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Bimodality and alternative equilibria do not
help explain long-term patterns in shallow
lake chlorophyll-a

Thomas A. Davidson 1,2 , Carl D. Sayer3, Erik Jeppesen1,2,4,5,6,
Martin Søndergaard1,4, Torben L. Lauridsen1,2,4, Liselotte S. Johansson1,
Ambroise Baker 7 & Daniel Graeber 8

Since its inception, the theory of alternative equilibria in shallow lakes has
evolved and been applied to an ever wider range of ecological and socio-
ecological systems. The theory posits the existence of two alternative stable
states or equilibria, which in shallow lakes are characterised by either clear
water with abundant plants or turbid water where phytoplankton dominate.
Here, we used data simulations and real-world data sets from Denmark and
north-eastern USA (902 lakes in total) to examine the relationship between
shallow lake phytoplankton biomass (chlorophyll-a) and nutrient concentra-
tions across a range of timescales. The data simulations demonstrated that
three diagnostic tests could reliably identify the presence or absence of
alternative equilibria. The real-world data accorded with data simulations
where alternative equilibria were absent. Crucially, it was only as the temporal
scale of observation increased (>3 years) that a predictable linear relationship
between nutrient concentration and chlorophyll-a was evident. Thus, when a
longer term perspective is taken, the notion of alternative equilibria is not
required to explain the response of chlorophyll-a to nutrient enrichment
which questions the utility of the theory for explaining shallow lake response
to, and recovery from, eutrophication.

The idea that ecosystems can have markedly different alternative
equilibria under similar environmental conditions has its historical
roots in theoretical ecology1 and the concept of the catastrophe fold2.
Evidence for this theory gained credence from empirical data report-
ing catastrophic regime shifts across a range of ecosystems, including
deserts3, oceans4, and coral reefs5,6. The terminology describing
these nonlinear changes evolved to regime shift7 and later critical

transitions8, but the kernel of the idea remains the same: An ecosystem
canoccupy oneormore alternative states or equilibria over a relatively
broad range of environmental conditions, with each respective state
characterised by stability in the face of environmental change due to
resistance engendered by a number of feedback mechanisms9.

The existence of alternative equilibria, both in theoretical models
and real-world examples, has been the subject of debate7,10–15. In fresh
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waters, a review of the evidence of regime shifts found that of the 135
reported, very fewmet the criteria of Lees, Pitois16 and Peterson17 for a
true regime shift, suggesting that the phenomenon is not common in
nature14. Most recently, in a large meta-analysis, ref. 15 found that
threshold transgressions (or catastrophic changes) were rarely
detectable and that ecological response was most commonly char-
acterised by progressive change.

Shallow lakes are generally accepted as the best example of an
ecosystem occupying alternative equilibria14,18–20. Here, in place of a
predictable, deterministic relationship between nutrients and phyto-
plankton biomass (chlorophyll-a), there exist two alternative equili-
bria, each state being reinforced by a suite of positive feedback
mechanisms9. Specifically, over a given nutrient range, (for example,
50 and 200 µg l−1 TP), shallow lakes should have either clear water and
abundant submerged plants or turbid water with a dense phyto-
plankton crop where submerged plants are absent and in principal
there should be no intermediate state9. There are, however, a growing
number of observations showingmarked inter-annual variability in the
relative dominance of phytoplankton over submerged plant
abundance21–27. As is often the case when theory confronts data28 the
theory has undergone some revisions, including multiple stable
states29 cyclical shifts between states30 and the presence of the ghosts
of long-term transients24. In addition, other studies have identified the
regular coexistenceof clearwater and turbid conditionswithin a single
growing season31,32. Thus, the stability of each respective state over
both short and longer time periods has become increasingly ques-
tionable and thus worthy of examination.

Uncertainty over the identification of alternative equilibria and
regime shifts may result from mismatches in the scale of
investigation10,14, where the mechanisms shaping ecological state
operate on different temporal scales to the observations33. To under-
stand ecosystem change over time in a dynamic and variable world, it
is vital that the scale of observation matches that of underlying eco-
logical processes33. Recent work using data from the Long-Term Eco-
logical Research network demonstrated that an insufficiently
long temporal perspective can result in spurious conclusions34. In
particular, it may be the absence of a sufficiently long-term view of
systems characterised by inter-annual variability that makes it difficult
to define an ecosystem state as stable or transient. Long-term studies
of shallow lakes have tended to show gradual rather than step-changes
in ecological conditions in response to reductions in nutrient
concentration15,35,36. Although it has been suggested that regime shifts
may occur slowly for some ecosystems37, regime shifts in shallow lakes
have been characterised as catastrophic and occurring over short time
scales7.

