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Abstract 

This thesis deals with UAV imagery analysis as used to monitor environmental settings, 

in this case a particularly sensitive ecosystem of a peatbog. The non-destructive aspect of 

UAV monitoring based on remote access to the studied area is crucial in this scenario. 

Introduction to the topic, examples of the employment of UAV technologies and the 

possibilities of their application in monitoring peatbogs are followed by examples of 

visual data analysis with the help of various software on the multispectral data acquired at 

peatbog Rokytka in the Šumava National Park. 

Key words: UAV, monitoring, peatbogs, remote sensing, multispectral imaging, 

classification 

 

 

Abstrakt 

Tato práce se zabývá analýzou UAV snímků využívaných k monitorování prostředí, v 

tomto případě zvláště citlivého ekosystému rašeliniště. Za těchto okolností je zásadní 

nedestruktivní aspekt monitorování UAV plynoucí z dálkového průzkumu studované 

oblasti. Na úvod do problematiky, příklady využití UAV technologií a možnosti jejich 

aplikace při monitorování rašelinišť navazují příklady vizuální analýzy dat pomocí 

různých softwarů na multispektrálních datech získaných na rašeliništi na Rokytce v 

Národním parku Šumava. 

Klíčová slova: UAV, monitoring, rašeliniště, DPZ, multispektrální snímkování, 

klasifikace 
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1. Introduction 

UAV or Unmanned Aerial Vehicle is a remote sensing platform used to gather spatial 

information of the observed object or area from a distance. Certain types of UAVs, 

commonly known as drones, have some autonomy, meaning they can fly themselves 

according to sensors or are pre-programmed while other UAVs require human 

intervention. Sometimes referred to as unmanned aerial system (UAS), a term which 

includes not only the UAV but also sensor payloads (camera), and a ground control 

system. Various types of sensors or cameras are used, including thermal, multispectral, 

and hyperspectral cameras or light detection and ranging (LIDAR) systems (Rai et al. 

2021). In the acquisition of the data, this thesis works with a multi-rotor UAV 

teleoperated by a human operator with a remote controller. 

There is a certain discrepancy in relation to the definition of UAVs and drones. Although 

in reality it is not a particularly important matter considering the technological advances 

the definitions might as well be arbitrary, both terms are widely used interchangeably. 

“UAV is an aircraft that can fly without a pilot onboard. UAVs can be either remote 

controlled that is operated remotely by a human operator from the ground control station 

or can fly autonomously by an onboard computer.” (Rai et al. 2021) 

“In recent years, unmanned aerial vehicle (UAVs) or drones have become increasingly 

useful...” Used as synonyms by Reischig and Cordes (2020) 

“[UAV is]an aircraft that is operated from a distance, without a person being present on 

it. Synonym: drone.” (Cambridge English Dictionary 2022) 

“UAVs are drones, although not all drones are UAVs.” (Ukhurebor et al. 2022) 

“UAS [Unmanned Aerial Systems] are known under various different names and 

acronyms, such as “Unmanned Aerial Vehicle” (UAV), “aerial robot” or simply 

“drone,” with “UAV” and “drone” being the most popular terms. The term UAS was 

adopted by the US Department of Defense (DOD) and the Civil Aviation Authority (CAA) 

of the UK. The International Civil Aviation Organization (ICAO) has introduced the 

concept of “Remotely-Piloted Aerial System” (RPAS), a particular class of UAS, in the 

ICAO Circular 328. This term is basically motivated by the fact that only RPAS will be 
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able to integrate into the international civil aviation system.” From the chapter “On 

names and acronyms” by Colomina and Molina (2014) 

Imagery acquired with the help of a UAV can be used to capture and later analyse various 

environment indicators and is used in the fields of agriculture or urbanism as well as in 

the field of environment conservation. While trying to inflict as little as possible 

additional damage, reliable and detailed quantitative data can be collected. The gathered 

information can be used to monitor a revitalisation or aid in creating a plan for the 

revitalisation. 

Access to and surveying of peatbog environments is partially restricted, due to which 

modern monitoring practices that create less of an impact on protected areas are highly 

valued (Lendzioch et al. 2021). In the Czech Republic, the existing peatbogs are very 

small areas which cannot be monitored by traditional remote sensing technology such as 

satellites due to their low spatial resolution, which does not provide sufficient information 

on the state of peatbogs. A peatbog is not a discrete bounded area. Most areas where 

peatbogs are found are made up of multiple smaller patches which can be classified as 

peatbogs but the environment in between them should be also taken into context. This 

causes variability of the environmental characteristics in the area while still maintaining 

the continuity of more or less wet soil or organic matter. 

While UAV technology is making both monitoring of restored areas and targeting areas 

for possible revitalisation easier and more effective, traditional surveying methods are 

still important to verify remotely acquired data by performing an in-situ survey (e.g., 

Clutterbuck et al. 2018, Luscombe et al. 2015).  

Peatbogs, a type of peatlands, are water-logged reservoirs with a unique hydrological 

regime whose typical characteristics include low pH and a high water table. They are 

places where organic matter is stored, and Sphagnum (a peat-forming moss) is an 

important part of the vegetation composition (Lendzioch et al. 2021). The NRCS Curve 

Numbers method classifies peat as an impermeable soil of category D (Vlček et al. 2012). 

While covering approximately 2-3% of the global land surface peatbogs hold 21-25% of 

the carbon stored in terrestrial ecosystems but this storage is highly vulnerable to 

ecosystem disturbances (Beyer et al. 2019). Since they are an important soil carbon stock, 

they will have a major contribution to soil carbon loss over the next century because of 

climate warming. Additionally, peatbogs are typical for northern ecosystems, which 
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experience an even faster rate of warming than ecosystems in milder climates. While an 

increase in frequency and intensity of heavy precipitation was detected, so were drought 

events, and climate models show that heavy precipitation episodes lead to longer periods 

of continuous dry days at the expense of lighter and more moderate precipitation. For 

example, the Sphagnum mosses are well adapted to wet conditions, but increasing 

temperatures and drought stress pose a threat to them (Jassey, Signarbieux 2019). As a 

result, Sphagnum could be replaced by vegetation which is better adapted to these 

conditions and although it could produce more biomass, its carbon accumulation 

properties are weaker. A small change in environmental conditions can have a big impact 

on mires – of which peatbogs are a subtype (Bufková, Křenová, Bastl 2021).  

