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Abstract
We aimed to investigate the influence of environmental factors and predict zooplankton
biomass and abundance in shallow eutrophic lakes. We employed time series of zoo-
plankton and environmental parameters that were measured monthly during 38 years in a
large, shallow eutrophic lake in Estonia to build estimates of zooplankton community
metrics (cladocerans, copepods, rotifers, ciliates). The analysis of historical time series
revealed that air temperature was by far the most important variable for explaining
zooplankton biomass and abundance, followed, in decreasing order of importance, by
pH, phytoplankton biomass and nitrate concentration. Models constructed with the best
predicting variables explained up to 71% of zooplankton biomass variance. Most of the
predictive variables had opposing or antagonistic interactions, often mitigating the effect
of temperature. In the second part of the study, three future climate scenarios were
developed following different Intergovernmental Panel on Climate Change (IPCC) tem-
perature projections and entered into an empirical model. Simulation results showed that
only a scenario in which air temperature stabilizes would curb total metazooplankton
biomass and abundance. In other scenarios, metazooplankton biomass and abundance
would likely exceed historical ranges whereas ciliates would not expand. Within the
metazooplankton community, copepods would increase in biomass and abundance,
whereas cladocerans would lose in biomass but not in abundance. These changes in the
zooplankton community will have important consequences for lake trophic structure and
ecosystem functioning.
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Interactions

1 Introduction

The ongoing global climate warming is expected to deeply alter lacustrine zooplankton
biomass and abundance (Gerten and Adrian 2002; Strecker et al. 2004; Brucet et al. 2010;
Zingel et al. 2018). As demonstrated already more than three decades ago in Lake Windermere
(UK), year-to-year zooplankton biomass fluctuations are mostly determined by water temper-
ature (George and Harris 1985). It has been shown experimentally that water temperature also
influences zooplankton structure and composition (Iglesias et al. 2011), and that warming
selects for smaller sized and fast-growing, r-trait zooplankters (Rasconi et al. 2015). Some
authors have argued that the warming effect could also be indirect because heating enhances
fish predation pressure that would cause a reduction of large-bodied zooplankters (Moss et al.
2004). Indeed, besides its direct effects on zooplankton metabolic rates and survivorship,
temperature affects physical and chemical properties of water (such as salinity and dissolved
oxygen availability) which affects fish, phytoplankton and macrophyte community composi-
tion that influence zooplankton biomass (Brucet et al. 2010). In lacustrine systems devoid of
large perturbations in the fish community, fish and temperature effects on zooplankton are
consequently not competing predictors as fish influence is nested in temperature dependence.
Considering the crucial position of zooplankton in lake food webs between primary producers
and fish, stressors affecting zooplankton might provoke trophic cascades that impact the whole
food web functioning.

Growth of human population and globalization are expected to further exacerbate the
anthropogenic pressure on ecosystems by adding supplementary stressors to the temperature
rise such as eutrophication (Straile 2015), land use changes, water column brownification,
alkalization and invasive alien species (Jeppesen et al. 2014). These multiple stressors may
have potential synergistic or antagonistic effects that impact ecosystems, and hence zooplank-
ton, differently compared with single stressors (Moss et al. 2011; Mack et al. 2019). Because
of their high surface to volume ratio, shallow lakes are considered particularly at risk and may
act as early responders and amplifiers for a variety of environmental stressors (Mooij et al.
2005; Smol 2016), including water temperature (Mooij et al. (2005). This sensitivity is further
increased in shallow lakes situated at higher latitudes as global warming is already modifying
ice phenology and thus hydrological and thermal regime, carbon processing and lake metab-
olism (Jeppesen et al. 2014). For these reasons, we selected Lake Võrtsjärv (Estonia) as a
model water body to test the global change effects on zooplankton.