Here, we examine how shallow lakes respond along a gradient of
nutrient enrichment using data covering a range of temporal scales,
from a single-year to 5-year means. For this range of temporal scales,
we aim to robustly test the presence or absence of alternative equili-
bria, assessing the utility of the idea versus the previously held notion
of gradual, linear ecosystem response in explaining observed patterns.
In short, we pose the question: Does the theory of alternative stable
states stand the test of time? The multi-year perspective taken here to
investigate how nutrients shape chlorophyll-a reveals that as, the
temporal scale of observation lengthens, a strong deterministic rela-
tionship between nutrients and chlorophyll-a is revealed, and ideas of
bimodality and alternative equilibria are in no way useful in explaining
the patterns in the data.

Results
The data consisted of 902 lakes with 2986 summer mean (May to
September) observations fromDenmarkandNorthAmerica covering a
range of sizes and levels of nutrient enrichment (Table 1). The concept
of the analyses centred on the comparison of single-year observations
withmultiple-yearmeans of total phosphorus (TP), total nitrogen (TN)

and chlorophyll-a, with increasing numbers of years included in the
calculation ofmultiple-yearmeans up to a five-yearmean conducted in
an identical manner for both simulated and real-world data.

To ensure a robust basiswithwhich to compare the analysis based
on a single year with those based on equivalent multi-year means, the
real-world and simulated datasets were sampled identically using a
hierarchical bootstrap procedure. Here the real-world and simulated
datasets were sampled 1000 times with replacement for the lakes and
then single or multi-year means of the key variables (TN, TP and
chlorophyll-a)derived without replacement38 (see methods and sup-
plementary materials for details). For each of the 1000 random sam-
ples per bootstrap analysis, GLM models were constructed. However,
the GLM models did not always converge and in the event of non-
convergence, this random sample was not used. This resulted in
n = 608, n = 696 and n = 633 random samples for 1, 3 and 5-year sin-
gle year data, respectively and n = 584 and n = 795 for the 3 and 5-year
mean data, respectively. For the simulations, n = 1000 for most sce-
narios (models converged for all iterations), with the exception of the
1-year simulations with ASS where n = 945, and without ASS where
n = 864. The distributions of the data are shown as density plots, with
the error bars being the highest density interval with a 95% credible
interval.

Details of the results of the data simulations and the four dif-
ferent scenarios of alternative equilibria are given in the methods
and supplementary materials. The four simulation scenarios cov-
ering the presence, absence and different constellations of alter-
native equilibria demonstrated that, as the temporal scale of the
dataset lengthens from a single year to the five-year mean, the
diagnostic indicators (Fig. 1) have divergent responses that reflect
the presence or absence of alternative equilibria in a given dataset
(Supplementary Figs. 3, 4). The presence of alternative equilibria
was reflected by characteristic changes in the three indicators as the
number of years used to calculate the mean increased. These
changes reflecting the presence of alternative equilibria were, no
increase in the R2 of the linear model between nutrients and
chlorophyll-a and increasing bimodality in both the residual pat-
terns and the kernel density plot (Fig. 1 and Supplementary Fig. 3).
The data simulations reveal that the diagnostic indicators can not
only identify datasets with a total absence or total dominance of
alternative equilibria, but also that they are sensitive to different
scenarios where some of the lakes contained both states within a
times series (See Supplementary Notes 2). In this latter scenario,
there was no increase in R2 and an increase in the bimodality of the
residuals of the model, albeit less pronounced than in scenario 4
(Supplementary Fig. 4). The diagnostic tests were also robust to
datasets with occasional unstable alternative states, in this scenario
with occasional instability the pattern in the diagnostic tests was
most similar to the scenario where alternative equilibria were
absent (Supplementary Fig. 3). Thus, the combination of the four
scenarios and the three diagnostic indicators provide a well-defined
set of characteristics which can be used to identify either the pre-
sence or the absence of alternative equilibria in a given dataset. In
this way, we avoid the dangers of a conjunction fallacy39 where the
assertion that the real-world dataset does not contain alternative
equilibria is based on the fact that there is no strong evidence of its
presence, rather than a pattern that confirms its absence.

The relationshipbetween nutrient concentration and chlorophyll-
a for single-year observations and for themeans ofmultiple years’ data
(Table 2 and Fig. 2) show that TP generally explained more variance
than TN, with the variance explained by TP actually similar to that
explained by TN and TP combined. The models based on the means
from multiple years’ data always explained more variance in the
chlorophyll-a compared with those based on the comparable single
year’s data (Table 2). Furthermore, lengthening the period of time on
which the multi-year means were based increased the explanatory
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power of the models, resulting in over 80% of the variance in
chlorophyll-a being explainable when a 5-year mean of the data was
used (Table 2). Despite this general high degree predictability, there
were some ‘outlier’ type observations even at the five-year mean
temporal scale where there were high or low chlorophyll-a values for a
given nutrient value (Fig. 2). These can be explainedwhen theN:P ratio
is considered as this can affect the relationship between the individual
nutrient (TP or TN) and chlorophyll-a. For example, a lower
chlorophyll-a value for a given TP value may be due to nitrogen lim-
itation rather than reflecting alternative equilibria (See Supplementary
Figs. 1, 2).

