-2A to 4-2C. Conversely, the majority of our higher 
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elevation interior systems follow the second exposure typology with low near future 

exposure that accelerates over the century—and in some cases (i.e., Costilla), eventually 

overtaking the exposure of more coastal systems.  Spearman correlation (ρ) indicates that 

exposure increases as ∆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 grows larger ( Figure 4-2, Figure S4-4, ρ  = -0.38, slope = -

4.31), but is not strongly associated with ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (represented by symbol sizing, Figure 

S4-5, ρ  = - 0.03, slope = 0.17).  Exposure is also higher in systems with a lower fraction 

of water demand from hay production (Figure S4-6, ρ  = - 0.23, slope = -2.58). 

  

Figure 4- 2: Exposure results for 13 systems based on the geometric mean of changes in 

streamflow timing and magnitude for: A) the near future (2020-2050); B) the mid future 

(2050-2080); C) the far future (2080-2100). Values of re-scaled timing and magnitude 

indicators are presented for: D) the near future (2020-2050); E) the mid future (2050-2080); 
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F) the far future (2080-2100). Higher values suggest larger changes in magntidue or timing. 

Large symbols indicate larger ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 values. 

4.4.2 Sensitivity 

The sensitivity of each system’s supply-to-demand ratio (termed well-being, W) under 

projected changes in Q arising from declines in 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (exposure)  are provided in Figure 

4-2. It is assumed that systems are more sensitive to damage in the future as the projected 

supply-to-demand ratio falls further below the median historical ratio of supply-to-demand. 

Results highlight how projected changes in demand can moderate or amplify the system’s 

response to changes in water supply (exposure). We present the underlying 𝑑𝑑W values used 

to assess sensitivity in Figure S4-7. For example, Costilla, Kern, and Kaweah are all highly 

exposed to changes in water supply per Figure 4-2; however, supply-demand interactions 

leave these systems less sensitive to changes in water supply. Conversely, Paonia is less 

exposed, but highly sensitive to changes in water supply, particularly in the mid and far 

future (Figure 4-3B and 4-3C). Sensitivity is unevenly distributed throughout major river 

basins, with more sensitive systems located in the tributaries of the Upper Colorado, 

Columbia, and Missouri Basins.  Temporally, system sensitivity accelerates less from 

climate change compared to exposure (Figure 4-3). Sensitivity is very weakly associated 

with ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, but results indicate that the well-being of systems with smaller ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is 

more sensitive to changes in water supply than in systems with larger declines in snow 

storage (Figure S4-8, ρ  = 0.04, slope = 1.17). The relationship between sensitivity and 

∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is also weak, but more intuitive suggesting that sensitivity increases with larger 

values of ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (represented by symbol sizing, Figure S4-9, , ρ  = -0.12, slope = -1.04).  

Beatrice1 Gordon
While lower elevation coastal systems are more exposed to changes in streamflow, particularly early in the century (Figure 1A), in the majority of cases this exposure does not necessarily translate into greater system sensitivity (symbol coloring in Figure 2A). 

Beatrice1 Gordon
To account for the two California systems—Kern and Kaweah—that receive water from the California State Water Project, we defined this threshold as the median historical well-being (/. 

Beatrice1 Gordon
To unravel how demand influences sensitivity, we group and discuss results in three different classes based on historical supply-demand dynamics: systems with historically poor well-being (i.e., / << 1, Q << D per Figure SX),  systems with balanced well-being (i.e., / / 1, / / D per Figure SX), and systems with historically good well-being (i.e., / /1, Q > D per Figure SX). As historical D cannot physically exceed historical Q, we assumed that the poor / observed in four systems—Kaweah, Kern, Bridger, and Paonia—was related to excluded surface water sources (California State Water Project for Kaweah and Kern, Smith Fork for Bridger per Table 1), groundwater sources (Kern and Kaweah), and the complexity of accounting for decentralized water sources in loosely organized water user groups in the case of Price per Table 1.  
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Systems with a larger fraction of water demand from hay production are substantially more 

sensitive to changes in water supply (Figure S4-10, ρ  = -0.56, slope = 5.01). 

 

Figure 4-3: Sensitivity results for 13 systems based on changes in the system well-being 

(W) or the ratio of supply to demanwith respect to exposure assuming that damage incurs 

if the historical system well-being cannot be met for: A) the near future (2020-2050); B) 

the mid future (2050-2080); C) the far future (2080-2100).  High values suggest greater 

sensitivity to changes in 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 

4.4.3 Adaptive Capacity 

We evaluated adaptive capacity as the flexibility of the system to meet agricultural demand 

under stress (Figure 4-4) using two relevant adaptive strategies (Consulting 2020, He et al 

2021): demand management and storage management. In general, our results highlight 

robust potential for adaptation via combined storage and demand management in interior 

and higher elevation systems (i.e., Bridger, Costilla,  Price, Wind, and Shoshone) 

particularly in the near and mid future (Figure 4-4A to 4-4C). We present the underlying 
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storage and demand management indicator values used to assess exposure in Figure S4-11 

and S4-12, respectively. However, there are several systems, such as Paonia and Kaweah 

and to a lesser extent, Walker, which have fewer opportunities for adaptation through 

demand management and/or storage management as the century progresses. 

Geographically, the three of the least adaptive systems (Kaweah, Kern, and Walker located 

in the California and Great Basin) are located in lower elevation areas along the west coast 

(Figure 4-4) with the outlier in this group being Paonia (a higher elevation interior tributary 

in the Colorado Basin).  Temporally, our results suggest a general decline in overall 

adaptive capacity for most systems over the century —driven largely by declines in storage 

management capacity (Figure 4-4D to 4-4F). Adaptive capacity increases with smaller 

values of both ∆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (Figure S4-13, slope = 2.68, ρ = 0.32) and ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (Figure S4-14, 

slope = 2.59, ρ = 0.46). Hay production (i.e., alfalfa, pasture, or grass hay) also appears to 

determine overall adaptive capacity, with larger demand from hay associated with larger 

adaptive capacity (Figure S4-15, slope = 2.76, ρ = 0.21).  
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Figure 4-4: Adaptive capacity results for 13 systems based on the geometric mean of supply 

management and demand management capacity for: A) the near future (2020-2050); B) the 

mid future (2050-2080); C) the far future (2080-2100). 

4.4.4 Vulnerability 

We evaluate system vulnerability to exposure from changing snowpacks in two different 

ways: 1) first ignoring adaptive capacity and using only exposure (Figure 4-2) and 

sensitivity (Figure 4-3) results to evaluate Eq. (4-18) and 2) including adaptive capacity 

results (Figure 4-4) in Eq. (4-18).  This allows us to measure the potential reduction in 

vulnerability from adaptation (Figure 4-5). Vulnerability scores without considering 

potential adaptive capacity are presented in Figure 4-5A to C with cooler colors 

representing lower vulnerability scores and warmer colors representing higher 

vulnerability scores. Results show that without adaptation vulnerability is higher in systems 
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with larger ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (Figure S4-16, slope = -3.13, ρ = -0.2) and larger fraction of water 

demand from hay production (Figure S4-17, slope = 2.42, ρ = 0.16). Vulnerability is not 

associated with ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (Figure S4-18, slope = -0.87,  ρ = -0.07). Median vulnerability 

with no adaptation is 7.1 in the near future, 8.7 in the mid future, and 9.5 in the far future. 

When adaptive capacity is considered, a number of systems see substantive reductions in 

their vulnerability (median = 4.4 on a scale from -8 to 20 across all systems) per coloring 

in Figure 4-5D to F.  Results show that when adaptation is considered, higher vulnerability 

is associated with larger ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (Figure S4-19, slope = -5.81, ρ = -0.25) and larger 

∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (Figure S4-20, slope = -3.46,  ρ = -0.19), but not with hay production (not shown, 

slope = -0.31,  ρ = -0.01). 

Reductions in vulnerability from adaptation are not unform across all systems (Figure 4-4) 

and potential benefits decline over time per Figure 4-5 (median  = 4.6 in the near future, 

median = 4.2 in the mid future, median = 4.2 in the far future). In the near future, adaptation 

reduces the number of highly vulnerable systems (e.g., systems in the upper tercile for all 

vulnerability scores across all systems and periods) from 4 to 0 per Table S4-1 with the 

largest reductions in vulnerability (> 4.4) for Costilla, Price, Wind, Shoshone, Little Wood, 

and Kittitas.  Midcentury adaptation reduces the number of highly vulnerable systems by 

4.5 times (Table S4-1), with the benefits for the same systems.  Albeit more modest, far 

future adaptive capacities also reduce the number of highly vulnerable systems by 3 times, 

with the largest reductions in the same six systems. Geographically, the systems with the 

largest reductions in vulnerability across time are higher elevation, interior systems with 

the exception of Kittitas. Smaller reductions in vulnerability through adaptation (Figure 4-
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5G to 4-5I) occurred in lower elevation and coastal systems (i.e., Umatilla, Kern, Walker, 

and Kaweah) with the exception of Sun, Bridger, and Paonia. Accounting for adaptation  

via adaptive capacity were correlated to smaller values of ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, smaller values of 

∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, and in systems where hay (e.g., alfalfa, grass, or pasture) accounts for a larger 

fraction of D per Section 4.3.4.  

 

Figure 4-5: Vulnerability results for 13 systems withouth adaptive capacity for: A) the near 

future (2020-2050); B) the mid future (2050-2080); C) the far future (2080-2100) and with 
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adaptive capacity for the same periods D-F. We then present the difference (adaptive 

capacity) in G through I with symbol coloring from A to C results. 

4.5 Discussion 

Agricultural production in the western US will be substantially impacted by ongoing and 

accelerating changes in mountain snow storage (Barnett et al 2005, Immerzeel et al 2020a, 

Qin et al 2020, Mankin et al 2015). However, comparatively few studies have examined 

how complex interactions between humans and the environment can modify the damages 

associated with less snow at a scale that is useful to water managers (Kellner and Brunner 

2021, Immerzeel et al 2020a).   Using 13 systems located in the headwaters of major river 

Basins in the western US , we show that vulnerability can be substantially altered by 

demand and adaptive capacity over the century. This is particularly apparent in certain 

tributaries to the Rio Grande (Costilla), Upper Colorado (Bridger and Price), Columbia 

(Umatilla, Kittitas, and Little Wood), and Missouri Basins (Shoshone and Wind). 