During the last four decades, the large and shallow Lake Võrtsjärv experienced major shifts
in its water chemical composition and temperature, nutrient concentration, and abundance of
planktonic primary producers and consumers (Cremona et al. 2018; Janatian et al. 2019).
Despite a decrease in nutrient loading following the collapse of the Soviet Union, phytoplank-
ton biomass kept growing in the lake. Microbial ciliate biomass surged whereas larger
metazooplankton biomass and abundance declined. The exact reasons behind these massive
changes remain largely unknown to date partly because the number of co-occurring and
interacting variables seems to defy a descriptive modelling approach. A quantitative study to
explore the dynamic relationships between environmental stressors and zooplankton metrics in
Võrtsjärv was still lacking. With the advent of machine learning algorithms, it is now possible
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to handle a large number of variables simultaneously in order to select the most sensible ones
(Zuur et al. 2007). Additionally, empirical models offer several predictive tools that are suitable
for ecological model simulations (Feld et al. 2016). Here, we aimed (1) to describe the
dependence of metazooplankton (cladocerans, copepods, rotifers) and ciliate abundance and
biomass on a set of key environmental parameters, and (2) to predict the biomass and
abundance of those groups through 2050 using IPCC scenarios and Võrtsjärv as a case study.
Our working hypothesis was that warming has acted as the main driver behind changes of
zooplankton abundance, biomass and composition (Mooij et al. 2005; Haberman and Haldna
2017), with other stressors playing only a minor role.

2 Material and methods

2.1 Study site

With a surface area of 270 km2, Lake Võrtsjärv is the second largest lake in the
Baltic countries after Lake Peipsi. It is a shallow (mean depth = 2.8 m) and eutrophic
(total phosphorus TP = 48 μg L−1, total nitrogen TN = 0.91 mg L−1) water body that is
ice-covered for 135 days per year on average (Nõges et al. 2010; Nõges and Tuvikene
2012). During most of the ice-free season, the lake water column is continuously
mixed, resulting in a high turbidity and a Secchi depth less than 1 m. Phytoplankton
is by far the largest contributor to Võrtsjärv primary production although macrophytes
can be important along the shoreline and in the southern tip of the lake. The
dominant phytoplankton species are non-N2-fixing cyanobacteria Limnothrix
planktonica (Wolosz.) Meffert, L. redekei (Van Goor) and Planktolyngbya limnetica
(Lemm.) Kom.-Legn. The poor edibility of the dominating filamentous cyanobacteria
for crustacean zooplankton causes scarcity of large zooplankters in Võrtsjärv
(Haberman 1998). The dominant crustaceans are the cladocerans Bosmina longirostris
(O. F. Müller), Chydorus sphaericus (O. F. Müller) and the juvenile forms of copepod
genera Mesocyclops and Thermocyclops. The main rotifer species are Anuraeopsis
fissa (Gosse), Keratella cochlearis (Gosse), Keratella quadrata frenzeli (Eckstein),
Keratella tecta (Gosse), Trichocerca rousseleti (Voigt), Polyarthra luminosa Kutikova.
Protozooplankton taxa are mostly small-bodied ciliates—oligotrichs from
Rimostrombidium, Limnostrombidium, Pelagostrombidium and Halteria genera.

During the 1979–2017 period, the rise in lake water temperature (+ 1.2 °C on average) was
more moderate than the increase in air temperature (avg. + 2.77 °C). Võrtsjärv water column
became slightly more basic, with a rise in pH by 0.5 units during the same period. Although
the dissolved oxygen concentrations (O2) slightly increased (avg. + 4%), the chemical oxygen
demand measured by the permanganate method (CODmn) increased even more (avg. + 26%),
showing an accumulation of organic matter in the water column that could be partly attributed
to a brownification trend (Nõges et al. 2011) and partly to the increasing phytoplankton
biomass. Despite considerably diminished nutrient loads since the early 1990s (avg. − 47%
for TN and − 27% for TP, in Võrtsjärv) resulting from a sharp decline in fertilizer use and
improving water treatment in the independent Republic of Estonia, the phytoplankton biomass
concurrently nearly tripled (avg. + 172%). Metazooplankton average abundance and biomass
declined respectively from 0.55 × 106 to 0.39 × 106 ind. m−3 (− 29%) and from 0.74 to
0.6 g m−3 (− 19%) between 1979 and 2017 (Supplementary Fig. 1). Ciliate biomass surged
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more than fivefold, from 0.7 to 3.8 g m−3, although their average abundance decreased by 11%
during the last three decades (from 105 × 106 to 92 × 106 ind m−3). The numerically largest
groups in metazooplankton were rotifers (≈ 74%), copepods (≈ 12%) and cladocerans (≈ 13%)
whereas in the biomass rotifers were underrepresented (≈ 22%) compared with copepods (≈
28%) and cladocerans (≈ 50%, Supplementary Fig. 2). The beginning of the twenty-first
century has seen a relative decrease of rotifer biomass compared with cladocerans and
copepods.