For the real-world data, the patterns in the diagnostic tests for the
presence and absence of alternative equilibria covering the range of
time scales from a single year to the 5-year mean, show very close
accord with the data simulation where alternative stable states are
absent (Fig. 3). This is characterised by increasing R2 as the number of
years in the mean increases, unimodal residual patterns and a unim-
odal kernel density plot that does not change asmore years are added
to themean. Furthermore, aswas the case in the simulations, themulti-
year mean models always had a higher R2 when compared with their
single-year equivalent (Fig. 3). The data were reanalysed for both a
limited range of nutrients and also for each region (Denmark and the

Table 1 | Number of lakes, means (1 SD; minimum-maximum) of the contemporary data from the USA, Denmark and the full
dataset

Variable USA Denmark All data

Number of lakes 122 780 902

Mean depth (m) 2.0 (0.7; 0.4–3.0) 1.1 (0.7; 0.01–3.0) 1.2 (0.8; 0.01−3.0)

Area (ha) 150.0 (389.0; 1.7–3179.0) 34.2 (114.0; 0.04–1713) 50.0 (182.0; 0.04–3179)

Chlorophyll-a (µg L−1) 37 (44.2; 0.3–362.0) 63.8 (65.5; 0.1−520.0) 57.3 (62.1; 0.02–520.0)

Total nitrogen (mg L−1) 1.4 (1.1;0.1–5.9) 1.7 (1.0; 0.3–6.0) 1.7 (1.0; 0.14–6.0)

Total phosphorus (µg L−1) 90 (80; 0–520) 180 (190; 0–1460) 160 (180; 0–1460)
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Fig. 1 | Detecting alternative equilibria in spatial data at different temporal
scales. The temporal scale increases from a single year on the left to the decadal
scale on the right. The data shows typical patterns of nutrient and chlorophyll-a
found in shallow lakes for a singleyear,with results of the threediagnostic tests (see
methods) applied to detect the presence or absence of alternative stable states
(ASS). Single-year data does not provide strong evidence for or against the exis-
tence of ASS. In addition to examining the patterns in the scatter plots of nutrients
vs chlorophyll-a, the tests are (i) the R2 of the model, (ii) the residuals of a linear
model of nutrients vs chlorophyll-a, (iii) Kernel density plots of chlorophyll-a data.
We present expected patterns (derived from simulations) that would suggest the
presence (above the line) or absence (below the line) of ASS in shallow lakes. As the
temporal scale of the observations increases from single-year data tomultiple-year

means the expectation is that inter-annual variability should even out and the
presence or absence of ASS should become apparent in the proxies (above the
horizontal line). The scatter plot of chlorophyll-a versus the nutrients will show two
clouds of data (turbid or clear), hence, (i) the R² of the model will decrease, as a
single linear model cannot predict two alternatives, (ii) the residuals of a linear
model correlating nutrients to chlorophyll-a will show multimodality and (iii) the
kernel density plot of chlorophyll-a will deviate from unimodality. Conversely, in
the absence of ASS (below the horizontal line), the link between nutrient con-
centration and chlorophyll-a becomes increasingly well predicted by a linear
model, resulting in a larger R² with an increasing number of averaged year, unim-
odality of the model residuals and of the kernel density function.
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USA) separately (see SI for details and results). There were some dif-
ferences in the results of these smaller datasets but the overall patterns
agreed with the larger dataset in identifying the absence of alternative
equilibria in the real-world datasets.

Discussion
The use of multiple-year means to interrogate the relationship
between nutrients and chlorophyll-a in shallow lakes reveals that, as a
longer-term perspective is taken, a predictable linear relationship
between nutrient concentration and chlorophyll-a emerges, with over
80% of the variance explained for the 5-year mean data (Figs. 2, 3 and
Table 2). In common with this study, most previous investigations
from shallow lakes using a single-year time scale show a weak albeit
significant relationship27,40 between nutrients and chlorophyll-a
(Fig. 2). This cloud of chlorophyll-a data in response to TP or TN,
typically found for single-year data, does not represent strong evi-
dence for either the presence or absence of alternative equilibria in
nature. In contrast, the analysis of simulated and real-world data cov-
ering a range of temporal scales, from single to multiple-year means,
strongly indicates the absence of alternative equilibria in the large real-
world dataset and that chlorophyll-a is, to a very large extent, deter-
mined in a highly predictable way by nutrient concentrations. TP was
the best predictor of chlorophyll-a in all the permutations of the
dataset and this was more marked in the reanalysis of the data with a
restricted range of nutrient concentration (see Supplementary mate-
rials S3). In addition, there were also cases where the N:P ratio was a
factor in determining the relationship between an individual nutrient
concentration (i.e. TP or TN) and chlorophyll-a. However, these occa-
sional outlier sites do not reflect alternative equilibria but instead the
importanceof both TNandTP in shaping chlorophyll-a concentrations
(Supplementary Fig. 2)41.