Peatbogs have been transformed by drainage for agricultural needs, forestry, or peat 

extraction. As a result, their functions, such as nutrient and water retention, water 

purification and providing a habitat for plants and animals, have been lost. These losses 

lead to declining biodiversity, greenhouse gas emissions, nutrient leaching, or erosion 

(Beyer et al. 2019). It is vital to continue restoring peatbogs to their natural state so they 

can fulfil their functions and not contribute to climate change. As well as before the start 

of the restoration to recognise the needed measures and after the restoration is completed, 

to monitor the restoration site for changes and the impact of restoration, UAV monitoring 

is proposed to be used. 

The goal of this thesis is to evaluate the potential of UAV technology in monitoring state 

and change of montane peatbogs and research methods of imagery analysis which are 

suitable for this monitoring in the theoretical part of the thesis. Consequently, with the 

chosen methods of UAV monitoring, photogrammetric reconstruction and image 

classification to carry out partial analysis of the montane peatbog on the Rokytka stream 

in the Šumava National Park. The chosen methods were, aside from photogrammetric 

reconstruction, using supervised classification to determine the land cover and comparing 

the land cover classes using a spectral index, and some other methods were outlined as 

well.  
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2. UAV monitoring 

2.1. UAV platform 

Applications ranging from fire extinguishing through underground infrastructure 

maintenance to drone sports show that UAV technology has an especially wide use 

(Blyenburgh 2022). The RPAS Yearbook, which was being published by Blyenburgh 

(2021), used to categorise UAV platforms, but has been since discontinued and 

categorisations used in other publications sometimes vary. For the purposes of this thesis, 

we will be using the following categorisations based on Radoglou-Grammatikis et al. 

(2020). 

The first classification is based on aerodynamic features and includes fixed-wing, multi-

rotor, and hybrid UAVs. Fixed-wing UAVs can be additionally divided into straight-

wing, swept-wing, and delta-wing. Among the disadvantages compared to other UAV 

platforms are the ability to only travel forward and the need for open space for horizontal 

take-off and landing (Amarasingam et al. 2022). This construction enables the UAV to 

turn around roll, pitch and yaw angles. Additionally, Seier et al. (2021) note based on 

their study of disturbances caused by UAVs that it is also likely that the generally quieter 

fixed-wing UAVs present a milder disturbance on wildlife. Multi-rotor UAVs with three 

to eight propellers are simple to deploy, flexible and they can fly in all four directions 

with minimal space requirements for vertical take-off and landing (Amarasingam et al. 

2022). The airflow of the multi-rotor UAV is composed of several rotors that generate the 

power which is necessary for lifting. That is why this type does not need a forward 

airspeed for lifting. Depending on the number of rotors, a multi-rotor UAV can be 

classified as a tricopter, quadcopter, hexacopter and octocopter. The hybrid UAV 

combines the characteristics of the previous ones, namely rotors for take-off and landing 

as well as fixed wings for covering large areas (Radoglou-Grammatikis et al. 2020). The 

multi-rotor UAVs are considered better suited where accuracy of the data and a better 

representation of environmental features is needed as well as for close inspections and 

where more detailed data on a smaller area is required for enhanced land surveying. 

Particularly vegetation representation and erosion gully representation were considered 

(Boon, Drijfhout, Tesfamichael 2017). In another case study the accuracy of the dense 

point clouds was considered comparable, but the advantage of the multi-rotor UAV with 

higher redundancy in collected data was in the lower processing time, higher point 

density and lesser data gaps (Gonçalves et al. 2021).  



12 
 

There is a certain degree of autonomy to each UAV although there is a big difference 

between an automatic UAV which has been programmed for a very specific task and an 

autonomous UAV which obeys rules that adjust its behaviour and either has the ability to 

perform some decisions under human supervision or is fully autonomous. UAV can also 

be a part of a fully human-operated system (Radoglou-Grammatikis et al. 2020). 

Another categorisation can be based on the type of power source being kerosene, battery 

cells, fuel cells or solar cells. Large fixed-wing UAV used for military purposes is the 

type usually powered by kerosene. The small rotary-wing UAVs use battery cells because 

they are equipped for less operating time. A fuel cell, an electric device which transforms 

chemicals into electrical energy, can only be incorporated into fixed-wing UAVs and it is 

used for maximising the flight distance, making fixed-wing UAVs favourable where there 

is a need for longer battery life (Radoglou-Grammatikis et al. 2020). UAVs can be also 

categorised based on their maximum gross take-off weight, normal operating altitude, or 

airspeed (Yao, Qin, Chen 2019). 

2.1.1 UAV sensors 

An important part of the payload of UAV are sensors, a camera being the most used one. 

The three main types of cameras are multispectral, hyperspectral, and thermal. 

Another illustration of variable terminology and categorisation is that Yao et al. (2019) 

state that multispectral cameras can contain up to a few tenths of bands in addition to 

RGB bands, Radoglou-Grammatikis et al. (2020) state that multispectral cameras 

“integrate five bands” and Nex et al. (2022) state that multispectral cameras can have up 

to 10 bands and simultaneously that RGB cameras belong to the category of multispectral 

cameras. Nonetheless, these bands are optimized on specific spectral regions with the 

most common ones being blue, green, red, red-edge and near-infrared. Among the 

emerging applications for multispectral sensors are leaf level disease assessment or 

harmful algae bloom studies (Yao, Qin, Chen 2019). 

Hyperspectral cameras provide contiguous spectral signatures by obtaining tens to 

hundreds narrow spectral bands. Hyperspectral cameras are currently still used mainly for 

scientific or research purposes as they are quite expensive, heavy, and more challenging 

to operate compared to optimised multispectral cameras. They capture vast volumes of 

data whose analysis can be more demanding (Nex et al. 2022).  
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2.2.  Photogrammetric reconstruction 

The technology of aerial photogrammetry involves obtaining reliable information about 

objects or the whole environment in three dimensions, primarily in the visible light 

spectrum and can also be used in the near-infrared spectrum. This technology is widely 

used in the natural resource management and other natural sciences. With the help of 

techniques such as geometry, trigonometry, or optics, it is a method to identify the 

properties of studied objects (Bettinger et al. 2017). Fundamentally triangulation is used 

to mathematically intersect lines of sight, which connect the camera to points on the 

object on photographs taken from multiple different locations. This way, the three-

dimensional coordinates of the points of interest are created. It is the same principle on 

which human eyes work when determining distance. This is called the depth perception 

(Horswell 2013). Overlapping vertical aerial photographs are required to create an 

analytical model which can compute the coordinates of features using photogrammetry 

techniques. A georeferenced digital orthophotograph can be developed by combining the 

overlapping vertical aerial photographs, removing topographic displacement or other 

distortions analytically and georeferencing them (Bettinger et al. 2017). Photogrammetric 

reconstruction of UAV data can produce 2D output, similar to more traditional remote 

sensing solutions such as using satellite data, as well as a 3D output which also has a high 

resolution, capturing detail down to lower centimetres. 