2.2 Data collection

Although ecological monitoring on Lake Võrtsjärv dates back to the early 1960s, we started
our analysis from 1979 because of an increase in data reliability and regularity starting from
that year. The following variables were measured on a monthly basis: biomass and abundance
of total metazooplankton (Bmeta, Ameta), rotifers (Broti, Aroti), copepods (Bcope, Acope), cladocerans
(Bclad, Aclad), protozooplankton (ciliates Bcili, Acili), biomass of phytoplankton (Bphyto), water
and air temperature (Twat, Tair), water level (WL), pH, dissolved oxygen (O2), chemical oxygen
demand by permanganate (CODmn), alkalinity (HCO3), total nitrogen (TN) and phosphorus
(TP), nitrate (NO3), ammonium (NH4) and phosphate concentrations (PO4). The sampling and
analysis methods for most of the variables are described in Nõges et al. (2010, 2016) whereas
air temperature time series were obtained from Estonian Environment Agency (https://www.
keskkonnaagentuur.ee/en). As Võrtsjärv water and air temperature are strongly positively
correlated to each other (Fig. 1), we used air temperature as an independent variable in our
modelling. The main reason for this choice was that site-specific air temperature predictions
(which can be downscaled from climate models) were more readily available than water
temperature predictions.

Fig. 1 Biplot of monthly air and water temperature in Lake Võrtsjärv (1979–2017)
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2.3 Data treatment

We divided our statistical analysis into five successive steps: (1) data preparation, (2)
exploratory and (3) quantitative analyses (Feld et al. 2016), (4) predictor simulation
and (5) response variable simulation according to scenarios. All the computation was
done using R software versions 3.5.2., 3.5.3. and 3.6.1. (R Core Team 2019). All the
plankton-related variables except phytoplankton biomass were further used as depen-
dent variables (hereafter “response variables”) whereas physical and chemical vari-
ables plus phytoplankton biomass were entered as predictive variables (hereafter
“predictors”). For the response variable simulation (fifth and last step), we conducted
an uncertainty analysis by using three different sets of predictor values representing
“low”, “mid” and “high” scenarios (see predictor simulation section).

2.3.1 Data preparation

For the variables that were sampled during the whole study timeframe (1979–2017),
the number of observations (n) reached a maximum of 468. However, nutrients started
being monitored only in 1989, CODmn in 1991, and ciliate biomass and abundance in
1995. Missing data was labelled as “NA” for R and further ignored for the rest of the
analysis. Nevertheless, we managed in all cases to exceed the rule of thumb require-
ments of a 10 to 1 ratio between the number of observations and that of predictors
(Harrell 2001). Both predictors and response variables were, when necessary, log- or
square root transformed in order to approach normal distribution.

2.3.2 Data exploration

For selecting the most meaningful predictors for each response variable, we employed
Boosted Regression Trees (BRT) following a collinearity analysis. We calculated the
Variable Inflation Factor (VIF, Zuur et al. 2007) using the usdm package and setting
the VIF threshold at 8, excluding from the analysis variables that exceeded this
threshold. We conducted the BRT analysis (tree complexity 2, learning rate 0.0001,
bag fraction 0.6) with the R packages gbm (Greenwell et al. 2018) and dismo
(Hijmans et al. 2016). For a better interpretation of the results of multiple regression
analysis, it is recommended to keep the number of predictors small enough (Qian
2017). Additionally, a limited set of predictors is more reliable and easier to integrate
into the simulation of future ecological conditions. Consequently, only the predictors
that ranked first and second for each response variable in the variable importance
output of BRT analysis were kept for the following quantitative analysis. When
encountering two concurrent, equally ranked predictors, we prioritized abiotic over
biotic predictors because the former being generally more ecologically informative
than the latter (Cremona et al. 2018).