The absence of a strong relationship between nutrients and
chlorophyll-a over a single year contrasts with that found for themulti-
year mean data. This is, in part, the result of year-to-year variation in
nutrient-chlorophyll-a relationships, which this analysis shows even
out over time. The year-to-year variation is the result of a range of
internal and external processes, which either maintain some dis-
equilibrium or cause the inter-annual variation in nutrient-chlorophyll
relationships. External factors can maintain persistent or transient
disequilibrium conditions, for example, a persistent drying out which
resets the system through changing sediment characteristics and by
eliminating or reducing populations of fish favours clearer water17,24.
Other processes are amix of external driverswhich vary between years
and alter internal processes. An example of this is when periods of ice
cover are longer, altering trophic interactions by favouring larger-
bodied Daphnia, which increases grazing pressure on algae in spring
resulting in clearerwater the following year42. In agreementwith recent
longer-term studies, we find that single-year observations can give
misleading results34, perhaps as the scale of observations do notmatch
the multiple-year scale at which the effects of eutrophication manifest
themselves. This may be particularly true for ecological processes
linked to the top-down control of trophic structure, which vary on
longer time scales. For example, multi-year internal population
dynamics between fish and zooplankton affect inter-annual variation
in fish predation on zooplankton and thus, via the trophic cascade,
produce large year-to-year variation in chlorophyll-a at a given nutrient
level43. Indeed, the short-term successes of biomanipulation (the
removal of zooplanktivorous or addition of piscivorous fish) in
restoring clear-water conditions and abundantmacrophytes in lakes is
a testament to the strength of trophic cascades involving fish and
cladoceran zooplankon. Scheffer, Hosper9 used the dramatic results of
biomanipulation to support the ideas of alternative equilibria. The
authors did, however, sound a note of caution, stating that it would
only be possible to test the veracity of the theory after a number of
years when the persistence of clear-water conditions could beTa
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assessed. Evidence now available frommultiple long-termmonitoring
datasets19 and paleolimnological studies44 shows that, where nutrient
levels have not also been reduced, the positive effects of biomanipu-
lation do not persist and there is typically a gradual return to turbid
conditions over a few (5–10) years. Also, the response to nutrient
loading reduction suggests a general gradual change, rather than an
abrupt shift when a certain nutrient level is reached15.

Our study does not refute the decades of research showing the
influence of the trophic interactions in shallow lakes, where, for
example, abundant submerged plants alter the relationship between
nutrients and chlorophyll-a40,45. The suppression of phytoplankton by
macrophytes can be both direct (e.g. allelopathy and reduced resus-
pension), and indirect via biotic interactions, with plant-associated
zooplankton and invertebrates lowering thebiomass ofphytoplankton
andperiphyton46,47, which in-turn improve conditions for plant growth.
The plausibility of the idea of alternative equilibria in shallow lakes
stems, in part, from the well-founded fact that the presence of abun-
dant plants or dense phytoplankton can alter the food web and effect
processes so as to promote their own success i.e. positive feedback.
However, it is the stability of these feedbacks in the face of changing
nutrient concentrations that is crucial to the ideaof persistent or stable
alternative equilibria and examining this stability is only possiblewith a
longer-termperspective. The combination of simulated and real-world
data here shows that, with a 3–5-year perspective, the top-down forces
causing within31 and between-year variation in the relationship
between nutrients of chlorophyll-a23 even out and the deterministic
linear relationship between chlorophyll-a and nutrients becomes
apparent and indeed even appears to hold over the entire length of the
nutrient-enrichment gradient.

The combination of temporal perspectives provided here
indicates that the mechanisms shaping the relationship between
nutrients and chlorophyll-a in shallow lakes take multiple years to
manifest their effects. In time-series data, this would typically result
in a time-lagged ecosystem response to a press change, such as

relatively small changes in nutrient concentrations. Such lagged
responses have been identified in other long-term studies of shallow
lake ecosystems, with 10–15 year delays in the response of both
fish35 and submerged plants48 to changes in the underlying nutrient
concentrations. In shallow lakes, several factors have the potential
to be slow-acting transients in the ecosystem. These include long-
lived fish, the seed and propagule bank, along with sediment
structure and sediment chemistry, each of which can potentially
contribute to a disequilibrium between nutrients and chlorophyll-a
as they hold a memory of conditions past. For example, changes in
sediment chemistry, in particular organic content, which has the
potential to adversely impact seed germination success49 occur
slowly over a number of years as a result of increased nutrient
concentration. Legacy phosphorus in the sediment may also con-
tribute to a lag in response where external nutrient inputs are
reduced50. In addition, changes in sediment structure that make
successful rooting of plants more difficult51, take decades to occur,
while long-lived and persistent propagule banks of aquatic plants52

may take time to become buried and inactive. Thus, fish, macro-
phytes, sediment structure and chemistry appear to change at the
decadal scale in response to nutrient level change and can con-
tribute to a lag or a disequilibrium in ecosystem response to
nutrient enrichment.