2.2.1 Structure from Motion 

Structure from Motion (SfM) as a method of photogrammetric reconstruction uses, 

similarly to traditional photogrammetry, overlapping images acquired from multiple 

positions. The three main advantages SfM has over traditional photogrammetry are as 

follows. Firstly, the features are automatically identified and matched in images of 

different scales, viewing angles and even light conditions. Secondly, the equations used in 

the algorithm can be solved without information about camera position or ground control 

points. Lastly, the camera calibration can be automatically refined during the process 

(Iglhaut et al. 2019). 

There is a range of SfM tools available for PCs and there are also web-based apps which 

provide similar services for 3D model generation. The first type of solutions processes 

data on the local machine, an example being Agisoft PhotoScan and the second type 

uploads images to a server where it is processed and the result can be downloaded, this is 

how, for example, Microsoft Photosynth works. Most SfM platforms are automated 
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allowing the generation of 3D data which does not require increased user supervision and 

expertise. There are even low-cost processing systems available online which allow the 

processing to be done in a few minutes, for example already during field data collection. 

The exact implementations of the SfM algorithm may vary. In fact, these platforms 

provide a black-box tool and might cause the user to not be able to control the data 

quality and the errors in data might end up overlooked. For example, the fully automated 

software packages do not assume that the same camera was used to capture all of the 

imagery and each frame can be calibrated individually. Inappropriate image overlaps can 

generate inaccurate camera models and consequently inaccurate datasets (Micheletti, 

Chandler, Lane 2015).  

Concerning the SfM workflow (Fig. 1), first, an automatic extraction of keypoints is 

carried out. Keypoints stand for points which have distinctive contrast or texture, they are 

matched across images where they appear. For the keypoints to be accurate, a visually 

distinct texture must appear in the imagery which can prove to be a problem with certain 

environments or lighting conditions (Micheletti, Chandler, Lane 2015). This keypoint 

matching is carried out by the scale-invariant feature transform (SIFT) algorithm and 

works on the basis of assigning numerical descriptors which are invariant to scale and 

orientation to each point in each image. Thus, the coarse geometry of the location can be 

reconstructed and used to check the coherence of keypoint matches. With the help of a 

sufficient number of keypoints and images, bundle adjustments can be performed, and 

camera parameters can be computed. A sparse point cloud consisting of keypoints is the 

output of the process (Iglhaut et al. 2019). Initialization values obtained from sequences 

of randomly selected matched keypoints and parameters from the cameras are used to 

solve the bundle adjustment, which is the joint non-linear refinement of point parameters 

and camera parameters that minimizes the reprojection error using a function that projects 

scene points to image space and a function that can potentially down-weigh outliers 

(Schonberger, Frahm 2016). Dense image matching algorithms such as Multi View 

Stereo (MVS) are used subsequently to SfM algorithm in order to make the point cloud 

denser (Iglhaut et al. 2019). As MVS is understood a group of techniques, which use 

stereo correspondence as their main resource and use more than two images (Furukawa, 

Hernández 2015). Additional processing steps usually involve the derivation of a digital 

surface model (DSM) and an orthomosaic.  
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Figure 1: SfM workflow (Iglhaut et al. 2019) 

 The results of photogrammetry are highly influenced by the imagery on input. Because of 

this, the types of sensors and their settings should be carefully inspected, and lightning 

conditions should be taken into consideration as well. As far as the choice of a sensor 

goes, a camera equipped with a fixed focus lens has to be used. Images are not required to 

be taken from the same distance or to have the same scale. Quite the contrary, it is 

advised to capture the site in multiple scales, initially obtaining imagery of the whole site 

with a few frames before capturing smaller range images. It is also critical to acquire the 

highest possible amount of imagery from different positions. The wide range of images 

taken from different directions then creates a dataset with an accurate geometry, which is 

important in recovering both internal camera models and object coordinates (Micheletti, 

Chandler, Lane 2015). It is recommended for the longitudinal and transversal overlap to 

be at least 80% and 60%, respectively (Nex, Remondino 2014).  
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2.3. UAV data analysis 

Land cover mapping is one of the typical outputs of RGB imagery analysis. Pixel-based 

classification is used on satellite RS data but is not as suitable for UAV data as the inter-

pixel similarity and inter-pixel variance are both very high. Object-based analysis is 

required and an additional need for combining 3D information, like height and geometric 

information, arises. Additional contextual information and deep learning methods 

improve accuracy (Yao, Qin, Chen 2019). For advanced vegetation analysis, red-edge and 

near-infrared bands are used in types of spectral indices, the vegetation indices (see 

2.3.1). Thermal imaging was first used in military context but is nowadays common for 

applications like forest fire monitoring (Colomina and Molina 2014). 

2.3.1. Spectral indices 

Vegetation indices are mathematical transformations created for evaluating the spectral 

contribution of vegetation to multispectral observations (Elvidge, Chen 1995). While 

some vegetation indices can be derived from RGB sensors, such as the normalized 

greenness indices, their spectral sensitivity to the chlorophyll level of the vegetation 

required, e.g., for plant health evaluation or disease diagnosis, is not sufficient. Near-

infrared cameras are required to calculate vegetation indices like Normalized Difference 

Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI) or 

Enhanced Normalized Difference Vegetation Index (ENDVI) (Yao, Qin, Chen 2019). 

Chlorophyll pigment absorptions in the red spectrum are contrasted against the high 

reflectivity of vegetation in the near-infrared or red-edge spectres and indices can be used 

to analyse processes such as vegetation productivity and evapotranspiration (Elvidge, 

Chen 1995). 