2.3.3 Data quantification

We employed a multivariate analysis resting on generalized least squares (GLS)
models for predicting response variables. As our dataset consisted of time series from
a single site, we wanted to test the dependence between time points using the
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autocorrelation function (ACF, Crawley 2013) that is available in the package nlme
(Pinheiro et al. 2018). Initially, we checked GLS model performance without
autoregressive factor and then with the addition of autoregressive factors of increasing
complexity, firstly with first-order AR1 and then with second-order autoregressive
moving-average models (ARMA2). For the response variable simulation step, we
selected the most performant model regarding Akaike’s information criteria (AIC,
Akaike 1973), Bayesian information criteria (BIC, Schwarz 1978), root-mean-square
error (RMSE) and compliance with residual normal distribution and homoscedasticity.
The potential interaction between the two predictors of each response variable was
classified according to Feld et al. (2016) simplified typology of Piggott et al. (2015).
In short, a very weak interaction term indicated additive effects (no interaction). In
case the predictors and interaction coefficients all had the same sign, the interaction
was considered synergistic. If predictors had the same sign but interaction coefficient
had a different sign, the interaction was antagonistic. If individual predictor coeffi-
cients had opposite signs, then the interaction was opposing, irrespective to the sign
of its coefficient.

For the forecasting part of the study, only these response variables were used for which at
least one-third of the variance (R2 = 0.33) was explained by the GLS model.

2.3.4 Predictor simulation

To forecast predictor dynamics in the near future (2020–2050), we used two different
techniques depending on the type of predictor. For predictors other than air temper-
ature, we used automated forecasting function “auto.arima” from R package forecast
(Hyndman et al. 2018). The auto.arima function returns the best autoregressive
integrated moving average (ARIMA) model according to AIC and BIC scores. For
pH, we considered that the pH would eventually reach a plateau of 9.5. Indeed,
averages above this value are unrealistic in Võrtsjärv because they would necessitate a
10-fold increase in primary production (Peeter Nõges, unpublished data). We used the
monthly 20th, mean and 80th percentiles of predictor posterior distribution for low,
mid and high scenario values respectively. Thus, if ARIMA model for pH returned a
20th percentile value of 7.9, a mean of 8.0 and an 80th percentile of 8.2 for January
2025, these values were employed as predictive values for this date in the low, mid
and high scenarios, respectively. For air temperature projections, we employed output
from IPSL-CM5 global climate model under three different future scenarios (RCP4.5,
RCP6.0 and RCP8.5) downscaled to central-south Estonia. Air temperature data was
bias-corrected using the linear scaling method of Shrestha (2015) and observed air
temperature in Võrtsjärv region (1979–2017) as the reference.

2.3.5 Response variable simulation

For each response variable, forecasted values of predictors were employed as inputs
into the GLS model for numerically forecasting time series in the near future (2020–
2050) period, depending on the three aforementioned scenarios. A bias-correcting
procedure was done on GLS model outputs using multiplicative or empirical quantile
mapping (EQM) method depending on the type of data. Bias-correction computation
was proceeded with the R package hyfo (Xu 2018).
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3 Results

3.1 Data exploration

Statistical analysis by BRT revealed that air temperature was ranked as the most important
predictor for seven response variables out of ten (Ameta, Bmeta, Aroti, Acope, Bcope, Acili, Bcili,
Table 1). Additionally, air temperature was ranked second or third most important predictor for
the three remaining response variables. For six response variables out of ten, air temperature
alone explained 45–85% of the variance. Although pH was never ranked first in the analysis, it
was the second most important predictor for five response variables (Bmeta, Acope, Bcope, Acili,
Bcili). The next most important predictors by decreasing order of importance were the biomass
of phytoplankton (Bphyto), nitrate (NO3) and HCO3. The remaining predictors which were
related to phosphorus and nitrogen (TP, TN:TP, TN), oxygen (O2, CODmn) or water level
(WL) were all poorly ranked and did not contribute substantially to explain response variable
variance.

3.2 Data quantification

GLS models comprising the two best predictors from BRT analysis and a first- to second-order
autoregressive module explained in some cases more than two-thirds of the variance of
response variables (Table 2). The best explanatory power was obtained for the biomass of
copepods (Bcope, R2 = 0.71) and the weakest for the biomass of rotifers (Broti, R2 = 0.09).
Models constructed with air temperature, pH and their interaction explained a greater propor-
tion of whole metazooplankton, copepod and ciliate biomass (R2 = 0.58, 0.71 and 0.58
respectively) than of their abundance (R2 = 0.38, 0.50 and 0.53 respectively). A similar
inconsistency was observed in case of cladoceran biomass and abundance (R2 = 0.65 vs
0.52) although the abundance was predicted best by Bphyto and air temperature while the
biomass by nitrates and air temperature. The GLS model did not predict a large share of
variation in biomass and abundance of rotifers (R2 < 0.17) despite the use of high-ranking
predictors from the BRTanalysis. Consequently, Aroti and Broti were the only response variables
that were not kept for the forecast part of the analysis. The analysis of the significant interactive
terms of predictors revealed that the two main predictors (air temperature and pH) had
opposing (Ameta, Bcope) or antagonistic (Acili, Bcili) interactions. The combined effects of
temperature and pH were consequently weaker than their individual effect for ciliates while
the two variables worked in opposing ways for the biomass of copepods and the abundance of
metazooplankton. For cladoceran abundance, the interaction between phytoplankton and
temperature was antagonistic whereas nitrate and temperature worked in opposite ways for
their biomass. For the four remaining response variables (Bmeta, Aroti, Broti, Acope), the interaction
was not statistically significant and the predictor effect was thus only additive (Table 3).