Shallow lakes are the ecosystem cited most often and with the
most certainty as displaying alternative equilibria. The theory has
developed over time to less easily testable ideas such as catastrophic
regime shifts and critical transitions applied to an array of other eco-
logical and socioecological systems53. The notions of critical transi-
tions and alternative equilibria are so widely accepted that an area of
research seeking to identify their early warnings has developed54

although recent studies have found little convincing evidence for their
existence in time series data15. As highlighted by Levin33, it is vital that
the time scale of observations match the time scale of the processes
driving change, if we are to understand the temporal response of
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Fig. 2 | Scatter plots of the results of simulated data with and without alter-
native equilibria. There is an increasing temporal scale: from single-year obser-
vations to 3-year means and then 5-year means for the simulated data in the two
panels on the left. Scatter plots of the TN and TP relationship with chlorophyll-a
from real-world data with the different temporal perspectives of single-year data,
3-year means and 5-year means. The data were sampled 1000 times iteratively (see
methods) for each given time period and a model was derived from each of the

selections where the GLM converged (see results for numbers), providing a dis-
tribution of models and residuals for each temporal perspective. The shading of
each point in the plots reflects the number of times it was selected in the random
sampling procedure. The results show that as the temporal perspective lengthens
the relationship between nutrients and chlorophyll-a becomes more predictable
and that the models based on the multiple-year mean data always explain more
variation than their single-year counterpart.
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ecosystems34. Here, we demonstrate that, as the time-window of
observation lengthens, shallow lakes generally undergo a gradual
change in response to eutrophication, which has been shown to
involve a slow erosion of benthic habitats and pathways of
production55 and that nutrient levels overwhelmingly dictate
chlorophyll-a concentrations. Whilst abundant macrophytes alter
trophic interactions and nutrient to chlorophyll-a relationship in the
short-term27, the year-to-year variation evens out and bottom-up for-
ces prevail in the longer term. Examining the patterns and variability of
ecosystemchangewith the appropriate temporal perspective is vital to

better assess ecosystem change. The evidence presented here covers a
range of time scales and shows that the ideas of bimodality and
alternative equilibria do not help in explaining the patterns in the data
and that, in short, the alternative stable states theory does not stand
the test of time.

The implications for ecological theory and applied ecological
management of this study are that there is a great benefit to be had
from taking a longer-term perspective on the analysis of ecological
change in the face of gradual changes in environmental conditions,
such as climate and land use change. In terms of appliedmanagement,
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Fig. 3 | Comparison of diagnostic tests for the presence or absence of alter-
native equilibriaonsimulatedand real-worlddata at a rangeof timescales.The
figure shows the results of the three diagnostics tests (i) change inR2, (ii) patterns in
models residuals (single year, 3-year and 5-year means)and (iii) the kernel density
plot (high (50 – filled) and low (10 – lines) bandwidth) for simulated datasets (A)
with and without alternative equilibria and for the real-world data (B). Panel
A demonstrates that there are characteristic patterns of the diagnostic tests for
datasets but with and without ASS but that this requires an increase in temporal
scale as the between-year variationobscures the patterns for single-year data. Panel
B shows that real-world data follows the patterns of the simulated dataset with no

alternative equilibria, with the R2 of themodels increasing, and themulti-yearmean
data always explain more data than their single-year equivalent, and no bimodality
in the residual of the models or in the kernel density plot of chlorophyll-a data.
About 1000 random samples were run per bootstrap analysis, for each of which we
calculated GLMmodels. The final numbers vary slightly as the GLMmodels did not
always converge and those which did not converge were not used (see results for
numbers). The distributions of R2, residuals and kernel density plots based on these
multiple runs are shown as density plots, with the error bars being the highest
density interval with a 95% credible interval.
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our study highlights the pressing need to reduce nutrient inputs in
shallow lakes to help maintain the resilience of their ecological pro-
cesses and biodiversity in the face of rapid global change.

Methods
Real-world data
The dataset consisted of 2986 observations from 902 freshwater
shallow lakes in Denmark and North America (data extracted from the
LAGOSNE database on 22 February 2022 via R LAGOSNE package
version 2.0.2)56 (Supplementary Fig. 9). TheDanish lakeswere sampled
for one or several years from 1984 to 2020 (data extracted in October
2021 from https://odaforalle.au.dk/main.aspx) (Supplementary
Fig. 10). Prerequisites for inclusion in the analysis were that lakes had
been sampled for physical and chemical variables at least four times or
at least three times over the growing season (May to September) for
the Danish or North American lakes, respectively, had amean depth of
less than 3m and were freshwater. Water chemistry samples were
analysed using standard methods and data for total phosphorus (TP),
total nitrogen (TN) and chlorophyll-a are included here57. The mean
and rangeof TP, TNand chlorophyll-a for the combined sites is given in
Table 1, along with the values for each region separately.