However, our results also indicate that vulnerability—and adaptive capacity—are unevenly 

distributed throughout large basins. Possible adaptive pathways for greater reduction in 

vulnerability include larger hay production relative to overall water demand and smaller 

changes in surface water storage (i.e., snow relative to built storage). Results indicate that 

larger transitions from snow dependence to built storage dependence are just as 

important—if not more important—than overall declines in snow storage.  

Consistent with other work at larger scales, lower elevation coastal systems appear to be 

particularly exposed to declines in snow storage—as measured by changes in streamflow 

timing (DoQ50) and amount (Q𝑊𝑊𝑊𝑊)—in in the near future (Fritze et al 2011, Stewart 2009, 
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Stewart et al 2004, McCabe and Clark 2005, Regonda et al 2005). However, interior and 

higher elevation systems see their exposure accelerate in the mid and far future. These 

findings are also consistent with relevant basin-scale analyses suggesting large potential 

changes in water supply in the California, Columbia, Upper Colorado, and Rio Grande 

Basins (Qin et al 2020, Mankin et al 2015). Possible explanations for systems system 

buffering against exposure may be compensatory increases in the amount of winter and 

spring rain and/or mixed precipitation (Hammond and Kampf 2020).  

Critically, results indicate that how a system responds to changes in the amount and timing 

of water supply is more associated with demand characteristics than with snow. That is, 

sensitivity is more correlated to the projected fraction of hay production relative to overall 

water demand than to either changes in surface water storage conditions (e.g., increased 

built storage dependence) or overall declines in snow storage This directly underscores the 

essential—and often under considered role— of demand in vulnerability analyses (Qin et 

al 2020) and, thus the need for higher quality estimates of projected demand in the western 

US particularly when it comes to future land use (Mu et al 2018, Prestele et al 2016).  For 

example, the only crop-level demand data available at the spatial and temporal scale 

necessary for our analysis was the USBR NIWR data generated using the 3rd phase of the 

Coupled Model Intercomparison Project (CMIP3) (Meehl et al 2007) as opposed to the 

newer 5th phase of the Coupled Model Intercomparison Project (CMIP5) (Taylor et al 

2012). Incorporating new advances in climate models into crop-level data available at the 

western US scale could further improve understanding of supply-demand interactions 

going forward.  
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Due to their geography, headwater reservoir systems have two primary pathways for 

adaptation to changing water supply and demand: 1) enhancing or building new reservoirs 

and/or groundwater banking using tools like managed aquifer recharge or conjunctive use; 

and/or 2) reducing water use via reducing cropping acreage or changing crop types 

(Immerzeel et al 2020, He et al 2021, Kellner 2021).  As the century progresses 

opportunities for storage management decrease for a number of systems including 

tributaries of the California Basin (Kaweah), the Upper Colorado Basin (Bridger and 

Paonia), and Great Basin (Walker) in particular. Far future storage management is 

promising for a smaller number of systems include tributaries of the Missouri Basin in 

particular (Shoshone, Sun, and Wind). Our storage metric is not specific to the kind of 

management strategy pursued, but rather focuses on whether—on average—water 

recharges existing reservoirs, assuming that if supply is insufficient the system is a poor 

candidate for storage management.  Follow on work could incorporate legal and 

institutional analysis (as well as hydrogeology if groundwater storage is pursued) in order 

to determine the most feasible types for storage management.  Some types of management 

(i.e., conjunctive use and managed aquifer recharge) may be more feasible where there is 

existing infrastructure for flood irrigation and likely more feasible than expansion of built 

reservoirs in many locations (He et al 2021, Kellner 2021).  Due to the complexity of water 

allocation in California, we also exclude California State Water Project and Federal Central 

Valley Water Project from our analysis; both of which subsidize demand in those systems 

in addition to substantial groundwater withdrawals. As a result, storage management 

opportunities in Kern and Kaweah may be more limited if outside sources of water decline 
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which is likely given recent groundwater regulations (California Department of Water 

Resources 2014). 

Demand management opportunities are smaller albeit more consistent over the century 

with the largest potential in tributaries of the Rio Grande (Costilla), Upper Colorado 

(Price), Missouri (Wind), and Columbia (Little Wood and Kittitas). Because our demand 

management land use scenario reflects both changes in crop type and crop acreage, we 

assume that our indicator captures potential for both crop switching and reduction in 

acreage.  Overall, we show that systems with larger hay production are more adaptive. The 

caveat to these findings is that our demand management scenario is based on historical 

changes in crop type and acreage and projected changes in land use are notoriously 

uncertain (Mu et al 2018, Medellín-Azuara et al 2007). With that said, our cropping 

scenarios are assumed to integrate the region’s response ongoing megadrought (Ault et al 

2018). 

Without considering adaptive capacity, vulnerability is consistently highest in tributaries 

of the Columbia (Kittitas and Little Wood), Upper Colorado (Paonia) and Rio Grande 

(Costilla) consistent with other findings (Qin et al 2020, Mankin et al 2015, Immerzeel et 

al 2020a). We also find that vulnerability is consistently lowest in tributaries of the 

Missouri (Sun and Wind) and Upper Colorado (Price). In this, findings reveal the 

heterogeneity of vulnerability within Basins, nuancing the findings of larger scale 

conclusions about agricultural vulnerability in particular (e.g., Qin et al 2020).  Rather than 

geography, our results emphasize that  systems with larger transitions in surface water 

storage, larger declines in snow storage, and with a higher fraction of water demand driven 
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by hay production tend to be more vulnerable when adaptive capacity is ignored. 

Accounting for adaptative capacity reduces vulnerability index values by a median of 4.6 

points in the near future with a median reduction of 4.2 in the mid and far future. 

Interestingly, we find that although systems with large hay production tend to be more 

vulnerable, they are also more adaptive likely because they can respond to changing water 

supplies in ways that systems with more perennial crops like nuts and fruits cannot.   

Continued declines in snow coupled with ongoing intensification of the hydrologic cycle 

are straining freshwater resources in the western US and beyond. Our results show that 

continued supply-focused analyses of vulnerability can mask opportunities for adaptation 

that are currently at hand, reducing the resiliency of tributaries to critical western river 

basins.  Although we find that these opportunities are unevenly distributed within major 

river basins of the western US, potential reductions in vulnerability through adaptation are 

largest in hay-dominated systems undergoing a smaller transition in snow storage relative 

to overall built storage capacity (e.g., several tributaries of the Missouri Basin in 

particular). While more work is needed to integrate institutional and legal considerations, 

results indicate that the benefits of adaptation are largest in the immediate future  across all 

systems. On a broader level, we show that vulnerability analyses in these environments 

must adopt a more demand-focused systems perspective in order to provide managers and 

policy-makers with actionable information at an operationally meaningful (e.g., irrigation 

district) scale. Such a pivot could aid managers and policy-makers in in deploying 

established tools such as MAR (He et al., 2021; Sallwey et al., 2019; Scanlon et al., 2016), 

demand management via temporary fallowing and/or crop switching (Consulting, 2020; 

Rising and Devineni, 2020; Schaible and Aillery, 2013), and multi-objective reservoir 
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management via forecast informed reservoir operations (FIRO, Delaney et al., 2020).  By 

rapidly identifying and targeting systems with the largest potential benefits from 

adaptation, research can help promote more resilient headwater systems in critical basins 

throughout the western US.   

4.6 Supplemental Information 

 

Figure S4- 1: Timing results for 13 systems for: A) the near future (2020-2050); B) the mid 

future (2050-2080); C) the far future (2080-2100). Symbol size is based on ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 
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Figure S4- 2: Magnitude results for 13 systems for: A) the near future (2020-2050); B) the 

mid future (2050-2080); C) the far future (2080-2100). Symbol size is based on ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 
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Figure S4-3: Exposure results for 13 systems based on the geometric mean of changes in 

streamflow timing and magnitude for: A) the near future (2020-2050); B) the mid future 

(2050-2080); C) the far future (2080-2100). Values of re-scaled timing and magnitude 

indicators are presented for: D) the near future (2020-2050); E) the mid future (2050-2080); 

F) the far future (2080-2100). Symbol size is based on ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 

 

Figure S4-4: ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.versus exposure for all systems in all future periods. ρ denotes 

Spearman rank correlation coefficient. 
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Figure S4-5: ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.versus exposure for all systems in all future periods. ρ denotes 

Spearman rank correlation coefficient. 
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Figure S4-6: Fraction of water demand from hay production versus exposure for all systems 

in all future periods. ρ denotes Spearman rank correlation coefficient. 

 

Figure S4-7: Change in well-being (dW) results for 13 systems for: A) the near future 

(2020-2050); B) the mid future (2050-2080); C) the far future (2080-2100). Symbol size is 

based on ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 
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Figure S4-8: ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.versus sensitivity for all systems in all future periods. ρ denotes 

Spearman rank correlation coefficient. 
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Figure S4-9: ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.versus sensitivity for all systems in all future periods. ρ denotes 

Spearman rank correlation coefficient. 

 

Figure S4- 10: Fraction of water demand from hay production versus sensitivity for all 

systems in all future periods. ρ denotes Spearman rank correlation coefficient. 
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Figure S4-11: Storage management results for 13 systems for: A) the near future (2020-

2050); B) the mid future (2050-2080); C) the far future (2080-2100). Symbol size is based 

on ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 

 

Figure S4-12: Demand management results for 13 systems for: A) the near future (2020-

2050); B) the mid future (2050-2080); C) the far future (2080-2100). Symbol size is based 

on ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 
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Figure S4-13: ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.versus adaptive capacity for all systems in all future periods. ρ 

denotes Spearman rank correlation coefficient. 
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Figure S4-14: ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.versus adaptive capacity for all systems in all future periods. ρ 

denotes Spearman rank correlation coefficient. 

 

Figure S4-15:  Hay production versus adaptive capacity for all systems in all future periods. 