3.3 Response variable simulation

Our model forecasted that the average total metazooplankton abundance and biomass would
increase strongly in the warming scenario (RCP8.5), increase markedly in the moderate
warming scenario (RCP6.0) and decrease in the lower warming scenario (RCP4.5) compared
with historical values (Fig. 2). However, within the metazooplankton community, although
cladoceran abundance would rise in the moderate and high scenarios, their biomass would
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collapse in all scenarios with a drop from 25% (low scenario) to 90% (high scenario). This
parallel rise in abundance and drop in biomass means that the individual size of cladocerans
would shrink in the 2020–2050 period. Copepods, on the other hand, would exhibit a rise in
abundance irrespective of the scenario (Fig. 3). In the low scenario, their abundance would
stagnate whereas it would nearly triple in the high warming scenario. Protozooplankton
dynamics would not mirror that of metazooplankton in the modelled scenarios. The model
simulated that ciliate abundance would increase the most in the low warming scenario, owing
to a large number of seasonal peaks, but would reach a lower average in moderate and high
warming scenarios. Similarly, ciliate biomass would rise markedly above the last decade
average only in the case of a high scenario. In mid and low scenarios, the model simulated
a stagnation of ciliate biomass around the average historical values of the early 2000s because
of the antagonistic effects between air temperature and pH on ciliates.

4 Discussion

Using a 38-year-long time series, we discovered that few environmental variables, chiefly
temperature and pH, were important variables for predicting zooplankton abundance and
biomass in Võrtsjärv. Projected future warming in Võrtsjärv will lead, according to our model
simulation, to an increase in total biomass and abundance paralleled to a further restructuring
of zooplankton community that will benefit copepods at the detriment of cladocerans. After
more than two decades of rise in biomass, protists are projected to reach a plateau and even fall
back to the values observed at the turn of the century. Our modelling findings echo literature
observations regarding climate warming which, combined with the alkalization of shallow
lakes, is expected to deeply alter lacustrine zooplankton communities (Moss et al. 2011;
Jeppesen et al. 2014). pH appeared in our analysis as one of the most influential variables
for predicting zooplankton abundance and biomass. It is unclear whether the positive effect of
pH on zooplankton was direct or if it reflected an increase in algal primary production which
ultimately benefited zooplankton. Considering that pH ranked as a more influential variable
than algal biomass in the BRT model, we can infer that pH effects were both direct and
indirect. The positive effects of pH on zooplankton seem to take place within a 7.5–9 range

Table 2 Generalized least squares (GLS) model results with pre-selected descriptor variables

Response variable Descriptor variables Model code entrya AIC BIC df R2 RMSE

Ameta Tair, pH Log(y) = Tair * pH +ARMA(2,2) 1300 1337 9 0.38 1.19
Bmeta Tair, pH Log(y) = Tair * pH +ARMA(2,2) 1316 1353 9 0.58 1.07
Aclad Bphyto, Tair Log(y) = (Bphyto)1/2 * Tair + AR(1) 2634 2659 6 0.52 4.3
Bclad NO3, Tair Log(y) = NO3 * Tair + AR(1) 996 1019 6 0.65 1.06
Aroti Tair, HCO3 Log(y) = Tair * HCO3 +ARMA(2,2) 1749 1786 9 0.16 1.94
Broti Tair, HCO3 Log(y) = Tair * HCO3 +ARMA(2,2) 1294 1331 9 0.09 1.09
Acope Tair, pH Log(y) = Tair * pH +AR(1) 2610 2634 6 0.50 4.3
Bcope Tair, pH Log(y) = Tair * pH +AR(1) 1190 1214 6 0.71 0.86
Acili Tair, pH Log(y) = Tair * pH +ARMA(2,2) 731 763 9 0.53 0.97
Bcili Tair, pH Log(y) = Tair * pH +ARMA(2,2) 758 790 9 0.58 1.05

a In R notation of functions, a plus (+) sign corresponds to additive effects, while an asterisk (*) sign both additive
effect and interactions are considered. Only models that attained the best performance (AIC, BIC, RMSE) are
displayed here. Model choice (AR: first-order autoregressive term; ARMA: second-order autoregressive moving-
average) is explained in the methods section