To gain a longer-term perspective on the relationship between
nutrients and chlorophyll-a, we calculated the across-year averages of
the summermeansof TP, TN andchlorophyll-a, sequentially increasing
numbersof years included in themeanup to a total of afive-yearmean,
atwhichpoint therewereonly 99 lakes left in thedataset. In calculating
the multi-year means we allowed a maximum gap of 2 years between
observations (i.e. two observations could cover 3 years) to avoid
including time series with too many missing years in between. Hence,
only lakes with sufficient numbers of sequential data were included,
resulting in a large drop in lake numbers as the length of themulti-year
mean increased (Table 2).

Numerical methods
Diagnostic testsor proxies of alternativeequilibria.Wemodelled the
response of chlorophyll-a to TP and TN using generalised-linear
models58 with Gamma distribution and an identity link on untrans-
formed data for single-year and multiple-year means up to 5-year
means. We used the Gamma distribution, as chlorophyll fit this sig-
nificantly better than a normal or log-normal distribution. We
used psuedo R2 of the model along with the patterns of residuals, and
finally, we plotted the kernel density of the chlorophyll-a values as
diagnostics of the presence, absence or prevalence of alternative
equilibria in the simulated and real work data.

To test how appropriate these diagnostics or proxies of alter-
native stable states in terms of how well they identify the existence of
alternative stable states in randomly sampled multi-year data, we
1. Simulated two scenarios for the main manuscript, with and

without alternative stable states in the data,whichwere as close to
the real-life data as possible. The results of these scenarios appear
in the main text (please see details below in the “Data Simulation”
section).

2. We provide multiple scenarios with different degrees, or pre-
valence, of alternative stable states in the data, see simulations of
alternative stable state scenarios. The results of these scenarios
appear in Supplementary note 2.

Hierarchical bootstrap approach
There are a large number of permutations of data, both real-world and
simulated, that can provide a mean of the two to five sequential years
fromeach lake in the time series data. Itwas vital to have amethod that
selects the data for analysis that provides a valid and comparable
representation of both real work and simulated data and the models’
errors. In order to provide this we used a non-parametric hierarchical
bootstrap procedure38. The flowchart shows the data preparation and

data analysis steps of the hierarchical bootstrap procedure (Fig. 4). In
the first step (step 1 in Fig. 4), all possible longer-term means are cal-
culated for each lake. To keep asmuch data as possible, we decided to
allow for up to 2 years of gap in the data between years. Taking the
5-yearmeandata as an example, if data froma lake existed for the years
1991 and 1994−1997, a 5-year mean would be calculated for the years
1991, 1994, 1995, 1996 and 1997. However, if the time series would
contain a larger gap, e.g. data would only exist for the years 1991 and
1995–1998, no 5-year mean could be calculated. After the selection
procedure, all the 2-year, 3-year and 5-yearmeans are transferred into a
new table (step 2 in Fig. 4).

The procedure is the same for each temporal scale from 2-year
means to 5-year means. For the example of 5 mean years, lakes are
randomly sampled from the full 5-year mean dataset in step 2 (Fig. 4)
with replacement up to the number of lakes as in the original dataset,
for the 5-year means 99 (step 3a). Here, the same lake can appear
multiple times or not at all. This step is common for every bootstrap
procedure59. However, since we have nested data (5-yearmeans within
lakes), weneed a second step, inwhich for every resampled lake in step
3a, one 5-year mean is chosen (step 3b in Fig. 4). Then the three GLM
models are produced from the randomly selected data in step 3c
(Fig. 4). These steps are then repeated 1000 times to get a good
representation of the uncertainties of the model. To ensure a fair
comparison between single-year data and their equivalent multi-year
meandata, we repeated thebootstrapprocedurewith single years only
using only the lakes for which we also calculated multi-year means. To
take the five-year mean as an example, there were 99 lakes where we
could calculate at least one 5-year mean observation. First, we ran the
bootstrap procedure to calculate 5-year mean values of TP, TN and
chlorophyll-a (1000 times) and then took single years' values of TP, TN
and chlorophyll-a (1000 times) from exactly the same 99 lakes. With
this approach, exactly the same datasets with the same lakes and
observations within lakes are used for the calculation of themulti-year
means and their single-year counterparts,making for a robust analysis.
TheGLMmodels did not always converge. If either the TP, TNor TP*TN
model with interaction did not converge, the iteration was not used in
further analysis. The number of converging models equal for each
iteration of random samples is given in the results.