A reflectance calibration is of prime importance before the calculation of vegetation 

indices. This is done by capturing images of a reflectance panel in all used bands in such 

conditions that it is not covered by any shadows and is set to be as horizontal as possible 

(Raeva, Šedina, Dlesk 2019). 

The NDVI was first developed for use with LANDSAT imagery, and it quantifies the 

amount of living vegetation in a pixel. Green leaves absorb visible light from 600 to 700 

nm and reflect near-infrared light from 700 to 1100 nm so in case that there is a lot more 

reflected radiation in near-infrared wavelengths than in visible light wavelengths, the 

vegetation is likely to be green. The equation for the calculation of the NDVI is: 
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𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 

Where R stands for the average signal intensity in the wavelength range of the visible red 

light and NIR stands for the average signal intensity in the wavelength range of near-

infrared radiation. The NDVI for a given pixel is equal to a number in the range from -1 

to +1. While a negative value corresponds to water, values close to zero mean no 

vegetation like in the areas of rock or snow and a value near one indicates the highest 

possible density of green leaves. (Arnold et al. 2013). 

GNDVI is similar to NDVI, but it uses the green light instead of the red one, which 

makes it more sensitive to chlorophyll. The equation for the calculation of the GNDVI is: 

𝐺𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝐺

𝑁𝐼𝑅 + 𝐺
 

Where G stands for the average signal intensity in the wavelength range of the green 

visible light. The values of GNDVI fall into the range of [−1, + 1] and they are usually 

higher than the NDVI values as the wavelengths in the green part of the spectrum are 

shorter than the red ones (Raeva, Šedina, Dlesk 2019). 

With some sensors also Normalized Difference Red Edge (NDRE) index can be used, and 

it indicates the rapid change in vegetation reflectance between the visible red and near-

infrared light. NDRE is sensitive to chlorophyll content in plants’ leaves, variability in 

leaf area as well as background effects. The equation for the calculation of the NDRE is: 

𝑁𝐷𝑅𝐸 =
𝑁𝐼𝑅 − 𝑅𝐸

𝑁𝐼𝑅 + 𝑅𝐸
 

Where RE stands for the average signal intensity in the wavelength range of the red-edge 

radiation. The NDRE values range between −1 and + 1, while the higher the values, the 

higher the amount of chlorophyll. It is claimed that the NDRE is a better indicator of 

plant health than the NDVI for vegetation with a high level of chlorophyll (Raeva, 

Šedina, Dlesk 2019).  
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2.4. UAV monitoring of peatbogs 

UAV technology is used for monitoring peatbogs on the one hand for the same reasons as 

any other environment which is that it offers the opportunity to assess large spatial extents 

in less time than traditional methods do but on the other hand the peatbog vegetation is 

often sensitive to trampling and UAVs present a non-intrusive method for ecological 

monitoring (Clutterbuck et al. 2018). There have been studies on videographic analysis of 

vegetation coverage (Kalacska et al. 2013), an object-based classification of restored bog 

surface (Knoth et al. 2013) or another object-based classification done in order to study 

CH4 fluxes (Lehmann et al. 2016) and also a mapping of the groundwater table 

(Lendzioch et al. 2021). Following are examples of partial analyses which are being 

carried out on peatbogs or in similar environments with possible applications on a 

peatbog.  

2.4.1 Water surface extent 

The literature on determining the water surface extent on a local scale is scarce, more 

often satellites are used to determine water surface on a larger scale (e.g., Musa et al. 

2015). According to Tymków et al. (2019) it is possible to determine water surface extent 

at a local scale with only 2D data, there’s no need for 3D data which would come with the 

need for a more complex analysis. Data from RGB cameras is usually used, but the results 

proved to have better accuracy with the addition of a thermal infrared (TIR) band. Water 

covered with vegetation, such as duckweed (Lemnoideae), seems to be problematic when 

identifying the proper extent of surface. This is the case for stagnant water, identifying the 

extent of surface for flowing water bodies is more credible, in case of a peatbog some of 

the water is stagnant and can be covered by various vegetation or algae which would not 

seem to be the same category as clear water in most classifications. 

Another problematic aspect of determining the water surface borders is the fact that the 

waterside is often occluded by higher vegetation (when using 2D data). This can be 

avoided by using active remote sensing, precisely LiDAR, to create a point cloud where 

the points of laser reflection of vegetation can be filtered out while leaving the points of 

the laser reflection of the ground because some laser rays will be able to pass through the 

leaves (Tymków et al. 2019). 
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2.4.2 Exploitation, modification, and revitalisation monitoring 

The use of UAVs for revitalisation of restoration monitoring is encouraged as a 

technology which is reliable and cost-effective particularly in restoration sites of small 

extent where satellite data are not applicable as they do not have the required spatial 

resolution because these areas are often made up of a fine-scale mosaic of different 

habitat patches. A possibly higher temporal resolution might be an asset in the case of a 

dynamic site with frequent disturbances even within hours or days. It is shown that 

enough important parameters can be obtained from standard RGB images captured by an 

UAV and processed with GIS (Woellner and Wagner 2019).  

There is also a problematic aspect of using UAS for monitoring in protected areas. Out of 

the investigated studies, 77% of those deemed relevant for the management of protected 

areas did not discuss or even mention any potential impacts caused by UAS which is 

regarded as reflecting a low awareness of UAS users for possible disturbances. It is 

concluded that the possibility of disturbance is not sufficiently considered, and it is 

stressed for protected area managers and study designers to take actions concerning 

controversial use of UAS and to have mitigation measures in mind. The actual impacts 

reported included mostly minor disturbances, but some studies proved the behavioural 

impact on nesting waterfowl and other species of birds. The options to reduce the impact 

of the devices on wildlife were studied and some of the proposed measures include not 

flying trajectories which follow a species’ movement pattern, flying at a fixed height and 

only using an UAS when it is justified by a scientific monitoring concept, particularly in 

protected areas which are parts of national parks (Seier et al. 2021). 