Climatic Change (2020) 159:565–580 573



above which there is a loss of grazing and zooplankton diversity (Kalff 2002). A further
increase in pH in Võrtsjärv, although highly improbable (see Section 2.3.4), might thus cross a
threshold which is detrimental to zooplankton physiological requirements.

The model simulated a concurrent decline of cladoceran biomass and rise in their abun-
dance, hinting to a reduction in the body size of those zooplankters. These predictions concord
with the previous in situ observations (Gillooly and Dodson 2000) that revealed a decrease in
limnetic cladoceran body size from cold to tropical regions (Iglesias et al. 2011). Additionally,
it has been observed that temperature rise was responsible for the decrease in density of large-

Table 3 Details of GLS model coefficients and correlations

Response
variable

Fixed
effects

Estimate Standard
error

t value p Interaction

Ameta 2.0426597 1.5178898 1.345723 0.1790
Tair − 0.1859277 0.1225340 − 1.517357 0.1299
pH 1.1951645 0.1848116 6.466935 0.0000***
Tair:pH 0.0313339 0.0151221 2.072063 0.0388* Opposing

Bmeta − 15.494281 1.5069015 − 10.282212 0.0000***
Tair 0.215435 0.1240374 1.736856 0.0831
pH 1.691025 0.1868121 9.052010 0.0000***
Tair:pH − 0.015823 0.0152917 − 1.034744 0.3013 –

Aclad − 0.5743766 0.5485344 − 1.047111 0.2956
Bphyto 2.0028605 0.1924483 10.407263 0.0000***
Tair 0.4139760 0.0629455 6.576736 0.0000***
Bphyto:Tair − 0.0630724 0.0177083 − 3.561740 0.0004*** Antagonistic

Bclad − 3.786633 0.11663269 − 32.46631 0.0000***
NO3 − 0.587169 0.06503875 − 9.02798 0.0000***
Tair 0.089813 0.01253839 7.16306 0.0000***
NO3:Tair 0.010716 0.00516530 2.07454 0.0388* Opposing

Aroti 11.181387 0.7397945 15.114180 0.0000***
Tair 0.173952 0.0716293 2.428497 0.0156*
HCO3 − 0.000539 0.0028593 − 0.188642 0.8505
Tair:HCO3 − 0.000409 0.0003528 − 1.158549 0.2473 –

Broti − 2.7694577 0.4694393 − 5.899501 0.0000***
Tair 0.0037402 0.0416228 0.089859 0.9284
HCO3 − 0.0000283 0.0016799 − 0.016854 0.9866
Tair:HCO3 0.0001782 0.0002058 0.865904 0.3870 –

Acope − 22.245353 6.145725 − 3.619647 0.0003***
pH 3.225226 0.779640 4.136815 0.0000***
Tair 1.026114 0.545509 1.881020 0.0606
pH:Tair − 0.073165 0.067344 − 1.086430 0.2779 –

Bcope − 8.457032 1.2459207 − 6.787777 0.0000***
Tair − 0.221615 0.1118503 − 1.981355 0.0481*
pH 0.608041 0.1580905 3.846154 0.0001***
Tair:pH 0.042824 0.0137934 3.104700 0.0020** Opposing

Acili 1.5372570 1.9737848 0.778837 0.4368
Tair 0.5500547 0.1715914 3.205607 0.0015**
pH 1.0251586 0.2460942 4.165716 0.0000***
Tair:pH − 0.0553836 0.0209392 − 2.644964 0.0086** Antagonistic