ρ denotes Spearman rank correlation coefficient. 
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Figure S4-16: ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.versus vulnerability without adaptation for all systems in all future 

periods. ρ denotes Spearman rank correlation coefficient. 
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Figure S4- 17:  Fraction of water demand from hay production versus vulnerability without 

adaptation for all systems in all future periods. ρ denotes Spearman rank correlation 

coefficient. 

 

Figure S4-18: ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.versus vulnerability without adaptation for all systems in all future 

periods. ρ denotes Spearman rank correlation coefficient. 
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Figure S4-19: ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.versus vulnerability with adaptation for all systems in all future 

periods. 
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Figure S18: ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.versus vulnerability with adaptation for all systems in all future 

periods. 

Table S4- 1: Vulnerability results for 13 systems without and with adaptive capacity based 

on terciles for all values where Low Vulnerability is defined as the bottom tercile of 

vulnerability scores (<33rd percentile), Moderate Vulnerability is the middle tercile of 

vulnerability scores (33rd percentile to 66th percentile), and High Vulnerability is the upper 

tercile of vulnerability scores (> 66th percentile).  

Period 

High 

Vulnerability 

(# of systems) 

Moderate 

Vulnerability 

(# of systems) 

Low 

Vulnerability 

(# of systems) 

No Adaptation 

Near Future 4 7 2 

Mid Future 9 2 2 

Far Future 9 1 3 

Adaptation 

Near Future 0 4 9 

Mid Future 2 5 6 

Far Future 3 5 5 
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5  Chapter 5: Designing dynamic indicator-based assessments of water supply 
vulnerability  

Abstract: 

Climatic and societal stressors are straining freshwater resources for both people and the 

environment. One lens for assessing the impacts of these stressors on water resources 

systems is vulnerability—commonly defined as the susceptibility of people and places to 

damage. To quantify vulnerability, water managers and policy-makers have long turned to 

vulnerability indices, which rely on proxy measures (i.e., indicators) of system 

performance. However, these indices are often poorly equipped to measure vulnerability 

in a multidimensional (i.e., physical, social, political, etc.) and dynamic way. Here, we 

develop a generalizable approach for evaluating water supply vulnerability that can be 

implemented by managers and policy-makers in a range of systems. We construct an open-

source database of existing indices and indicators from global literature and evaluate these 

data to identify core elements for indicator-based assessment. We then perform a number 

of analyses on our data to ensure that our approach facilitates multidimensional assessment 

of vulnerability.  Through a feedback loop with our database, we then show how this 

approach can be updated to account for changes in vulnerability due to social, political, 

and environmental stresses.  Results outline a pathway for users to construct holistic, 

flexible, and practical vulnerability assessments in a range of settings. However, we find 

that users will need to overcome strong bias towards physical measures of system and gaps 

in measures of cultural water use and values, urban water use, and groundwater if relying 

on existing data. . In this, our work underscores the need for the research community to 

pivot away from the continued development of one-off indices and towards the 
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construction and evaluation of more diverse and locally-relevant indicators that can be 

integrated into flexible approaches like the one we present here. Critically, this points to 

the pressing need for more comprehensive data to evaluate the social value of water. 

5.1 Introduction 

Climatic and social stressors are straining the availability of freshwater supply for people 

and the environment (Vörösmarty et al., 2010, 2000). Climate change is, for example, 

altering historical precipitation dynamics in critical mountain environments (Gordon et al., 

2022; Immerzeel et al., 2020; Mankin et al., 2015; Qin et al., 2020), increasing extreme 

hydrologic behavior (Davenport et al., 2020; Herrera-Estrada et al., 2019), challenging 

reservoir operations (Ehsani et al., 2017), and straining groundwater resources (Kumar, 

2012). These changes in physical water supply interact with social, political, and economic 

conditions to either amplify or moderate resulting damages to people and the environment 

(Enqvist et al., 2019; O’Brien and Leichenko, 2000; Savelli et al., 2021; Scott et al., 2021; 

Zuniga-Teran et al., 2021). As such, there is longstanding interest in assessing the relative 

susceptibility of water resource systems—or the hydrologic, ecologic, infrastructural, and 

human processes involving water in a given place (Brown et al., 2015; Marlow et al., 

2013)—to damage arising from socio-hydrologic stress (Gleick, 1993; Hashimoto et al., 

1982; Hurd et al., 1999). 

The susceptibility of such systems to damages arising from these interacting stressors is 

often described in terms of its vulnerability (Adger, 2006; Brooks, 2003). In practice, 

vulnerability is assessed to identify systems of greatest concern and subsequently prioritize 

adaptation activities intended to reduce potential damages (Luers, 2005). Although clear 
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consensus on a single definition of vulnerability has long proven elusive (Cutter and Finch, 

2008), it is often characterized as a framework that incorporates at least one of the 

following: sensitivity, exposure, stress or disturbance, state of the system relative to a 

threshold, or ability of the system to adapt to changing conditions (Eakin and Luers, 2006; 

Luers, 2005). The practicality of these numerous conceptual vulnerability frameworks 

(e.g., Adger, 2006; Adger and Kelly, 1999; Birkmann et al., 2013; Blaikie et al., 2005; 

Brooks, 2003; Cardona, 2011; Kasperson et al., 2012; Kelly and Adger, 2000; Luers et al., 

2003; Turner et al., 2003), however, remains challenging due to a lack of clear and precise 

guidance on how they can actually be implemented in a bottom-up manner (i.e., by 

managers and policy-makers to assess vulnerability in a specific system) (Hughes et al., 

2012; Luers, 2005; Sullivan, 2011).  

A frequently prescribed approach for practical evaluations of vulnerability is the indicator-

based assessment, which quantifies vulnerability using a set number of indirect measures 

assumed to capture the ‘spirit of vulnerability’—termed proxy indicators (henceforth, 

indicators) (Sullivan, 2011). This assumption, coupled with the long-standing use of 

indicators in policy and decision-making (Plummer et al., 2012; Sullivan and Meigh, 

2005), has led to the development of myriad indices for assessing water supply 

vulnerability in a diversity of contexts and scales (e.g., Hamouda et al 2009, Okpara et al 

2016, Alessa et al 2008, Sullivan 2011). However, many of these indices were developed 

in a top-down manner and designed to facilitate relative comparisons at the municipal to 

national-level using numerical targets (e.g., Water Poverty Index (Lawrence et al., 2002), 

Water Vulnerability Index (Sullivan, 2011)). Increasingly, however, indices have pivoted 

away from this ‘one-size-fits-all’ approach using normative measures and towards 
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assessments that capture the context, place, and time-specific nature of vulnerability (e.g., 

Composite Climate-Water Conflict Vulnerability Index (Okpara et al., 2017). Recent 

research (e.g., Anandhi and Kannan, 2018) has laid a foundation for how flexible 

conceptual approaches to index design can aid in this transition away from ‘one-size-fits-

all’ approaches. 

Despite these advances, the acceleration and complexity of socio-hydrologic stresses 

challenge the utility of existing paradigms for bottom-up indicator-based water supply 

vulnerability assessments in two specific ways. First, developed indices—and as a result, 

the indicators they rely upon to quantify vulnerability—are often poorly equipped to 

consider multidimensional (i.e., social, economic, physical, cultural, environmental, and 

institutional) aspects of vulnerability even when implemented in a bottom-up manner. For 

example, many existing indices place a strong emphasis on physical measures of system 

performance where data for evaluation are more readily available (de Ruiter and van Loon, 

2022; Notaro et al., 2014), and a reduced focus on more difficult-to-measure social, 

political, and economic measures. Furthermore, there is often limited guidance around how 

to integrate missing context-appropriate and multidimensional indicators of system 

performance when deficiencies are identified by potential users (Okpara et al., 2016). 

Second, despite recognition of vulnerability as a dynamic concept that must be evaluated 

with feedback-loops in a comprehensive manner (Birkmann et al., 2013; Cardona, 2011), 

developed indices often adopt a static view of water supply vulnerability in relation to 

climate and societal change (Adger, 2006; de Ruiter and van Loon, 2022). Existing indices 

can, for example, account for change with respect to each indicator (e.g., annual 

precipitation can vary as more data are incorporated). However, they fail to include an 
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emphasis on the underlying dynamics of vulnerability (e.g., immigration, instability, 

displacement), long-lasting disasters (e.g., drought, pandemics), and/or compounding 

vulnerability (e.g., multiple disasters) (de Ruiter and van Loon, 2022). Critically, failure to 

consider the multidimensional and dynamic nature of vulnerability when assessing 

vulnerability can lead to an uncomprehensive snapshot of vulnerability (Birkmann et al., 

2013), hindering the development of effective, locally-relevant, and just adaptation 

strategies to changing water resources (Dilling and Berggren, 2015; van den Berg and 

Keenan, 2019; Zuniga-Teran et al., 2022, 2021).     

As such, there is a need to integrate these aspects of multidimensionality and dynamic 

vulnerability into new assessments while retaining the practical benefits of indicators for 

water managers and policy-makers. This requires that conceptual advances be clearly 

translated into practical approaches—and, critically, resources for implementing these 

approaches—that can be implemented in a bottom-up manner across different systems 

(Anandhi and Kannan, 2018; Dilling and Berggren, 2015; Gallopín, 2006; Sullivan, 2011). 

In recognition of this gap, our study is motivated to develop a practical, bottom-up 

approach for quantifying water supply vulnerability in a multidimensional and dynamic 

manner. We distill this motivation into a central motivating question: 

1. How can indicator-based assessments be adapted to measure water supply 

vulnerability in a dynamic and multidimensional manner? 

5.2 Methods 

In light of ongoing socio-hydrologic changes, we answer our research question in two parts. 

We first evaluate gaps in existing data for evaluating water supply vulnerability and then 
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use this information to develop a generalizable approach for measuring vulnerability using 

indicators in a multidimensional and dynamic manner.  We outline our process for 

achieving these objectives in Figure 1 below.  