In Šumava National Park, where the study area this thesis deals with is located, the 

already existing artificial drains are being covered with soil or the water flow in them is 

slowed down by structures not only around the Rokytka peatbog. The project Life for 

mires (Life 2019), aside from other activities, organises events for volunteers working 

towards revitalisation of peatbogs, for example by helping to cover the artificial drains. A 

work in progress of removing one of these drains and creating pools for water detention 

separated by wooden beams can be seen in the south-western corner of the study area (see 

digital appendix – orthophoto of the whole area). Restoration measures such as wooden 

dams (Fig. 2) are aimed at decreasing fluctuation and increasing groundwater level 

(Doležal et al. 2017). Such measures could be monitored by UAV technology in terms of 

evaluating moisture characteristics (see 2.4.4). 
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Figure 2: A wooden dam in Šumava National Park Photo: A. Kevešová, 2022 

There is a UAV-based method developed using near-infrared spectrum for supporting 

restoration monitoring of cut-over bogs. It provides information on species distribution 

and the surface structure with a two-step classification process of automatic image 

segmentation and object-based classification. These are used to distinguish between 

multiple pre-defined classes of waterlogged bare peat and various vegetation. An 

independent validation procedure has showed a high accuracy of this classification. These 

cut-over bogs can be a source of carbon instead of being a sink for it and vegetation 

characteristics of restored peatbogs can be used as indicators to assess the state of the 

peatland concerning carbon sequestration (Knoth et al. 2013). 

2.4.3 Peatbog vegetation evaluation 

Traditional biodiversity monitoring includes invasive and/or costly methods such as 

ground sampling, the use of manned aircraft or satellite imagery to get information about 

the area of interest. Lately UAVs are used more often to monitor vegetation and while 

being already the cheaper option, they offer a better spatial and temporal resolution and  

the data deployment is faster, which makes it a fast-evolving technology in this field 

(Lehmann et al. 2017). 
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There have been attempts at creating a neural network which is trained to identify various 

types of vegetation (e.g., Zhang et al. 2020, Kattenborn et al. 2020). An overview of the 

use of convolutional neural networks shows applications in the fields of forestry, 

agriculture, or conservation. The utilized advanced neural networks must be edited based 

on the exact task they are used for, and reliable training data must be provided as well 

(Kattenborn et al. 2021), which in case of vegetation identification would mean a more 

detailed survey of at least part of the study area would need to be carried out on the basis 

of which individual plants could be identified.  

Deep learning is also used for supervised classification of land cover with the use of 

various algorithms such as Support Vector Machine (SVM) or Random Forest (RF) 

classifiers (Catalyst 2022). Simple classifiers like these or maximum likelihood classifiers 

might prove to not be sufficient as the scene contents get more complex. An ensemble of 

simpler classifiers or deep learning based methods, belonging among more advanced 

methods, still present a huge potential, which is being explored for the ultra-high-

resolution, multi-modal data (including height, thermal, and hyperspectral information) 

which can be acquired with the use of UAV (Yao, Qin, Chen 2019). 

Another possibility of identifying vegetation is generating a 3D surface model using 

structure-from-motion methods. This way, it is possible to detect the vegetation height 

and thus identify spectrally similar vegetation with different height (Beyer et al. 2019).  

2.4.4 Evaluation of temperature and moisture characteristics 

Thermal imagery was used to measure near surface wetness in an upland peatland 

catchment. Simultaneously, an airborne LiDAR sensor was used to support the results of 

the analysis of thermal imagery. It was found that areas of higher relative thermal 

emissivity (Ɛr) are located in topographic sinks and along surface flow networks and 

lower, where anthropogenic drainage systems are still functional. It is suggested that this 

and other findings, such as the type of vegetation found in the different locations, imply 

that areas with higher Ɛr may be wetter. However, authors of this research admit this isn’t 

generally true as they have recorded that high surface structure (e.g., trees) has a strong 

control over the Ɛr value and, on the contrary, some variations in Ɛr were found to be 

independent of any drainage features. The effect of surface structure on Ɛr was mitigated 

by taking the LiDAR data into consideration, reducing the influence of vegetation, and 

creating a relative Ɛr. Field survey was also used to validate the spatial association 
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between Ɛr and measured surface wetness. This relationship is observed due to relatively 

high specific heat capacity (C) of water (4.1855 J g K-1 at 15 °C, 101.325 kPa) and the 

fact that the ability to resist heat loss is higher for water than for other surrounding 

landscape components (Luscombe et al. 2015).    

2.4.5 3D models of peatbog 

In addition to the visual identification of individual plants with UAV imagery, natural 

erosion features as well as artificial drainage appear very well-defined. Artificial drains 

and drainage gullies in degraded peatland areas are associated with erosion and lowering 

of water tables, which can promote decomposition of peat. It can also have an impact on 

water quality and on the composition of nearby vegetation, including the important peat 

forming species. These features can be identified so clearly that it is likely that the digital 

surface model (DSM) derived using UAV data is going to become a strategic tool for 

monitoring peatland erosion (Fig. 3). A fixed wing UAV was used to survey a blanket 

mire complex, Howden Moors, from a height of 60 m above the ground. Two flights were 

utilized to collect colour (RGB) imagery and near-infrared data independently 

(Clutterbuck et al. 2018). In Figure 4, a peatbog in the Šumava National Park can be seen 

where one of the artificial drains has been already revitalised (upper part of the image), 

and the other has not (lower part of the image). 
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Figure 3: Artificial drain on DSM (Clutterbuck et al. 2018) 

 

Figure 4: A digital model of relief of part of the Rokytka Moors (ČÚZK no date)  
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3. Data 

3.1 Study area 

3.1.1 Šumava National Park 

The Šumava National Park is a national park in the South Bohemian regions of the Czech 

Republic along the border with Germany and Austria. The local climate has a transitional 

character influenced by oceanic and continental climate. Total amount of precipitation 

increases with increasing altitude, while the highest amount is reached in the central part 

of Šumava (Březník 1486–1552 mm in a thirty-year average). The retention capacity of 

soils in Šumava ranges from 60 to 90 mm (Vlček et al. 2012). The most extensive peat 

bog complex in Central Europe is located in the Šumava Mountains as a result of the 

specific geology and morphology of this area. Upland peat bogs like the ones in Šumava 

Mountains occur in Canada, Scotland, and Scandinavia (Lendzioch et al. 2021). 

There were changes occurring in the Šumava Mountains caused by the effort to drain and 

dry peatbogs as they were traditionally subject to peat and wood exploitation or 

agricultural land cultivation. The extent to which this was happening was considerable 

already at the beginning of the 20th century, but the main period of drainage digging was 

in the 70s and 80s. To this day, the drainage systems are still visible, and it has been 

proven that drainage has affected almost 70% of peatbogs in the Šumava Mountains. Fast 

surface flow and higher fluctuation of groundwater level are both caused by these systems 

of drains. Restorations can improve these problems and at the same time increase the 

groundwater level by several centimetres in a year (Doležal et al. 2017). 