Bcili − 4.548500 2.0651239 − 2.202531 0.0285*
Tair 0.651256 0.1791644 3.634963 0.0003***
pH 1.314815 0.2572185 5.111666 0.0000***
Tair:pH − 0.066555 0.0218499 − 3.046001 0.0025** Antagonistic

p significance are as follows: *p < 0.05, **p < 0.01, ***p < 0.001. Only interactions that reach statistical
significance are displayed out
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bodied zooplankton in shallow lakes (Brucet et al. 2010). Although both cladoceran biomass
and abundance were positively correlated with temperature in our study, the negative influence
of NO3 on cladoceran biomass is expected to exceed the positive influence of temperature in
case of eutrophication. Similarly, the antagonistic interaction between temperature and phyto-
plankton predictors in the case of cladoceran abundance would mitigate the effect of warming
on this zooplankton group. Phytoplankton thriving in eutrophic conditions are generally
cyanobacteria which are able to reduce zooplankton grazing capacity (Jeppesen et al. 2014).
Nitrate is also associated with poor conditions for zooplankton and reduction in its concen-
tration is one of the core processes of large zooplankter population restoration (Jeppesen et al.
2007). Increased NO3 concentrations promote cyanobacterial biomass (Burberg et al. 2019).
Although, cyanobacteria can contribute a significant part of the cladoceran algal diet in
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Võrtsjärv (Tõnno et al. 2016), it is generally considered as nutritionally inadequate food source
for these grazers. Compared with green algae or cryptophytes, cyanobacteria contain low
levels of essential lipids such as highly unsaturated fatty acids and sterols which are important
for somatic growth and reproduction for cladocerans (Martin-Creuzburg et al. 2008; Burns
et al. 2011). As exemplified by Võrtsjärv case, despite the reduction of in-lake total nitrogen
concentration, nitrate concentration has increased in most recent years to a relatively high level
as shown by results from the Environmental Monitoring Information System of Estonia
(https://kese.envir.ee/kese/) and could be a major stressor for the cladoceran biomass if left
unchecked in the future.

Although there is rich published evidence on the temperature effects on ciliate density and
biomass, it has been mostly studied in the context of seasonal fluctuations and successions
(Gaedke and Wickham 2004; Pace 1982). Zingel et al. (2018) showed in a mesocosm study
that ciliates responded quickly and positively to non-seasonal warming. We also reported a
synergistic effect between temperature and nutrients with the largest increase in the more
eutrophic enclosures (Zingel et al. 2018). However, in the present study conducted in the
natural habitat for ciliates, nutrients (NO3 in that case) ranked only as the third most important
variable and explained a mere 4% of Bcili variance.

Although phosphorus did not appear among the top five predictors for Acili or Bcili, the BRT
model ranked the interaction between PO4 and temperature as the second strongest in the predictor
set. These two results confirm, nonetheless, that nutrients play a role in the increase of ciliate
abundance, although their long-term effect is rather limited as exemplified by the concomitant rise
in ciliate biomass and reduction in nutrient concentration in Võrtsjärv during the last four decades.
Although ciliate growth seems to have benefited from Võrtsjärv warming and alkalization, our
model simulation showed that the recent reduction of ciliate biomass is expected to continue even
in the moderate warming scenario. This phenomenon is caused by the antagonistic interaction
between temperature and pH, which leads to a slump or a decrease in Acili and Bcili when the rise in
absolute values of individual predictors remains small. It has been demonstrated that global
warming may impact unicellular organisms in several ways. First, it is suggested that the carrying
capacity and thus the maximum number of cells per volume scales negatively with temperature
(Savage et al. 2004) leading to reduced abundances. Forster et al. (2013) showed linear decrease in
maximum supported biomass of unicellular ciliates as temperatures increased, due to the
temperature-size response of mean cell volume. Atkinson et al. (2003) demonstrated in meta-
analysis that protist cell volumes changed with increasing temperature linearly by approximately
2.5% °C−1. Second, it has also been shown recently that reduced body size is a universal
ecological response to global warming (e.g. Sheridan and Bickford 2011). Different cell size
leads inevitably to changes in preference of food items and different risks of predation. In a
mesocosm experiment carried out in Võrtsjärv, Zingel et al. (2016) demonstrated an inverse
relationship between copepods and large-sized ciliates and showed that this was an important
feature adjusting not only the structure of the ciliate community but also the energy transfer
between meta- and protozooplankton.