The described hierarchical approach is the best way to reflect the
structure of the original data. A simple, non-hierarchical bootstrap
would favour lakes with more five-year means over lakes with fewer
five-year means, simply because these make up a larger part of the
data. Furthermore, sampling without replacement at the lake level
would result in five-year means from lakes with few data dominating
the produced random dataset, as every lake would be sampled every
time, which then would result in high model leverage of 5-year means
from lakes with less data. In contrast, the hierarchical procedure
ensures that every lake has the same chance to end up in the randomly
sampled bootstrap, in the second step, it ensures that of each sampled
lake, every 5-year mean has the same chance to end up in the random
dataset. These notions are in agreement with the findings of an
assessment on how to properly resample hierarchical data by non-
parametric bootstrap38.

Data simulation
General approach of simulation assumptions and procedures. We
generated random scatter for the generalised-linear model based on
Gamma distributions for two different “populations” of lakes with two
different intercepts and slopes. At first, we calculated the linear
equations for the two populations:

• Population i: yi =ai +bi*x
• Population j: yj =aj + bj*x

For each population i and j, 99 samples (equalling the number of
lakes in real-life data with 5-year means, nlake) were generated with a
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specific number of data points depending on the scenario (nyear) each,
hence nlake = 1−99 for each population of lakes, e.g. with 20 years
(nyear = 20) each.

We found the real nutrient data to be normally distributed, with
total nitrogen (TN) having a range between 0.33 and 4.93mg/L and a
constant coefficient of variation (CV, with a mean CV of 0.35) across
this range (the same is true for total phosphorus (TP) at a shorter
range). Hence, for each nlake, the x for the nyear = 20 were generated
based on the mean range (mean per lake of the real-life data) and CV
(0.35) from the real-life TN concentration data, hence with a range of
0.33 to 4.33mg/L. Therefore the values and random variability of x in
the simulations are close to the true values of the TN concentrations.
The x is then fed into the linear equations above.

To the resulting yi and yj we added random noise based on the
Gamma distribution (using the rgamma function in R). We used a
Gamma distribution because the Chlorophyll-a concentration also
follows a Gamma distribution. The variability of a Gamma dis-
tribution is expressed by the shape variable. The variability of
chlorophyll-a, its shape value, equals 2.63. This shape value was
used in the Gamma distribution of yi and yj. The final calculated yi
and yj had therefore a random rate calculated as shape/yi or shape/
yj. Hence, their variability in the y dimension was close to the true
chlorophyll-a variability.

The data from both lake populations were then pooled and ran-
domly sampled using the same hierarchical bootstrap procedure with
500 iterations for the scenarios in the supplementary materials and
with 1000 iterations for main text simulation scenarios, which is
identical to what was done for the real-world data.

Simulation scenarios based on characteristics of real-world data.
The real-world 5-year mean data consisted of 99 lakes with 5–20 years
of data for each lake. For the simulation scenario in the main text, we
therefore randomly sampled between 5 and 20 data points for each of
the 99 simulated lakes based on the x distribution described above.
Intercepts and slopes of the simulation, resembled the range of the
true data (see scatter plots in Fig. 2 of the main manuscript).

In the alternative stable state scenario, we chose two slopes and
intercepts for different populations of lakes:

Population i: ai = 0, bi = 40
Population j: aj = 50, bj = 120

We based the slopes and intercepts of the ASS scenarios on the
diagnostic combination defined by Scheffer and Carpenter7 which
propose an abrupt shift in (a) the time series, (b) the multimodal dis-
tribution of states and (c) the dual relationship to a controlling factor.
Here, the idea is that an ecosystemwill jump fromone state to the next
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3d. Repeat steps 3a to 3c 1000 times
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Fig. 4 | Data preparation and analysis steps of the hierarchical bootstrap procedure.
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at the same (nutrient) conditions (different intercept and/or slope,
condition a within ref. 7), where any change in the nutrient will have
different effects on algae or macrophytes (best represented by dif-
ferent slope, condition c), resulting in amultimodal distribution of the
response (condition b). Hence, simulations are in line with what is
predicted for ASS, but we took great lengths to also show other pos-
sibilities with the simulations in the Supplementary information to
ensure we did not overlook any occasional occurrence of alternative
equilibria.