A considerable increase in air temperature has been recorded in the area of Šumava 

National Park, with both summer and winter temperatures increasing. Ombrotrophic bogs 

and minerotrophic fens were studied to show the difference of response to the changes in 

temperature and precipitation while it was concluded that bogs are more vulnerable to 

these changes as the loss of water through evapotranspiration and reduced precipitation 

can be compensated by groundwater in case of fens, which is not possible for bogs 

because of their ombrotrophic nature. Significant reduction of vegetation was observed on 

studied bogs, especially with species poorly adapted to dry conditions such as Carex 

limosa and Warnstorfia fluitans (Bufková, Křenová, Bastl 2021). 
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There are restrictions in the Czech Republic concerning flying a drone/UAV in national 

parks and protected landscape areas. According to regulations issued by the Civil 

Aviation Authority (CAA) of the Czech Republic (2020) the use of UAV in all protected 

areas but the fourth zone of protected landscape areas is prohibited without a permission 

of the authority and even there it is only allowed under the condition of not disturbing the 

protected species. More limitations concern the time of the flight across the year because 

of the protection of the bird species Tetrao urogallus. Apart from restrictions for UAVs 

there are also restrictions for planes flying above Šumava National Park which can only 

do so with a permission from CAA and the minimal height of flight must be 300 metres 

over the highest obstacle in the circuit of 600 metres around the plane (Air Navigation 

Services of the Czech Republic n.d.).  

3.1.2 Peatbog Rokytka 

The data used for this thesis were acquired around Rokytka stream, which is located in 

the central part of the Šumava Mountains and in the area of the Šumava National Park. 

The studied peatbog is part of a bigger complex of peatbogs called the Rokytka Moors. 

They are located on moderate slopes near the bottom of the Rokytka stream valley in the 

Vydra headwaters. Rokytka is a left tributary of Roklanský brook in the basin of upper 

Otava. Roklanský brook and Modravský brook are the main source of Vydra, which later 

creates Otava on confluence with Křemelná. From a geological point of view, according 

to tectonic zoning, this basin belongs to the area of the Vltava-Danube elevation 

(Moldanubicum) (Vlček et al. 2012). Soil cover in this region composes of entic Podzol, 

sometimes Rankers in steeper slope areas. The catchment of Rokytka is mostly covered 

by Histosols while peaty Gley can be found in some parts of the stream floodplains. Total 

area of organic soils in the whole catchment is at 23% of its surface (Doležal et al. 2017). 

The average gradient of slope is only 4°, not very often the gradient reaches 10° while the 

maximum is 12°. There are a few large and a higher number of small montane peatbogs 

in this area of almost 250 ha, the depth of the larger peatbogs can reach up to 7 meters 

(Doležal et al. 2017). The altitude varies between 1089 and 1224 m a.s.l. with the average 

of 11225 m a.s.l., the basin is quite flat considering its montane location (Vlček et al. 

2012).  

Specific morphology of the peat bog and the open space area cause the Rokytka 

catchment to be one of the coldest places in the country throughout the winter. There are 
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freezing temperatures occurring even during the summer, and the average daily air 

temperature is 4.8 ◦C. Aside from that, this location belongs to one of the Czech 

Republic’s wettest parts, with humidity varying more during the day than during a year 

(Lendzioch et al. 2021). 

Vegetation in the Rokytka catchment comes from a relict plant community. Mainly low 

grass with the growth of Trichophorum caespitosum, which blends in a mosaic pattern 

with the hydrophilic vegetation of shallow depressions and the edges of lakes, can be 

found. Hydrophilic vegetation consists of a mat of Sphagnum cuspidatum and Sphagnum 

majus with the growth of the above-mentioned Carex limosa and Scheuchzeria palustris. 

Reddish types of peat such as Sphagnum magellanicum, Sphagnum russowii or 

Sphagnum rubellum can also be found (Doležal et al. 2017). Further to the borders of the 

peatbog Pinus pseudopumilio or Betula nana grow, spruce can grow on the borders of the 

peatbog or near the drainage ditches. The remaining forest vegetation consists mainly of 

spruce forest with a mixture of fir and beech, which is found especially on the southern 

slopes. Roughly one quarter of the forest is affected by bark beetles. There are both “dead 

forests” and clearings partially overgrown with young plants. The herb layer consists of 

various species of grasses and mosses, and blueberries. A healthy forest has a developed 

herb and shrub layer and new vegetation, mainly spruce sprouts, seedlings, and grasses, in 

the “dead forest” is starting to grow again thanks to the wood mass, which was left there 

(Vlček et al. 2012).  

JTSK/Krovak East North coordinates of the centre of the study area are -831501.83,                          

-1149798.75 and the surface is approximately 10 ha. 

 

Figure 5: Study area location 
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3.2 UAV data 

Multispectral data was acquired on the 12th of November 2021 with a MicaSense Altum-

PT sensor with 5 spectral bands and a thermal band (Table 1, Fig. 6). The raw data was in 

the form of TIFF imagery with localisation. A control reflectance panel was used to 

calibrate the imagery because of varying light conditions, while the advantage of using 

this sensor is the option to only use one reflectance panel. TIFF imagery was geolocated 

in the WGS 1984 coordinate system (EPSG 4326). 

 

 

 

 

 

 

 

Figure 6: Illustration of the wavelengths of the bands  (MicaSense 2021)  

Table 1: Altum PT sensor bands (MicaSense 2021) 

Spectral bands Blue 475 nm center, 32 nm bandwidth 

Green 560 nm center, 27 nm bandwidth 

Red 668 nm center, 14 nm bandwidth 

Red Edge 717 nm center, 12 nm bandwidth 

Near-IR 842 nm center, 57 nm bandwidth 

Thermal FLIR LWIR 

thermal infrared 

7.5-13.5 μm 

radiometrically calibrated 
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4. Methods 

4.1. Imagery analysis  

4.1.1 Photogrammetric processing 

Initial data processing was done in Agisoft Metashape Professional version 1.8.3. It is a 

photogrammetric processing software which generates 3D spatial data used particularly 

for processing UAV data. It uses the Structure from Motion technology for 

photogrammetric reconstruction. 