In highly eutrophic Võrtsjärv, copepod assemblage is dominated by small-sized cyclopoid
copepods (Haberman 1998). Given their opportunistic omnivorous feeding behaviour,
cyclopoids interact with different trophic levels by preying on algae (Hopp and Maier
2005), ciliates (Agasild et al. 2013) and smaller metazooplankters (Hansen and Santer
1996). Cyclopoids copepods are thereby probably less disadvantaged from environmental
changes due to warming or eutrophication (i.e. increase of cyanobacteria) than generally non-
selective large-bodied cladocerans (e.g. Gliwicz and Lampert 1990). In fact, long-term
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observations have shown that cyclopoid copepods particularly are the group that benefits most
from seasonal temperature increases and climate warming (e.g. Wagner and Adrian 2011;
Teubner et al. 2018). Increasing temperature is directly promoting the growth of the more
thermophilic cyclopoid species, such as Mesocyclops leuckarti and Thermocyclops crassus
(Maier 1989). In a study involving a whole lake thermal manipulation, thermophilic cyclopoid
copepod T. oithonoides exhibited an increase in the frequency of reproductive cycles when
subjected to higher temperatures (Lydersen et al. 2008). In a recent study from Võrtsjärv,
Haberman and Haldna (2017) showed that during the last five decades, the period with a mean
water temperature of 10 °C (which is that of marked increase in zooplankton abundance and
switch from cold-water to warm-water species) was lengthened by 7 days in spring and 6 days
in autumn. Consequently, the hypothesis that temperature rise would further advance the
reproduction of thermophilic copepod species as predicted by warming scenarios for copepods
in Võrtsjärv appears plausible.

The warming scenarios for cladoceran assemblage most likely reflect the rise of abundance
the small-sized Chydorus sphaericus, a current dominant cladoceran species in Võrtsjärv
(Haberman 1998). C. sphaericus is characteristic of eutrophic water bodies and is well adapted
to eutrophic conditions with abundant detritus and high cyanobacterial concentrations
(Vijverberg and Boersma 1997). Moreover, feeding studies in Võrtsjärv have shown its
selectivity towards colonial cyanobacteria supporting their coexistence with cyanobacterial
blooms (Tõnno et al. 2016). Overall, the predicted compositional and size structural changes
among crustacean zooplankton community imply a weakening of grazing pressure on phyto-
plankton (e.g. Vakkilainen et al. 2004) and more specialized zooplankton feeding in the course
of warming. This in turn will further alter the interactions and energy transfer in the food web.

Rotifer metrics were not included in the scenarios, and we cannot assume that their
abundance in Võrtsjärv would increase in warmer conditions. Indeed, a glance at historical
data reveals that after reaching a maximum in the mid-1990s, rotifer biomass started to decline
and reached a low plateau (0.1 g m−3) at the beginning of the 2010s that coincided with the
period of rapid warming (Supplementary Fig. 2). In the last year for which measurements are
available (2017), rotifers represented less than 10% of the total metazooplankton biomass.
Although warming has been shown to favour smaller zooplankters like rotifers in small
fishless ponds (Strecker et al. 2004), their assemblage parameters in Võrtsjärv displayed only
weak correlations with environmental variables (Agasild et al. 2007; Virro et al. 2009). The
researchers could not distinguish any single essential controlling factor for rotifer community
composition and abundance and concluded on a likely important role of interspecific and
trophic relationships (Agasild et al. 2007; Virro et al. 2009). As smaller zooplankton groups
like rotifers and ciliates constitute the most efficient consumers of phytoplankton in Võrtsjärv
(Agasild et al. 2007), inter-group food competition is a plausible explanation for the opposite
trends that rotifer and ciliate biomasses followed to date. Consequently, as hinted by the
double-decadal decline of rotifer biomass in Võrtsjärv and the parallel rise of ciliate biomass
during the 1990–2017 period, we can speculate that the simulated drop or stagnation of ciliate
biomass in 2020–2050 would be beneficial to rotifer biomass.

5 Conclusion

Our study, spanning several decades of environmental monitoring in a large shallow eutrophic
temperate lake revealed that air temperature and, to a lesser extent, pH, nitrates, and
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phytoplankton density were the main driving factors of zooplankton biomass. Projections for
the next few decades find that stabilization of total metazooplankton biomass and abundance
will only occur in a lower warming scenario (RCP4.5). In higher warming scenarios (RCP6.0,
RCP8.5), metazooplankton biomass and abundance would exceed historical averages whereas
ciliates would stagnate. The restructuring of metazooplankton community would foster cope-
pods at the expense of large-bodied cladocerans.
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