Here, the appearance of alternative stable states in the data could
happen at any point in the time series of a single lake, or the entire time
series could include only one of the two alternative stable states. To
accommodate these alternative stable state constellations (for each of
which we made a separate simulation scenario, (see Supplementary
Note 2, “Simulations of alternative stable state constellations”), we
forced the alternative stable state scenario to be constructed of 1/3 of
data with one state, 1/3 of data with the second state and 1/3 of data
where both alternative states could occur. In the latter case, the
alternative stable state appeared after the first 20% but before the last
20% of the time series. Since the variability and range of x (nutrient)
and y (chlorophyll -a response) is simulated as close as possible to the
real-world data in all scenarios, themeasures taken here (variable time
series and combination of different alternative stable state scenario
constellations) produce a simulation as close to the real-world data as
possible. Specifically, we found the real-world nutrient data to be
normally distributed, with total nitrogen (TN) having a range between
0.33 and 4.93mg/L and a constant coefficient of variation (CV, with a
mean CV of 0.35) across this range (the same is true for total phos-
phorus (TP) at a shorter range). Hence, for each simulated lake, the x
were generated based on this mean range and CV. Furthermore, the
resulting yi and yj were randomised by using a Gamma distribution
(using the rgamma function in R). We used a Gamma distribution
because the chlorophyll-a concentration also follows a Gamma dis-
tribution. The variability of a Gamma distribution is expressed by the
shape variable. The variability of chlorophyll-a, its shape value, equals
2.63. This shape value was used in the Gamma distribution of yi and y.
The final calculated yi and yjhad, therefore a random rate calculated as
shape/yi or shape/y. Hence, their variability in the y dimension was
close to the true chlorophyll-a variability.

For the scenario without alternative stable states, both popula-
tions of data had the same intercept and slope:

Population i: ai = 0, bi = 40
Population j: aj = 0, bj = 40.

Please see Supplementary Note 2 for further simulations of dif-
ferent potential constellations of alternative states. Thereweshow that
our approach finds alternative stable states in response to nutrient
concentration, even if they appear in time series from different lakes.

Assessment of diagnostic tests or proxies of alternative equilibria.
We modelled the response of chlorophyll-a to TP and TN using
generalised-linear models3 with Gamma distribution and an identity
link on untransformed data for single-year andmultiple-yearmeans up
to 5-year means. We used the Gamma distribution, as chlorophyll fit
this significantly better than a normal or log-normal distribution. We
used R2 of the model along with the patterns of residuals, and finally,
we plotted the kernel density of the chlorophyll-a values as diagnostics
of the presence, absence or prevalence of alternative equilibria in the
simulated and real work data.

The comparison of how the diagnostics/proxies of alternative
stable states respond to the variation in the prevalence of alternative
equilibria in the simulated datasets provides a robust assessment of
their ability to identify both the presence and absence of alternative
equilibria. It is the response of these diagnostic tests over time, with
the increase in the temporal perspective as more years are added to

the mean values of TP, TN and chlorophyll-a, that are key to the
identification of the presence and or absence of alternative equilibria
in a given dataset. The simulations show that a dataset which contains
alternative equilibria will show (1) no improvement in R2 as the tem-
poral perspective of the data increases (more years in the multi-year
mean); (2) an increased bimodality in the residuals of the models of
nutrients predicting chlorophyll-a will increase as more years are
added to the multi-year mean and (3) the kernel density function of
chlorophyll-a will display increasingly bimodality as more years are
added to the mean. In the absence of alternative equilibria, the pat-
terns differ with an R2, and increase in unimodality of residuals and a
consistent unimodal pattern in the kernel density function. Thus, the
diagnostic tests provide a robust test of both the presence and
absence of alternative equilibria in a given dataset.

Alternative stable state assessment for real data with limited
data range
It could be the case that alternative stable states do not appear in the
full dataset but only in a limited TN and TP concentration range. We
filtered and re-analyzed the data, only keeping data points within the
following two ranges: - TN concentration =0.5−2mg/L–TP concentra-
tion =0.05−0.4mg/L. In the filtered data, 1329 out of the original 2876
single-year data points, 289 out of 1028 3-year mean data points and
212 out of the 864 five-mean year data points remained. The filtered
data consisted of data points from 550, 48 and 27 lakes for the single-
year data, 3-year means and 5-year means, respectively. The smaller
range resulted in lower R² of the models, yet the pattern that multi-
yearmeans result inhigherR² compared to single-year datawas largely
consistent, apart from the 5-year mean TN models for which both, the
single-year and mean data resulted in very low R² (Supplementary
Fig. 6). Furthermore, due to the lower number of samples, the errors of
all proxies are higher, making conclusions more difficult than for the
full data. Still, we do not see any clear indication of alternative stable
states in the scatter plots (two groups of dots are not appearing
(Supplementary Fig. 5), the Kernel density plots (or model residuals
(Supplementary Fig. 6)). i.e. no signs of bimodality in residuals or
Kernel density plots. Please see details on this analysis in the supple-
mentary material.

Details and the R code for the steps for the random multi-year
sampling can be found in the supplementary materials.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data were collected from two open-access databases: LAGOSNE
database—using the R LAGOSNE package version 2.0.2 and from the
Danish ODA database- https://odaforalle.au.dk/main.aspx

Code availability
All codes are available here: https://git.ufz.de/graeber/alternative-
stable-states-do-not-stand-the-test-of-time
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