We first develop an open-source database of all existing data for evaluating water supply 

vulnerability from global water supply literature (Section 5.2.1). Using these data, we 

construct a conceptual model of common elements for indicator-based assessments of 

water supply vulnerability. We do this to ensure that our approach captures core elements 

for water supply vulnerability assessment (Section 5.2.2). Next, we link these core 

elements together in an approach that can be implemented by managers and policy-makers 

to assess vulnerability using indicators.  We then perform a number of analyses using our 

data to provide users with guidance around ensuring the multidimensionality of 

assessments developed using our approach (Section 5.2.3). Finally, we show how this 

approach, when paired with our open-source database, can be used to update assessments 

of vulnerability in response to social, political, and environmental conditions.    
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Figure 5-1: Outline of the process for developing our conceptual model of core elements 

for index-based vulnerability assessment and translation into a dynamic approach. Red 

arrows indicate the contributions of this paper that do not need to be revisited on an ongoing 

basis. White arrows demarcate the feedback loop between our living, open-source database 

and our dynamic approach.    

5.2.1 Open-Source Database 

The first step in our approach was a systematic review of global literature using a Google 

Scholar search for the terms “water supply vulnerability index” and “water supply 
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vulnerability indicator.”  From this global review, we drew on a smaller number of indices 

that met the following criteria:  

1. explicitly considered water; 

2. was not a new application of an existing index (although modified indices were 

included); and, 

3. included a list of indicators either in the main text or in the supplemental 

information.  

We then constructed an open-source database (Gordon et al, 2021) comprised of 20 global 

indices that relied on a combined 504 indicators to quantify water supply vulnerability 

(henceforth, data). We refer to individual data components of the database (e.g., indicators) 

where appropriate throughout this manuscript. We assumed that our data are a reasonable 

representation of available water supply indices and indicators based on their global nature.  

By making our database open-source, our goal is for it to be a living database that can be 

updated on an ongoing basis. 

5.2.2 Conceptual Model  

To ensure that our approach is generalizable and transparent, we used our data to identify 

common elements and their linkages for global indicator-based water supply vulnerability 

assessments. Our model is comprised of a target—the system’s true vulnerability—and 

three concentric rings (M = 3, labeled R1-R3 in Figure 5-1). We used a circular network 

model, adapted from work on wireless cluster networks by Tandon (2012), to capture the 

interdependence of model aspects and illustrate tradeoffs associated with the level of 

abstraction and difficulty of measurement. These core elements are as follows: 
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R1. The first ring outside of the target is comprised of discrete components of vulnerability 

derived from a theoretical framework that characterizes (or defines) vulnerability. A 

diversity of vulnerability frameworks exist, spanning various disciplinary views (e.g., 

Adger and Kelly 1999, Luers et al 2003, Cardona 2011, Turner et al 2003) from which 

users can select. R1 requires the lowest level of abstraction of the target (vulnerability) but 

is also the most challenging to directly measure (Luers, 2005). However, a vulnerability 

framework provides a theoretical grounding for the next step in the conceptual model: 

selecting system domains and sub-domains. 

R2. Based on a selected vulnerability framework, users can organize complex systems into 

components of vulnerability. This requires conceptualization and prioritization of the most 

relevant aspects of the system for assessment, which we define as domains consistent with 

Füssel (2007). Domains are a related collection of interlinked factors that determine how 

the system responds to and performs under various stressors (the third concentric circle in 

Figure 1).  The determination of important domains and sub-domains for a target system 

drives the next step in the model: the selection of indicators. R2 requires a moderate level 

of abstraction of the target (vulnerability) and is challenging to directly measure without 

the incorporation of indicators (Sullivan, 2011). 

R3. The outermost circle represents indicators, which are used to measure the performance 

or functionality of a domain or subdomain (R2) and thus to assess the characteristics of 

vulnerability (R1) and ultimately the target (vulnerability). While a significant number of 

indicators for assessing water supply vulnerability exist (Plummer et al., 2012), there are 

limited tools to support users in selecting and assessing these indicators across diverse 
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systems. Moreover, such indicators must often be standardized and aggregated in order to 

evaluate R2. As such, indicators are both the most easily measured and require the highest 

abstraction of vulnerability.   

5.2.3 Dynamic Approach 

We then linked the core elements for water supply vulnerability assessments together in an 

approach for evaluating water supply vulnerability (Figure 1). We performed a number of 

analyses using our data to ensure that assessments based on our approach are: 1) practical 

and 2) consider multiple dimensions of vulnerability. We describe these analyses for each 

step in our approach below.  

5.2.3.1 Vulnerability framework analysis 

Frameworks are essential for evaluating the structure of vulnerability in order to 

characterize potential damage to people and the environment (Luers, 2005). We first 

analyzed common vulnerability frameworks and their frequency of use based on our data 

per Figure 1. We then used extant theory to outline potential advantages and disadvantages 

for users interested in applying our approach. 

5.2.3.2 Core domains and sub-domains analysis 

To ensure that assessments based on our approach consider multiple aspects of 

vulnerability, we identified and defined general domains and sub-domains for indicator-

based water supply vulnerability assessments based on categories and concepts from 

literature (see Supplemental Codebook). These domains and sub-domains are defined as 

follows (see Table 5-1 for more detail): 
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1. Factors Influencing Water Supply (FIWS): This includes any aspects of the 
system related to the availability or accessibility of water resources. 

2. Factors Influencing Water Demand (FIWD): This domain includes any aspects 
of the system associated with productivity or demand for water resources. 

3. Factors Influencing the Social Value of Water (FISVW): This domain includes 
any aspects of the system associated with the anthropogenic valuation and 
allocation of water resources. 

Table 5- 1: Summary and definitions for domains and sub-domains.  

Sub-Domain Description 

FIWS  

Water Source • Relates to the origin of water supplies  
• Includes measures of the volume of water obtained from: 

o Conventional (e.g., surface and groundwater)  
o Non-conventional water sources (e.g., recycled water or 

treated wastewater) 
 

Water Quality • Relates to characteristics of water that are required to adequately 
meet various sectoral end uses 

• Includes measures of: 
o Water quality associated with standards or requirements 

for a given use (e.g., drinking water) 
o Factors contributing to water quality (e.g., discharge) 
o Water treatment and sanitation 
 

Water 
Infrastructure 

and Distribution 

• Relates to the transportation of water from a source or treatment 
location to storage or the end use or users 

• Includes measures of: 
o Physical aspects of the distribution system (e.g., canals, 

reservoirs) 
o Distance and time to access water supply 
 

Physical 
Environment 

• Relates to the condition of the broader physical environment that 
can directly and/or indirectly impact water supply 

• Includes measures of: 
o The health and functionality of the environment 
o Perceptions of change 
o Measures without direct attribution to water quality or 

quantity 
 



215 
 

 
 

FIWD  

Industrial Land 
and Water Use 

• Relates to any measures associated with fabricating, processing, 
washing, diluting, or transportation to assist smelting, refineries, 
and industries producing products 

• Includes measures of: 
o  Land use and land cover 

 
Urban and 

Municipal Land 
and Water Use 

• Relates to any human consumption or domestic uses such as 
bathing, cooking, cleaning, or watering lawns or gardens within a 
specific region (e.g., property owners in a specific place) or within 
the urban environment (e.g., region surrounding a city or 
developed area) 

• Includes measures of: 
o Land use and land cover 

 
Agricultural 

Land and Water 
Use 

• Relates to any produce or crop production (including the use of 
fertilizers and pesticides) or livestock rearing 

• Includes measures of: 
o Land use and land cover 
o Food security 

 
Cultural and 

Environmental 
Land and Water 

Use 

• Relates to the functionality of physical systems to support 
spiritual and/or religious practices as well as the health and well-
being of flora and fauna 

• Includes measures of: 
o Land use and land cover 
o Subsistence fishing 
o Spiritual and/or cultural value 

 
General Land 
and Water Use 

• Relates to any non-sectoral or non-specific measures of water or 
land use  

• Includes measures of: 
o Land and water use without attribution to other demand 

sub-domains (e.g., general groundwater withdrawal) 
 

FISVW  

Institutions and 
Management 

• Relates to the laws, policies, and customs that govern how water 
is allocated, distributed, and managed at a variety of scales 

• Includes measures of: 
o Operational (e.g., local use or control) water governance 
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o Organizational (e.g., coordination or reduction of conflict 
between competing uses via administration of rules) water 
governance 

o Constitutional (e.g., laws, policies, and legislation) water 
governance 
 

Socio-Culture • Relates to the social and cultural elements of how a group of 
individuals interact around water 

• Includes measures of: 
o Societal structure (e.g., demographics, education, age, 

land ownership) 
o Culture (e.g., beliefs practices values and norms) 
o Adaptivity (e.g., innovation, access to information, and 

capacity for adaptation and change) 
 

Economics • Relates to the production, distribution, and/or consumption of 
goods as well as services within a society 

• Includes measures of: 
o Material assets 
o Monetary assistance and capacity 
o Economic diversity and dependence (sometimes measured 

via employment) 
 

 

We then validate our proposed core domains and sub-domains using our data as described 

in Steps 1 and 2 below. 

Step 1:  Iterative consensus building—Multiple researchers hand coded all indicators 

included in our database into domains and sub-domains based on proposed definitions in 

Table 1 to establish intercoder reliability and repeatability. Any disagreements among 

coders were recorded and discussed until consensus was achieved. The definitions of each 

domain and sub-domain were iteratively refined during this process to enhance 

reproducibility (see Supplemental Codebook). 
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Step 2: Assessing robustness—We next implemented a text analysis of the hand-coded 

indicators obtained from Step 1 to verify the robustness of proposed definitions for domains 

and sub-domains. First, we identified a list of stop words to be excluded from indicators 

and standardized punctuation, capitalization, established synonyms, and abbreviations 

(Feinerer, 2022). We also removed duplicate words from a single indicator (e.g., if 

‘precipitation’ was mentioned twice for a single indicator, we recorded ‘precipitation’ only 

once). We then counted the frequency of each word in each domain and sub-domain and 

compared these results to definitions proposed in Table 1 to validate consistency between 

hand coded indicators and proposed definitions.   