After the data was added, 876 photos were separated into 146 cameras (Fig. 7) and 

reflectance was calibrated (Fig. 8) using photos of a reflectance panel in each band, which 

were automatically found from among other photos. Photos were aligned and a digital 

elevation model (DEM) was created from 42511 tie points. The flying altitude was 87.4 

m, the ground resolution is 3.84 cm/pix and the coverage area 0.0981 km2. Camera 

properties can be seen in Table 2. 

 

Figure 7: Camera locations and image overlap 

 

Figure 8: Reflectance Calibration Panel

 

Lastly, an orthomosaic was generated from the DEM. A mesh can also be created, which 

corresponds to a 3D model.  
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Table 2: Camera properties 

Camera model Resolution Focal length Pixel size 

Altum, Blue 2064 x 1544 8 mm 3.45 x 3.45 μm 

Altum, Green 2064 x 1544 8 mm 3.45 x 3.45 μm 

Altum, Red 2064 x 1544 8 mm 3.45 x 3.45 μm 

Altum, Red edge 2064 x 1544 8 mm 3.45 x 3.45 μm 

Altum, NIR 2064 x 1544 8 mm 3.45 x 3.45 μm 

Altum, LWIR 160 x 120 1.77 mm 12 x 12 μm 

 

4.1.2 Classification 

Having generated the orthomosaic in Agisoft Metashape it was imported into PCIDSK 

format to upload it into Catalyst Professional for imagery analysis. More empty channels 

to use for processing were added to the file through OrthoEngine and vegetation indices 

from 2.3.3 were calculated in EASI Modeling with the respective equations (e.g., %8 = 

(%5-%3) / (%5+%3) for NDVI, where ‘%8’ stands for the first empty channel, ‘%5’ 

stands for NIR channel and ‘%3’ for the red channel).  A bitmap created by the THR 

algorithm, which thresholds an image to a bitmap, excluding the orthomosaic’s 

background, was created to be used as a mask.  

Supervised classification with the Maximum Likelihood algorithm, a foreground mask, 

without a NULL class and utilizing all captured bands was used to create a land cover 

map with 5 classes (Fig. 9). Similar classification could be achieved using ArcGIS’ Train 

deep learning model tool or custom code in Google Earth Engine.  

 

Figure 9: Classes a) water b) trees c) overgrown water d) dead wood e) soil/mud/low darker vegetation 

Aside from more advanced methods of water surface detection, simple thresholding can 

be used on the water surface which is not overgrown with vegetation and thus has very 

low emission in the near-infrared spectrum. Depending on the objective of this detection, 

this method can be sufficient for finding clear water surface.  
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5. Results 

The output of the supervised classification is shown, the distribution of NDVI values and 

the results of the thermal analysis are presented in the chapter Results. Additional 

analyses are outlined in the chapter Discussion.   

5.1 Classification 

Classification was generated for five chosen classes, the following tables show the 

classification characteristics, the confusion matrix, and the accuracy. 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Supervised classification result 

 

 

 

 Table 3: Supervised classification characteristics 

Figure 10: Supervised classification result 
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Table 4: Supervised classification result 

Class Pixels  

Water 1378062 2.04% 

Trees 41749678 61.77% 

Overgrown water 5082129 7.52% 

Dead wood 2033547 3.01% 

Soil/mud/low darker vegetation 17340891 25.66% 

Total 67584307 100.00% 

 

Table 5: Confusion matrix 

 Pixels Water 

[%] 

Trees 

[%] 

Overgrown 

water [%] 

Dead 

wood 

[%] 

Soil/mud/low 

darker vegetation 

[%] 

Water 797288 99.19 0.02 0.04 0.00 0.75 

Trees 2206811 0.00 92.69 3.62 0.17 3.52 

Overgrown 

water 

116665 0.13 6.09 79.36 0.46 13.96 

Dead wood 35137 0.00 0.26 1.86 87.51 10.37 

Soil/mud/low 

darker 

vegetation 

217781 0.02 5.09 4.57 0.78 89.55 

 

Table 6: Accuracy 

Average accuracy 89.66% 

Overall accuracy 93.51% 

 

Bias for the dead trees class was lowered substantially for the classification to show a 

more precise shape of the dead trees and also to not contain pixels which should in fact 

belong to a different class and are just overexposed. This effect was, however, not 

eliminated completely. The algorithm identified the overgrown water class quite precisely 

for how variable it is, and it correctly identified small ponds overgrown with algae in the 

area with bigger lakes in the middle of the map. Though there is a tendency to assign 

individual pixels to this class and there was an effort to remove it by adjusting parameters 

but that affected the recognition of said small ponds. 

It was found that it may be more effective to choose a smaller training area but with as 

many characteristics typical for the class as possible than to also include border cases 
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such as area in shade or area with too many overexposed pixels. In some classification 

trials, there was a problem with the algorithm classifying shades as either overgrown 

water or dead wood. Part of the problem was solved by adjusting bias and part by 

simplifying the training area. 

As the soil pH decreases towards the peatbog the vegetation changes from spruce trees 

through dried out spruce trees to the shorter conifer Pinus mungo which can survive in 

more acidic soil (Fig. 11). This tendency can be observed in parts of the orthophoto; 

however, it is not distinguishable enough for the classification. 

 

Figure 11: Vegetation on the edge of the Rokytka Moors, view from inside the area of the peatbog Photo: A. Kevešová, 
2022 

5.2 NDVI distribution 

The number of pixels in the water class which have the NDVI value of -1 is 442748, that 

is 32.1% of all pixels in the class. Pixel has the value of -1 when the signal intensity in the 

wavelength range of near-infrared radiation is zero, which is typical for water surfaces. 

Here, a histogram with an edited y-axis can be seen in order for the counts of pixels of 

different values to be visible.  
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Figure 12: Water class NDVI values 

The difference in scale in subsequent histograms should be noted.

 

a) trees 

 

c) overgrown water 

 

b) dead wood 

 

d) soil/mud/low darker vegetation

Figure 13: Histograms of NDVI values of classes 

581185 pixels of the class trees (Fig. 13a) are equal to 1, which is 1.4% of the total pixels 

assigned to this class. 75103 pixels of the class dead wood (Fig. 13b) are equal to 1, 

which is 3.7% of total class pixels. Median of 0.22, mean of almost the same value of 

0.21 and standard deviation of 0.21 characterise the class overgrown water (Fig. 13c). 