5.2.3.3 Indicator analysis  

Previous work has underscored the importance of selecting indicators of water supply 

vulnerability that are: 1) appropriate and relevant; 2) transparent (i.e., not complex), 3) 

feasible to using available data, 4) match system considerations (i.e., spatial and temporal 

scale), and 5) are consistent with the level of detail required for the desired assessment 

(Anandhi and Kannan, 2018; de Ruiter and van Loon, 2022; Hurd et al., 1999). In order to 

screen indicators in this way and select indicators that capture vulnerability in a 

multidimensional manner, users need publicly available and rigorous information about the 

breadth and focus of existing indicators. Such information is also assumed to enhance 

efficiency in the development of new indicators by enabling a bigger picture view of where 

new indicators may be needed and how indicators from different domains can be 

quantitatively evaluated.  
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To do this, we first calculated similarity for indicators assigned to the same sub-domain 

(Section 5.3.2) based on the Jaro-Winkler Fuzzy match algorithm. This algorithm has been 

shown to perform well on relatively short strings (Leonardo and Hansun, 2017) consistent 

with the majority of our indicators. We obtained the Jaro similarity (𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗 as proposed by 

Jaro, 1989) for all pairwise combinations of unique strings (e.g., 𝑠𝑠1 and 𝑠𝑠2) as: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗 =  �
0                                       𝑖𝑖𝑖𝑖 𝑚𝑚 = 0 
1
3
� 𝑚𝑚

|𝑠𝑠1| + 𝑚𝑚
|𝑠𝑠2|  + 𝑚𝑚−𝑡𝑡

𝑚𝑚
�   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒        Eq. (5-1) 

Where m was the number of matching characters between strings 𝑠𝑠1 and 𝑠𝑠2, defined as:  

𝑚𝑚 =  �𝑚𝑚𝑚𝑚𝑚𝑚(|𝑠𝑠1|,|𝑠𝑠1|)
2

�   − 1         Eq. (5-2) 

And t is the number of transpositions, which was obtained by dividing the number of 

matching characters in the wrong sequence order by two. We then calculated the Jaro-

Winkler similarity or 𝑠𝑠𝑠𝑠𝑠𝑠𝑤𝑤 using 𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗 from above with a modification that assigned 

favorable ranking to strings with matching prefixes up to a set length (L) per Eq. (5-3): 

𝑠𝑠𝑠𝑠𝑠𝑠𝑤𝑤 =  𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗 + 𝐿𝐿𝐿𝐿(1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗)       Eq. (5-3) 

Where p was a scaling factor used to the score for common prefixes. The standard value of 

p is 0.1, which was also adopted in this study. The Jaro-Winkler distance (𝑑𝑑𝑤𝑤) was then 

determined using Eq. (5-4): 

𝑑𝑑𝑤𝑤 = 1 −  𝑠𝑠𝑠𝑠𝑠𝑠𝑤𝑤         Eq. (5-4) 
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As suggested by Eq. (5-4), lower values of 𝑑𝑑𝑤𝑤 correspond to greater similarity between 

strings 𝑠𝑠1 and 𝑠𝑠2 whereas higher values of 𝑑𝑑𝑤𝑤 correspond to less similarity between strings 

𝑠𝑠1 and 𝑠𝑠2. 

We then examined clusters within our data using a matrix based on the Jaro-Winkler Fuzzy 

match algorithm. We used a complete linkage hierarchical cluster (Amine et al., 2010), 

which forms clusters based on the maximum distance between two clusters  X and Y: 

𝐷𝐷(𝑋𝑋,𝑌𝑌) = max
𝑥𝑥∈𝑋𝑋,𝑦𝑦∈𝑌𝑌

𝑑𝑑(𝑥𝑥,𝑦𝑦)       Eq. (5-5) 

Where 𝑑𝑑(𝑥𝑥, 𝑦𝑦) is the distance between elements 𝑥𝑥 ∈ 𝑋𝑋 and 𝑦𝑦 ∈ 𝑌𝑌.  

Complete linkage clustering produces well-separated and compact clusters and has been 

employed using text, string, and record data (Mamun et al., 2016; Rajalingam and Ranjini, 

2011; Ram et al., 2005) in larger datasets (Saraçli et al., 2013). However, there is limited 

guidance on how to determine the optimal number of clusters for our analysis (Orford, 

1976). In the absence of a clear set of best practices, we implemented a tiered methodology 

to determine the optimal number of clusters for each sub-domain to avoid subjectively 

determining cutoff points. First, we determined whether there was any consensus (defined 

as >50% agreement) between multiple estimation methods described in more detail by 

Lüdecke et al (2020). In the absence of consensus (<50% agreement), we then determined 

the optimal number of clusters by visually comparing a Silhouette score plot (Rousseeuw, 

1987) and an elbow method plot. Once the optimal number of clusters was determined, we 

followed Tseng and Tsay (2013) to obtain cluster labels analysis using maximally repeated 
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words or word sequences within indicators. Two researchers reviewed and agreed upon all 

resulting labels. 

5.2.3.4 Indicator evaluation 

We next investigated how indices aggregate indicators from different domains and sub-

domains. We noted whether there was guidance around weighting, which is an integral and 

variable part of vulnerability assessments (Hinkel, 2011). 

5.2.3.5 Catalyst for revision analysis 

Conceptual work on vulnerability has highlighted the need to move towards a complex 

system theory approach to account for the dynamic nature of the vulnerability (Birkmann 

et al., 2013; Cardona, 2011; Pelling, 2010). However, there is some tension between 

considering numerous complex and nonlinear processes and the practical benefits of 

indicator-based assessment for managers and policy-makers. We thus elected to focus 

specifically on whether and how indices identify a socio-hydrologic catalyst for revising, 

updating, or expanding the indicators, domains, or framework selected for assessing water 

supply vulnerability (see Figure 5-1 for feedback between our database and approach).  

5.3 Results 

5.3.1 Vulnerability framework results 

Indices included in database (n = 20) relied upon a diversity of vulnerability frameworks 

with various associated components for assessment (Table 5-2).  Both the Exposure-

Sensitivity-Adaptive Capacity (ESAC) and the integrated and social ecology frameworks 

were the most widely adopted (n = 6, 30% each) with slightly fewer indices (n = 4, 20%) 
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adopting a Pressure-State-Response based framework. Two indices made use of combined 

frameworks and two indices did not clearly indicate a framework. 

Table 5-2:  Vulnerability frameworks and components. Columns include the framework 

name, definition, advantages, and disadvantages as well as the frequency of use in our data. 

 

Overall, the results validated the importance of established frameworks for assessing water 

supply vulnerability and also suggest that a diversity of frameworks can be robustly 

incorporated into indicator-based assessments. However, the analysis revealed a number 

of advantages and disadvantages that should be considered before adopting any of the 
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frameworks outlined in Table 5-2. For example, despite its frequent use, ESAC may be 

challenging for users to implement given the subjective categorization of domains, sub-

domains, and ultimately indicators into three categories (Fortini and Schubert, 2017).  

5.3.2 Domain and sub-domain results  

Hand coding analysis on our data confirmed the general applicability of our proposed 

multidimensional domains and sub-domains outlined in Table 5-1. At the domain level, 

initial hand coding results yielded agreement on 399 of 504 indicators (~79%) with follow-

up discussion leading to consensus on all 504 indicators. At the sub-domain level, initial 

hand coding results were similar with agreement on 403 of 504 indicators (~80%). Here 

too, follow-up discussion led to consensus on all 504 indicators and clarification were 

recorded in the definitions outlined above (see Supplemental Codebook).  

Text analysis further supported the robustness of proposed domains and sub-domains for a 

broad range of systems. For example, text analysis on the hand coded results for the water 

infrastructure and distribution sub-domain revealed that existing indicators were heavily 

focused on storage and reservoirs (Figure 5-2A) consistent with Table 5-1. Although 

included in our definitions, few indicators grouped into the FIWS domain emphasized the 

water infrastructure and distribution sub-domain (20 of 217 indicators, 9.2%), which we 

explore in more detail in Section 5.4.3. Results were similarly robust for the FIWD domain. 

Figure 5-2B, for example, highlights the importance of arable land (cover), food, and 

irrigation consistent with the proposed definitions (Table 5-1). Here the comparison 

between our proposed definitions and results in Figure 5-2 highlighted a diminished 

emphasis on Table 5-1 terms associated with urban and municipal water and land use sub-
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domain (10 of 105 indicators, 9.5%). We found that the institutions and management sub-

domain emphasized indicators such as conflict, government, and public and civil measures 

consistent with the proposed definitions in Table 5-1. 

 

 

Figure 5-2: Distribution of existing indicators (n = 504) across proposed sub-domains 

based on hand coding including a robustness check based on text analysis of word 

frequency for each of the three domains: A) FIWS (n = 217); B) FIWD (n = 105); and C) 

FISVW (n = 182).  
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Overall, hand coding and text analysis validated our proposed domains and sub-domains 

outlined in Table 5-1 for the broad range of global systems. Importantly, we also observed 

that the indicators included database—which we assume are a reasonable representation of 

available water supply indicators more generally—prioritized certain domains over others. 

Evidence of this bias suggests that existing indices may be prone to silo-ing particularly 

with regard to water supply. We also observed that there were a number of general 

indicators for each of our domains, which did not fit into any particular category. 

5.3.3 Indicators results  

Our analysis of indicators included in our database revealed reinforced the biases towards 

physical indicators observed in Section 5.4.2 (see also Figure 5-2) can help users quickly 

identify existing indicators and prioritize areas for development of additional indicators. 

For the FIWS domain and associated sub-domains (Figure 5-3A to 5-D), cluster results 

emphasized a strong focus on surface water for water source sub-domain indicators (Figure 

5-3A) with clusters supporting the evaluation of precipitation, unregulated flows, surface 

water stress, surface water source, and streamflow. Indicators in our database—represented 

by individual lines in each dendrogram—tended to be similar based on the height at which 

distinct clusters (represented by different colors in Figure 5-3A to 5-D) emerged. See, for 

example,  indicators focused on the evaluation of surface water sources (see the height at 

which individual indicators were observed to diverge in the ‘Water Source cluster in Figure 

5-3A).  
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Figure 5-3: Results of the complete linkage agglomerative hierarchical clustering and 

labeling analysis presented in dendrograms for all four sub-domains in the factors 

influencing the water supply domain: A) the water source sub-domain; B) the water quality 

sub-domain; C) the water infrastructure and distribution sub-domain; and D) the physical 

environment sub-domain. * indicates an inconclusive or repeated cluster label where best 

judgement was used to generate a unique cluster name, 1 Algal Bloom, 2 Lake Clarity, 3 

Zebra Mussel, 4 Glacial Lake Outburst, 5 Humidity Index, and 6 Transmissivity. Plots with 

indicator label names are included in SI (Figure S5-1 to S5-4).  
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For the FIWD domain and associated sub-domains (Figure 5-4A to 5-4C), we found a 

smaller number of distinct clusters with differences tending to emerge well below a Jaro-

Winkler distance of 1 (i.e., complete dissimilarity). Clusters in the agricultural land and 

water use domain  highlighted a broad existing focus on food consumption, irrigation and 

cropping, livestock, and food scarcity supported by multiple moderately dissimilar 

indicators (see corresponding labels in Figure 5-4A). In particular, we found that a large 

number of unique indicators were associated with irrigation and crops, as evidenced by the 

divergence of individual lines within this cluster at Jaro-Winkler distances between 0.4 and 

0.5 in the majority of cases (see ‘Irrigation/Crops’ label in Figure 5-4A).  
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Figure 5-4: Results of the complete linkage agglomerative hierarchical clustering and 

labeling analysis presented in dendrograms for three of the five sub-domains in the factors 

influencing water demand domain: A) the agricultural land and water use sub-domain; B) 

the environmental and cultural land and water use sub-domain; C) the general land and 

water use sub-domain. Cluster optimization results for the urban and municipal land and 

water use sub-domain and the industrial land and water use sub-domain were inconclusive. 

As a result, both sub-domains were excluded from further analysis. * indicates an 

inconclusive or repeated cluster label where best judgement was used to generate a unique 

cluster name, 1 Growing Season. Plots with indicator label names are included in SI (Figure 

S5-5 to S5-7).  

Indicators for evaluating FISVW domain (Figure 5-5A to 5-5C) were more complex than 

either the FIWS (Figure 5-3) or FIWD (Figure 5-4) domains as evidenced by a high number 

of optimal clusters. Specifically, we found that the socio-culture (Figure 5-5B) and 

economic sub-domains (Figure 5-5C) tended to be both dissimilar and complex (see height 

at which distinct clusters emerge and labels in Figure 5-5B and 5-5C). There were, 

however, exceptions with results for the socio-culture sub-domain (Figure 5-5B) where 

there was a strong existing emphasis on relatively similar population-level indicators (see 

‘Population’ label in Figure 5-5B).  
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Figure 5-5: Results of the complete linkage agglomerative hierarchical clustering and 

labeling analysis presented in dendrograms for all three clusters in the factors influencing 

the social value of water domain: A) the institutional and management sub-domain; B) the 

socio-culture sub-domain; C) the economics sub-domain. * indicates an inconclusive or 

repeated cluster label where best judgement was used to generate a unique cluster name, 1 

Association Membership, 2 Life Expectancy, 3 Orphans, 4 Vehicles. Plots with indicator 

label names are included in SI (Figure S5-8 to S5-10). 

Overall, we found that existing indicators—as represented by our data—are well equipped 

to capture surface water supply, agricultural water use, and population-level socio-
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economic aspects of water supply vulnerability. However, many important gaps exist and 

are likely related to data availability. Few indicators in the FIWS domain focus on 

groundwater, which likely corresponds with the lack of high resolution global groundwater 

datasets available for smaller-scale assessments (Tapley et al., 2004). Likewise, we found 

a particularly acute lack of indicators associated with the measurement of reused or 

recycled water resources (Figure 5-3A). Like groundwater, reused and recycled water is 

likely to become increasingly critical in many arid and semi-arid regions (He et al., 2021; 

Toze, 2006) and is plagued by data limitations (Wiener et al., 2016). Within this domain, 

our analysis also highlighted the narrow focus of water infrastructure and distribution 

indicators on built storage (Figure 5-4C), which may be easier to evaluate but is  also likely 

to be increasingly stressed and controversial under continued climate change (Ehsani et al., 

2017; Kellner, 2021; Kellner and Brunner, 2021; Steyaert et al., 2022). Prioritization of 

other aspects of water infrastructure and distribution (e.g., groundwater recharge) within 

these systems could enhance understanding of not only vulnerability but also where 

opportunities for adaptation may exist (He et al., 2021). However, the feasibility of these 

efforts is closely tied to the availability and/or development of sufficient datasets. We also 

observed a particularly weak and narrow emphasis on cultural water needs (Figure 5-5B), 

which are increasingly recognized as important (Immerzeel et al., 2020) and threatened by 

climate change (Vuille et al., 2018). Reconciling this gap is likely to require improvements 

in data (Smith and Ali, 2006) as well as conscientious engagement with communities in 

order to understand the spectrum of cultural uses for different groups of people (e.g., Chief 

et al., 2016). Indicators for evaluating the FISVW domain prioritized population-level 

measures, which we hypothesize is an artifact of the type of data available for evaluating 
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this domain (e.g., national or regional scale census data). Here too, we observed a distinct 

lack of indicators associated with the influence of values and cultural norms on 

vulnerability.  

5.3.3.1 Indicator assessment results 

We summarize our findings with regard to indicator standardization and aggregation in 

Figure 5-6 and Table 5-3, noting the advantages and disadvantages associated with the 

different methods based on extant theory. Most indices included in our database normalized 

indicators based on minimum and maximum values (Min-Max) and then aggregated these 

indicators based on Composite Index Approach (CIA) with equal weighting (dark red 

stream in Figure 5-6, details in Table 5-3). However, we found that minimum-maximum 

based standardizing presents problems when the vulnerability is not uniformly high or low 

based on the raw indicator values (e.g., 10 could indicate either low or high vulnerability 

based on different indicators). Rating scale-based approaches may circumvent this 

challenge but require expert knowledge of the system for realistic values. We present the 

most common combinations of methods for standardizing, evaluating, and weighting 

indicators based on our database per Figure 5-6.  

Table 5-3: Summary of standardization and aggregation methodologies for evaluating 

diverse indicators of water supply vulnerability.  

Description Evaluation Advantages Disadvantages 

Standardization  

Rating Scale 
Raw values are grouped 
and then re-assigned a 
value from 0-1, where 0 

• Simple way to 
assign different 

• Requires expert 
input and/or a 
strong 
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is highly vulnerable and 
1 is highly resilient.  

indicators values 
on a 0-1 scale. 

• Standardizes low 
values as 
vulnerable and 
high values as 
resilient. 

understanding of 
system 
thresholds. 

Min-Max 
Normalization 

𝐼𝐼 =  
(I𝑜𝑜 − I𝑚𝑚𝑚𝑚𝑚𝑚)

(I𝑚𝑚𝑚𝑚𝑚𝑚 − I𝑚𝑚𝑚𝑚𝑚𝑚)
∗ 𝐶𝐶 

 
Where I is the re-scaled 
indicator, I𝑜𝑜 is the initial 
indicator, I𝑚𝑚𝑚𝑚𝑚𝑚 is the 
upper lower bound of the 
original scale, and I𝑚𝑚𝑚𝑚𝑚𝑚 
is the upper bound of the 
original scale. In some 
cases, users may 
multiply the normalized 
indicator by a scalar (C) 
in order to obtain values 
within a desired range 
(e.g., 0-100). Indicators 
can also be normalized 
as: 

𝐼𝐼 =  
(I𝑚𝑚𝑚𝑚𝑚𝑚 − I𝑜𝑜)

(I𝑚𝑚𝑚𝑚𝑚𝑚 − I𝑚𝑚𝑚𝑚𝑚𝑚)
 

 

• Can include the 
option to re-scale 
indicators, which 
may be useful for 
further 
standardization. 

• Substantial 
guidance exists, 
making it easier 
for users to 
implement. 

• Requires 
subjective input 
to transform (via 
the inverse of 
I𝑜𝑜) in some cases. 

Basket 
Approach 

𝐷𝐷 = 𝑛𝑛−1� I𝑜𝑜𝑖𝑖

𝑛𝑛

𝑖𝑖

 

Where D is the domain 
value, I𝑜𝑜 is the raw 
indicator, n is the 
number of indicators, 
and i is the i-th value of 
out of n.  

• Circumvents 
challenges 
associated with 
standardizing 
individual 
indicators. 

• May not consider 
that raw 
indicators can 
reflect 
vulnerability at 
both high and low 
values. 

Threshold 
Normalization 

Indicators are 
manipulated to ensure 
that all high values are 
associated with 
vulnerability and then 
standardized relative to a 
threshold. 

• Vulnerability is 
consistently 
associated with 
high values. 

• Requires 
subjective 
definition of a 
threshold and 
lacks rigorous 
mathematical 
guidance. 
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Aggregation 

Multi-Criteria 
Analysis (MCA) 

𝑆𝑆 = 𝑤𝑤𝑠𝑠�𝑟𝑟𝑖𝑖𝐼𝐼𝑖𝑖

𝑛𝑛

𝑖𝑖

 

Where S is the domain, n 
is the number of 
indicators, i is the i-th 
value of out of n, r is the 
risk of that indicator 
increasing vulnerability 
based on either statistical 
analysis or expert 
opinion, and I is the raw 
indicator. In the case that 
there are multiple 
domains, S is multiplied 
by 𝑤𝑤𝑠𝑠, which is obtained 
by dividing 1 by the 
number of domains if all 
domains are equally 
weighted. 

• Theoretical basis 
is well 
established in 
multiple 
disciplines, 
including natural 
resource 
management.  

• Requires either 
statistical or 
expert-based 
knowledge of 
risk. 

Composite 
Programming 
Approach 
(CPA) 

𝑆𝑆𝑆𝑆 = ��𝑤𝑤𝑖𝑖𝐼𝐼𝑖𝑖𝑃𝑃
𝑙𝑙

𝑖𝑖=1

�

𝑃𝑃

 

Where SD is a given sub-
domain, l is the number 
of indicators grouped 
into the given SD, i is the 
i-th value of out of l 
indicators, w is the 
weight assigned to each 
normalized indicator (I), 
and P is a balancing 
factor among indicators 
selected to reflect the 
importance of maximal 
deviation. SD can then 
be used to evaluate a 
domain (D) as: 

𝐷𝐷 = ��𝑤𝑤𝑗𝑗𝑆𝑆𝑆𝑆𝑗𝑗
𝑃𝑃𝑗𝑗

𝑚𝑚

𝑗𝑗

�

1
𝑃𝑃𝑗𝑗

 

 

• Similar to MCA 
• Does not require 

a risk assessment 
based on 
statistical 
evaluation or 
expert opinion. 