Median of -0.03, mean of a similar value of -0.01 and standard deviation of 0.21 

characterise the class soil/mud/low darker vegetation (Fig. 13d). In all histograms a spike 
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in pixel count of the pixel value of 1 can be seen. This happens when there is no signal 

received in the red spectrum. 

Thresholding based on NDVI can be used as a simpler water surface detection where 

advanced algorithms are not available or preferred, although smaller extent of the surface 

is going to be identified. Following is a detail of comparison, a yellow layer of pixels with 

NDVI values up to -0.70 is placed on top of a red layer of pixels from the water class. 

 

Figure 14: Water surface from NDVI values 

Up to NDVI value of -0.57 there is a higher chance that the given pixel belongs to the 

class water than to any other category. Up to NDVI value of -0.7, it is almost certain that 

the pixel would be classified as water by this supervised classification. 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: All classes compared NDVI values 
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5.3  Thermal analysis 

A false colour composite for qualitative analysis and a temperature map for quantitative 

analysis were created.  

Various land cover classes differ substantially in their thermal emissions, this can be 

observed in a false colour composite where red channel is shown as green and blue 

colours and thermal channel is shown as red: 

 

Figure 16: Thermal channel colour composite 

Considering the low spatial resolution of thermal data, they can be combined with higher 

resolution channel for more details on the position of higher thermal emissions. A clear 

difference in behaviour of water surface and vegetation is observed. While water thermal 

emissions are very low and water shows as black in the colour composite, vegetation 

emits high thermal emissions.  

Using the thermal channel, a map of the surface temperature was generated as well. The 

MicaSense Altum-PT sensor records the temperature in centikelvins, a conversion into 

degrees Celsius was needed. The minimum surface temperature in the study area is -3°C 

and maximum 22.2°C. The mean temperature is 8.9°C, median temperature is 9.1°C and 

the standard deviation is 2.3°C, distribution of temperature can be seen in Figure 18. 
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Figure 17: Temperature map 

 

Figure 18: Temperature distribution 
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5.4 Digital elevation model 

 

 

Figure 19: DEM 

DEM shows little variability in height, the higher elevation in north-east is caused mostly 

by trees, but lower elevation towards the south-west can be observed even in areas 

covered by trees. A substantially lower altitude compared to the immediate surroundings 

can be seen in the drain, which is being revitalised in the south-western part of the map. 
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6. Discussion 

The proposed methods of analysis of spectral data shown as an example on Rokytka 

peatbog combine various variables important to determine the state of a particular 

peatbog or its parts but rely on landcover analysis, spatial indices, and simple methods 

like false colour composites. A better classification of the state of the environment, like 

health of the vegetation, relative soil moisture or a 3D model, would be certainly helpful. 

Unfortunately, information on a reference group of peatbogs or quantitative data on how 

the ideal healthy peatbog environment looks like are not available, combined with the 

inability of change detection while having data from only one date, there was no 

possibility of comparison, and the interpretation of data is naturally lacking. 

The original plan was to carry out the classification in Google Earth Engine, which is a 

cloud computing platform. Trial classification on a subset of data was performed with an 

adapted code in JavaScript by Bennett et al. (2020) but it was found that while the 

advantage of this platform is that the processes can truly be completely modified to suit 

the needs of the particular data processing needs this also causes the process to require a 

more advanced understanding of the partial processes. Instead, the software Catalyst 

Professional (former Geomatica) was used and its predefined classification workflow was 

utilized. The “salt-and-pepper” effect is very much present in the classification and could 

be eliminated by using object-based image-analysis method instead of a pixel-based one 

but on the detailed UAV data which have high inter-pixel variability false objects could 

be identified. Having access to data acquired on two or more different occasions, this kind 

of a simple classification could give a basic idea of temporal changes of land cover in the 

area. 

Concerning additional ways to analyse and interpret data, some more methods of 

qualitative nature, which were outlined but not elaborated further, are as follows. Details 

of true colour composite (left) and false colour composite (near-infrared channel is shown 

as green, red and blue are true colour) where the overgrown ponds are visible: 
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Figure 20: Overgrown ponds 

The ponds have a similar spectral manifestation as trees in true colour composite and a 

visibly different one in this false colour composite. It could also be assessed, for example, 

whether it is in fact algae or whether it is cyanobacteria based on various spectral 

manifestations (e.g., Pu et al. 2022). 

Detail of unsupervised classification on water class:  

 

Figure 21: Water surface unsupervised classification 

Different spatial manifestations of water are separated into classes, it can be further 

studied whether that is based on the water quality, water depth, etc. This unsupervised 

classification was carried out on the water class from supervised classification using the 

K-means algorithm with the default settings (Fig. 22) in Catalyst Professional.  
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Figure 22: Unsupervised classification parameters 

The analysis carried out at Rokytka peatbog serves as an example of methods, further 

temporal change, particular reason for the study area monitoring, and additional context 

would have to be taken into consideration when evaluating the environment. UAV 

monitoring of peatbogs is a very broad topic with many possibilities, nonetheless it was 

showed that it is possible to carry out a partial analysis of UAV gathered imagery using 

intuitive software with built-in analysis tools. Yao et al. (2019) even state that there is 

room for improvement with currently wider used UAV data analysis as the potential of 

such detailed spatial information is not entirely utilized.  
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7. Conclusion 

UAVs are a suitable technology to use in the circumstances of fragile peatbog 

ecosystems. The technology is reliable in terms of indicating water surface, plant species, 

evaluating the surface structure or the temperature and moisture characteristics both in the 

visible spectrum and in the red edge, near-infrared and thermal spectres. There are quite a 

few different types of data which can be sourced from sensors attached to a drone, 

making the acquisition of material efficient and bringing the costs down. This type of 

monitoring can help with keeping track of conservation and/or restoration of these easily 

disturbed ecosystems which offer a wide range of ecosystem services. A classification 

and the use of additional methods was shown on data from the Rokytka peatbog. Based 

on a supervised classification the vegetation structure was revealed, differences between 

classes were shown on NDVI values and a threshold for water surface detection was 

suggested. Thermal distribution was calculated, DEM was generated, and other partial 

analyses were outlined. 
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