• Requires 
subjective 
determination of 
weighting factor 
and balancing 
factor. 
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Where m is the number 
of sub-domains grouped 
into the given D and j is 
j-th value out of m sub-
domains. A composite 
value (V) can then be 
obtained as:  

𝑉𝑉 = 1 − ��𝑤𝑤𝑘𝑘𝐷𝐷𝑘𝑘𝑛𝑛
𝑛𝑛

𝑘𝑘

�

1
𝑛𝑛

 

Where n is the number of 
domains included in the 
vulnerability assessment 
and k is the k-th value 
out of n domains. 
 

Composite 
Index Approach 
(CIA) 

𝑉𝑉 = �
𝑤𝑤𝑖𝑖𝐺𝐺𝑖𝑖
𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖

 

Where w is the weight 
assigned to each group 
(e.g., sub-domain, 
domain) and V is the 
composite value of 
vulnerability. 
 

• Similar to MCA 
• Explicitly allows 

for unequal 
weighting of 
domains. 

• May not consider 
the ways in which 
raw indicators 
can reflect 
vulnerability at 
both high and low 
values 
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Figure 5- 6: Alluvial diagram of results for indicator standardization, sub-domain and 

domain aggregation, and weighting based on analysis of existing indices collected per 

Section 5.3.1. 

We observed multiple pathways for aggregating across social, economic, physical, cultural, 

environmental, and institutional indicators of system performance (Figure 5-6, Table 5-3). 

This suggests that if biases toward physical indicators can be corrected, there is a clear 

pathway for assessing vulnerability in a multidimensional manner.  
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5.3.4 Catalyst for revision results 

Critically, we observed that no indices included in our database explicitly noted when or 

how they should be revised to capture the underlying dynamics of vulnerability, long-

lasting vulnerability, and/or compounding vulnerability (see Table S5-1). These findings 

underscore a pressing need to for future indices and approaches to consider the conditions 

under which users should revise the indicators—or in more extreme cases, domains and 

sub-domains or vulnerability frameworks—adopted for vulnerability assessment. 

5.3.5 Approach and Database 

When integrated into the approach derived from our conceptual model in Figure 5-1, results 

provide practical guidance for water managers and policy-makers interested in 

implementing a bottom-up assessment of water supply vulnerability as shown in Figure 5-

7. The analyses and results described in the sections above help ensure that assessments of 

vulnerability are multidimensional and when paired with our database, can be revisited in 

response to social, political, and environmental stresses per feedbacks in Figure 5-1 as 

follows: 

1. Per previous work by Anandhi and Kannan (2018), the target system is defined 

based on its: 1) spatial and social bounds; 2) the level of detail required to address 

vulnerability (e.g., rapid, intermediate, or comprehensive); and, 3) the data and/or 

resources available (e.g., measurements, models, national statistics, stakeholder 

interviews, etc); 

2. A vulnerability framework (R1, Figure 5-1) is selected drawing upon the results 

presented in Section 5.3.1, specifically Table5-2; 
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3. Core domains and sub-domains (corresponding with R2 in Figures 5-1) are 

identified based on Section 5.3.2, Figure 5-2, and Table 5-1; 

4. Using the open-source database accompanying this manuscript, indicators available 

to evaluate the performance of identified domains and sub-domains (R3 in Figure 

5-1) are then screened based on their relevance, transparency, feasibility, system 

considerations, and the level of detail required for the desired assessment (Anandhi 

and Kannan, 2018; Hurd et al., 1999). The results presented in Section 5.4.3, 

specifically Figures 5-3 to 5-5 can be used to identify gaps where users the co-

production or collaborative development of indicators is necessary to ensure local 

relevance; 

5. Vulnerability is then assessed by evaluating indicators using the results presented 

in Section 5.3.3.1, specifically Table 5-3 and Figure 5-6; 

6. External (e.g., exogenous stressors imposed by the physical environment) or 

internal (e.g., endogenous stressors imposed by society) catalysts that would trigger 

a revision of indicators (grey arrow in Figure 5-7) or in more extreme cases the 

selection of a vulnerability framework, domains and sub-domains, and indicators 

(black arrow in Figure 5-7).   
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Figure 5- 7: A scalable approach to multidimensional and dynamic indicator-based 

vulnerability assessments for bottom-up implementation in water resource systems.  



238 
 

 
 

5.4 Conclusions 

Complex, interacting, and accelerating socio-hydrologic stresses are straining freshwater 

supplies around the world, leaving water resources systems increasingly vulnerable to 

damage. To design just, efficient, and locally-relevant adaptation strategies, water 

managers and policy-makers need dynamic and multidimensional assessments of system 

vulnerability that can be implemented in a bottom-up manner and in a diversity of places 

(Dilling et al., 2015; Dilling and Berggren, 2015; Sullivan, 2011). Drawing from a diverse 

body of existing water supply indices and indicators, we distill these approaches from 

around the globe into a conceptual model comprised of key elements for assessing 

vulnerability. We then link these elements via an approach that retains the practical benefits 

of indicator-based assessment while ensuring that vulnerability can measured in a 

multidimensional and dynamic manner  (Figure 5-1).  

When combined with our supporting analyses and open-source database, this approach can 

be implemented for a variety of reasons in a diversity of systems. For example, per Figure 

5-7, we used this approach to assess the water supply vulnerability of agricultural systems 

to changing snow (Gordon et al, In Prep). As part of this, we first defined the system 

bounds based on irrigation demand and selected the ESAC framework based on Table 5-

2. We then identified the FIWS and FIWD domains, specifically water source and 

agricultural demand sub-domains respectively, based on available data. We then used the 

database to review available indicators for these sub-domains and drew from additional 

literature to add additional indicators appropriate for our analysis. These indicators were 

then added to our database. We then assessed these indicators using the min-max 
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normalization which were aggregated using the geometric mean with equal weighting to 

evaluate vulnerability as a function of exposure, sensitivity, and adaptive capacity.  

In this study, we also highlight several fundamental gaps in existing data for evaluating 

water supply vulnerability that can be confronted in future research. In this pursuit, the 

success of our interdisciplinary approach may be particularly helpful. For example, our text 

clustering analysis had to be complemented by hand coding, reinforcing the need for 

robust, interdisciplinary approaches to characterize the risks and opportunities for global 

water resource systems. Rather than focusing on the development of new static, top-down 

indices for relative comparisons across systems, our findings illustrate the need for ongoing 

research and management efforts to propose, test, and refine more diverse, locally-relevant 

indicators—particularly as they relate to cultural aspects of water use—in collaboration 

with stakeholders to ensure that outcomes are just and efficient. This need intersects with 

the broader challenge of comprehensive data for evaluating the social value of water. When 

incorporated into practical approaches, advances on both of these fronts can further assist 

in more comprehensive evaluations of vulnerability in order to improve the local relevance, 

justness, and efficacy of critical adaptation activities. 

5.5 Supplemental Information 

Table S5-1: Complete indices included in our test data per the main manuscript along with 

geographic region (if applicable) and catalyst.  

Index Name Citation Location 
specific? 

If, yes 
specify? 

Includes 
temporal 
extent? 

Includes 
catalyst? 
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Water 
Vulnerability 
Index 

Sullivan  
(2011) No  Yes No 

 
Jun et al. 
(2011) No  No No 

Arctic Water 
Resource 
Vulnerability 
Index 

Alessa et al. 
(2008) Yes 

Communities 
in the 
circumpolar 
Arctic Yes No 

The 
Livelihood 
Vulnerability 
Index 

Hahn et al. 
(2009) Yes  

Mabote and 
Moma 
Districts of 
Mozambique No No 

CWCVI 
Okpara et al. 
(2016) Yes 

South-
eastern 
shores of 
Lake Chad in 
the Republic 
of Chad No No 

DART 

Dennis & 
Dennis 
(2011) Yes South Africa No No 

CVI 

Sullivan and 
Meigh 
(2005) No  No No 

N/A 

Khajuria and 
Ravindranath 
(2012) No  No No 

GCVI 
Jubeh and 
Mimi (2012) Yes 

Israel, 
Jordan, 
Lebanon, 
Palestine and 
Syria No No 

Climate 
Vulnerability 
Index for 
Water 
(CVIW) 

Pandey et al. 
(2015) Yes 

Nepali 
Himalaya No No 

WDNR 

State of 
Wisconsin 
(2014) Yes  Wisconsin No No 

WR-VISTA 

Anandhi and 
Kannan 
(2018) No  Yes No 
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No title 
Chhetri et al. 
(2020) Yes 

Hilly Region 
of Nepal No No 

The 
watershed 
sustainability 
index 

Chaves and 
Alipaz 
(2007) Yes 

South 
America, 
Oceania, 
Africa No No 

The Water, 
Economy, 
Investment 
and Learning 
Assessment 
Indicator 
(WEILAI) 

Cohen and 
Sullivan 
(2010) Yes Rural China No No 

Water 
Poverty 
Index 

Lawrence et 
al. (2002) No  No No 

N/A 
Hamouda et 
al. (2009) Yes 

East Nile 
Basin 
countries Yes No 

N/A 
Hurd et al 
(1999) Yes United States No No 

N/A 
Chang et al 
(2013) Yes 

Columbia 
River Basin 

No No 

N/A 
Kim et al 
(2013) Yes South Korea No No 
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Figure S5- 1: Full cluster results for the water source sub-domain.  
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Figure S5-2: Full cluster results for the water quality sub-domain.  
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Figure S5-3: Full cluster results for the water infrastructure and distribution sub-domain.  
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Figure S5-4: Full cluster results for the physical environment sub-domain.  
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Figure S5- 5: Full cluster results for the agricultural land and water use sub-domain.  
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Figure S5-6: Full cluster results for the environmental and cultural land and water use sub-

domain.  
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Figure S5- 7: Full cluster results for the general land and water use sub-domain.  
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Figure S5-8: Full cluster results for the institutions and management sub-domain.  
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Figure S5-9: Full cluster results for socio-culture sub-domain.  
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Figure S5- 10: Full cluster results for economics sub-domain.  
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6 Chapter 6: Conclusions 

In mountain environments, climate change has already substantially and rapidly altered 

snow resources (Musselman et al., 2017).  Evidence suggests that changes in the 

persistence and amount of snow are likely to be ongoing and more complex under 

continued climate change (Barnett et al., 2008; Rauscher et al., 2008). As a result, society 

must adapt to uncertainty in the amount and timing of mountain water supplies (Adam et 

al., 2009; Stewart, 2009), which will impact people, agriculture (Qin et al., 2020), 

economic productivity (Barnett et al., 2008; Sturm et al., 2017), ecosystem health (Allan 

and Castillo, 2007), wildfires (Holden et al., 2012; Westerling et al., 2006), flood risk 

(Davenport et al., 2020; Hamlet and Lettenmaier, 2007), spiritual and cultural practices 

(Immerzeel et al., 2020; Vuille et al., 2018), and reservoir management (Ajami et al., 2008; 

Ehsani et al., 2017) to name only a few. To assist scientists, water managers, and policy-

makers in the grand challenge of adapting socio-hydrologic systems to these multifaceted 

changes, this dissertation is motivated to answer a single question: How can we better 

characterize the vulnerability—and adaptive capacity— of socio-hydrologic systems to 

shifts in mountain water supplies driven by climate change?   

We do answer this question in four parts, coupling technical investigations of hydrology 

with robust and interdisciplinary methods to illustrate:  

1. the mechanisms contributing to changing mountain water supplies;  

2. the tools available for quantifying water supply contributions from mountain 

environments;  
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3. the ways in which humans interact with water supplies from mountain environments to 

amplify or moderate vulnerability; and, 

4. the approaches available for measuring water supply vulnerability in a dynamic and 

multidimensional manner.   

As a whole, each of these Chapters contributes novel information for society as we seek to 

adapt to changes in mountain water resources. We summarize the major conclusions of this 

dissertation below: 

Key Conclusions 

• Predicting changes in streamflow arising from changes in snow is uniquely critical 

and uniquely challenging in the western US. Due to high potential for interaction 

between the mechanisms controlling how changes in snow are translated into 

changes in streamflow, mountainous catchments in the western US are likely to be 

impacted by changes in the timing and intensity of water inputs as well as increases 

in the amount of water lost to the environment during the snow season.  

• Existing tools—and data—for characterizing water supplies are imperfect and 

particularly so when it comes to quantifying groundwater contributions from 

mountain environments. Simplifications with regard to the impacts of measurement 

error and the negligibility of groundwater are often used to quantify and make 

predictions about streamflow. However, in doing so these tools neglect potential 

groundwater contributions from high, arid upland catchments with deep permeable 

substrates. 
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• Foregrounding the effects of dynamic physical changes in mountain water supplies 

overlooks how human activity can moderate the consequences of these changes, 

particularly in the near future if storage and demand management solutions are 

pursued. 

• Water supply vulnerability must be considered—and assessed—in a dynamic and 

multidimensional manner. Static assessments of physical vulnerability neglect the 

social value of water and often diminish the active role demand plays in 

determining vulnerability. Maintaining the practical benefits of indicator-based 

assessments is essential for continued vulnerability assessment in the management 

and policy space. However, we need flexible approaches—and, critically, more 

comprehensive indicators and data for evaluating these indicators—in order to 

move closer to the true vulnerability of socio-hydrologic systems in the face of 

changing water supplies.  

Key Themes and Recommendations 

1. The benefits of simplification. This dissertation focuses broadly on investigating 

the benefits and the costs of simplification in different ways: first through metrics, 

then through metrics and tools, and finally through metrics, tools, and systems. In 

Chapter 2, we highlight how simple mechanisms that reduce complex interactions 

between the subsurface, snow, and the atmosphere can be used to explain variability 

in streamflow response to changing snow. In Chapter 3, we illustrate the benefits 

of a simple framework proposed by Fan (2019) for conditioning expectations about 

groundwater contributions from mountainous catchments. In Chapters 4 and 5, we 
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rely upon demonstrations using indicators of system performance to capture 

elements of vulnerability in a policy and management relevant manner. We 

recommend the following: 

o Continued testing of simple mechanisms to explain complex hydrological 

processes and incorporation of these mechanisms into modeling and 

observational efforts. 

o Continued development of simple metrics, particularly with regard to the 

social value of water. Here, specifically metrics to enhance consideration of 

the cultural value of water would enhance holistic vulnerability assessment.  

o Development of more robust data for evaluating the social value of water 

across different systems. In this dissertation, we hypothesize that the 

availability of widespread gridded data products for evaluating physical 

aspects of vulnerability have led to somewhat lopsided evaluations of 

vulnerability that rely heavily on physical measures (e.g., precipitation) and 

can neglect the social value of water. Efforts to reconcile this gap could thus 

promote a more complete understanding of system vulnerabilities to climate 

induced changes in water supply. 

2. The costs of simplification, specifically with regard to the water budget.  

At the same time, our results highlight the need to weigh decisions about 

simplification carefully. In Chapters 2 and 3 in particular, this dissertation 

illustrates the pitfalls of simplifying and conventionally accepted assumptions 

about water budget closure.  In Chapter 2, we show that simplification of the water 

budget over time can mask important contributions from groundwater and lump 
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measurement error into physical inferences about surface water. In Chapter 3, we 

illustrate how the spatial simplification of the water budget ignores the critical role 

institutions and laws in moving water around arid landscapes like the western US. 

In this way, spatial simplification can alter conclusions about the heterogeneity of 

vulnerability by specifically ignoring adaptive capacities.  To remedy these 

challenges, we recommend the following: 

• Reconsideration of closed water budgets in mountain environments. This 

dissertation reinforces that closed water budgets are particularly fragile in 

higher elevation, arid catchments in the western US with deep permeable 

substrates.   

• Continued development of improved forcing data and bias correction 

methodologies particularly with regard to precipitation.   

• Reconsideration of assumptions about the spatial coherence between supply 

and demand. We recommend the adoption of systems perspectives for water 

budget analyses in the western US, which we discuss in more detail below.  

3. The importance of systems perspectives for unraveling the impacts of 

changing mountain water resources on agriculture.  

Numerous hydrologic analyses have investigated and articulated the physical 

effects of climate change on agriculture through impacts to the timing and amount 

of mountain water resources. As outlined above, such analyses rely on assumptions 

about the spatial coherence between supply and demand at catchment, sub-basin, 

or basin scales. However, such an approach overlooks how socio-hydrologic 

systems have co-evolved not only with their physical hydrology, but also with 
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policy, infrastructure, socio-economic conditions, and water demand; all of which 

can lead to variable different outcomes in response to changing water supplies. In 

addition to broad reconsideration of assumptions about supply and demand 

coherence at the catchment, sub-basin, or basin scale, we recommend that the next 

phase of water supply investigations adopt a more robust systems thinking 

approach. Such a shift would specifically include the following: 

• More robust consideration of how society influences hydrology through 

land cover change and infrastructure—specifically reservoirs, water 

transfers, and evolving tools like managed aquifer recharge (MAR). 

• Incorporation of the ways in which institutions and laws shape physical 

hydrology by moving water around from areas of comparatively higher 

availability to lower availability in the arid western US. Specifically, this 

recommendation would require analyses to center demand rather than 

supply in defining socio-hydrologic systems as is done in Chapter 4 of this 

dissertation. Such a shift will undoubtedly require more work and would be 

specifically aided by: 

o Improved spatial information about demand regions in the western 

US; 

o Standardized data about critical points of water supply for these 

demand regions. In this dissertation, we used a mix of grey literature 

and direct contact to construct 13 socio-hydrologic systems in the 

western US and found that information varied across states.  For 

example, Wyoming maintains a fairly complete database of all 
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demand regions in the state and major points of water supply. 

Adoption of this template across state lines may be one way to 

promote more robust systems thinking in this space.  

o Better data for water transfers and environmental flow requirements. 

We observed that data about water transfers into and out of the 

systems identified in Chapter 4 were highly variable. 

Encouragement of public reporting of these activities accompanied 

by a database may be one way in which this information can be 

better incorporated in analyses of system vulnerability and resilience 

in the western US. 

4. The importance of inter and transdisciplinary research.  

The adoption of systems thinking, which incorporates more robust consideration of 

how hydrology influences society and vice versa in a dynamic manner, must be 

accompanied by inter and transdisciplinary research in order to be effective. Here, we 

define interdisciplinary research as efforts that “analyze, synthesize, and harmonize 

links between disciplines into a coordinated and coherent whole” (Choi, 2006).  

Following Toomey et al. (2015) we define transdisciplinary work as engaging directly 

with knowledge production and use outside of academia.  This dissertation is more 

interdisciplinary than transdisciplinary in nature and thus our recommendations are 

largely targeted towards enhancing work in that space. We recommend the following: 

• Recognition of the time and effort required for interdisciplinary mentorship. 

The writing of this dissertation and incorporation of robust and defensible 



266 
 

 
 

interdisciplinary research is the product of immense time and effort on the part 

of committee members and co-authors. The success of this dissertation’s 

interdisciplinary Chapters (i.e., Chapters 4 and 5) was entirely dependent on the 

dedication of experts from different fields in developing, designing, and 

critiquing these Chapters.  

• Early engagement with researchers from different fields. Chapter 4 of this 

dissertation would not have adopted a more realistic demand-centered view of 

socio-hydrologic systems were it not for early and active participation from 

researchers from different fields. As such, the establishment of an 

interdisciplinary team prior to conducting research in order to incorporate 

different perspectives in study design appears essential to successful outcomes.   

• Recognition of the value of grey literature. This dissertation relies heavily on 

grey literature and personal communication in Chapter 4 in order to identify 

critical points of water supply. In order to move beyond simplifying 

assumptions and towards a systems perspective for water resources 

management, we need to recognize the value of and mine new sources of data. 

In this pursuit, an all-of-the-above approach to potential data sources that 

includes grey literature is essential and is one way to avoid stakeholder fatigue 

in the pursuit of more transdisciplinary research. 
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